SQLite

sgl database engine

tutorlalspomt

M P L E A S Y LEARNI NG

www.tutorialspoint.com

‘,3 https://www.facebook.com/tutorialspointindia 4 https://twitter.com/tutorialspoint

SQLite

About the Tutori al

SQLite is a software library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine. SQLite is the most widely deployed SQL
database engine in the world. The source code for SQLite is in the public domain.

This tutorial will give you a quick start with SQLite and make you comfortable with SQLite
programming.

Audi ence

This tutorial has been prepared for beginners to help them understand the basic-to-
advanced concepts related to SQLite Database Engine.

Prerequisites

Before you start practicing various types of examples given in this reference, we assume
that you are already aware about what is a database, especially RDBMS and what is a
computer programming language.

Discl&i@Gepyright

a Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com.

-

A tutorialspoint

SIMPLYEASYLEARNINI G

mailto:contact@tutorialspoint.com

SQLite

Tabl e of Contents

ADOUL TNE TULOITAL c.eviiiiieeiee ettt ettt et e e bt e s bte e bt e e sabeesateesabeessaeesabeesaseesabaesaneenas i

F Y Lo [T o ol OSSPSR TP PURRTPTOTSRPRIN i

e =T =T o UL =TT PP TP PO PPPPPTRTRN i
DiSCIAiMEr & COPYIIBNT ...eeeieiiieiieeet ettt et st e e st e st e st e e et e e sabeeeabeesabeesabeesaneesaneenas i

BRI] o (o] @o T o =Y o} £ PSPPI i
SQLITE BASICS. ...ttt r it e e e re s s e e e mmmm e s e e s b s s e s b s e et s mmmm e s s e e s e e e s annns 1.
.. {v[AGS ... AT S NN 7 3, S T SO 2
WWNAE IS SQLITE? ..eiiiiiiiiieeiee et etee ettt ettt stt e e bt e s bt e e be e e b te e bt e e sbte e bt e e bbeebaeesabeesabeesabeenaaeesabeenasaesaseesaseens 2
WWNY SQLITE? ..veiitiietee ittt eiee st sit et e ettt e e bt e e bt e e be e e s bt e esbee s bteebeeesbteesbeeesabeenbaeesabeesabeesabeenaeeesabeesasaesaseesaseens 2
SQLILE — A BFIEf HISEOIY tonvveiiiieeieeiiee sttt sttt st st e st e e et e sabe e sabeesabaessbaesabaesnbeesabaesseesan 3
SQLITE LIMITATIONS ..eteeiiiieeeeitie ettt ettt ettt e e et e e sttt e e sa b et e s e b be e e santeessabeeeeennteeesnnteeeaabeeeeenreeesanneeas 3
Y@ LI} I @o T 0 4 4 F=1 0 o K PSR 3

2. {v[AGS OO YT T A0 N OO 00 0 AR 5
INSTAll SQLItE ON WINOOWS ..eiiiiiiiiieiieeecitee ettt cette e sttt e e e st e e e sbee e e saaeeeesstaeessasseeessseeessnsaeeeensseeesassenesssseenans 5
INSTAIl SQLITE ON LINUX 1eeeiiiiiiieiiiieciieeesitee e ettt e setee e e sateeeesateeeesaeeeeesaaeeeesstaeessssseeessseeeesnsaeeeenssaeesassenessnsseeenns 5
INSTAll SQLILE ON MAC OS Xiutiiiiiiiiieeiiiesitesittestee st e steesebeesbeesebeesabeesabaesaseesabeesaseessbeessseesabaessseessseessseessseesnseens 6

3. {v[AGS O A 20 RV = - TR 7
4. SQLi6 =TV T =S 11
5. {v[AGS T O SO 3 - N I SO 18
SQOLILE STOrAZE ClaSSES..iiuriiiuiiiiieeiiieesieeste e st e st e ste e st te e sttt e sateesabeesabeesabeesabeessseessbeessseesateessseesateessseessseesssnens 18
SQOLILE ATfINITY TY P ceeetiieiie ettt ettt e st e st e e st e e st e s ab e e sabeesaeeesabeesabeesabeesnneesabeesnneens 18
SQLite AFfinity and TYPE NAMES ...c.uveiiiieiiieeie ettt ettt sttt e st e s e st e e st e e sabeesateesaseesaseesabeennneens 19

6. { V[AGS I WL 6.9 BL 0L 0.k .S e 21
The .dUMP COMMANG ...iiiiiiie ettt e e e e e et e e e st eeesateeeseaaeeessseeeessseeeeansteeessseaeesntenesasseessnnsnns 22

7. {v[AGS O - O 2« Y - = F OO 23
2. {v[AGS 59 Gl Bk 8L 8 S 24
9. {v[AdGS VA L O e O o T 0. SRR 25
w.{v[AGS TR T G 3 o B 000 TSR 27
1. {v[AGS LoD f QoW Ve HZS INB e 28
12.{ v[AGS L T I O B R Vo 2= 31 N = OO 31
13.{v[AGS O YOO 1 O 0 N = TR 34
What is an Operator iN SQLILE?covieiiiiiiieritee ettt ettt ettt et e st sae e s be e e sbtessbeeessbesbeeesanesbeeenaeesneas 34
SQLite ArithMEtiC OPEIAtOrS ..uviieeieeeicieee et e cete e ree e et e e e ere e e saeeeesateeeseseeeessseeeassseeesasseeesanseesesssenenanes 34
SQLite COMPAriSON OPEIATOrS ..cci i it e e e e e e e e e e e e e e e e e e aaaes 35
SQLItE LOGICAl OPEIAtOrS .. .eeeeiiiiiiee ettt ettt e e e e e sttt e e e e e st b e e e e e e eeeesbaaaeaaeaesaasbaaaeaeaessenssstaeeaasssansnrens 38
SQLItE BitWisSe OPIatorsS..ccci i 42

ii

SIMPLYEASYLEARNINI G

A tutorialspoint

14.{v[AGS eI |\ ST T T = Y- TR 44
SQLILE - BOOIEAN EXPIrESSION w.viiuiiiiiiienieeiieesite st este e sttt e sttt e siteesabeesabeesabeesabeesabeesabeesaseesabeessseesaseesaseesssesssseens 44
SQLItE - NUMEIIC EXPIrESSION ...veeeieiiieiiiiiiiieeeeeiiiett e e e et e e e e s e s e e e e e s e s rereeeeesesasrnrereeesesannnnaeeeesssannnnnene 45
SQLItE - DAt EXPIrESSION..ciiiitiiiiiiiieiiitee ettt sttt et r e e s et e e e s b e e e s br e e s sbe e e e e asb e e e sebaee s snaeeeennraeesannne 45

15.{Vv[AGS 2 1L O MO LB b dZE. S 46

6. { V[AGS b5 g h h LISINTL G2 NB e 50
THE AND OPEIATON ..ttt ettt sttt et et e st e et e e sat e e s ab e e s ab e e e bt e sab e e eabeesabeeeabeesabeeeabeesabeeenseesabeeeneenane 50
B SO L@ T=T =1 o PSR 51

17.{v[AGS - S e VA s 2>\ =X 53

8. {Vv[AGS 5.9.[.9.0. 9. VL ZS INEB .o 55

9. {v[AGS O OO T IO 00 O .- W~ FO U 57

20. { v[AGS D.[..h.... L T .2 T T 60

2. {v[AGS OO YO U R O A U - 0 SRR 63

22. {v[AGS h w5.9.w........ oL B L HZALS e 65

23.{v[AGS Dwh..t..... feeeens Lol dZB.See e 67

24. {v[AGS I Lt LD o E b dZB.S e T O

25. { v[AGS 5L{.CLDLG. . Y.SRBAZ2ZNR .o 72

ADVANCED SQLITE.......ciiiiiiiiiimmme s rnss s mmmmsssss s srnnss s s rnnss s ssssmmmmsrnnsssesnnnss 74

26. { V[ARRBGMA.oo ottt ettt ettt ems et e st e e et e st s et et ess s et e et enn s et naesnnsnes 75
AUEO _VACUUM PragimMa.. i eiiiiiiiee e eeetiiiiie e et ttiese e e e et etabae s e s eeetatataaseseeetesssaasseseesenssssnsseserensssnnnsseeesensssnnnnsees 75
(o1 o I I P2l o - £ - [P PURPNS 76
CASE_SENSItIVE_IIKE PragMacccccuiiiiiiieecciieeceiee st e st e e et e e st e e e st e s saaee e e snseeeenstaeeesnseneesnseeeennsaeesnnnes 76
(oo YU Lo dlel s - [F= =T o =41 T ISR 76
(o L= o T I 1 A o =Y .4 - PSSR 76
(=Y gTolo o [T a Y= =V o - PSRRI 76
=T I A olo U g ol o == {1 o - [P RUR U PSR 77
Ta e [T} (o N - T={ 1 1 - VOSSR 77
[LaTe LoD LS A o = = 3 o - TP PURPNS 77
JOUINAl MO PragmMa ..ottt e e e e et e e e e e s e sttt e e eeeesesaebaaaeeeeeesaastaaaaeaeeesanssasaneeeessnnssnnnes 77
MAX_PABE_COUNT Pragima . i iciiieiiiieeeeeeiiiiiiieseeerettiieseseeeretataaaeseeeteaeraaesseeesensssnssseeersrsnnnsseseesssssnnesesesesesssnns 78
P COUNT Pragma . e s s s s s s s s e s s e s e s s s s e s s s s sananannsasesannss 78
[T LR P A=l o - =40 1 - P PP URPPUPPPPRRPIN 78
(o LT i o = (ol =T o -V 0 - T T TSP PO T PP 78
FECUNSIVE _TMIZEEIS PraSMa ... uuiiiiiiiieiiiiieeieeeeeiiteteeeeseeseatateeeeeeesasatesteeeeessassstaaeeesssasassssneeesssesssssssenesesesnnssnnens 79
SCHEMIA_VEISION PragMa. . ciiiiiiie e i ettt e e e eectt e e e e e e e sttt e e e e e e e seabbaeeeaeeesasbaaaeaaeaesaassasaeasaessanssssaneaasssansnrnns 79
o0 =R (=1 (1A=l o =Y ={ - TP PURPNS 79
o | IR 1o I £ =41 0 T U PURPRNS 79
Vg Lol Y deT e[10 I 2 = V= 1 1 - IS PSPPI 80
10T o] I (o] A=l o - T=4 0 4 - (PPNt 80

iii

SIMPLYEASYLEARNINI G

A tutorialspoint

10T 0] IR (o] (I e LYot e AV ol == o o - ISR 80

(TR =] g VZ=T 6 (o] T o - T4 o - TP 81

a1 =] o] (T o 1T a T I - = o - SRR 81
272.{Vv[AGS L 2 AN LAY B e 82
NOT NULL CONSEIAINT....eeiitieeiee ettt ettt ettt e e e s e sttt e e e e e s e ba b teeeeeeseaasbateeeeeseaanbbeeeeaesesannsnnaeaeens 82
DEFAULT CONSTIAINT ieiitieee ettt ettt et sttt e e e s e sttt e e e e e saabab bt e e e e e seaanbaeeeeeeseaanbbeaeeaesesannsnnaeaeens 83
UNTQUE CONSEIAINT .tiiiiiiiiiiiteee ettt e ettt e e e e e sttt e e e e e s abe bt e e e e e e seaasbeteeeeesesaunbaeeeaeesesansnnaeaeesesannnnees 83
PRIMARY KEY CONSEIAINT ..ceeeiiiiiiiieieee ettt et e e e e st et e s e s e et e e e s e mnr e e e e e e e sesnnreneeeeens 84
CHECK CONSTIAINT <.ttt e e e e e e s e s e e e e e e e s s r e e e e e s e s nnnr e e e e e e e s nnnneeeeesesannnnnnne 84
DrOPPING CONSTIAINT 1etvitieiiititititieittetererererere e —————————————e———etetetetetesetetesesesesesesesesesesesssssssesssssssssnsnnn 85

28. { V[AGS ... LYY 0 O s SO OO 86
THE CROSS JOIN ...ttt ettt sttt si e sttt e sa e e sttt e sa b e e sabeesa b e e sab e e sabeesabeesabeesaseesabeesabeesabaesaseesabaesnbeesabaesseesnse 87
THE INNER JOIN L..eiiiiiiee ettt ettt ettt e sttt e e sttt e s eabe e e e sabaeeeeabeee s aaaeeesabeeeeesbaeesnassaeesassaeeennbaeesasseeesnnsanas 88
THE OUTER JOIN .ottt ettt ettt ettt sttt e sttt e e sttt e e seabt e e e s abaeeeeabeee s asaeeesabseeeesbaeesansaaeesssaaeenabeeesansseeesnnsanas 89
29.{ v[AGS Lo L hb B b dZB.S e 90
THE UNION ALL ClaUSE..cciueveeeeiieieeeiiet e stteeeesiteeeestteeesstee e e staeeeesateeesaasteesssseaeensseeesansseessasseesesnsseessnsseessnssenes 92

30. {v[AGS bt ... S O A 1.4 - WP 94
3L.{Vv[AGS L L LN 4T =TT 97
32.{v[AGS ... Lo i BV = TR 100
S g F = I T === PO OO OSPON 102

(DI goT o] oYL aY - I g T=1= 0= SO PO ON 103

E ETESTO] 111 S TR VA = B3 =X VTP 104
The CREATE INDEX COMMANG ...eoiiiuiieiiiiieeeeiiee e eiteeeesiteesstee e e saaeeeessteeeseneaeaesnsaeeeensseessnsseeessnsseessnsseessnnseens 104
The DROP INDEX COMMANGuuviiiiiiieeeiiieeeeiiee e steeeesieeesstee e e saaeesessteeessastaeesnsseeeessseeesansneeesnsseessnsseessnnsees 106

34, SQLIteC INDEXED BY ClAUSE. .. eeteieiiiiieiiiieeeiame ittt ee e e s sttt ee e e s e simssntaeeeaeeesassnteeeeeessansamssneeeeeesesnnes 107
3. { v[AGS Pl ¢ OWell [9 e 2 Y Y Y R 109
36. {f v[AGS Cw! b/ 1 ¢ 8.l .9 L2 Y Y R, 111
37.{v[AGS ... ey W O TR 112
CrEATING VWS i 112

(BT goT o] oYL aY =AY AT PO ON 113

3. { V[AGS o OV T O @ N I W= 30V - OO 114
(oo 1T o o) I = o 7T (oo TS 114
TranSACtioN CONTIOleiuiiiiiieeii ettt st et s e e s it e e sabeesabeesabeesabeesabeesaseesareesaneenn 114

39. { v[AGS A Z0 L AZS INT S B 117
Subqueries With SELECT STat@mMENt.......cc..uiiiiiieei ittt e ettt e e e e e e e ratr e e e e e e sesastbeeeeeeeesnansraseaeens 117
Subqueries With INSERT STat@mMENt...........uuiiiiiieiieiite ettt e e e e e e ratre e e e e e s e sastae s e e e e e essanaraseeeens 118
Subqueries With UPDATE Stat@mMeNtuuiiiiiiiiciiiieee ettt e ettt e e e e e et e e e e e e s e s astbe e e e e e s esansraseeaeas 119
Subqueries With DELETE Stat@mMENtc.uuiiiiiiee ittt e e e e e et tre e e e e e s e sastbe s e e e e eesnnaraneeeeas 120

0 {v[AdS Pl oG h b w9.a.9.0.0. 121
iv

SIMPLYEASYLEARNINI G

A tutorialspoint

SQLite

4. { v[A TS L)/BSCU)&Z)[.. 123
Preventing SQL INJECHIONcii ittt e st e s et e e st e e s s abe e e s e sbe e e snneeesanbeeesenneeesnnneas 123

an. {v[AGS ... T SO0t DU U < SO 125
a3. {v[AGS .. SO Y O S T OO OO OSSOSO PP 127
MANUAI VACUUM ...ttt ettt e e e e ettt e e e e e e e e tata e e e e e e sesaataeeeeeeeesnstaaseaaesesasstaaseeeeeeaannssaseaaens 127

FAN U Lo YA Y (L] 1Y PRt 127

a. { v[A (IS ST T R TR TN o WO 20 U OSSOSO PR U RUPRPRT 129
BT gL LT £SO P PRPRPROORPPON 129
7o Te 13 T=T SRS 130
(o T L (=T PP PP O RO OR OO PPN 130

5. { v[A0S - WS T e b A O o oV © N {00 W30 V- WSRO 133
SQLITE COUNT FUNCHION cc it e e e e et e e e e e e e e e e et e e e e eeeeaeanaeees 134
SQLITE MAX FUNCHION eeees 135
SQLItE MIN FUNCHION ... e e e e e e e e e eees 135

N O 1} =l NV G W] o Tord o] o NPt 135
SQLItE SUM FUNCHION eeees 136
SQLite RANDOM FUNCHION coiiiiiieiccc eeees 136
SQLILE ABS FUNCELION ..ttiiieii ittt ettt e ettt e e e e et e e e e e e s e s e bt aeeeaeeesaassasaeeeeeesassataeeeaessessnssanneeesannnes 136
SQLItE UPPER FUNCHION ..o e e e e e e e e e e e e e eeees 136
SQLItE LOWER FUNCHION . cci it e e e e e e e e e e e ee e 137
SQLIte LENGTH FUNCLION oo ee e 137
SQLite SQlite_Version FUNCHIONuiii ettt e et et e e e e e st e e s saaaee s sabaeeeesteeesensneeesnraeaanns 138
SQLITE INTERFAGCES. ... oot cceme s eerte s e et e s resa s s e s e s e e s s e e e e s s e e mmmm e e eeran 139
a6. { v[AGS ... LKL B Bttt 140
C/CH+ INEEITACE APIS ettt ettt ettt e et e s ettt e e e s eteeesesaaeeeseaaeessebaeesasasseesassseessasaeesssssesesasseessaranesans 140
(0o a1 aT=Tot (o T D) 7] o ¥ 1Y ISR 141
(O1g=T 1T T -] o (P USUTN 142
1N L2 O o 1T =) Ao o IO ON 143
SELECT OPIatioN oo 145

0] o B 7N S O o T=T = {0 o TP 147

B LN O] o 1T =) { (o] o P PSPPSR 149

7. { v[AU S...... AT P 7 3 OO U PP OPPPPPROPPRN 152
[T 1y =114 o T o SR 152
(0o Y Y=Yl i (o T D =1 o - 1Y SRR 152
(O1g=T 1T T -] o (PSSR 153
1N L2 O o 1T =) Ao o IO ON 154
SELECT OPIatioN oo 155

U] B 7N S O o T=T = [0 o TR RTT 157

D] LI S 0] o 1= 1 [] o F PN 159

8. { v[AGS.....] 0N 1O SO 162
Ty 2= 1= o T o S 162

o] o L oYY = ol Y o £ SR 162
(00T Y Y=o o (o T D =1 o - 1Y <SS 163
(O1gT 1 a0 I T -] o (PSRRI 164

\%

-

A tutorialspoint

SIMPLYEASYLEARNINI G

49,

50.

