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Abstract

Maryam Mirzakhani has been awarded the Fields Medal for her out-
standing work on the dynamics and geometry of Riemann surfaces and
their moduli spaces.

1 Introduction

Mirzakhani has established a suite of powerful new results on orbit closures
and invariant measures for dynamical systems on moduli spaces. She has
also given a new proof of Witten’s conjecture, which emerges naturally from
a counting problem for simple closed geodesics on Riemann surfaces. This
note gives a brief discussion of her main results and their ramifications,
including the striking parallels between homogeneous spaces and moduli
spaces that they suggest.

2 The setting

We begin with a résumé of background material, to set the stage.
LetMg denote the moduli space of curves of genus g ≥ 2. This space is

both a complex variety, with dimCMg = 3g − 3, and a symplectic orbifold.
Its points are in bijection with the isomorphism classes of compact Riemann
surfaces X of genus g.

The dimension of Mg was known already to Riemann. Rigorous con-
structions of moduli space were given in the 1960s, by Ahlfors and Bers
in the setting of complex analysis and by Mumford in the setting of alge-
braic geometry. Today the theory of moduli spaces is a meeting ground for
mathematical disciplines ranging from arithmetic geometry to string theory.
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The symplectic form ω on Mg arises from the hyperbolic metric on X.
As shown by Wolpert, in the length–twist coordinates coming from a pair
of pants decomposition of X, one can write

ω =

3g−3∑
1

d`i ∧ dτi.

The complex structure on Mg arises from the natural isomorphism

T∗XMg = Q(X) = {holomorphic forms q = q(z) dz2 on X}

between the cotangent space to Mg at X and the space of holomorphic
quadratic differentials on X. The Teichmüller metric on Mg also emerges
from its complex structure: on the one hand, it is dual to the L1 norm

‖q‖ =

∫
X
|q(z)| |dz|2 = area(X, |q|)

on T∗XMg; on the other hand, it agrees with the intrinsic Kobayashi metric
on Mg (Royden).

Moduli space can be presented as the quotient Mg = Tg/Modg of Te-
ichmüller space — its universal cover, a contractible bounded domain in
C3g−3 — by the action of the mapping–class group of a surface.

One of the challenges of working with moduli space is that it is totally
inhomogeneous: for example, the symmetry group of Tg (as a complex man-
ifold) is simply the discrete group Modg (for g > 2). One of Mirzakhani’s
remarkable contributions is to show that, nevertheless, dynamics on moduli
space displays many of the same rigidity properties as dynamics on homo-
geneous spaces (see §4).

3 From simple geodesics to Witten’s conjecture

We begin with Mirzakhani’s work on simple geodesics. In the 1940s, Del-
sarte, Huber and Selberg established the prime number theorem for hyper-
bolic surfaces, which states that the number of (oriented, primitive) closed
geodesics on X ∈Mg with length ≤ L satisfies

π(X,L) ∼ eL

L
.

(The usual prime number theorem says that the number of prime integers
with 0 < log p ≤ L is asymptotic to eL/L.)
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The number of simple closed geodesics σ(X,L) behaves quite differently;
it only has polynomial growth, and in 2004 Mirzakhani proved that

σ(X,L) ∼ CXL6g−6.

In contrast to the prime number theorem, the right–hand side here depends
on both the genus and geometry of X.

Although the statement above involves only a single Riemann surface
X, Mirzakhani’s proof involves integration over moduli space and leads to
a cascade of new results, including a completely unexpected proof of the
Witten conjecture. The latter conjecture, established by Kontsevich in 1992,
relates the intersection numbers on moduli space defined by

〈τd1 , . . . , τdn〉 =

∫
Mg,n

c1(E1)
d1 · · · c1(En)dn

to a power series solution to the KdV hierarchy (an infinite system of differ-
ential equations satisfying the Virasoro relations). HereMg,n is the Deligne–
Mumford compactification of the moduli space of Riemann surfaces X with
marked points (p1, . . . , pn), and c1(Ei) denotes the first Chern class of the
line bundle Ei →Mg,n with fibers T∗piX.

Mirzakhani’s investigation of σ(X,L) also leads to formulas for the fre-
quencies of different topological types of simple closed curves on X; for
example, a random simple curve on a surface of genus 2 has probability
1/7 of cutting X into two pieces of genus 1. These frequencies are always
rational numbers, and they depend only on g, not X.