INSERT OP@IAtiON cevvieieieieiuieieieieitieteteterarererererererereeerereraae—e— et esesesetesesesesesesesesssesssesasssssssssssasssssssnsssssssnsssssnnnnn 165
SELECT OPEIAtiON ciiiiiiiiiiiiiiiiiiiieietieeeteeeeeeteee e et e teeeeeteeeeeteteteeeteretetereteteretereeerererererererereteterererererererererererererens 166
101 2B 7N S O o T=T = {0 o TP 168
B I I O o 1=] 1 o Yo H PP O P P PP PP 169
{v]A GS............ RS W1 VN TP 172
Ta 1 =11 =14 o T o U PP 172
(D] 2 I oN =T g £ Lol I A o [PPSR 172
CONNECE 10 DAADASE .eviiiiiiiieeiie ettt ettt s e e sat e e sab e e bt e e sbbeenbeeesabeebteesbbeebeeesateensees 174
(O T 1 T - o] 1T T PRSPPSO 175
INSERT OP@IAtiON tuvvtuitieititieiertietetetetetererererererererererer e —e—e—e—eseteseseeeseseseeesesetesesesesesssssesesssssssssssssssssssssnns 176
SELECT OPEIAtioN ciiiiiiiiiiiiiiiiiiiieiitieieteeeeeeee e teeeeeteeeeeteeeteteteteteteretetereteretetereterererererererereteterererererererererererererens 177
L8] 2B 7N S O o 1=T =) {0 o [TP 179
(B I I O o 1= o T o DTS P PP PP PR 180
{v]A S .. t..é..ﬁ..K.2..)[.. 183
TaI =1 = o] s DU PPRTRRRR 183
PYthon SQIIte3 MOUIE APIS......ciiieiiie ettt ettt sbe e e st e s it e e st e e sat e e sabeesaneesabeenaneens 183
CONNECE 10 DAtADASE ..viieiiiiieiiie ettt sttt sa e e s bt e e sab e e sbeeesbb e e beeessseebaeesateebaeennseenses 186
(O T 14T T - o] 1T PRSPPI 186
1N L 2 O o 1T =) Ao o [PPSO ON 187
Y oL (o O] o T=T =) 4 o] [P PP PPPPPRE 188
0] 2B 7N N S O o T=T =1 {0 o PR 189
(B I I O o 1= =] o Yo F PSPPI PP PRI 190

Vi

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

SQLite Basics

@wwrialsmim

1. SQLite Overview

This chapter helps you understand what is SQLite, how it differs from SQL, why it is needed
and the way in which it handles the applications Database.

SQLite is a software library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine. SQLite is one of the fastest-growing
database engines around, but that's growth in terms of popularity, not anything to do with
its size. The source code for SQLite is in the public domain.

What is SQLite?

SQLite is an in-process library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine. It is a database, which is zero-
configured, which means like other databases you do not need to configure it in your
system.

SQLite engine is not a standalone process like other databases, you can link it statically or
dynamically as per your requirement with your application. SQLite accesses its storage
files directly.

Why SQLite?

1 SQLite does not require a separate server process or system to operate
(serverless).

1 SQLite comes with zero-configuration, which means no setup or administration
needed.

1 A complete SQLite database is stored in a single cross-platform disk file.

1 SQLite is very small and light weight, less than 400KiB fully configured or less than
250KiB with optional features omitted.

1 SQLite is self-contained, which means no external dependencies.

1 SQLite transactions are fully ACID-compliant, allowing safe access from multiple
processes or threads.

1 SQLite supports most of the query language features found in SQL92 (SQL2)
standard.

1 SQLite is written in ANSI-C and provides simple and easy-to-use API.

1 SQLite is available on UNIX (Linux, Mac OS-X, Android, iOS) and Windows (Win32,
WinCE, WinRT).

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

SQLi—Ae BHii sft or y

1 2000 - D. Richard Hipp designed SQLite for the purpose of no administration
required for operating a program.

1 2000 - In August, SQLite 1.0 released with GNU Database Manager.

9§ 2011 - Hipp announced to add UNQI interface to SQLite DB and to develop UNQLite
(Document oriented database).

SQLite Limitations

There are few unsupported features of SQL92 in SQLite which are listed in the following
table.

Feature Description
RIGHT -
OUTER JOIN Only LEFT OUTER JOIN is implemented.
FULEK())'L,\JITER Only LEFT OUTER JOIN is implemented.
ALTER The RENAME TABLE and ADD COLUMN variants of the ALTER TABLE
TABLE command are supported. The DROP COLUMN, ALTER COLUMN, ADD
CONSTRAINT are not supported.
Trigger FOR EACH ROW triggers are supported but not FOR EACH STATEMENT
support triggers.
VIEWS VIEWSs in SQLite are read-only. You may not execute a DELETE, INSERT,

or UPDATE statement on a view.

GRANT and The only access permissions that can be applied are the normal file
REVOKE access permissions of the underlying operating system.

SQLite Commands

The standard SQLite commands to interact with relational databases are similar to SQL.
They are CREATE, SELECT, INSERT, UPDATE, DELETE and DROP. These commands can be
classified into groups based on their operational nature.

DDL - Data Definition Language

Command Description
CREATE Creates a new table, a view of a table, or other object in database.
ALTER Modifies an existing database object, such as a table.

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Deletes an entire table, a view of a table or other object in the

DROP database.

DML - Data Manipulation Language

Command Description
INSERT Creates a record
UPDATE Modifies records
DELETE Deletes records

DQL - Data Query Language

Command Description

SELECT Retrieves certain records from one or more tables

A tutorialspoint

SIMPLYEASYLEARNINI G

2. SQLite Installation

SQLite is famous for its great feature zero-configuration, which means no complex setup
or administration is needed. This chapter will take you through the process of setting up
SQLite on Windows, Linux and Mac OS X.

| nst al bn S/DLnidoews

Step 1 : Go to SQLite download page, and download precompiled binaries from Windows
section.

Step 2 : Download sqlite-shell-win32-*.zip and sqlite-dll-win32-*.zip zipped files.

Step 3 : Create a folder C:\>sqlite and unzip above two zipped files in this folder, which
will give you sqlite3.def, sqlite3.dll and sqlite3.exe files.

Step 4 : Add C:\>sqlite in your PATH environment variable and finally go to the command
prompt and issue sqlite3 command, which should display the following result.

C \ >sqlite3

SQLite version 3.7.15.2 2013-01-09 11:53:05
Enter "help" for instructions

Enter SQL statements terminated with a "}"

sqlite >

| nst al bn SQLn uxe

Today, almost all the flavors of Linux OS are being shipped with SQLite. So you just issue
the following command to check if you already have SQLite installed on your machine.

$sqlite3

SQLite version 3.7.15.2 2013-01-09 11:53:05
Enter "help" for instructions

Enter SQL statements terminated with a "

sglite >

If you do not see the above result, then it means you do not have SQLite installed on your
Linux machine. Following are the steps to install SQLite:

Step 1 : Go to SQLite download page and download sqlite-autoconf-*.tar.gz from source
code section.

A tutorialspoint

SIMPLYEASYLEARNINI G

http://www.sqlite.org/download.html
http://www.sqlite.org/download.html

SQLite

Step 2 : Run the following command.

$tar xvfz sqlite - autoconf -3071502.tar . gz
$cd sglite - autoconf - 3071502

$./ configure -- prefix =/usr/ local

$make

$make install

The above command will end with SQLite installation on your Linux machine, which you
can verify as explained above.

| nst al bn SM@Aalc t@S X

Though the latest version of Mac OS X comes pre-installed with SQLite, but if you do not
have installation available then just follow these steps:

Step 1 : Go to SQLite download page, and download sqlite-autoconf-*.tar.gz from source
code section.

Step 2: Run the following command.

$tar xvfz sqlite - autoconf -3071502.tar . gz
$cd sglite - autoconf - 3071502

$./ configure -- prefix =/usr/ local

$make

$make install

The above procedure will end with SQLite installation on your Mac OS X machine, which
you can verify by issuing the following command:

$sqlite3

SQLite version 3.7.15.2 2013-01-09 11:53:05
Enter ".help" for instructions

Enter SQL statements terminated with a "}"

sqlite >

Finally, you have SQLite command prompt where you can issue SQLite commands for your
exercises.

-

A tutorialspoint

SIMPLYEASYLEARNINI G

http://www.sqlite.org/download.html

3. SQLite Commands

This chapter will take you through simple and useful commands used by SQLite
programmers. These commands are called SQLite dot commands and exception with these

commands is that they should not be terminated by a semi-colon (;).

Let's start with typing a simple sqlite3

command at command prompt which will provide

you with SQLite command prompt where you will issue various SQLite commands.

$sqlite3
SQLite version
Enter ".help" for

sqlite >

3.3.6

instructions

For a listing of the available dot commands, you can enter ".help" any time. For example:

sqlite >. help

The above command will display a list of various important SQLite dot commands, which
are listed in the following table.

Command

Description

.backup ?DB?

Backup DB (default "main") to FILE

FILE
.bail ON|OFF Stop after hitting an error. Default OFF
.databases List names and files of attached databases

.dump ?TABLE?

Dump the database in an SQL text format. If TABLE specified, only
dump tables matching LIKE pattern TABLE

.echo ON|OFF

Turn command echo on or off

.exit

Exit SQLite prompt

.explain O N|OFF

Turn output mode suitable for EXPLAIN on or off. With no args, it
turns EXPLAIN on

.header(s) _
ON|OFF Turn display of headers on or off
-help Show this message

tutorialspoint

A SIMPLYEA®SAS:?Y

LEARNINIG

SQLite

.import FILE
TABLE

Import data from FILE into TABLE

.indices ?TABLE?

Show names of all indices. If TABLE specified, only show indices
for tables matching LIKE pattern TABLE

I,(;égl;g‘ﬁ) Load an extension library
.log FILE|off Turn logging on or off. FILE can be stderr/stdout
Set output mode where MODE is one of:
1 csv Comma-separated values
1 column Left-aligned columns
1 html HTML <table> code
.mode MODE

1 insert SQL insert statements for TABLE

1 line One value per line

1 list Values delimited by .separator string

1 tabs Tab-separated values

M tcl TCL list elements

.nullvalue STRING

Print STRING in place of NULL values

.output FILENAME

Send output to FILENAME

.output stdout

Send output to the screen

.print STRING... Print literal STRING
.prompt MAIN
CONTINUE Replace the standard prompts
quit Exit SQLite prompt
8
A tutorialspoint

SQLite

read FILENAME | £ ocute SQL in FILENAME
'ng’régﬁ\ltg Change separator used by output mode and .import
.show Show the current values for various settings
.stats ON|OFF Turn stats on or off
?P,S?ESF‘{N? List names of tables matching a LIKE pattern
timeout MS Try opening locked tables for MS milliseconds
.width NUM NUM Set column widths for "column" mode
.timer ON|OFF Turn the CPU timer measurement on or off

Let's try .show command to see default setting for your SQLite command prompt.

sqlite >.show
echo: off
explain : off
headers : off
mode column
nullvalue
output : stdout
separator : "["
width :

sqlite >

Make sure there is no space in between sqglite> prompt and dot command, otherwise it
will not work.

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Formatting Output

You can use the following sequence of dot commands to format your output.

sglite >. header on
sqglite >. mode column
sqglite >.timer on

sqlite >

The above setting will produce the output in the following format.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

CPUTime: user 0.000000 sys 0.000000

The sqlite_master Table

The master table holds the key information about your database tables and it is
called sqglite_master . You can see its schema as follows:

sglite >. schema sqlite_master

This will produce the following result.

CREATE TABLE sqlite_master (
type text

name text ,

tbl_name text ,

rootpage integer

sql text

10

-

A tutorialspoint

SIMPLYEASYLEARNINI G

4. SQLite Syntax

SQLite is followed by a unique set of rules and guidelines called Syntax. This chapter lists
all the basic SQLite Syntax.

Case Sensitivity

Important point to be noted is that SQLite is case insensitive , but there are some
commands, which are case sensitive like GLOB and glob have different meaning in SQLite
statements.

Comments

SQLite comments are extra notes, which you can add in your SQLite code to increase its
readability and they can appear anywhere; whitespace can occur, including inside
expressions and in the middle of other SQL statements but they cannot be nested.

SQL comments begin with two consecutive "-" characters (ASCII 0x2d) and extend up to
and including the next newline character (ASCII 0x0a) or until the end of input, whichever
comes first.

You can also use C-style comments, which begin with "/*" and extend up to and including
the next "*/" character pair or until the end of input, whichever comes first. C-style
comments can span multiple lines.

sqlite >.help -- This is asingle line comment

SQLite Statements

All the SQLite statements start with any of the keywords like SELECT, INSERT, UPDATE,
DELETE, ALTER, DROP, etc., and all the statements end with a semicolon (;).

SQLite ANALYZE Statement

ANALYZE

or

ANALYZE database_name
or

ANALYZE database_nametable_name ;

SQLite AND/OR Clause

SELECT columnl, column2.... columnN
FROM table_name
WHERE CONDITIGN {ANDOR CONDITIONZ;

11

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite ALTER TABLE Statement

SQLite

ALTER TABLEtable_name ADD COLUMN column_def...;

SQLite ALTER TABLE Statement (Rename)

ALTER TABLE table_name RENAME TO new_table _name

SQLite ATTACH DATABASE Statement

ATTACH DATABASBEatabaseName' As 'Alias - Name?

SQLite BEGIN TRANSACTION Statement

BEGIN
or

BEGIN EXCLUSIVE TRANSACTION

SQLite BETWEEN Clause

SELECT columnl, column2.... columnN
FROM table_name
WHERE column_name BETWEEN vall AND val - 2;

SQLite COMMIT Statement

COMMIT

SQLite CREATE INDEX Statement

CREATE INDEX index_name
ON table_name (column_name COLLATE NOCASE

SQLite CREATE UNIQUE INDEX Statement

CREATE UNIQUE INDEX index_name

ON table_name (columnl, column2,... columnN);

SQLite CREATE TABLE Statement

CREATE TABLE table_namé¢
columnl datatype ,

column2 datatype ,

-

A tutorialspoint

SIMPLYEASYLEARNINI G

12

SQLite

column3 datatype ,
columnN datatype ,

PRIMARY KE{f one or more columns)

SQLite CREATE TRIGGER Statement

CREATE TRIGGER database_namérigger_name
BEFORE INSERT ON table_name FOR EACH ROW
BEGIN

stmtl ;

stmt2 ;

END

SQLite CREATE VIEW Statement

CREATE VIEW database _nameview_name AS
SELECT statement;

SQLite CREATE VIRTUAL TABLE Statement

CREATE VIRTUAL TABLE database_namedable_name USING weblog (access.log);
or

CREATE VIRTUAL TABLE database_nameable_name USING fts3 ();

SQLite COMMIT TRANSACTION Statement

COMMIT

SQLite COUNT Clause

SELECT COUNgolumn_name
FROM table_name
WHERE CONDITION

SQLite DELETE Statement

13

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

DELETE FROM table_name
WHERE { CONDITION

SQLite DETACH DATABASE Statement

DETACH DATABASERIlias - Name',

SQLite DISTINCT Clause

SELECT DISTINCT columnl, column2.... columnN
FROM table_name ;

SQLite DROP INDEX Statement

DROP INDEX database_nameindex_name;

SQLite DROP TABLE Statement

DROP TABLE database_nametable_name ;

SQLite DROP VIEW Statement

DROP INDEX database_nameview_name;

SQLite DROP TRIGGER Statement

DROP INDEX database_nametrigger_name ;

SQLite EXISTS Clause

SELECT columnl, column2.... columnN
FROM table_name
WHERE column_name EXISTS(SELECT* FROM table_na me);

SQLite EXPLAIN Statement

EXPLAIN INSERT statement ...;
or

EXPLAIN QUERY PLAN SELECT statement.;

SQLite GLOB Clause

SELECT columnl, column2.... columnN

14

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

FROM table_name
WHERE column_name GLOB PATTERN;

SQLite GROUP BY Clause

SELECT SU{Molumn_nameé
FROM table_name
WHERE CONDITION
GROUP BY column_name

SQLite HAVING Clause

SELECT SUMolumn_name
FROM table_name
WHERE CONDITION
GROUP BY column_name

HAVING(arithematic function condition);

SQLite INSERT INTO Statement

INSERT INTO table_name (columnl, column2....

VALUES(valuel, value2 valueN);

columnN)

SQLite IN Clause

SELECT columnl, column2.... columnN

FROM table_name

WHERE column_name IN (val -1, val -2,... val -N);

SQLite Like Clause

SELECT columnl, column2.... columnN
FROM table_name
WHERE column_name LIKE{ PATTERN;

SQLite NOT IN Clause

SELECT columnl, column2.... columnN

FROM table_name

-

A tutorialspoint

SIMPLYEASYLEARNINI G

15

SQLite

WHERE column_name NOT IN(val -1, val -2,... val -N);

SQLite ORDER BY Clause

SELECT columnl column2.... columnN
FROM table_name

WHERE CONDITION

ORDER BY column_namg ASG DESE

SQLite PRAGMA Statement

PRAGMA pragma_name

For example:

PRAGMA page_size

PRAGMA cache_size = 1024;
PRAGMA table_info (table_name);

SQLite RELEASE SAVEPOINT Statement

RELEASE savepoint_name;

SQLite REINDEX Statement

REINDEX collation_name ;
REINDEX database _name index_name;

REINDEX database_name table_name ;

SQLite ROLLBACK Statement

ROLLBACK
or

ROLLBACK TO SAVEPOINT savepoint_name

SQLite SAVEPOINT Statement

SAVEPOINT savepoint_name;

SQLite SELECT Statement
16

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

SELECT columnl, column2.... columnN

FROM table_name ;

SQLite UPDATE Statement

UPDATE table_name

SET columnl = valuel, column2 = value2

[WHERE CONDITION

columnN=valueN

SQLite VACUUM Statement

VACUUM

SQLite WHERE Clause

SELECTcolumnl, column2.... columnN
FROM table_name
WHERE CONDITION

-

A tutorialspoint

SIMPLYEASYLEARNINI G

17

5. SQLite Data Type

SQLite data type is an attribute that specifies the type of data of any object. Each column,
variable and expression has related data type in SQLite.

You would use these data types while creating your tables. SQLite uses a more general
dynamic type system. In SQLite, the datatype of a value is associated with the value itself,
not with its container.

SQLite Storage Classes

Each value stored in an SQLite database has one of the following storage classes:

Storage Class Description
NULL The value is a NULL value.
INTEGER The value is a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes

depending on the magnitude of the value.

The value is a floating point value, stored as an 8-byte IEEE floating

REAL point number.

TEXT The value is a text string, stored using the database encoding (UTF-
8, UTF-16BE or UTF-16LE)

BLOB The value is a blob of data, stored exactly as it was input.

SQLite storage class is slightly more general than a datatype. The INTEGER storage class,
for example, includes 6 different integer datatypes of different lengths.

SQLite Affinity Type

SQLite supports the concept of type affinity on columns. Any column can still store any
type of data but the preferred storage class for a column is called its affinity . Each table
column in an SQLite3 database is assigned one of the following type affinities:

Affinity Description
TEXT This column stores all data using storage classes NULL, TEXT or BLOB.
NUMERIC This column may contain values using all five storage classes.

Behaves the same as a column with NUMERIC affinity, with an

INTEGER exception in a CAST expression.

18

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Behaves like a column with NUMERIC affinity except that it forces
REAL . - . . .
integer values into floating point representation.
A column with affinity NONE does not prefer one storage class over
NONE another and no attempt is made to coerce data from one storage class
into another.
SQLite Affinity and Type Names

Following table lists down various data type names which can be used while creating
SQLite3 tables with the corresponding applied affinity.

Data Type

Affinity

INT

INTEGER

TINYINT

SMALLINT

MEDIUMINT

BIGINT

UNSIGNED BIG INT

INT2

INT8

INTEGER

CHARACTER(20)
VARCHAR(255)

VARYING CHARACTER(255)
NCHAR(55)

NATIVE CHARACTER(70)
NVARCHAR(100)

TEXT

CLOB

TEXT

BLOB

no datatype specified

NONE

REAL

REAL

-

A tutorialspoint

SIMPLYEASYLEARNINI G

19

SQLite

7 DOUBLE

1 DOUBLE PRECISION

1 FLOAT

1 NUMERIC

1 DECIMAL(10,5)

1 BOOLEAN

1 DATE

1 DATETIME

NUMERIC

Boolean Datatype

SQLite does not have a separate Boolean storage class. Instead, Boolean values are stored
as integers 0 (false) and 1 (true).

Date and Time Datatype

SQLite does not have a separate storage class for storing dates and/or times, but SQLite
is capable of storing dates and times as TEXT, REAL or INTEGER values.

Storage Class

Date Format

TEXT A date in a format like "YYYY-MM-DD HH:MM:SS.SSS"
REAL The number of days since noon in Greenwich on November 24,
4714 B.C.
INTEGER The number of seconds since 1970-01-01 00:00:00 UTC

You can choose to store dates and times in any of these formats and freely convert
between formats using the built-in date and time functions.

-

20

tutorialspoint

A SIMPLYEA®SAS:?Y

LEARNINIG

6. SQLite CREATBatabase

In SQLite, sqlite3 command is used to create a new SQLite database. You do not need to
have any special privilege to create a database.

Syntax

Basic syntax of sglite3 command is as follows:

$sqlite3 DatabaseName db

Always, database name should be unique within the RDBMS.

Example

If you want to create a new database <testDB.db>, then SQLITE3 statement would be as
follows:

$sqlite3 testDB . db

SQLite version 3.7.15.2 2013-01-09 11:53:05
Enter "help" for instructions

Enter SQL statements terminated with a "

sqlite >

The above command will create a file testDB.db in the current directory. This file will be
used as database by SQLite engine. If you have noticed while creating database, sqlite3
command will provide a sqglite> prompt after creating a database file successfully.

Once a database is created, you can verify it in the list of databases using the following
SQLite .databases command.

sqlite >. databases

seq name file

0 main / homd sqlite /testDB . db

You will use SQLite .quit command to come out of the sqlite prompt as follows:

sglite >. quit
$

21

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

The . dump Command

You can use .dump dot command to export complete database in a text file using the
following SQLite command at the command prompt.

$sqlite3 testDB . db . dump > testDB . sql

The above command will convert the entire contents of testDB.db database into SQLite
statements and dump it into ASCII text file testDB.sgl . You can perform restoration from
the generated testDB.sql in a simple way as follows:

$sqlite3 testDB . db < testDB . sql

At this moment your database is empty, so you can try above two procedures once you
have few tables and data in your database. For now, let's proceed to the next chapter.

22

-

A tutorialspoint

SIMPLYEASYLEARNINI G

7. SQLite ATTACH Database

Consider a case when you have multiple databases available and you want to use any one
of them at a time. SQLite ATTACH DATABASE statement is used to select a particular
database, and after this command, all SQLite statements will be executed under the
attached database.

Syntax
Following is the basic syntax of SQLite ATTACH DATABASE statement.

ATTACH DATABASPatabaseName' As 'Alias - Name

The above command will also create a database in case the database is already not
created, otherwise it will just attach database file name with logical database 'Alias-Name'.

Example

If you want to attach an existing database testDB.db , then ATTACH DATABASE statement
would be as follows:

sglite > ATTACH DATABASEestDB.db' as 'TEST';

Use SQLite .database = command to display attached database.

sglite > . database

seq name file
0 main / homd sqlite /testDB . db
2 test / homd sqlite /testDB . db

The database names main and temp are reserved for the primary database and database
to hold temporary tables and other temporary data objects. Both of these database names
exist for every database connection and should not be used for attachment, otherwise you
will get the following warning message.

sglite > ATTACH DATABASEestDB.db' as 'TEMP';
Error : database TEMP is already in use
sqlite > ATTACH DATABASEstDB.db' as 'main' ;

Error : database TEMP is already in use

23

A tutorialspoint

SIMPLYEASYLEARNINI G

8. SQLite DETACH Database

SQLite DETACH DATABASE statement is used to detach and dissociate a named
database from a database connection which was previously attached using ATTACH
statement. If the same database file has been attached with multiple aliases, then DETACH
command will disconnect only the given name and rest of the attachment will still continue.
You cannot detach the main or temp databases.

If the database is an in-memory or temporary database, the database will be destroyed
and the contents will be lost.

Syntax
Following is the basic syntax of SQLite DETACH DATABASE 'Alias-Name' statement.

DETACH DATABASEIlias - Name;

Here, 'Alias-Name' is the same alias, which you had used while attaching the database
using ATTACH statement.

Example

Consider you have a database, which you created in the previous chapter and attached it
with 'test' and 'currentDB' as we can see using .database = command.

sqlite >. databases

seq name file

0 main / homd sqlite /testDB . db
2 test / homd sqlite /testDB . db
3 currentDB / homé sglite /testDB . db

Let's try to detach 'currentDB' from testDB.db using the following command.

sqlite > DETACH DATABASEurrentDB’

Now, if you will check the current attachment, you will find that testDB.db is still connected
with 'test' and 'main'.

sglite >. databases

seq name file
0 main / homd sqlite /testDB . db
2 test / homd sqlite /testDB . db

24

A tutorialspoint

SIMPLYEASYLEARNINI G

9. SQLite CREATE Table

SQLite CREATE TABLE statement is used to create a new table in any of the given
database. Creating a basic table involves naming the table and defining its columns and
each column's data type.

Syntax
Following is the basic syntax of CREATE TABLE statement.

CREATE TABLE database_nametable_name (
columnl datatype PRIMARY KEY (one or more columns),
column2 datatype ,
column3 datatype ,

columnN datatype ,

):

CREATE TABLE is the keyword telling the database system to create a new table. The
unique name or identifier for the table follows the CREATE TABLE statement. Optionally,
you can specify database_name along with table_name .

Example

Following is an example which creates a COMPANY table with ID as the primary key and
NOT NULL are the constraints showing that these fields cannot be NULL while creating
records in this table.

sglite > CREATE TABLE COMPANY
ID INT PRIMARY KEY NOT NULL
NAME TEXT NOT NULL ,
AGE INT NOT NULL ,
ADDRESS CHAR (50),
SALARY REAL

);

Let us create one more table, which we will use in our exercises in subsequent chapters.

sglite > CREATE TABLE DEPARTMENT
ID INT PRIMARY KEY ~ NOT NULL
DEPT CHAR (50) NOT NULL
EMP_ID INT NOT NULL

25

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

You can verify if your table has been created successfully using SQLite
command .tables command, which will be used to list down all the tables in an attached

database.

sqglite >.tables
COMPANY DEPARTMENT

Here, you can see the COMPANY table twice because its showing COMPANY table for main
database and test. COMPANY table for 'test' alias created for your testDB.db. You can get
complete information about a table using the following SQLite .schema command.

sglite >.schema COMPANY

CREATE TABLE COMPANY
ID INT PRIMARY KEY NOT NULL ,
NAME TEXT NOT NULL ,
AGE INT NOT NULL ,
ADDRESS CHAR (50),
SALARY REAL

26

-

A tutorialspoint

SIMPLYEASYLEARNINI G

10. SQLite DROP Table

SQLite DROP TABLE statement is used to remove a table definition and all associated
data, indexes, triggers, constraints, and permission specifications for that table.

You have to be careful while using this command because once a table is deleted then all
the information available in the table would also be lost forever.

Syntax

Following is the basic syntax of DROP TABLE statement. You can optionally specify the
database name along with table name as follows:

DROP TABLE database_nametable_name ;

Example
Let us first verify COMPANY table and then we will delete it from the database.

sqlite >.tables

COMPANY test . COMPANY

This means COMPANY table is available in the database, so let us drop it as follows:

sglite >DROP TABLE COMPANY

sqlite >

Now, if you try .TABLES command, then you will not find COMPANY table anymore.

sglite >. tables

sqlite >

It shows nothing which means the table from your database has been dropped
successfully.

27

A tutorialspoint

SIMPLYEASYLEARNINI G

11. SQLite INSERT Query

SQLite INSERT INTO Statement is used to add new rows of data into a table in the
database.

Syntax
Following are the two basic syntaxes of INSERT INTO statement.

INSERT INTO TABLE_NAME columnl, column2, column3,... columnN)]
VALUES(valuel , value2, value3,.. valueN);

Here, columnl, column2, ... columnN are the names of the columns in the table into which
you want to insert data.

You may not need to specify the column(s) name in the SQLite query if you are adding
values for all the columns of the table. However, make sure the order of the values is in
the same order as the columns in the table. The SQLite INSERT INTO syntax would be as
follows:

INSERT INTO TABLE_NAME VALUHSaluel , value2 , value3 ,... valueN);

Example
Consider you already have created COMPANY table in your testDB.db as follows:

sglite > CREATE TABLE COMPANY
ID INT PRIMARY KEY ~ NOT NULL ,
NAME TEXT NOT NULL ,
AGE INT NOT NULL ,
ADDRESS CHAR (50),
SALARY REAL

28

A tutorialspoint

SIMPLYEASYLEARNINI G

Now, the following statements would create six records in COMPANY table.

SQLite

INSERT INTO COMPANYID, NAMEAGE ADDRESSALARY
VALUES(1, 'Paul' , 32, ‘California’ , 20000.00);

INSERT INTO COMPANYID, NAMEAGE ADDRESSALARY
VALUES(2, 'Allen' , 25, 'Texas' , 15000.00);

INSERT INTO COMPANYID, NAMFAGE ADDRESSALARY
VALUES(3, 'Teddy' , 23, 'Norway' , 20000.00);

INSERT INTO COMPANYID, NAMEAGE ADDRESSALARY
VALUES(4, 'Mark’ , 25, 'Rich -Mond', 65000.00);

INSERT INTO COMPANYID, NAMEAGE ADDRESSALARY
VALUES(5, 'David' , 27, 'Texas' , 85000.00);

INSERT INTO COMPANYID, NAMEAGE ADDRESSALARY
VALUES(6, 'Kim' , 22, 'South -Hall' , 45000.00);

You can create a record in COMPANY table using the second syntax as follows:

INSERT INTO COMPANY VALUKES, 'James', 24, 'Houston' , 10000.00);

All the above statements would create the following records in COMPANY table. In the next

chapter, you will learn how to display all these records from a table.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Populate One Table Using Another Table

You can populate data into a table through select statement over another table provided
another table has a set of fields, which are required to populate the first table. Here is the

syntax:

-

A tutorialspoint

SIMPLYEASYLEARNINI G

29

SQLite

INSERT INTO first_table_name [(columnl, column2, ... columnN)]
SELECT columnl, column2, ... columnN
FROM second_table_name

[WHERE condition |;

For now, you can skip the above statement. First, let's learn SELECT and WHERE clauses
which will be covered in subsequent chapters.

30

A tutorialspoint

SIMPLYEASYLEARNINI G

12. SQLite SELECT Query

SQLite SELECT statement is used to fetch the data from a SQLite database table which
returns data in the form of a result table. These result tables are also called result sets .

Syntax
Following is the basic syntax of SQLite SELECT statement.

SELECT columnl, column2, columnN FROM table_name;

Here, columnl, column2 ... are the fields of a table, whose values you want to fetch. If
you want to fetch all the fields available in the field, then you can use the following syntax:

SELECT* FROM table_name

Example
Consider COMPANY table with the following records:

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is an example to fetch and display all these records using SELECT statement.
Here, the first three commands have been used to set a properly formatted output.

sglite >. header on
sglite >. mode column

sglite > SELECT* FROM COMPANY

31

A tutorialspoint

SIMPLYEASYLEARNINI G

Finally, you will get the following result.

SQLite

ID NAME AGE ADDRESS SALARY

1 Paul 32 California

2 Allen 25 Texas

3 Teddy 23 Norway

4 Mark 25 Rich - Mond
5 David 27 Texas

6 Kim 22 South - Hall
7 James 24 Houston

20000.0
15000.0
20000.0
65000.0
85000.0
45000.0
10000.0

If you want to fetch only selected fields of COMPANY table, then use the following query:

sglite > SELECT ID, NAME SALARY FROM COMPANY

The above query will produce the following result.

ID NAME SALARY

1 Paul 20000.0
2 Allen 15000.0
3 Teddy 20000.0
4 Mark 65000.0
5 David 85000.0
6 Kim 45000.0
7 James 10000.0

Setting Output Column Width

Sometimes, you will face a problem related to THE truncated output in case of .mode
column which happens because of default width of the column to be displayed. What you
can do is, you can set column displayable column width using .width num,

num.... command as follows:

sqlite >.width 10, 20, 10
sglite >SELECT* FROM COMPANY

-

A tutorialspoint

SIMPLYEASYLEARNINI G

32

SQLite

The above .width command sets the first column width to 10, the second column width
to 20 and the third column width to 10. Finally, the above SELECT statement will give the
following result.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Schema Information

As all the dot commands are available at SQLite prompt, hence while programming with
SQLite, you will use the following SELECT statement with sqlite_master table to list down
all the tables created in your database.

sqlite > SELECT tbl_name FROM sqlite_master WHERE type = 'table’ ;

Assuming you have only COMPANY table in your testDB.db, this will produce the following
result.

tbl_name

COMPANY

You can list down complete information about COMPANY table as follows:

sqlite > SELECT sgl FROM sqlite_master WHERE type = 'table’ AND tbl_name =
'‘COMPANY;

Assuming you have only COMPANY table in your testDB.db, this will produce the following
result.

CREATE TABLE COMPANY
ID INT PRIMARY KEY NOT NULL
NAME TEXT NOT NULL,
AGE INT NOT NULL ,
ADDRESS CHAR (50),
SALARY REAL

33

-

A tutorialspoint

SIMPLYEASYLEARNINI G

13. SQLite Operators

What i s an Operator in SQLite?

An operator is a reserved word or a character used primarily in an SQLite statement's
WHERE clause to perform operation(s), such as comparisons and arithmetic operations.

Operators are used to specify conditions in an SQLite statement and to serve as
conjunctions for multiple conditions in a statement.

1 Arithmetic operators

1 Comparison operators
1 Logical operators
1

Bitwise operators

SQLite Arithmetic Operators

Assume variable a holds 10 and variable b holds 20, then SQLite arithmetic operators will
be used as follows:

Operator Description Example
+ Addition - Adds values on either side of the operator a_+ b will
give 30
i Subtraction - Subtracts the right hand operand from the left | a - b will
hand operand give -10
* Multiplication - Multiplies values on either side of the operator a * b wil
give 200

Division - Divides the left hand operand by the right hand | b / a will
operand give 2

Modulus - Divides the left hand operand by the right hand | b % a will
operand and returns the remainder give 0

SQLite - Arithmetic Operator s Example

Following are some simple examples showing the usage of SQLite Arithmetic Operators.

sglite > . mode line

sglite > select 10 + 20;

34

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

10 + 20 = 30

sqlite > select 10 - 20;
10 - 20 = -10

sqlite > select 10 * 20;
10 * 20 = 200

sqlite > select 10 / 5;
10/ 5=2

sqlite > select 12 % 5;
12 % 5 =2

SQLite Comparison Operators

Assume variable a holds 10 and variable b holds 20, then SQLite comparison operators

will be used as follows:

Operator Description Example
. . (a == b)
L Checks if the values of two operands are equal or not, if yes | .
== o is not
then the condition becomes true.
true.
_ Checks if the values of two operands are equal or not, if yes | (a = b) is
B then the condition becomes true. not true.
- Checks if the values of two operands are equal or not, if the | (a = b)
' values are not equal, then the condition becomes true. is true.
- Checks if the values of two operands are equal or not, if the | (a <> b)
values are not equal, then the condition becomes true. is true.
Checks if the values of the left operand is greater than the .
. . ., (a>Db)is
> value of the right operand, if yes then the condition becomes
not true.
true.
< Checks if the values of the left operand is less than the value | (a < b) is
of the right operand, if yes then the condition becomes true. | true.
35

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Checks if the value of the left operand is greater than or equal | (a >= b)
>= to the value of the right operand, if yes then the condition | is not

becomes true. true.

Checks if the value of the left operand is less than or equal to (a <= b)
<= the value of the right operand, if yes then the condition | . -

is true.

becomes true.

Checks if the value of the left operand is not less than the (a 1< b)
I< value of the right operand, if yes then the condition becomes is félse

true.)

Checks if the value of the left operand is not greater than the (a 1> b)
1> value of the right operand, if yes then the condition becomes is tr-ue

true. '

SQLite - Comparison Operators Example
Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

The following example will show the usage of various SQLite Comparison Operators.

Here, we have used WHERE clause, which will be explained in a separate chapter but for
now you can understand that WHERE clause is used to put a conditional statement along
with SELECT statement.

Following SELECT statement lists down all the records having SALARY greater than
50,000.00.

sglite > SELECT* FROM COMPANY WHERE SALARY000;

ID NAME AGE ADDRESS SALARY
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

36

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Following SELECT statement lists down all the records having SALARY equal to 20,000.00.

sglite > SELECT* FROM COMPANY WHERE SALAR0000;

ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
3 Teddy 23 Norway 20000.0

Following SELECT statement lists down all the records having SALARY not equal to
20,000.00.

sglite > SELECT* FROM COMPANY WHERE SALAR20000;

ID NAME AGE ADDRESS SALARY

2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following SELECT statement lists down all the records having SALARY not equal to
20,000.00.

sglite > SELECT* FROM COMPANY WHERE SALAR?0000;

ID NAME AGE ADDRESS SALARY

2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following SELECT statement lists down all the records having SALARY greater than or
equal to 65,000.00.

sglite > SELECT* FROM COMPANY WHERE SALAR¥5000;

ID NAME AGE ADDRESS SALARY
4 Mark 25 Rich-Mond 65000.0
David 27 Texas 85000.0

37

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

SQLIiLtogi cal Operators

Here is a list of all the logical operators available in SQLite.

Operator Description
AND The AND operator allows the existence of multiple conditions in a SQL
statement's WHERE clause.
The BETWEEN operator is used to search for values that are within a set of
BETWEEN . C .
values, given the minimum value and the maximum value.
The EXISTS operator is used to search for the presence of a row in a
EXISTS o . o
specified table that meets a certain criteria.
IN The IN operator is used to compare a value to a list of literal values that
have been specified.
The negation of IN operator is used to compare a value to a list of literal
NOT IN .
values that have been specified.
LIKE The LIKE operator is used to compare a value to similar values using
wildcard operators.
GLOB The GLOB operator is used to compare a value to similar values using
wildcard operators. Also, GLOB is case sensitive, unlike LIKE.
The NOT operator reverses the meaning of the logical operator with which
NOT it is used. Example, NOT EXISTS, NOT BETWEEN, NOT IN, etc. Thisis a
negate operator.
OR The OR operator is used to combine multiple conditions in an SQL
statement's WHERE clause.
IS NULL The NULL operator is used to compare a value with a NULL value.
IS The IS operator work like =
IS NOT The IS operator work like =
I Adds two different strings and make a new one.
UNIQUE The UNIQUE operator searches every row of a specified table for uniqueness

(no duplicates).