At the core of these results is Mirzakhani’s novel, recursive calculation
of the volume of the moduli space of Riemann surfaces of genus g with n
geodesic boundary components with lengths (L1, . . . , Ln). This volume is
defined by

Pg,n(L1, . . . , Ln) =

∫
Mg,n(L1,...,Ln)

ω3g−3+n;

for example, one can show that P1,1(L1) = (1/24)(L2
1 + 4π2). In general,

Pg,n is a polynomial whose coefficients (which lie in Q(π)) can be related to
frequencies and characteristic classes, yielding the results discussed above.
Previously only the values of Pg,n(0, . . . , 0) were known. The proofs depend
on intricate formulas for dissections of surfaces along hyperbolic geodesics;
see [Mir3], [Mir1] and [Mir2]. Mirzakhani has also studied the behavior of
Mg as g →∞; see [Mir4],[Mir6].
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4 Complex geodesics in moduli space

We now turn to Mirzakhani’s work on moduli spaces and dynamics. Her con-
tributions to this area include a prime number theorem for closed geodesics
in Mg, counting results for orbits of Modg on Tg, and the classification of
Modg–invariant measures on the space of measured laminations MLg. But
perhaps her most striking work — which we will present here — is a version
of Ratner’s theorem for moduli spaces.

Complex geodesics. It has been known for some time that the Teichmüller
geodesic flow is ergodic (Masur, Veech), and hence almost every geodesic
γ ⊂ Mg is dense. It is difficult, however, to describe the behavior of every
single geodesic γ; already on a hyperbolic surface, the closure of a geodesic
can be a fractal cobweb, and matters only get worse in moduli space.

Teichmüller showed that moduli space is also abundantly populated by
complex geodesics, these being holomorphic, isometric immersions

F : H→Mg.

In fact there is a complex geodesic through every X ∈Mg in every possible
direction.

In principle, the closure of a complex geodesic might exhibit the same
type of pathology as a real geodesic. But in fact, the opposite is true. In a
major breakthrough, Mirzakhani and her coworkers have shown:

The closure of any complex geodesic is an algebraic subvariety
V = F (H) ⊂Mg .

This long sought–after rigidity theorem was known previously only for g = 2,
with some restrictions on F [Mc]. (In the case of genus two, V can be an
isometrically immersed curve, a Hilbert modular surface, or the whole space
M2.)

Dynamics over moduli space. The proof of this rigidity theorem involves
the natural action of SL2(R) on the sphere bundle

Q1Mg →Mg,

consisting of pairs (X, q) with q ∈ Q(X) and ‖q‖ = 1.
To describe this action, consider a Riemann surface X = P/∼ presented

as the quotient of a polygon P ⊂ C under isometric edge identifications
between pairs of parallel sides. Such identifications preserve the quadratic
differential dz2|P , so a polygonal model for X actually determines a pair
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(X, q) ∈ QMg with ‖q‖ = area(P ). Conversely, every nonzero quadratic
differential (X, q) ∈ QMg can be presented in this form.

Since SL2(R) acts linearly on R2 ∼= C, given A ∈ SL2(R) we can form a
new polygon A(P ) ⊂ C, and use the corresponding edge identifications to
define

A · (X, q) = (XA, qA) = (A(P ), dz2)/∼ .

Note that [XA] = [X] if A ∈ SO2(R). Thus the map A 7→ XA descends to
give a map

F : H ∼= SL2(R)/ SO2(R)→Mg,

which is the complex geodesic generated by (X, q).
The proof that F (H) ⊂Mg is an algebraic variety involves the following

three theorems, each of which a substantial work in its own right.

1. Measure classification (Eskin and Mirzakhani). Every ergodic, SL2(R)–
invariant probability measure on Q1Mg comes from Euclidean measure
on a special complex–analytic subvariety A ⊂ QMg (The variety A is
linear in period coordinates).

This is the deepest step in the proof; it uses a wide variety of tech-
niques, including conditional measures and a random walk argument
inspired by the work of Benoist and Quint [BQ].

2. Topological classification (Eskin, Mirzakhani and Mohammadi). The
closure of any SL2(R) orbit in Q1Mg is given by A∩Q1Mg for some
special analytic subvariety A.

3. Algebraic structure (Filip). Any special analytic subvariety A is in
fact an algebraic subvariety of QMg. Thus its projection to Mg,

V = F (H), is an algebraic subvariety as well.

See [EM], [EMM] and [Fil] for these developments.

Ramifications: Beyond homogeneous spaces. This collection of re-
sults reveals that the theory of dynamics on homogeneous spaces, developed
by Margulis, Ratner and others, has a definite resonance in the highly inho-
mogeneous, but equally important, world of moduli spaces.

The setting for homogeneous dynamics is the theory of Lie groups. Given
a lattice Γ in a Lie group G, and a Lie subgroup H of G, one can consider
the action

H ; G/Γ

5



by left multiplication, just as in the setting of moduli spaces we have con-
sidered the action

SL2(R) ; Q1Tg/Modg .

One of the most powerful results in homogeneous dynamics is Ratner’s the-
orem. It implies that if H is generated by unipotent elements, then every
orbit closure Hx ⊂ G/Γ is a special submanifold — in fact, it has the form

Hx = Jx ⊂ G/Γ

for some Lie subgroup J with H ⊂ J ⊂ G. A similar statement holds
for invariant measures. Since SL2(R) is generated by unipotent elements
(matrices such as ( 1 t

0 1 ) and its transpose), one might hope for a version of
Ratner’s theorem to hold in moduli spaces. This is what Mirzakhani’s work
confirms.