38

MPLYEASYLEARMNINTI G

A tutorialspoint

SQLite

SQLite - Logical Operators Example
Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following are simple examples showing the usage of SQLite Logical Operators. Following
SELECT statement lists down all the records where AGE is greater than or equal to 25 and
salary is greater than or equal to 65000.00.

sglite > SELECT* FROM COMPANY WHERE A6R5 AND SALARY>= 65000;

ID NAME AGE ADDRESS SALARY
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is greater than or equal
to 25 OR salary is greater than or equal to 65000.00.

sglite > SELECT* FROM COMPANY WHERE AGER5 OR SALARY>= 65000;

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is not NULL, which
means all the records because none of the record has AGE equal to NULL.

sglite > SELECT* FROM COMPANY WHERE AGE IS NOT NULL

ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0

39

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does
not matter what comes after 'Ki'.

sglite > SELECT* FROM COMPANY WHERE NAME LK%®' ;
ID NAME AGE ADDRESS SALARY

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does
not matter what comes after 'Ki'.

sglite > SELECT* FROM COMPANY WHERE NAME G{i©B ;
ID NAME AGE ADDRESS SALARY

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where AGE value is either 25 or 27.

sglite > SELECT* FROM COMPANY WHERE AGHE 1195, 27);

ID NAME AGE ADDRESS SALARY

2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE value is neither 25 nor
27.

sglite > SELECT* FROM COMPANY WHERE AGE NOT IR5, 27);

ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
3 Teddy 23 Norway 20000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

40

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Following SELECT statement lists down all the records where AGE value is in BETWEEN 25
AND 27.

sglite > SELECT* FROM COMPANY WHERE AGE BETREBND 27;

ID NAME AGE ADDRESS SALARY
2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following SELECT statement makes use of SQL sub-query where sub-query finds all the
records with AGE field having SALARY > 65000 and later WHERE clause is being used
along with EXISTS operator to list down all the records where AGE from the outside query
exists in the result returned by the sub-query.

sglite > SELECT AGE FROM COMPANY
WHERE EXIST$ SELECT AGE FROM COMPANY WHERE SA:AF5000);

24

Following SELECT statement makes use of SQL sub-query where subquery finds all the
records with AGE field having SALARY > 65000 and later WHERE clause is being used
along with > operator to list down all the records where AGE from the outside query is
greater than the age in the result returned by the sub-query.

sglite > SELECT* FROM COMPANY
WHERE AGE (SELECT AGE FROM COMPANY WHERE SAEAE5000);
ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0

41

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLi t e

Bi t wi se

SQLite

Operators

Bitwise operator works on bits and performs bit-by-bit operation. Following is the truth
table for & and | .

p q p&q plq
0 0 0 0
0 1 0 1
1 1 1 1
1 0 0 1

Assume if A = 60 and B = 13, then in binary format, they will be as follows:

A = 00111100

B = 0000 1101

A&B = 0000 1100

A|B

~A

0011 1101

1100 0011

The Bitwise operators supported by SQLite language are listed in the following table.
Assume variable A holds 60 and variable B holds 13, then:

Operator Description Example
Binary AND Operator copies a bit to . . S
& the result, if it exists in both (A & B) will give 12 which is 0000
1100
operands.
Binary OR Operator copies a bit, if it | (A | B) will give 61 which is 0011
exists in either operand. 1101
Binary Ones Complement Operatoris | (~A) will give -61 which is 1100
~ unary and has the effect of 'flipping' | 0011 in 2's complement form due to
bits. a signed binary number
Binary Left Shift Operator. The left
< operands value is moved left by the | A << 2 will give 240 which is 1111

number of bits specified by the right
operand.

0000

-

MPLYESAS?TY

LEARNINIG

A tutorialspoint

42

SQLite

>>

operand.

Binary Right Shift Operator. The left
operands value is moved right by the
number of bits specified by the right

A >> 2 will give 15 which is 0000
1111

SQLite - Bitwise Operator s Example

Following are simple examples showing the usage of SQLite Bitwise Operators.

sglite > . mode line
sqlite > select 60 | 13;
60 | 13 =61

sqlite > select 60 & 13;
60 & 13 = 12

sqlite > select 60 N 13;

10 * 20 = 200

sqlite > select (~60);

(-60) = -61

sglite > select (60 << 2);

(60 << 2) = 240

sglite > select (60 >> 2);

(60 >> 2) = 15

-

A tutorialspoint

SIMPLYEASYLEARNINI G

43

14. SQLite Expressions

An expression is a combination of one or more values, operators, and SQL functions that
evaluate to a value.

SQL Expressions are like formulas and they are written in query language. You can also
use to query the database for a specific set of data.

Syntax

Consider the basic syntax of the SELECT statement as follows:

SELECT columnl, column2, columnN
FROM table_name
WHERHE CONDITION| EXPRESSION

Following are the different types of SQLite expressions.

SQLi-B®ol ean Expression

SQLite Boolean Expressions fetch the data on the basis of matching single value. Following
is the syntax:

SELECT columnl, column2, columnN
FROM table_name
WHERE SINGLE VALUE MATCHTING EXPRESSION

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is a simple example showing the usage of SQLite Boolean Expressions.

sglite > SELECT* FROM COMPANY WHERE SALARWY000;
ID NAME AGE ADDRESS SALARY

44

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

4 James 24 Houston 10000.0

SQLIi-Nwemeri c Expression

These expressions are used to perform any mathematical operation in any query. Following
is the syntax:

SELECT numerical_expression as OPERATION_NAME
[FROM table_name WHERE CONDITIQN,

Here, numerical_expression is used for mathematical expression or any formula. Following
is a simple example showing uthe sage of SQLite Numeric Expression.

sglite > SELECT(15 + 6) AS ADDITION
ADDITION= 21

There are several built-in functions such as avg() , sum() , count() , etc., to perform what
is known as aggregate data calculations against a table or a specific table column.

sglite > SELECT COUNT AS "RECORDS'FROM COMPANY
RECORDS 7

SQLi-Det e Expression

Date Expression returns the current system date and time values. These expressions are
used in various data manipulations.

sglite > SELECT CURRENT_TIMESTAMP
CURRENT_TIMESTAMP2013- 03-17 10: 43: 35

45

A tutorialspoint

SIMPLYEASYLEARNINI G

15. SQLite WHERE Clause

The SQLite WHERE clause is used to specify a condition while fetching the data from one
table or multiple tables.

If the given condition is satisfied, means true, then it returns the specific value from the
table. You will have to use WHERE clause to filter the records and fetch only the necessary
records.

The WHERE clause not only is used in SELECT statement, but it is also used in UPDATE,
DELETE statement, etc., which will be covered in subsequent chapters.

Syntax
Following is the basic syntax of SQLite SELECT statement with WHERE clause.

SELECT columnl, column2, columnN
FROM table_name
WHEREH condition]

Example

You can specify a condition using Comparison or Logical Operators such as >, <, =, LIKE,
NOT, etc. Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is a simple example showing the usage of SQLite Logical Operators. Following
SELECT statement lists down all the records where AGE is greater than or equal to
25 AND salary is greater than or equal to 65000.00.

sglite > SELECT* FROM COMPANY WHERE AGE5 AND SALARY>= 65000;

ID NAME AGE ADDRESS SALARY
4 Mark 25 Rich-Mond 65000.0
David 27 Texas 85000.0

46

A tutorialspoint

SIMPLYEASYLEARNINI G

https://www.tutorialspoint.com/sqlite/sqlite_operators.htm

SQLite

Following SELECT statement lists down all the records where AGE is greater than or equal
to 25 OR salary is greater than or equal to 65000.00.

sglite > SELECT* FROM COMPANY WHERE AER5 OR SALARY>= 65000;

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is not NULL, which
means all the records because none of the record has AGE equal to NULL.

sglite > SELECT* FROM COMPANY WHERE AGE IS NOT NULL

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does
not matter what comes after 'Ki'.

sglite > SELECT* FROM COMPANY WHERE NAME LK%' ;
ID NAME AGE ADDRESS SALARY

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does
not matter what comes after 'Ki'.

sglite > SELECT* FROM COMPANY WHERE NAME {iOB ;
ID NAME AGE ADDRESS SALARY

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where AGE value is either 25 or 27.

47

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

sglite > SELECT* FROM COMPANY WHERE AGH 1195, 27);

ID NAME AGE ADDRESS SALARY

2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE value is neither 25 nor
27.

sglite > SELECT* FROM COMPANY WHERE AGE NOT IR5, 27);

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
3 Teddy 23 Norway 20000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where AGE value is in BETWEEN 25
AND 27.

sglite > SELECT* FROM COMPANY WHBRE BETWEERS5 AND27;

ID NAME AGE ADDRESS SALARY

2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following SELECT statement makes use of SQL sub-query, where sub-query finds all the
records with AGE field having SALARY > 65000 and later WHERE clause is being used
along with EXISTS operator to list down all the records where AGE from the outside query
exists in the result returned by the sub-query.

sglite > SELECT AGE FROM COMPANY
WHERE EXIST$ SELECT AGE FROM COMPANY WHERE SA:A5000);

48

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

22
24

Following SELECT statement makes use of SQL sub-query, where sub-query finds all the
records with AGE field having SALARY > 65000 and later WHERE clause is being used
along with > operator to list down all the records where AGE from the outside query is
greater than the age in the result returned by the sub-query.

sglite > SELECT* FROM COMPANY
WHERE AGE (SELECT AGE FROM COMPANY WHERE SAERAES000);
ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0

49

-

A tutorialspoint

SIMPLYEASYLEARNINI G

16. SQLite AND& OR Operators

The SQLite AND & OR operators are used to compile multiple conditions to narrow down
the selected data in an SQLite statement. These two operators are called conjunctive
operators

These operators provide a means to make multiple comparisons with different operators
in the same SQLite statement.

The AND Operator

The AND operator allows the existence of multiple conditions in a SQLite statement's
WHERE clause. While using AND operator, complete condition will be assumed true when
all the conditions are true. For example, [condition1] AND [condition2] will be true only
when both conditionl and condition2 are true.

Syntax
Following is the basic syntax of AND operator with WHERE clause.

SELECT columnl, column2, columnN
FROM table_name
WHERE conditionl] AND]J condition2]... AND][conditionN J;

You can combine N number of conditions using AND operator. For an action to be taken
by the SQLite statement, whether it be a transaction or query, all conditions separated by
the AND must be TRUE.

Example
Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

50

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Following SELECT statement lists down all the records where AGE is greater than or equal
to 25 AND salary is greater than or equal to 65000.00.

sglite > SELECT* FROM COMPANY WHERE AGR5 AND SALARY>= 65000;

ID NAME AGE ADDRESS SALARY
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

The Rerator

The OR operator is also used to combine multiple conditions in a SQLite statement's
WHERE clause. While using OR operator, complete condition will be assumed true when at
least any of the conditions is true. For example, [condition1] OR [condition2] will be true
if either conditionl or condition2 is true.

Syntax

Following is the basic syntax of OR operator with WHERE clause.

SELECT columnl, column2, columnN
FROM table_name
WHERE conditionl] OR[condition2]... OR[conditionN]

You can combine N number of conditions using OR operator. For an action to be taken by
the SQLite statement, whether it be a transaction or query, only any ONE of the conditions
separated by the OR must be TRUE.

Example
Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

51

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Following SELECT statement lists down all the records where AGE is greater than or equal

to 25 OR salary is greater than or equal to 65000.00.

sglite > SELECT* FROM COMPANY WHERE AER5 OR SALARY>= 65000;

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

-

A tutorialspoint

SIMPLYEASYLEARNINI G

52

17. SQLite UPDATE Query

SQLite UPDATE Query is used to modify the existing records in a table. You can use
WHERE clause with UPDATE query to update selected rows, otherwise all the rows would
be updated.

Syntax
Following is the basic syntax of UPDATE query with WHERE clause.

UPDATE table_name
SET columnl = valuel , column2 = value2, columnN = valueN

WHERE condition |;

You can combine N number of conditions using AND or OR operators.

Example

Consider COMPANY table with the following records.
ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is an example, which will update ADDRESS for a customer whose ID is 6.

sglite > UPDATE COMPANY SET ADDRESSexas' WHERE ID= 6;

Now, COMPANY table will have the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

(0]
W

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

6 Kim 22 Texas

7 James 24 Houston

45000.0
10000.0

If you want to modify all ADDRESS and SALARY column values in COMPANY table, you do

not need to use WHERE clause and UPDATE query will be as follows:

sglite > UPDATE COMPANY SETIMRESS= 'Texas' , SALARY= 20000.00;

Now, COMPANY table will have the following records.

ID NAME AGE ADDRESS SALARY
1 Paul 32 Texas
2 Allen 25 Texas
3 Teddy 23 Texas
4 Mark 25 Texas
5 David 27 Texas
6 Kim 22 Texas
7 James 24 Texas

20000.0
20000.0
20000.0
20000.0
20000.0
20000.0
20000.0

-

A tutorialspoint

SIMPLYEASYLEARNINI G

54

18. SQLite DELETE Query

SQLite DELETE Query is used to delete the existing records from a table. You can use
WHERE clause with DELETE query to delete the selected rows, otherwise all the records
would be deleted.

Syntax
Following is the basic syntax of DELETE query with WHERE clause.

DELETE FROM table_name
WHERE condition];

You can combine N number of conditions using AND or OR operators.

Example
Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is an example, which will DELETE a customer whose ID is 7.

sglite > DELETE FROM COMPANY WHERE I2;

Now COMPANY table will have the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0

55

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

If you want to DELETE all the records from COMPANY table, you do not need to use WHERE
clause with DELETE query, which will be as follows:

sglite > DELETE FROM COMPANY

Now, COMPANY table does not have any record as all the records have been deleted by
DELETE statement.

56

A tutorialspoint

SIMPLYEASYLEARNINI G

19. SQLite LIKE Clause

SQLite LIKE operator is used to match text values against a pattern using wildcards. If
the search expression can be matched to the pattern expression, the LIKE operator will
return true, which is 1. There are two wildcards used in conjunction with the LIKE operator:

1 The percent sign (%)

1 The underscore (_)

The percent sign represents zero, one, or multiple numbers or characters. The underscore
represents a single number or character. These symbols can be used in combinations.

Syntax

Following is the basic syntax of % and _.

SELECT FROM table_name
WHERE column LIKE "XXXX%'

or

SELECT FROM table_name
WHERE column LIKE '%XXXX%'

or

SELECT FROM table_name
WHERE column LIKE 'XXXX_'

or

SELECT FROM table_name
WHERE column LIKE '_XXXX'

or

SELECT FROM table_name
WHERE column LIKE '_XXXX_'

57

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

You can combine N number of conditions using AND or OR operators. Here, XXXX could
be any numeric or string value.

Example

Following table lists a number of examples showing WHERE part having different LIKE
clause with '%' and '_' operators.

Statement Description

WHERE SALARY LIKE

200%' Finds any values that start with 200

WHERE SALARY LIKE Finds any values that have 200 in any position

'%200%'

WHERE SALARY LIKE Finds any values that have 00 in the second and third
' 00%' positions

WHERE SALARY LIKE Finds any values that start with 2 and are at least 3
'2_% %' characters in length

WHERE SALARY LIKE Finds any values that end with 2

'%?2'

WHERE SALARY LIKE Finds any values that has a 2 in the second position and
' 2%3' ends with a 3

WHERE SALARY LIKE Finds any values in a five-digit number that starts with 2
'2 3 and ends with 3

Let us take a real example, consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is an example, which will display all the records from COMPANY table where AGE
starts with 2.

sglite > SELECT* FROM COMPANY WHERE AGE LIRE' ;

58

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

This will produce the following result.

ID NAME AGE ADDRESS SALARY

2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is an example, which will display all the records from COMPANY table where
ADDRESS will have a hyphen (-) inside the text.

sglite > SELECT* FROM COMPANY WHERE ADDRESS LWKE4';

This will produce the following result.

ID NAME AGE ADDRESS SALARY
4 Mark 25 Rich-Mond 65000.0
6 Kim 22 South-Hall 45000.0

59

A tutorialspoint

SIMPLYEASYLEARNINI G

20. SQLite GLOB Clause

SQLite GLOB operator is used to match only text values against a pattern using wildcards.
If the search expression can be matched to the pattern expression, the GLOB operator will
return true, which is 1. Unlike LIKE operator, GLOB is case sensitive and it follows syntax
of UNIX for specifying THE following wildcards.

1 The asterisk sign (*)

1 The question mark (?)

The asterisk sign (*)represents zero or multiple numbers or characters. The question mark
(?) represents a single number or character.

Syntax

Following is the basic syntax of * and 7.

SELECT FROM table_name
WHERE column GLOBXXXX*"

or

SELECT FROM table_name
WHERE column GLOB*XXXX*"

or

SELECT FROM table_name
WHERE column GLOBXXXX?'

or

SELECT FROM table_name
WHERE column GLOB?XXXX'

or

SELECT FROM table_name
WHERE column GLOB?XXXX?'

or

60

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

SELECT FROM table _name
WHERE column GLOB????'

You can combine N number of conditions using AND or OR operators. Here, XXXX could
be any numeric or string value.

Example

Following table lists a number of examples showing WHERE part having different LIKE
clause with * ' and '?' operators.

Statement Description

WHERE SALARY GLOB

1200*" Finds any values that start with 200

WHERE SALARY GLOB

%200 Finds any values that have 200 in any position

WHERE SALARY GLOB | Finds any values that have 00 in the second and third
"200*' positions

WHERE SALARY GLOB | Finds any values that start with 2 and are at least 3
277" characters in length

WHERE SALARY GLOB '*2' | Finds any values that end with 2

WHERE SALARY GLOB | Finds any values that have a 2 in the second position and
"22*3' end with a 3

WHERE SALARY GLOB | Finds any values in a five-digit number that start with 2 and
'2272?23' end with 3

Let us take a real example, consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0

(o))
(MY

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

7 James 24 Houston 10000.0

Following is an example, which will display all the records from COMPANY table, where
AGE starts with 2.

sglite > SELECT* FROM COMPANY WHERE AGE GI2®B;

This will produce the following result.

ID NAME AGE ADDRESS SALARY
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is an example, which will display all the records from COMPANY table where
ADDRESS will have a hyphen (-) inside the text.

sglite > SELECT* FROM COMPANY WHERE ADDRESS GLOB ;

This will produce the following result.

ID NAME AGE ADDRESS SALARY
4 Mark 25 Rich-Mond 65000.0
6 Kim 22 South-Hall 45000.0

62

A tutorialspoint

SIMPLYEASYLEARNINI G

21. SOQLite LIMIT Clause

SQLite LIMIT clause is used to limit the data amount returned by the SELECT statement.

Syntax
Following is the basic syntax of SELECT statement with LIMIT clause.

SELECT columnl, column2, columnN
FROM table_name
LIMIT [no of rows]

Following is the syntax of LIMIT clause when it is used along with OFFSET clause.

SELECT columnl, column2, columnN
FROM table_name
LIMIT [no ofrows] OFFSET[row hum]

SQLite engine will return rows starting from the next row to the given OFFSET as shown
below in the last example.

Example
Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is an example, which limits the row in the table according to the number of rows
you want to fetch from table.

sglite > SELECT* FROM COMPANY LIMI&;

63

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

This will produce the following result.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0

However in certain situations, you may need to pick up a set of records from a particular
offset. Here is an example, which picks up 3 records starting from the 3rd position.

sglite > SELECT* FROM COMPANY LIMIZ OFFSET2;

This will produce the following result.

ID NAME AGE ADDRESS SALARY

3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

64

-

A tutorialspoint

SIMPLYEASYLEARNINI G

22. SOQLite ORDEBY Clause

SQLite ORDER BY clause is used to sort the data in an ascending or descending order,
based on one or more columns.

Syntax
Following is the basic syntax of ORDER BY clause.

SELECT column list

FROM table_name

[WHERE condition]

[ORDER BY columnl column2, .. columnN] [ASC| DES{

You can use more than one column in the ORDER BY clause. Make sure whatever column
you are using to sort, that column should be available in the column-list.

Example
Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is an example, which will sort the result in descending order by SALARY.

sglite > SELECT* FROM COMPANY ORDER BY SALARY ASC

65

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

This will produce the following result.

ID NAME AGE ADDRESS SALARY

7 James 24 Houston 10000.0
2 Allen 25 Texas 15000.0
1 Paul 32 California 20000.0
3 Teddy 23 Norway 20000.0
6 Kim 22 South-Hall 45000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following is an example, which will sort the result in descending order by NAME and
SALARY.

sglite > SELECT* FROM COMPANY ORDER BY NABWL.ARY ASC

This will produce the following result.

ID NAME AGE ADDRESS SALARY

2 Allen 25 Texas 15000.0
5 David 27 Texas 85000.0
7 James 24 Houston 10000.0
6 Kim 22 South-Hall 45000.0
4 Mark 25 Rich-Mond 65000.0
1 Paul 32 California 20000.0
3 Teddy 23 Norway 20000.0

Following is an example, which will sort the result in descending order by NAME.

sglite > SELECT* FROM COMPANY ORDER BY NAME DESC

This will produce the following result.

ID NAME AGE ADDRESS SALARY

3 Teddy 23 Norway 20000.0
1 Paul 32 California 20000.0
4 Mark 25 Rich-Mond 65000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0
5 David 27 Texas 85000.0
2 Allen 25 Texas 15000.0

66

A tutorialspoint

SIMPLYEASYLEARNINI G

23. SOQLite GROUP BClause

SQLite GROUP BY clause is used in collaboration with the SELECT statement to arrange
identical data into groups.

GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the
ORDER BY clause.

Syntax

Following is the basic syntax of GROUP BY clause. GROUP BY clause must follow the
conditions in the WHERE clause and must precede ORDER BY clause if one is used.

SELECT column list

FROMable_name

WHERE conditions]

GROUP BY columnl column2.... columnN

ORDER BY columnl column2.... columnN

You can use more than one column in the GROUP BY clause. Make sure whatever column
you are using to group, that column should be available in the column-list.

Example
Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

If you want to know the total amount of salary on each customer, then GROUP BY query
will be as follows:

sglite > SELECT NAMESUNISALARY FROM COMPANY GROUP BY NAME

67

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

This will produce following result.

NAME SUM (SALARY

Allen 15000.0
David 85000.0
James 10000.0
Kim 45000.0
Mark 65000.0
Paul 20000.0
Teddy 20000.0

Now, let us create three more records in COMPANY table using the following INSERT
statements.

INSERT INTO COMPANY VALUES, 'Paul' , 24, 'Houston' , 20000.00);
INSERT INTO COMPANY VALUES, ‘'James' , 44, 'Norway' , 5000.00);
INSERT INTO COMPANY VALUES0, 'James', 45, 'Texas' , 5000.00);

Now, our table has the following records with duplicate names.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0
8 Paul 24 Houston 20000.0
9 James 44 Norway 5000.0
10 James 45 Texas 5000.0

Again, let us use the same statement to group-by all the records using NAME column as
follows:

sglite > SELECT NAMESUNSALARY FROM COMPANY GROUP BY NAME ORDER BY NAME

68

-

A tutorialspoint

SIMPLYEASYLEARNINI G

This will produce the following result.

SQLite

NAME SUM (SALARY

Allen 15000
David 85000
James 20000
Kim 45000
Mark 65000
Paul 40000
Teddy 20000

Let us use ORDER BY clause along with GROUP BY clause as follows:

sglite > SELECT NAMESUNISALARY
FROM COMPANY GROUP BY NAME ORDER BY NAME DESC

This will produce the following result.

NAME SUM (SALARY

Teddy 20000
Paul 40000
Mark 65000
Kim 45000
James 20000
David 85000
Allen 15000

-

A tutorialspoint

SIMPLYEASYLEARNINI G

69

24. SOLite HAVING Clause

HAVING clause enables you to specify conditions that filter which group results appear in
the final results.

The WHERE clause places conditions on the selected columns, whereas the HAVING clause
places conditions on groups created by GROUP BY clause.

Syntax
Following is the position of HAVING clause in a SELECT query.

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY

HAVING clause must follow GROUP BY clause in a query and must also precede ORDER BY
clause, if used. Following is the syntax of the SELECT statement, including HAVING clause.

SELECT columnl, column2
FROM tablel, table2
WHERE conditions]
GROUP BY columnl column2
HAVING[conditions]
ORDER BY columnl column2

Example

Consider COMPANY table with the following records.
ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

b
(@)

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

8 Paul 24 Houston 20000.0
9 James 44 Norway 5000.0
10 James 45 Texas 5000.0

Following is the example, which will display the record for which the name count is less
than 2.

sglite > SELECT* FROM COMPANY GROUP BY name HAVING conamg < 2;

This will produce the following result.

ID NAME AGE ADDRESS SALARY

2 Allen 25 Texas 15000
5 David 27 Texas 85000
6 Kim 22 South-Hall 45000
4 Mark 25 Rich-Mond 65000
3 Teddy 23 Norway 20000

Following is the example, which will display the record for which the name count is greater
than 2.

sglite > SELECT* FROM COMPANY GROUP BY name HAVING c6onatng > 2;

This will produce the following result.

ID NAME AGE ADDRESS SALARY

10 James 45 Texas 5000

71

-

A tutorialspoint

SIMPLYEASYLEARNINI G

25. SQLite DISTINCT Keyword

SQLite DISTINCT keyword is used in conjunction with SELECT statement to eliminate all
the duplicate records and fetch only the unique records.

There may be a situation when you have multiple duplicate records in a table. While
fetching such records, it makes more sense to fetch only unique records instead of fetching
duplicate records.

Syntax

Following is the basic syntax of DISTINCT keyword to eliminate duplicate records.

SELECT DISTINCT columnl, column2,..... columnN
FROM table_name
WHERE condition]

Example

Consider COMPANY table with the following records.
ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0
8 Paul 24 Houston 20000.0
9 James 44 Norway 5000.0
10 James 45 Texas 5000.0

First, let us see how the following SELECT query returns duplicate salary records.
sqlite > SELECT name FROM COMPANY

72

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

This will produce the following result.

James
Paul
James

James

Now, let us use DISTINCT keyword with the above SELECT query and see the result.

sglite > SELECT DISTINCT name FROM COMPANY

This will produce the following result, where there is no duplicate entry.

-

A tutorialspoint

SIMPLYEASYLEARNINI G

73

SQLite

Advanced SQLite

74

@wwrialsmim

26. SOLite PRAGMA

SQLite PRAGMA command is a special command to be used to control various
environmental variables and state flags within the SQLite environment. A PRAGMA value
can be read and it can also be set based on the requirements.

Syntax

To query the current PRAGMA value, just provide the name of the pragma.

PRAGMA pragma_name

To set a new value for PRAGMA, use the following syntax.

PRAGMA pragma_name value ;

The set mode can be either the name or the integer equivalent but the returned value will
always be an integer.

aut o _vacuum Pr agma

The auto_vacuum pragma gets or sets the auto-vacuum mode. Following is the simple
syntax.

PRAGMAdatabase .] auto_vacuum;

PRAGMAdatabase .] auto_vacuum = mode

Where mode can be any of the following:

Pragma Value Description

Auto-vacuum is disabled. This is the default mode which means
0 or NONE that a database file will never shrink in size unless it is manually
vacuumed using the VACUUM command.

Auto-vacuum is enabled and fully automatic which allows a

LorFULL database file to shrink as data is removed from the database.

Auto-vacuum is enabled but must be manually activated. In this
mode, the reference data is maintained, but free pages are
2 or INCREMENTAL simply put on the free list. These pages can be recovered using
the incremental_vacuum pragma any time.

75

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

cache size Pragma

The cache_size pragma can get or temporarily set the maximum size of the in-memory
page cache. Following is the simple syntax.

PRAGMAdatabase .] cache_size ;
PRAGMAdatabase .] cache_size = pages;

The pages value represents the number of pages in the cache. The built-in page cache
has a default size of 2,000 pages and a minimum size of 10 pages.

case_sensitive_ | i ke Pragma

The case_sensitive_like pragma controls the case-sensitivity of the built-in LIKE
expression. By default, this pragma is false which means that the built-in LIKE operator
ignores the letter case. Following is the simple syntax.

PRAGMA case_sensitive_like = [true | false |,

There is no way to query for the current state of this pragma.

count changes Pragma

count_changes pragma gets or sets the return value of data manipulation statements
such as INSERT, UPDATE and DELETE. Following is the simple syntax.

PRAGMA count_changes

PRAGMA count_changes= [true | false],

By default, this pragma is false and these statements do not return anything. If set to
true, each of the mentioned statement will return a one-column, one-row table consisting
of a single integer value, indicating impacted rows by the operation.

database | ist Pragma

The database_list pragma will be used to list down all the databases attached. Following
is the simple syntax.

PRAGMAatabase_list

This pragma will return a three-column table with one row per open or attached database
giving database sequence number, its name and the file associated.

encoding Pragma

The encoding pragma controls how strings are encoded and stored in a database file.
Following is the simple syntax.

PRAGMA encoding

76

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

PRAGMA encoding= format ;

The format value can be one of UTF-8, UTF-16le , or UTF-16be .

freelist _count Pragma

The freelist_count pragma returns a single integer indicating how many database pages
are currently marked as free and available. Following is the simple syntax.

PRAGMAdatabase .] freelist_count

The format value can be one of UTF-8, UTF-16le , or UTF-16be .

Il ndex i nfo Pragma

The index_info pragma returns information about a database index. Following is the
simple syntax.

PRAGMAdatabase .] index_info (index_name);

The result set will contain one row for each column contained in the index giving column
sequence, column index within table and column name.

i ndex |ist Pragma

index_list pragma lists all of the indexes associated with a table. Following is the simple
syntax.

PRAGMAdatabase .] index_list (table_name);

The result set will contain one row for each index giving index sequence, index name and
flag indicating whether the index is unique or not.

Jjournal mode Pr agma

The journal_mode pragma gets or sets the journal mode which controls how the journal
file is stored and processed. Following is the simple syntax.

PRAGMA journal_mode
PRAGMA journal_mode = mode
PRAGMA database.journal_mode ;

PRAGMA database.journal_mode = mode

There are five supported journal modes as listed in the following table.

Pragma Value Description

This is the default mode. Here at the conclusion of a transaction,

DELETE the journal file is deleted.

77

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

TRUNCATE The journal file is truncated to a length of zero bytes.
The journal file is left in place, but the header is overwritten to
PERSIST S . - -
indicate the journal is no longer valid.
MEMORY The journal record is held in memory, rather than on disk.
OFF No journal record is kept.

max _page_count Pragma

The max_page_count pragma gets or sets the maximum allowed page count for a
database. Following is the simple syntax.

PRAGMAdatabase .] max_page_count;
PRAGMAdatabase .] max_page_count = max_page

The default value is 1,073,741,823 which is one giga-page, which means if the default is
1 KB page size, this allows databases to grow up to one terabyte.

page_count Pr agma

The page_count pragma returns the current number of pages in the database. Following
is the simple syntax.

PRAGMAdatabase .] page_count ;

The size of the database file should be page_count * page_size.

page_size Pragma

The page_size pragma gets or sets the size of the database pages. Following is the simple
syntax.

PRAGMAdatabase .] page_size ;
PRAGMAdatabase .] page_size = bytes ;

By default, the allowed sizes are 512, 1024, 2048, 4096, 8192, 16384, and 32768 bytes.
The only way to alter the page size on an existing database is to set the page size and
then immediately VACUUM the database.

par ser rtargatae P

The parser_trace pragma controls printing the debugging state as it parses SQL
commands. Following is the simple syntax.

PRAGMA parser_trace = [true | false J;

78

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

By default, it is set to false but when enabled by setting it to true, the SQL parser will print
its state as it parses SQL commands.

recursive _ triggers Pragma

The recursive_triggers pragma gets or sets the recursive trigger functionality. If
recursive triggers are not enabled, a trigger action will not fire another trigger. Following
is the simple syntax.

PRAGMA recursive_triggers
PRAGMA recursive_triggers = [true | false];

schema_ _version Pragma

The schema_version pragma gets or sets the schema version value that is stored in the
database header. Following is the simple syntax.

PRAGMAdatabase .] schema_version ;

PRAGMAdatabase .] schema_version = number,

This is a 32-bit signed integer value that keeps track of schema changes. Whenever a
schema-altering command is executed (like, CREATE... or DROP...), this value is
incremented.

secure _delete Pragma

The secure_delete pragma is used to control how the content is deleted from the
database. Following is the simple syntax.

PRAGMA secure_delete;
PRAGMA secure_delete = [true | false];
PRAGMA databasesecure_delete ;

PRAGMA databasesecure_delete = [true |false];

The default value for the secure delete flag is normally off, but this can be changed with
the SQLITE_SECURE_DELETE build option.

sqgl trace Pragma

The sqgl_trace pragma is used to dump SQL trace results to the screen. Following is the
simple syntax.

PRAGMA sql_trace;
PRAGMA sql_trace = [true | false];

SQLite must be compiled with the SQLITE_DEBUG directive for this pragma to be included.

79

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

synchronous Pragma

The synchronous pragma gets or sets the current disk synchronization mode, which
controls how aggressively SQLite will write data all the way out to physical storage.
Following is the simple syntax.

PRAGMAdatabase .] synchronous ;
PRAGMAdatabase .] synchronous = mode

SQLite supports the following synchronization modes as listed in the table.

Pragma Value Description
0 or OFF No syncs at all

1 or NORMAL Sync after each sequence of critical disk operations
2 or FULL Sync after each critical disk operation

temp _store Pragma

The temp_store pragma gets or sets the storage mode used by temporary database files.
Following is the simple syntax.

PRAGMA temp_store
PRAGMA temp_store = mode

SQLite supports the following storage modes.

Pragma Value Description

0 or DEFAULT Use compile-time default. Normally FILE.
1or FILE Use file-based storage.

2 or MEMORY Use memory-based storage.

t emp sdiorreetr agyna

The temp_store_directory pragma gets or sets the location used for temporary
database files. Following is the simple syntax.

PRAGMA temp_store_directory ;
PRAGMA temp_store_directory = 'directory_path' ;

80

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

user _version Pragma

The user_version pragma gets or sets the user-defined version value that is stored in
the database header. Following is the simple syntax.

PRAGMAdatabase .] user_version ;

PRAGMAdatabase .] user_version = number,

This is a 32-bit signed integer value, which can be set by the developer for version tracking
purpose.

writable schema Pr agma

The writable_schema pragma gets or sets the ability to modify system tables. Following
is the simple syntax.

PRAGMA writable_schema;
PRAGMA writable_schema = [true | false];

If this pragma is set,tables that start with sqlite_ can be created and modified, including
the sqlite_master table. Be careful while using pragma because it can lead to complete
database corruption.

81

-

A tutorialspoint

SIMPLYEASYLEARNINI G

27. SQLite Gonstraints

Constraints are the rules enforced on data columns on a table. These are used to limit the
type of data that can go into a table. This ensures the accuracy and reliability of the data
in the database.

Constraints could be column level or table level. Column level constraints are applied only
to one column, whereas table level constraints are applied to the whole table.

Following are commonly used constraints available in SQLite.

1 NOT NULL Constraint : Ensures that a column cannot have NULL value.

1 DEFAULT Constraint : Provides a default value for a column when none is
specified.

1 UNIQUE Constraint : Ensures that all values in a column are different.

1 PRIMARY Key : Uniquely identifies each row/record in a database table.

f CHECK Constraint : Ensures that all values in a column satisfies certain conditions.

NOT NULL Constraint

By default, a column can hold NULL values. If you do not want a column to have a NULL
value, then you need to define such constraint on this column specifying that NULL is now
not allowed for that column.

A NULL is not the same as no data, rather, it represents unknown data.

Example

For example, the following SQLite statement creates a new table called COMPANY and
adds five columns, three of which, ID and NAME and AGE, specifies not to accept NULLs.

CREATE TABLE COMPANY
ID INT PRIMARY KEY NOT NULL
NAME TEXT NOT NULL
AGE INT NOT NULL
ADDRESS CHAR (50),
SALARY REAL

82

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

DEFAULT Constraint

The DEFAULT constraint provides a default value to a column when the INSERT INTO
statement does not provide a specific value.

Example

For example, the following SQLite statement creates a new table called COMPANY and
adds five columns. Here, SALARY column is set to 5000.00 by default, thus in case INSERT
INTO statement does not provide a value for this column, then by default, this column
would be set to 5000.00.

CREATE TABLE COMPANY
ID INT PRIMARY KEY ~ NOT NULL ,
NAME TEXT NOT NULL ,
AGE INT NOT NULL ,
ADDRESS CHAR (50),
SALARY REAL DEFAULT 50000.00

UNI QUE Constraint

The UNIQUE Constraint prevents two records from having identical values in a particular
column. In the COMPANY table, for example, you might want to prevent two or more
people from having an identical age.

Example

For example, the following SQLite statement creates a new table called COMPANY and
adds five columns. Here, AGE column is set to UNIQUE, so that you cannot have two
records with the same age.

CREATE TABLE COMPANY
ID INT PRIMARY KEY NOT NULL
NAME TEXT NOT NULL ,
AGE INT NOT NULL UNIQUE ,
ADDRESS CHAR (50),
SALARY REAL DEFAULT 50000.00

83

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

PRI MARY KEY Constraint

The PRIMARY KEY constraint uniquely identifies each record in a database table. There can
be more UNIQUE columns, but only one primary key in a table. Primary keys are important
when designing the database tables. Primary keys are unique IDs.

We use them to refer to table rows. Primary keys become foreign keys in other tables,
when creating relations among tables. Due to a 'longstanding coding oversight', primary
keys can be NULL in SQLite. This is not the case with other databases.

A primary key is a field in a table which uniquely identifies each rows/records in a database
table. Primary keys must contain unique values. A primary key column cannot have NULL
values.