Hodge theory versus geometry. For another perspective, recall that
Mg embeds into the moduli space of Abelian varieties Ag = Hg/ Sp2g(Z), a
locally symmetric space amenable to the methods of homogeneous dynamics.
But the complex geodesics inMg become inhomogeneous when mapped into
Ag, so they cannot be analyzed by these methods. Mirzakhani’s work shows
that one can work effectively and directly withMg rather than with Ag, by
geometric analysis on Riemann surfaces themselves.

Ramifications: Billiards. The SL2(R) action on Q1Mg is also connected
with the theory of billiards in polygons — an elementary branch of dynamics
in which difficult problems abound.

Let T ⊂ C be a connected polygon with angles in πQ. The behavior of
billiard paths in T is closely related to the behavior of the complex geodesic
generated by a quadratic differential (X, q) obtained by ‘unfolding’ the table
T .

Indeed, the first examples of complex geodesics such that V = F (H) ⊂
Mg is an algebraic curve — i.e. the image of the complex geodesic is as
small as possible — were constructed by Veech in his analysis of billiards in
regular polygons. In this case the stabilizer of the corresponding quadratic
differential is a lattice SL(X, q) ⊂ SL2(R), which serves as the renormaliza-
tion group for the original billiard flow.

The work of Mirzakhani has bearing on several open conjectures in the
field of billiard dynamics. For example, it provides progress on the open
problem of showing that, for any table T , there is an algebraic number CT
such that the number N(T, L) of types of primitive, periodic billiard paths

6



in T of length ≤ L satisfies

N(T, L) ∼ CTL
2

π area(T )
·

Eskin and Mirzakhani have shown that an asymptotic equation of this form
holds after averaging over L, and that CT can assume only countably many
values.

5 Dynamics of earthquakes

We conclude by discussing Mirzakhani’s work on the earthquake flow, and a
measurable bridge between the symplectic and holomorphic aspects ofMg.

A classical construction of Fenchel and Nielsen associates to a simple
closed geodesic γ ⊂ X ∈Mg and t ∈ R a new Riemann surface

Xt = twtγ(X) ∈Mg,

obtained by cutting X open along γ, twisting by length t to the right, and
then regluing. The resulting twist path inMg is periodic; if γ has length L,
then Xt+L = Xt.

On the other hand, one can also twist along limits of weighted simple
geodesics, called measured laminations. As shown by Thurston, the space
of measured laminations forms a PL manifoldMLg ∼= R6g−6 with a natural
volume form, and the limiting twists, called earthquakes, are defined for all
time.

Earthquakes are a natural feature of the symplectic geometry of moduli
space. While they can be defined geometrically by fracturing and reglu-
ing X along the (possibly fractal) support of λ ∈ MLg, they also arise
more conventionally as the Hamilton flows associated to the functions Y 7→
length(λ, Y ).

The earthquake flow lives on the bundle L1Mg of unit length laminations
over Mg. Mirzakhani has shown that, with respect to the natural measure
on L1Mg:

Thurston’s earthquake flow is ergodic.

Prior to this result, the dynamics of earthquakes seemed completely opaque.
Not a single example of a dense earthquake path in Mg was known; we
can now assert that almost every earthquake path is dense and uniformly
distributed.
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Bridging the symplectic/holomorphic divide. The proof of ergodicity
of the earthquake flow uses a remarkable bridge between the symplectic and
holomorphic sides of moduli space.

In more detail, recall that the horocycle flow on Q1Mg is defined by the
action of the 1-parameter group N = {( 1 t

0 1 ) : t ∈ R} ⊂ SL2(R). Drawing
on ideas from Thurston’s work on stretch maps, Mirzakhani shows there is
a measure–preserving map β : L1Mg → Q1Mg which transports the earth-
quake flow to the horocycle flow. In other words, we have a commutative
diagram of the form

earthquake flow � L1Mg

��

β +3 Q1Mg

��

	 horocycle flow

Mg Mg

.

But the horocycle flow on Q1Mg is well–known to be ergodic (this is a
formal corollary of ergodicity of the geodesic flow [Zim, Thm. 2.4.2]), so
the same is true for the earthquake flow [Mir5]. (It is an open problem to
establish Ratner–type rigidity for these flows.)

Summary. Mirzakhani’s research has integrated, with great originality,
a broad range of mathematical disciplines — including algebraic and sym-
plectic geometry, low–dimensional topology, and random processes. Her
breakthroughs have transformed our perspective on moduli spaces, and led
the way to mathematical frontiers where striking developments are still un-
folding.

Curtis T. McMullen, Cambridge, 2014.
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