A table can have only one primary key, which may consist of single or multiple fields.
When multiple fields are used as a primary key, they are called a composite key

If a table has a primary key defined on any field(s), then you cannot have two records
having the same value of that field(s).

Example

You already have seen various examples above where we have created COMPANY table
with ID as a primary key.

CREATE TABLE COMPANY
ID INT PRIMARY KEY ~ NOT NULL ,
NAME TEXT NOT NULL ,
AGE INT NOT NULL ,
ADDRESS CHAR (50),
SALARY REAL

CHECK Constraint

CHECK Constraint enables a condition to check the value being entered into a record. If
the condition evaluates to false, the record violates the constraint and isn't entered into
the table.

Example

For example, the following SQLite creates a new table called COMPANY and adds five
columns. Here, we add a CHECK with SALARY column, so that you cannot have any SALARY
Zero.

CREATE TABLE COMPARNY3
ID INT PRIMARY KEY NOT NULL
NAME TEXT NOT NULL ,
AGE INT NOT NULL ,
ADDRESS CHAR (50),

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

SALARY REAL CHECK (SALARY> 0)

Dropping Constraint

SQLite supports a limited subset of ALTER TABLE. The ALTER TABLE command in SQLite
allows the user to rename a table or add a new column to an existing table. It is not
possible to rename a column, remove a column, or add or remove constraints from a table.

85

-

A tutorialspoint

SIMPLYEASYLEARNINI G

28. SQLite JOINS

SQLite Joins clause is used to combine records from two or more tables in a database. A
JOIN is a means for combining fields from two tables by using values common to each.

SQL defines three major types of joins —
1 The CROSS JOIN

1 The INNER JOIN
1 The OUTER JOIN

Before we proceed, let's consider two tables COMPANY and DEPARTMENT. We already have
seen INSERT statements to populate COMPANY table. So just let's assume the list of
records available in COMPANY table —

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Another table is DEPARTMENT with the following definition —

CREATE TABLE DEPARTMENT
ID INT PRIMARY KEY NOT NULL
DEPT CHAR (50) NOT NULL
EMP_ID INT NOT NULL

);

Here is the list of INSERT statements to populate DEPARTMENT table —

INSERT INTO DEPARTMENTD, DEPT EMP_ID
VALUES(1, 'IT Billing' L 1)

INSERT INTO DEPARTMENTD, DEPT EMP_ID
VALUES(2, ‘'Engineering’ , 2);

86

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

INSERT INTO DEPARTMENTD, DEPT EMP_ID
VALUES(3, 'Finance' , 7);

Finally, we have the following list of records available in DEPARTMENT table —

ID DEPT EMP_ID

1 IT Billing 1
2 Engineering 2
3 Finance 7

The CROSS JOI N

CROSS JOIN matches every row of the first table with every row of the second table. If
the input tables have x and y columns, respectively, the resulting table will have x*y
columns. Because CROSS JOINs have the potential to generate extremely large tables,
care must be taken to only use them when appropriate.

Following is the syntax of CROSS JOIN —

SELECT... FROM tablel CROSS JOIN table2

Based on the above tables, you can write a CROSS JOIN as follows —

sglite > SELECT EMP_ID NAME DEPT FROM COMPANY CROSS JOIN DEPARTMENT

The above query will produce the following result —

EMP_ID NAME DEPT

1 Paul IT Billing
2 Paul Engineering
7 Paul Finance

1 Allen IT Billing
2 Allen Engineering
7 Allen Finance

1 Teddy IT Billing
2 Teddy Engineering
7 Teddy Finance

1 Mark IT Billing
2 Mark Engineering
7 Mark Finance

1 David IT Billing

87

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

2 David Engineering
7 David Finance

1 Kim IT Billing

2 Kim Engineering
7 Kim Finance

1 James IT Billing

2 James Engineering
7 James Finance

The | NNER JOI N

INNER JOIN creates a new result table by combining column values of two tables (tablel
and table2) based upon the join-predicate. The query compares each row of tablel with
each row of table2 to find all pairs of rows which satisfy the join-predicate. When the join-
predicate is satisfied, the column values for each matched pair of rows of A and B are
combined into a result row.

An INNER JOIN is the most common and default type of join. You can use INNER keyword
optionally.

Following is the syntax of INNER JOIN —

SELECT... FROM tablel [INNER JOIN table2 ON conditional_expression

To avoid redundancy and keep the phrasing shorter, INNER JOIN conditions can be
declared with a USING expression. This expression specifies a list of one or more columns.

SELECT... FROM tablel JOIN table2 USING (columnl ,..) ..

A NATURAL JOIN is similar to a JOIN...USING , only it automatically tests for equality
between the values of every column that exists in both tables —

SELECT... FROM tablel NATURAL JOIN table2 ...

Based on the above tables, you can write an INNER JOIN as follows —

sqlite > SELECT EMP_ID NAME DEPT FROM COMPANY INNER JOIN DEPARTMENT
ON COMPANYD = DEPARTMENEMP_ID

The above query will produce the following result —

EMP_ID NAME DEPT

1 Paul IT Billing
2 Allen Engineering
7 James Finance

88

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

The OUTER JOI N

OUTER JOIN is an extension of INNER JOIN. Though SQL standard defines three types of
OUTER JOINs: LEFT, RIGHT, and FULL, SQLite only supports the LEFT OUTER JOIN

OUTER JOINs have a condition that is identical to INNER JOINs, expressed using an ON,
USING, or NATURAL keyword. The initial results table is calculated the same way. Once
the primary JOIN is calculated, an OUTER JOIN will take any unjoined rows from one or
both tables, pad them out with NULLs, and append them to the resulting table.

Following is the syntax of LEFT OUTER JOIN —

SELECT... FROM tablel LEFT OUTER JOIN table2 ON conditional_expression

To avoid redundancy and keep the phrasing shorter, OUTER JOIN conditions can be
declared with a USING expression. This expression specifies a list of one or more columns.

SELECT... FROM tablel LEFT OUTER JOIN table2 USING (columnl ,..) ..

Based on the above tables, you can write an inner join as follows —

sglite > SELECT EMP_ID NAME DEPT FROM COMPANY LEFT OUTER JOIN DEPARTMENT
ON COMPANY = DEPARTMENEMPID;

The above query will produce the following result —

EMP_ID NAME DEPT

1 Paul IT Billing
2 Allen Engineerin
Teddy
Mark
David
Kim

7 James Finance

89

A tutorialspoint

SIMPLYEASYLEARNINI G

29. SQLite UNIONClause

SQLite UNION clause/operator is used to combine the results of two or more SELECT
statements without returning any duplicate rows.

To use UNION, each SELECT must have the same number of columns selected, the same
number of column expressions, the same data type, and have them in the same order,
but they do not have to be of the same length.

Syntax
Following is the basic syntax of UNION .

SELECT columnl [, column2]
FROM tablel [, table2]
[WHERE condition]

UNION

SELECT columnl [, column2]

FROM tablel [, table2]
[WHERE condition]

Here the given condition could be any given expression based on your requirement.

Example
Consider the following two tables, (a) COMPANY table as follows:

sqlite > select * from COMPANY

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

90

A tutorialspoint

SIMPLYEASYLEARNINI G

https://www.tutorialspoint.com/sqlite/company.sql

(b) Another table is DEPARTMENT as follows:

SQLite

ID DEPT EMP_ID

IT Billing
Engineering

Finance

Finance

1

2

3

4 Engineering
5

6 Engineering
7

Finance

Now let us join these two tables using SELECT statement along with UNION clause as

follows:

sglite > SELECT EMP_ID NAME DEPT FROM COMPANY INNER JOIN DEPARTMENT

ON COMPANY = DEPARTMENEMP_ID

UNION

SELECT EMP_IP NAME DEPT FROM COMPANY LEFT OUTER JOIN DEPARTMENT
ON COMPANY = DEPARTMENEMP_ID

This will produce the following result:

EMP_ID NAME DEPT

IT Billing
Engineering
Engineering
Finance
Engineering
Finance

Finance

-

A tutorialspoint

SIMPLYEASYLEARNINI G

91

https://www.tutorialspoint.com/sqlite/department.sql

SQLite

The UNI ON ALL CIl ause

The UNION ALL operator is used to combine the results of two SELECT statements
including duplicate rows.

The same rules that apply to UNION apply to the UNION ALL operator as well.

Syntax
Following is the basic syntax of UNION ALL

SELECT columnl [, column2]
FROM tablel [, table2]
[WHERE condition]

UNION ALL

SELECT columnl [, column2]

FROM tablel [, table2]
[WHERE condition]

Here the given condition could be any given expression based on your requirement.

Example

Now, let us join the above-mentioned two tables in our SELECT statement as follows:

sglite > SELECT EMP_ID NAME DEPT FROM COMPANY INNER JOIN DEPARTMENT
ON COMPANY = DEPARTMENEMP_ID
UNION ALL
SELECT EMP_IP NAME DEPT FROM COMPANY LEFT OUTER JOIN DEPARTMENT
ON COMPANY = DEPARTMENEMP_ID

This will produce the following result:

EMP_ID NAME DEPT

1 Paul IT Billing

2 Allen Engineering
3 Teddy Engineering
4 Mark Finance

5 David Engineering
6 Kim Finance

7 James Finance

1 Paul IT Billing

92

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

2 Allen Engineering
3 Teddy Engineering
4 Mark Finance
5 David Engineering
6 Kim Finance
7 James Finance
93
A tutorialspoint

30. SQLite NULL Values

SQLite NULL is the term used to represent a missing value. A NULL value in a table is a
value in a field that appears to be blank.

A field with a NULL value is a field with no value. It is very important to understand that
a NULL value is different than a zero value or a field that contains spaces.

Syntax

Following is the basic syntax of using NULL while creating a table.

SQLite > CREATE TABLE COMPANY
ID INT PRIMARY KEY NOT NULL ,
NAME TEXT NOT NULL ,
AGE INT NOT NULL ,
ADDRESS CHAR (50),
SALARY REAL

);

Here, NOT NULL signifies that the column should always accept an explicit value of the
given data type. There are two columns where we did not use NOT NULL which means
these columns could be NULL.

A field with a NULL value is one that has been left blank during record creation.

Example

The NULL value can cause problems when selecting data, because when comparing an
unknown value to any other value, the result is always unknown and not included in the
final results. Consider the following table, COMPANY with the following records:

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

94

A tutorialspoint

SIMPLYEASYLEARNINI G

https://www.tutorialspoint.com/sqlite/company.sql

Let us use UPDATE statement to set a few nullable values as NULL as follows:

SQLite

sglite > UPDATE COMPANY SET ADDRESSULL SALARY= NULLwhere ID IN (6, 7);

Now, COMPANY table will have the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22

7 James 24

Next, let us see the usage of IS NOT NULL operator to list down all the records where

SALARY is not NULL.

sglite > SELECT ID, NAME AGE ADDRESSSALARY
FROM COMPANY
WHERE SALARY IS NOT NULL

The above SQLite statement will produce the following result.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Following is the usage of IS NULL operator, which will list down all the records where

SALARY is NULL.

sglite > SELECT ID, NAME AGE ADDRESSSALARY
FROM COMPANY
WHERE SALARY IS NUL.L

-

A tutorialspoint

SIMPLYEASYLEARNINI G

95

SQLite

The above SQLite statement will produce the following result.

ID NAME AGE ADDRESS SALARY
6 Kim 22
7 James 24

96

-

A tutorialspoint

SIMPLYEASYLEARNINI G

31. SQLite ALIAS Syntax

You can rename a table or a column temporarily by giving another name, which is known
as ALIAS . The use of table aliases means to rename a table in a particular SQLite
statement. Renaming is a temporary change and the actual table name does not change
in the database.

The column aliases are used to rename a table's columns for the purpose of a particular
SQLite query.

Syntax

Following is the basic syntax of table alias.

SELECT columnl column2....
FROM table_name AS alias_name

WHERE condition];

Following is the basic syntax of column alias.

SELECT column_name AS alias_name
FROM table_name
WHERE condition |;

Example
Consider the following two tables, (a) COMPANY table is as follows:

sqlite > select * from COMPANY

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

97

A tutorialspoint

SIMPLYEASYLEARNINI G

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

(b) Another table is DEPARTMENT as follows:

ID DEPT EMP_ID

IT Billing
Engineering

Finance

Finance

1 1
2 2
3 7
4 Engineering 3
5 4
6 Engineering 5
7 6

Finance

Now, following is the usage of TABLE ALIAS where we use C and D as aliases for
COMPANY and DEPARTMENT tables respectively:

sglite > SELECT CID, C NAME C AGE D.DEPT
FROM COMPANY AS EPARTMENT AS D
WHERE CID = D EMP_ID

The above SQLite statement will produce the following result.

ID NAME AGE DEPT

1 Paul 32 IT Billing
2 Allen 25 Engineerin
3 Teddy 23 Engineerin
4 Mark 25 Finance

5 David 27 Engineerin
6 Kim 22 Fina nce

7 James 24 Finance

Consider an example for the usage of COLUMN ALIAS where COMPANY_ID is an alias of
ID column and COMPANY_NAME is an alias of name column.

sglite > SELECT CID AS COMPANY_IP C. NAME AS COMPANY_NAMEAGE D. DEPT
FROM COMPANY AS EPARTMENT AS D
WHERE CID = D EMP_ID

98

-

A tutorialspoint

SIMPLYEASYLEARNINI G

https://www.tutorialspoint.com/sqlite/department.sql

The above SQLite statement will produce the following result.

SQLite

COMPANY_ID COMPANY_NAME AGE DEPT

1 Paul 32 IT Billing

2 Allen 25 Engineerin

3 Teddy 23 Engineerin

4 Mark 25 Finance

5 David 27 Engineerin

6 Kim 22 Finance

7 James 24 Finance

99
A tutorialspoint

32. SQLite Triggers

SQLite Triggers are database callback functions, which are automatically
performed/invoked when a specified database event occurs. Following are the important
points about SQLite triggers:

1 SQLite trigger may be specified to fire whenever a DELETE, INSERT or UPDATE of
a particular database table occurs or whenever an UPDATE occurs on one or more
specified columns of a table.

1 At this time, SQLite supports only FOR EACH ROW triggers, not FOR EACH
STATEMENT triggers. Hence, explicitly specifying FOR EACH ROW is optional.

1 Both the WHEN clause and the trigger actions may access elements of the row
being inserted, deleted, or updated using references of the form NEW.column -
name and OLD.column -name , where column-name is the name of a column from
the table that the trigger is associated with.

1 If a WHEN clause is supplied, the SQL statements specified are only executed for
rows for which the WHEN clause is true. If no WHEN clause is supplied, the SQL
statements are executed for all rows.

1 The BEFORE or AFTER keyword determines when the trigger actions will be
executed relative to the insertion, modification, or removal of the associated row.

1 Triggers are automatically dropped when the table that they are associated with is
dropped.

1 The table to be modified must exist in the same database as the table or view to
which the trigger is attached and one must use
just tablename not database.tablename

1 A special SQL function RAISE() may be used within a trigger-program to raise an
exception.

Syntax

Following is the basic syntax of creating a trigger

CREATE TRIGGER trigger_name [BEFOREAFTER event_name
ONtable_name

BEGIN

-- Trigger logic goes here

END

100

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Here, event_name could be INSERT, DELETE, and UPDATE database operation on the
mentioned table table_ name . You can optionally specify FOR EACH ROW after table
name.

Following is the syntax for creating a trigger on an UPDATE operation on one or more
specified columns of a table.

CREATE TRIGGER trigger_name [BEFOREAFTER UPDATE OF column_name
ON table_name

BEGIN

-- Trigger logic goes here

END

Example

Let us consider a case where we want to keep audit trial for every record being inserted
in COMPANY table, which we create newly as follows (Drop COMPANY table if you already
have it).

sglite > CREATE TABLE COMPANY
ID INT PRIMARY KEY NOT NULL ,
NAME TEXT N OT NULL
AGE INT NOT NULL ,
ADDRESS CHAR (50),
SALARY REAL

):

To keep audit trial, we will create a new table called AUDIT where the log messages will
be inserted, whenever there is an entry in COMPANY table for a new record.

sglite > CREATE TABLE AUDI(T
EMP_ID INT NOT NULL,
ENTRY_DATE TEXT NOT NULL

);

Here, ID is the AUDIT record ID, and EMP_ID is the ID which will come from COMPANY
table and DATE will keep timestamp when the record will be created in COMPANY table.
Now let's create a trigger on COMPANY table as follows:

sglite > CREATE TRIGGER audit_log AFTER INSERT
ON COMPANY
BEGIN
INSERT INTO AUDITEMP_ID ENTRY_DAJEVALUES(new ID, datetime (‘now'));
END

101

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Now, we will start actual work. Let's start inserting record in COMPANY table which should
result in creating an audit log record in AUDIT table. Create one record in COMPANY table
as follows:

sqglite > INSERT INTO COMPANYID, NAMEAGEADDRESSALARY
VALUES(1, 'Paul' , 32, 'California’ , 20000.00);

This will create one record in COMPANY table, which is as follows:

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0

Same time, one record will be created in AUDIT table. This record is the result of a trigger,
which we have created on INSERT operation in COMPANY table. Similarly, you can create
your triggers on UPDATE and DELETE operations based on your requirements.

EMP_ID ENTRY_DATE

1 2013- 04- 05 06: 26: 00

Li strninggé€r s

You can list down all the triggers from sqlite_master table as follows:

sglite > SELECT name FROM sqlite_master
WHERE type = 'trigger’ ;

The above SQLite statement will list down only one entry as follows:

audit_log

If you want to list down triggers on a particular table, then use AND clause with table
name as follows:

sglite > SELECT name FROM sqlite_master
WHERE type = 'trigger' AND tbl_name = 'COMPANY/

The above SQLite statement will also list down only one entry as follows:

audit_log

102

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Droppiinggédr s

Following is the DROP command, which can be used to drop an existing trigger.

sglite > DROP TRIGGER trigger_name;

103

-

A tutorialspoint

SIMPLYEASYLEARNINI G

33. SQLite Indexes

Indexes are special lookup tables that the database search engine can use to speed up
data retrieval. Simply put, an index is a pointer to data in a table. An index in a database
is very similar to an index in the back of a book.

For example, if you want to reference all pages in a book that discuss a certain topic, you
first refer to the index, which lists all topics alphabetically and are then referred to one or
more specific page numbers.

An index helps speed up SELECT queries and WHERE clauses, but it slows down data input,
with UPDATE and INSERT statements. Indexes can be created or dropped with no effect
on the data.

Creating an index involves the CREATE INDEX statement, which allows you to name the
index, to specify the table and which column or columns to index, and to indicate whether
the index is in an ascending or descending order.

Indexes can also be unique, similar to the UNIQUE constraint, in that the index prevents
duplicate entries in the column or combination of columns on which there's an index.

The CREATE | NDEX Command

Following is the basic syntax of CREATE INDEX

CREATE INDEX index_name ONtable_name ;

Single -Column Indexes

A single-column index is one that is created based on only one table column. The basic
syntax is as follows:

CREATE INDEX index_name

ON table_name (column_name);

Unique Indexes

Unique indexes are used not only for performance, but also for data integrity. A unique
index does not allow any duplicate values to be inserted into the table. The basic syntax
is as follows:

CREATE UNIQUE INDEX index_name

on table_name (column_name);

104

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Composite Indexes

A composite index is an index on two or more columns of a table. The basic syntax is as
follows:

CREATE INDEX index_name

on table_ name (columnl, column2);

Whether to create a single-column index or a composite index, take into consideration the
column(s) that you may use very frequently in a query's WHERE clause as filter conditions.

Should there be only one column used, a single-column index should be the choice. Should
there be two or more columns that are frequently used in the WHERE clause as filters, the
composite index would be the best choice.

Implicit Indexes

Implicit indexes are indexes that are automatically created by the database server when
an object is created. Indexes are automatically created for primary key constraints and
unique constraints.

Example

Following is an example where we will create an index in COMPANY table for salary column:

sglite > CREATE INDEX salary_index ON COMPANY ((salary);

Now, let's list down all the indices available in COMPANY table using .indices command
as follows:

sqlite > . indices COMPANY

This will produce the following result, where sglite_autoindex COMPANY_1 is an implicit
index which got created when the table itself was created.

salary_index

sglite_autoindex COMPANY_1

You can list down all the indexes database wide as follows:

sglite > SELECT* FROM sqglite_master WHERE type = 'index' ;

105

-

A tutorialspoint

SIMPLYEASYLEARNINI G

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

The DROP | NDEX Command

An index can be dropped using SQLite DROP command. Care should be taken when
dropping an index because performance may be slowed or improved.

The basic syntax is as follows:

DROP INDEX index_name

You can use the following statement to delete a previously created index.

sglite > DROP INDEX salary_index ;

When Should Indexes Be Avoided?

Although indexes are intended to enhance the performance of a database, there are times
when they should be avoided. The following guidelines indicate when the use of an index
should be reconsidered.

Indexes should not be used in -

1 Small tables.
1 Tables that have frequent, large batch update or insert operations.
1 Columns that contain a high number of NULL values.

1 Columns that are frequently manipulated.

106

A tutorialspoint

SIMPLYEASYLEARNINI G

34. SQLitec INDEXED B3lause

The "INDEXED BY index-name" clause specifies that the named index must be used in
order to look up values on the preceding table.

If index-name does not exist or cannot be used for the query, then the preparation of the
SQLite statement fails.

The "NOT INDEXED" clause specifies that no index shall be used when accessing the
preceding table, including implied indices created by UNIQUE and PRIMARY KEY
constraints.

However, the INTEGER PRIMARY KEY can still be used to look up entries even when "NOT
INDEXED" is specified.

Syntax

Following is the syntax for INDEXED BY clause and it can be used with DELETE, UPDATE
or SELECT statement.

SELECTDELETEUPDATE columnl column2...
INDEXED BY/(index_name)
table_name

WHERE CONDITION

Example

Consider table COMPANY. We will create an index and use it for performing INDEXED BY
operation.

sglite > CREATE INDEX salary_index ON COMPANYsalary);

sglite >

Now selecting the data from table COMPANY you can use INDEXED BY clause as follows:

sglite > SELECT* FROM COMPANY INDEXED BY salary_index WHERE salary> 5000;

This will produce the following result.

ID NAME AGE ADDRESS SALARY
7 James 24 Houston 10000.0
2 Allen 25 Texas 15000.0
1 Paul 32 California 20000.0
3 Teddy 23 Norway 20000.0
6 Kim 22 South-Hall 45000.0

107

A tutorialspoint

SIMPLYEASYLEARNINI G

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

Mark 25 Rich-Mond 65000.0
David 27 Texas 85000.0

108

-

A tutorialspoint

SIMPLYEASYLEARNINI G

35.SQLite ALTER TABLE Command

SQLite ALTER TABLE command modifies an existing table without performing a full dump
and reload of the data. You can rename a table using ALTER TABLE statement and
additional columns can be added in an existing table using ALTER TABLE statement.

There is no other operation supported by ALTER TABLE command in SQLite except
renaming a table and adding a column in an existing table.

Syntax
Following is the basic syntax of ALTER TABLE to RENAME an existing table.

ALTER TABLE database_name table_name RENAME TO new_table_name;

Following is the basic syntax of ALTER TABLE to add a new column in an existing table.

ALTER TABLE database_name table_name ADD COLUMN column_def...;

Example
Consider the COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Now, let's try to rename this table using ALTER TABLE statement as follows:

sglite > ALTER TABLE COMPANY RENAME TO OLD_COMPANY

The above SQLite statement will rename COMPANY table to OLD_COMPANY. Now, let's try
to add a new column in OLD_COMPANY table as follows:

sglite > ALTER TABLE OLD_COMPANY ADD COLUMNCcSE&X(1);

109

A tutorialspoint

SIMPLYEASYLEARNINI G

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

COMPANY table is now changed and following will be the output from SELECT statement.

ID NAME AGE ADDRESS SALARY SEX

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

It should be noted that newly added column is filled with NULL values.

110

-

A tutorialspoint

SIMPLYEASYLEARNINI G

36. SQLite TRUNCATE TABLE Command

Unfortunately, we do not have TRUNCATE TABLE command in SQLite but you can use
SQLite DELETE command to delete complete data from an existing table, though it is
recommended to use DROP TABLE command to drop the complete table and re-create it
once again.

Syntax

Following is the basic syntax of DELETE command.

sqlite > DELETE FROM table_name

Following is the basic syntax of DROP TABLE.

sqlite > DROP TABLE table_name

If you are using DELETE TABLE command to delete all the records, it is recommended to
use VACUUM command to clear unused space.

Example

Consider COMPANY table with the following records.
ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is the example to truncate the above table:

SQLite > DELETE FROM COMPANY
SQLite > VACUUM

Now, COMPANY table is truncated completely and nothing will be the output from SELECT
statement.

111

A tutorialspoint

SIMPLYEASYLEARNINI G

https://www.tutorialspoint.com/sqlite/company.sql

37.SQLite Views

A view is nothing more than a SQLite statement that is stored in the database with an
associated name. It is actually a composition of a table in the form of a predefined SQLite

query.

A view can contain all rows of a table or selected rows from one or more tables. A view
can be created from one or many tables which depends on the written SQLite query to
create a view.

Views which are kind of virtual tables, allow the users to -

1 Structure data in a way that users or classes of users find natural or intuitive.

1 Restrict access to the data such that a user can only see limited data instead of a
complete table.

1 Summarize data from various tables, which can be used to generate reports.

SQLite views are read-only and thus you may not be able to execute a DELETE, INSERT,
or UPDATE statement on a view. However, you can create a trigger on a view that fires on
an attempt to DELETE, INSERT, or UPDATE a view and do what you need in the body of
the trigger.

Creating Views

SQLite views are created using the CREATE VIEW statement. SQLIte views can be
created from a single table, multiple tables, or another view.

Following is the basic CREATE VIEW syntax.

CREATH TEMP| TEMPORARWIEW view_name AS
SELECT columnl column2.....

FROM table_name

WHERE condition T;

You can include multiple tables in your SELECT statement in a similar way as you use them
in @ normal SQL SELECT query. If the optional TEMP or TEMPORARY keyword is present,
the view will be created in the temp database.

Example
Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0

112

A tutorialspoint

SIMPLYEASYLEARNINI G

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Following is an example to create a view from COMPANY table. This view will be used to
have only a few columns from COMPANY table.

sglite > CREATE VIEW COMPANY_VIEW AS
SELECT ID, NAME AGE
FROM COMPANY

You can now query COMPANY_VIEW in a similar way as you query an actual table.
Following is an example:

sglite > SELECT* FROM COMPANY_VIEW

This will produce the following result.

ID NAME AGE

1 Paul 32
2 Allen 25
3 Teddy 23
4 Mark 25
5 David 27
6 Kim 22
7 James 24

Dropping Views

To drop a view, simply use the DROP VIEW statement with the view_name . The basic
DROP VIEW syntax is as follows:

sglite > DROP VIEW view_namg

The following command will delete COMPANY_VIEW view, which we created in the last
section.

sglite > DROP VIEW COMPANY_VIEW

113

-

A tutorialspoint

SIMPLYEASYLEARNINI G

38. SQLite Transactions

A transaction is a unit of work that is performed against a database. Transactions are units
or sequences of work accomplished in a logical order, whether in a manual fashion by a
user or automatically by some sort of a database program.

A transaction is the propagation of one or more changes to the database. For example, if
you are creating, updating, or deleting a record from the table, then you are performing
transaction on the table. It is important to control transactions to ensure data integrity
and to handle database errors.

Practically, you will club many SQLite queries into a group and you will execute all of them
together as part of a transaction.

Properties of Transactions

Transactions have the following four standard properties, usually referred to by the
acronym ACID.

1 Atomicity : Ensures that all operations within the work unit are completed
successfully; otherwise, the transaction is aborted at the point of failure and
previous operations are rolled back to their former state.

1 Consistency : Ensures that the database properly changes state upon a
successfully committed transaction.

1 Isolation : Enables transactions to operate independently of and transparent to
each other.

1 Durability : Ensures that the result or effect of a committed transaction persists in
case of a system failure.

Transaction Control

Following are the commands used to control transactions:
1 BEGIN TRANSACTION : To start a transaction.

T COMMIT : To save the <changes, alternatively you can use END
TRANSACTION command.

1 ROLLBACK : To roll back the changes.

Transactional control commands are only used with DML commands INSERT, UPDATE, and
DELETE. They cannot be used while creating tables or dropping them because these
operations are automatically committed in the database.

114

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

BEGIN TRANSACTION Command

Transactions can be started using BEGIN TRANSACTION or simply BEGIN command. Such
transactions usually persist until the next COMMIT or ROLLBACK command is encountered.
However, a transaction will also ROLLBACK if the database is closed or if an error occurs.
Following is the simple syntax to start a transaction.

BEGIN

or

BEGIN TRANSACTION

COMMIT Command

COMMIT command is the transactional command used to save changes invoked by a
transaction to the database.

COMMIT command saves all transactions to the database since the last COMMIT or
ROLLBACK command.

Following is the syntax for COMMIT command.

COMMIT

or

ENDTRANSACTION

ROLLBACK Command

ROLLBACK command is the transactional command used to undo transactions that have
not already been saved to the database.

ROLLBACK command can only be used to undo transactions since the last COMMIT or
ROLLBACK command was issued.

Following is the syntax for ROLLBACK command.

ROLLBACK
Example
Consider COMPANY table with the following records.
ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0

115

-

A tutorialspoint

SIMPLYEASYLEARNINI G

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Now, let's start a transaction and delete records from the table having age = 25. Then,
use ROLLBACK command to undo all the changes.

sqlite > BEGIN
sqglite > DELETE FROM COMPANY WHERE AQGE;
sglite > ROLLBACK

Now, if you check COMPANY table, it still has the following records:

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Let's start another transaction and delete records from the table having age = 25 and
finally we use COMMIT command to commit all the changes.

sqlite > BEGIN
sqlite > DELETE FROM COMPANY WHERE-AQGE;
sqlite > COMMIT

If you now check COMPANY table still has the following records:

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
3 Teddy 23 Norway 20000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

116

-

A tutorialspoint

SIMPLYEASYLEARNINI G

39. SQLite Sulpueries

A Subquery or Inner query or Nested query is a query within another SQLite query and
embedded within the WHERE clause.

A subquery is used to return data that will be used in the main query as a condition to
further restrict the data to be retrieved.

Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements along
with the operators such as =, <, >, >=, <=, IN, BETWEEN, etc.

There are a few rules that subqueries must follow:

1 Subqueries must be enclosed within parentheses.

1 A subquery can have only one column in the SELECT clause, unless multiple
columns are in the main query for the subquery to compare its selected columns.

1 An ORDER BY cannot be used in a subquery, although the main query can use an
ORDER BY. The GROUP BY can be used to perform the same function as the ORDER
BY in a subquery.

1 Subqueries that return more than one row can only be used with multiple value
operators, such as the IN operator.

1 BETWEEN operator cannot be used with a subquery; however, BETWEEN can be
used within the subquery.

Subquer iSEd BEVCiITt 5t at ement

Subqueries are most frequently used with the SELECT statement. The basic syntax is as
follows:

SELECT column_name[, column_name]

FROM tablel [, table2]

WHERE column_nane OPERATOR
(SELECT column_name[, column_name]
FROM tablel [, table2]
[WHERE

117

A tutorialspoint

SIMPLYEASYLEARNINI G

Example
Consider COMPANY table with the following records.

SQLite

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Now, let us check the following sub-query with SELECT statement.

sglite > SELECT*
FROM COMPANY
WHERE ID IN (SELECT ID
FROM COMPANY
WHERE SALARY 45000) ;

This will produce the following result.

ID NAME AGE ADDRESS SALARY
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0

Subguer ildNSSERITahe ment

Subqueries can also be used with INSERT statements. The INSERT statement uses the
data returned from the subquery to insert into another table. The selected data in the

subquery can be modified with any of the character, date, or number functions.

The basic syntax is as follows:

INSERT INTO table_name [(columnl [, column2])]
SELECT[*| columnl [, column2]
FROM tablel [, table2]
[WHERE VALUE OPERATPR

-

A tutorialspoint

SIMPLYEASYLEARNINI G

118

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

Example

Consider a table COMPANY_BKP with similar structure as COMPANY table and can be
created using the same CREATE TABLE using COMPANY_BKP as the table name. To copy
the complete COMPANY table into COMPANY_BKP, following is the syntax:

sglite > INSERT INTO COMPANY_BKP
SELECT* FROM COMPANY
WHERE ID IN (SELECT ID
FROM COMPANY

Subquer iUPDAWIEL ISt at ement

The subquery can be used in conjunction with the UPDATE statement. Either single or
multiple columns in a table can be updated when using a subquery with the UPDATE
statement.

The basic syntax is as follows:

UPDATE table

SET column_name = new_value

[WHERE OPERATQRVALUE]
(SELECT COLUMN_NAME
FROM TABLE_NAME
[WHERE]

Example
Assuming, we have COMPANY_BKP table available which is a backup of COMPANY table.

Following example updates SALARY by 0.50 times in COMPANY table for all the customers,
whose AGE is greater than or equal to 27.

sglite > UPDATE COMPANY
SET SALARY= SAIARY* 0.50
WHERE AGE IN SELECT AGE FROM COMPANY_BKP
WHERE AGB= 27);

This would impact two rows and finally COMPANY table would have the following records:

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 10000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0

119

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

5 David 27 Texas 42500.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Subquer iDEd EWIEt IS5t at ement

Subquery can be used in conjunction with the DELETE statement like with any other
statements mentioned above.

The basic syntax is as follows:

DELETE FROM TABLE_NAME
[WHERE OPERATQRVALUE]
(SELECT COLUMN_NAME
FROM TABLE_NAME
[WHERE]

Example
Assuming, we have COMPANY_BKP table available which is a backup of COMPANY table.

Following example deletes records from COMPANY table for all the customers whose AGE
is greater than or equal to 27.

sglite > DELETE FROM COMPANY
WHERE AGE IN SELECTAGE FROM COMPANY_BKP
WHERE AGE 27);

This will impact two rows and finally COMPANY table will have the following records.

ID NAME AGE ADDRESS SALARY

2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 42500.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

120

A tutorialspoint

SIMPLYEASYLEARNINI G

40. SQLite AUTONCREMENT

SQLite AUTOINCREMENT is a keyword used for auto incrementing a value of a field in
the table. We can auto increment a field value by using AUTOINCREMENT keyword when
creating a table with specific column name to auto increment it.

The keyword AUTOINCREMENT can be used with INTEGER field only.

Syntax
The basic usage of AUTOINCREMENT keyword is as follows:

CREATE TABLE table_namé
columnl INTEGER AUTOINCREMENT
column2 datatype ,
column3 datatype ,

columnN datatype ,

Example
Consider COMPANY table to be created as follows:

sglite > CREATE TABLE COMPANY
ID INTEGER PRIMARY KEY AUTOINCREMENT
NAME TEXT NOT NULL ,
AGE INT NOT NULL ,
ADDRESS CHAR (50),
SALARY REAL

):

Now, insert the following records into table COMPANY:

INSERT INTO COMPANYNAMEAGE ADDRESSALARY
VALUES('Paul' , 32, 'California’ , 20000.00);

INSERT INTO COMPANYNAMEAGE ADDRESSALARY
VALUES('Allen' , 25, 'Texas' , 15000.00);

INSERT INTO COMPANYNAMEAGEADDRESSALARY

121

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

VALUES('Teddy' , 23, 'Norway' , 20000.00);

INSERT INTO COMPANYNAMEAGE ADDRESSALARY
VALUES('Mark' , 25, 'Rich -Mond', 65000.00);

INSERT INTO COMPANYNAMEAGE ADDRESSALARY

VALUES('David'" , 27, 'Texas' , 85000.00);

INSERT INTO COMPANYNAMEAGE ADDRESSALARY

VALUES('Kim' , 22, 'South -Hall' , 45000.00);

INSERT INTO COMPANYNAMEAGEADDRESSALARY
VALUES('James' , 24, 'Houston' , 10000.00);

This will insert 7 tuples into the table COMPANY and COMPANY will have the following
records:

ID NAME AGE ADDRESS SALARY
1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

122

-

A tutorialspoint

SIMPLYEASYLEARNINI G

41. SQLite Injection

If you take user input through a webpage and insert it into a SQLite database there's a
chance that you have left yourself wide open for a security issue known as SQL Injection.
In this chapter, you will learn how to help prevent this from happening and help you secure
your scripts and SQLite statements.

Injection usually occurs when you ask a user for input, like their name, and instead of a
name they give you a SQLite statement that you will unknowingly run on your database.

Never trust user provided data, process this data only after validation; as a rule, this is
done by pattern matching. In the following example, the username is restricted to
alphanumerical chars plus underscore and to a length between 8 and 20 chars - modify
these rules as needed.

if (preg_match ("/* \w{8,20}$/* , $_GET'username'], $matches))

$db = new SQLiteDatabase ('filename');

$result = @$db>query ("SELECT * FROM users WHERE username=$matches[0]");
}else {

echo "username not accepted"

}

To demonstrate the problem, consider this excerpt:

$name = "Qadir'; DELETE FROM users;"
@$db>query ("SELECT * FROM users WHERE username='{$name}");

The function call is supposed to retrieve a record from the users table where the name
column matches the name specified by the user. Under normal
circumstances, $name would only contain alphanumeric characters and perhaps spaces,
such as the string ilia. However in this case, by appending an entirely new query to $name,
the call to the database turns into a disaster: the injected DELETE query removes all
records from users.

There are databases interfaces which do not permit query stacking or executing multiple
queries in a single function call. If you try to stack queries, the call fails but SQLite and
PostgreSQL, happily perform stacked queries, executing all of the queries provided in one
string and creating a serious security problem.

Preventing SQL I njection
You can handle all escape characters smartly in scripting languages like PERL and PHP.
Programming language PHP provides the function string sqlite_escape_string() to

escape input characters that are special to SQLite.

123

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

if (get_magic_quotes_gpc ())
{
$name = sqlite_escape_string ($name;
}
$result = @$db>query ("SELECT * FROM users WHEREusername='{$name}");

Although the encoding makes it safe to insert the data, it will render simple text

comparisons and LIKE clauses in your queries unusable for the columns that contain the
binary data.

Note : addslashes() should NOT be used to quote your strings for SQLite queries; it will
lead to strange results when retrieving your data.

124

-

A tutorialspoint

SIMPLYEASYLEARNINI G

42. SQLite EXPLAIN

SQLite statement can be preceded by the keyword "EXPLAIN" or by the phrase "EXPLAIN

QUERY PLAN" used for describing the details of a table.

Either modification causes the SQLite statement to behave as a query and to return
information about how the SQLite statement would have operated if the EXPLAIN keyword

or phrase had been omitted.

1 The output from EXPLAIN and EXPLAIN QUERY PLAN is intended for interactive

analysis and troubleshooting only.

1 The details of the output format are subject to change from one release of SQLite

to the next.

1 Applications should not use EXPLAIN or EXPLAIN QUERY PLAN since their exact

behavior is variable and only partially documented.

Syntax
Syntax for EXPLAIN is as follows:

EXPLAIN[SQLite Query]

Syntax for EXPLAIN QUERY PLAN is as follows:

EXPLAIN QUERY PLAN SQLite Query]

Example
Consider COMPANY table with the following records:

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

Now, let us check the following sub-query with SELECT statement:

sglite > EXPLAIN SELECT* FROM COMPANY WHE®&ary >= 20000;

A tutorialspoint

SIMPLYEASYLEARNINI G

125

https://www.tutorialspoint.com/sqlite/company.sql

This will produce the following result:

SQLite

addr opcode pl p2 p3

0 Goto 0 19
1 Integer 0 0
2 OpenRead O 8
3 SetNumColu 0 5
4 Rewind 0 17
5 Column 0 4
6 RealAffini 0 0
7 Integer 20000 0
8 Lt 357 16 collseq (BI
9 Rowid 0 0
10 Column 0 1
11 Column 0 2
12 Column 0 3
13 Column 0 4
14 RealAffini 0 0
15 Callback 5 0
16 Next 0 5
17 Close 0 0
18 Halt 0 0
19 Transactio 0 0
20 VerifyCook 0 38
21 Goto 0 1
22 Noop 0 0

Now, let us check the following Explain Query Plan with SELECT statement:

SQLite > EXPLAIN QUERY PLAN SELECT FROM COMPANY WHEREry >= 20000;

order from detail

0 0 TABLE COMPANY

-

A tutorialspoint

SIMPLYEASYLEARNINI G

126

43. SQLite VACUUM

VACUUM command cleans the main database by copying its contents to a temporary
database file and reloading the original database file from the copy. This eliminates free
pages, aligns table data to be contiguous, and otherwise cleans up the database file
structure.

VACUUM command may change the ROWID of entries in tables that do not have an explicit
INTEGER PRIMARY KEY. The VACUUM command only works on the main database. It is
not possible to VACUUM an attached database file.

VACUUM command will fail if there is an active transaction. VACUUM command is a no-op
for in-memory databases. As the VACUUM command rebuilds the database file from
scratch, VACUUM can also be used to modify many database-specific configuration
parameters.

Manual VACUUM

Following is a simple syntax to issue a VACUUM command for the whole database from
command prompt:

$sqlite3 database_name "VACUUM;"

You can run VACUUM from SQLite prompt as well as follows:

sglite > VACUUM

You can also run VACUUM on a particular table as follows:

sqlite > VACUUM table_name

AutvlACCUM

SQLite Auto-VACUUM does not do the same as VACUUM rather it only moves free pages
to the end of the database thereby reducing the database size. By doing so it can
significantly fragment the database while VACUUM ensures defragmentation. Hence, Auto-
VACUUM just keeps the database small.

127

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

You can enable/disable SQLite auto-vacuuming by the following pragmas running at SQLite
prompt:

sglite > PRAGMA auto_vacuunm= NONE -- 0 means disable auto vacuum
sglite > PRAGMA auto_vacuum= FULL -- 1 mans enable full auto vacuum

sglite > PRAGMA auto_vacuun= INCREMENTAL -- 2 means enable incremental vacuum

You can run the following command from the command prompt to check the auto-vacuum
setting:

$sqlite3 database_name "PRAGMA auto_vacuum;"

128

A tutorialspoint

SIMPLYEASYLEARNINI G

44. SQLite Date & Time

SQLite supports five date and time functions as follows:

Sr. :
No. Function Example
date(timestring, . . .)
1 o This returns the date in this format: YYYY-MM-DD
modifiers...)
2 tlme_(t_lmestrlng, This returns the time as HH:MM:SS
modifiers...)
3 | datetime(timestring, | 11 Lotirns YYYY-MM-DD HH:MM:SS
modifiers...)
4 julianday(timestring, | This returns the number of days since noon in Greenwich
modifiers...) on November 24, 4714 B.C.
. . . This returns the date formatted according to the format
strftime(timestring, : .)
5 . string specified as the first argument formatted as per
modifiers...) .
formatters explained below.

All the above five date and time functions take a time string as an argument. The time
string is followed by zero or more modifiers. The strftime() function also takes a format
string as its first argument. Following section will give you detail on different types of time
strings and modifiers.

Ti me Strings

A time string can be in any of the following formats:

NS (r).. Time String Example
1 YYYY-MM-DD 2010-12-30
2 YYYY-MM-DD HH:MM 2010-12-30 12:10
3 YYYY-MM-DD HH:MM:SS.SSS 2010-12-30 12:10:04.100
4 MM-DD-YYYY HH:MM 30-12-2010 12:10
5 HH:MM 12:10
6 YYYY-MM-DDTHH:MM 2010-12-30 12:10

129

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

7 HH:MM:SS 12:10:01
8 YYYYMMDD HHMMSS 20101230 121001
9 now 2013-05-07

You can use the "T" as a literal character separating the date and the time.

Modi fiers

The time string can be followed by zero or more modifiers that will alter date and/or time
returned by any of the above five functions. Modifiers are applied from the left to right.

Following modifiers are available in SQLite:

]

NNN days
NNN hours
NNN minutes
NNN.NNNN seconds
NNN months
NNN years
start of month
start of year
start of day
weekday N
unixepoch

localtime

=A =4 =4 =4 -4 -4 4 A -4 -4 -4 -

utc

Formatters

SQLite provides a very handy function strftime() to format any date and time. You can
use the following substitutions to format your date and time.

Substitution Description
%d Day of month, 01-31
%f Fractional seconds, SS.SSS
%H Hour, 00-23

130

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

%j Day of year, 001-366

%J Julian day number, DDDD.DDDD
%m Month, 00-12

%M Minute, 00-59

%s Seconds since 1970-01-01

%S Seconds, 00-59

%W Day of week, 0-6 (0 is Sunday)
%W Week of year, 01-53

%Y Year, YYYY

%% % symbol

Examples

Let's try various examples now using SQLite prompt. Following command computes the
current date.

sqlite > SELECT date('now");
2013- 05- 07

Following command computes the last day of the current month.

sqlite > SELECT date('now' , 'start of month' ,'+1 month' ,'-1day');
2013- 05- 31

Following command computes the date and time for a given UNIX timestamp 1092941466.

sqlite > SELECT datetime (1092941466, ‘'unixepoch');
2004- 08-19 18:51: 06

Following command computes the date and time for a given UNIX timestamp 1092941466
and compensates for your local timezone.

sglite > SELECT datetime (1092941466, 'unixepoch' , ‘localtime');
2004- 08-19 13:51: 06

Following command computes the current UNIX timestamp.

sglite > SELECT strftime ('%s' , 'now');
1393348134

131

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Following command computes the number of days since the signing of the US Declaration
of Independence.

sglite > SELECT julianday ('now') - julianday ('1776 -07-04");
86798.7094695023

Following command computes the number of seconds since a particular moment in 2004.

sglite > SELECT strftime ('%s' , 'now') - strftime ('%s','2004 - 01- 01 02:34:56');
295001572

Following command computes the date of the first Tuesday in October for the current year.

sqlite > SELECT date('now' , 'start of year' , '+9 months' |, 'weekday 2');
2013-10-01

Following command computes the time since the UNIX epoch in seconds (like strftime
('%s','now") except includes fractional part).

sqlite > SELECT(julianday ('now') - 2440587.5)* 86400.0 ;
1367926077.12598

To convert between UTC and local time values when formatting a date, use the utc or
localtime modifiers as follows:

sglite > SELECTtime('12:00' , ‘localtime’);
05: 00: 00

sqlite > SELECT time ('12:00' , ‘'utc');
19: 00: 00

132

-

A tutorialspoint

SIMPLYEASYLEARNINI G

45. SQLite Useful Functions

SQLite has many built-in functions to perform processing on string or numeric data.
Following is the list of few useful SQLite built-in functions and all are case in-sensitive
which means you can use these functions either in lower-case form or in upper-case or in
mixed form. For more details, you can check official documentation for SQLite.

Sr.

No. Function & Description

SQLite COUNT Function

The SQLite COUNT aggregate function is used to count the number of rows in a
database table.

SQLite MAX Function

The SQLite MAX aggregate function allows us to select the highest (maximum)
value for a certain column.

SQLite MIN Function

The SQLite MIN aggregate function allows us to select the lowest (minimum)
value for a certain column.

SQLite AVG Function

The SQLite AVG aggregate function selects the average value for certain table
column.

SQLite SUM Function

The SQLite SUM aggregate function allows selecting the total for a numeric
column.

SQLite RANDOM Function

The SQLite RANDOM function returns a pseudo-random integer between -
9223372036854775808 and +9223372036854775807.

133

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

SQLite ABS Function
7
The SQLite ABS function returns the absolute value of the numeric argument.
SQLite UPPER Function
8
The SQLite UPPER function converts a string into upper-case letters.
SQLite LOWER Function
9
The SQLite LOWER function converts a string into lower-case letters.
SQLite LENGTH Function
10
The SQLite LENGTH function returns the length of a string.
SQLite sqlite_version Function
11
The SQLite sqglite_version function returns the version of the SQLite library.

Before we start giving examples on the above-mentioned functions, consider COMPANY
table with the following records.

ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0

SQLite COUNT Function

SQLite COUNT aggregate function is used to count the number of rows in a database table.
Following is an example:

sglite > SELECT count(*) FROM COMPANY

134

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

The above SQLite SQL statement will produce the following result:

count (*)

SQLIMAX Functi on

SQLite MAX aggregate function allows us to select the highest (maximum) value for a
certain column. Following is an example:

sqlite > SELECT maksalary) FROM COMPANY

The above SQLite SQL statement will produce the following result.

max(salary)

85000.0

SQLite MI N Function

SQLite MIN aggregate function allows us to select the lowest (minimum) value for a certain
column. Following is an example:

sglite > SELECT mir(salary) FROM COMPANY

The above SQLite SQL statement will produce the following result.

min(salary)

10000.0

SQLite AVG Function

SQLite AVG aggregate function selects the average value for a certain table column.
Following is an example:

sqlite > SELECT avd salary) FROM COMPANY

The above SQLite SQL statement will produce the following result.

avg(salary)

37142.8571428572

135

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

SQLIite SUM Functi on

SQLite SUM aggregate function allows selecting the total for a numeric column. Following
is an example:

sqlite > SELECT surfisalary) FROM COMPANY

The above SQLite SQL statement will produce the following result.

sunm(salary)

260000.0

SQLIi te RANDOM Functi on

SQLite RANDOM function returns a pseudo-random integer between -
9223372036854775808 and +9223372036854775807. Following is an example:

sglite > SELECT randonf) AS Random

The above SQLite SQL statement will produce the following result.

5876796417670984050

SQLite ABS Function

SQLite ABS function returns the absolute value of the numeric argument. Following is an
example:

sqlite > SELECT abg5), abs(-15), abs(NULLD, abs(0), abs("ABC");

The above SQLite SQL statement will produce the following result.

abs(5) abs(-15) abs(NULD abs(0) abs("ABC")

5 15 0 0.0

SQLite UPPER Functi on

SQLite UPPER function converts a string into upper-case letters. Following is an example:

sglite > SELECT upperlnamg FROM COMPANY

136

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

The above SQLite SQL statement will produce the following result.

upper (namg
PAUL
ALLEN
TEDDY
MARK
DAVID

KIM

JAMES

SQLIi te LOWER Functi on

SQLite LOWER function converts a string into lower-case letters. Following is an example:

sglite > SELECT lower(namg FROM COMPANY

The above SQLite SQL statement will produce the following result.

lower (name

SQLite LENGTH Functi on

SQLite LENGTH function returns the length of a string. Following is an example:

sqlite > SELECT namge length (name FROM COMPANY

The above SQLite SQL statement will produce the following result.

137

SIMPLYEASYLEARNINI G

A tutorialspoint

SQLite

Teddy 5
Mark 4
David 5
Kim 3
James 5
SQLite sqglite_version Function

SQLite sqglite_version function returns the version of the SQLite library. Following is an
example:

sqlite > SELECT sqlite_version () AS 'SQLite Version' ;

The above SQLite SQL statement will produce the following result.

SQLite Version

138

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

SQLite Interfaces

139

@wwrialsmim

46.SQLite C/C++

In this chapter, you will learn how to use SQLite in C/C++ programs.

Installation

Before you start using SQLite in our C/C++ programs, you need to make sure that you

have SQLite library set up on the machine. You can check SQLite Installation chapter to
understand the installation process.

C/ C++ I nterface API s

Following are important C/C++ SQLite interface routines, which can suffice your
requirement to work with SQLite database from your C/C++ program. If you are looking
for a more sophisticated application, then you can look into SQLite official documentation.

Sr. No. API & Description

sqlite3_open(const char *filename, sqlite3 **ppDb)

This routine opens a connection to an SQLite database file and returns a
database connection object to be used by other SQLite routines.

1 If the filename argumentis NULL or ':memory:’, sqlite3_open() will create an
in-memory database in RAM that lasts only for the duration of the session.

If the filename is not NULL, sqlite3_open() attempts to open the database file

by using its value. If no file by that name exists, sqlite3_open() will open a
new database file by that name.

sqlite3_exec(sqlite3*, const char *sql, sqglite_callback, void *data,
char **errmsg)

This routine provides a quick, easy way to execute SQL commands provided
by sql argument, which can consist of more than one SQL command.

Here, the first argument sqlite3 is an open database object, sqglite_callback is
a callback for which data is the 1st argument and errmsg will be returned to
capture any error raised by the routine.

The sqlite3_exec() routine parses and executes every command given in
the sgl argument until it reaches the end of the string or encounters an error.

140

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

sqlite3_close(sqlite3*)

This routine closes a database connection previously opened by a call to

sqlite3_open(). All prepared statements associated with the connection
3 should be finalized prior to closing the connection.

If any queries remain that have not been finalized, sqlite3_close() will return
SQLITE_BUSY with the error message Unable to close due to unfinalized

statements.

Conntctbat abase

Following C code segment shows how to connect to an existing database. If the database

does not exist, then it will be created and finally a database object will be returned.

#include <stdio.h>

#include <sqlite3.h>

int main(int argc, char* argv(])
{

sqlite3 *db;

char *zErrMsg = O;

int rc;

rc = sqlite3_open ("test.db” , &db);
if (rc {

fprintf (stderr , "Can't open database: %s \n", sqlite3_errmsg (db));

return (0);

}else {

fprintf (stderr , "Opened database successfully \n");
}
sqlite3_close (db);
}

Now, let's compile and run the above program to create our database test.db in the

current directory. You can change your path as per your requirement.

$gcc test . ¢ -1sqlite3
$./ a. out

Opened database successfully

-

A tutorialspoint

SIMPLYEASYLEARNINI G

141

SQLite

If you are going to use C++ source code, then you can compile your code as follows:

$g++ test . ¢ -1sqlite3

Here, we are linking our program with sqlite3 library to provide required functions to C
program. This will create a database file test.db in your directory and you will have the
following result.

-rwxr - xr-Xx. 1 root root 7383 May 8 02: 06 a.out
-rw-r-- r-- . 1 rootroot 323 May 8 02:05 test .c
-rw-r-- r-- . 1 root root 0 May 8 02:06 test .db

Create a Tabl e

Following C code segment will be used to create a table in the previously created database.

#include <stdio.h>
#include <stdlib.h>

#include <sqlite3.h>

static int callback (void *NotUsed, int argc, char **argv, char ** azColNamé{
int i;
for (i=0; i<argc; i++){
printf ("%s =%s\n", azColNamdi], argv[i] ? argv[i] : "NULL");
}
printf ("\n");

return O;

int main(int argc, char* argvl]])

sqlite3 *db;
char *zErrMsg = 0;
int rc;

char *sql;

/* Open database */
rc = sqlite3_open ("test.db" , &db);
if (rc ®
fprintf (stderr , "Can't open database: %s \n", sqlite3_errmsg (db));

142

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

return (0);
}else {

fprintf (stdout , "Opened database successfully \n");

/* Create SQL statement */

sql = "CREATE TABLE COMPANY ("
"ID INT PRIMARY KEY NOT NULL," \
"NAME TEXT NOT NULL," \
"AGE INT NOT NULL," \
"ADDRESS CHAR(50)," \
"SALARY REAL);" ;

/* Execute SQL statement */
rc = sqlite3_exec (db, sql, callback , 0, &ErrMsg);
if (rc != SQLITE_OK){
fprintf (stderr , "SQL error: %s \n", zErrMsg);
sqlite3_free (zErrMsg);
}else {
fprintf (stdout , "Table created successfully \n");
}
sqlite3_close (db);
return O;

}

When the above program is compiled and executed, it will create COMPANY table in your
test.db and the final listing of the file will be as follows:

- TwWXr - Xr -x. 1 root root 9567 May 8 02:31 a.out
-rw-r-- r-- . 1 root root 1207 May 8 02:31 test .c
-rw-r-- r-- . 1 rootroot 3072 May 8 02:31 test .db

| NSERT Operation

Following C code segment shows how you can create records in COMPANY table created
in the above example:

#include <stdio.h>
#include <stdlib.h>

#include <sqlite3.h>

143

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

static int callback (void *NotUsed, int argc, char **argv, char ** azColNamé{

int

int i;

for (i=0; i<argc; i++){

printf ("%s = %s\n", azColNamdi], argv[i] ? argv[i] : "NULL");

}
printf ("\n");

return 0O;

main(int argc, char* argv[])

sqlite3 *db;
char *zErrMsg = O;
int rc;

char *sql;

/* Open database */

rc = sqlite3_open ("test.db” , &db);

if (rc)
fprintf (stderr , "Can't open database: %s \n", sqglite3_errmsg
return (0);

}else {

fprintf (stderr , "Opened database successfully \n");

/* Create SQL statement */

sgl = "INSERT INTO COMPANYID,NAME,AGE,ADDRESS,SALARY) " \
"VALUES (1, 'Paul', 32, 'California’, 20000.00); " \
"INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)\
"VALUES (2, 'Allen’, 25, 'Texas', 15000.00); " \
"INSERT INTO COMPANYID,NAME,AGE,ADDRESS,SALARY)\
"VALUES (3, 'Teddy', 23, 'Norway', 20000.00);" \
"INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)"
"VALUES (4, 'Mark’, 25, 'Rich - Mond *, 65000.00);" ;

/* Execute SQL statement */
rc = sqlite3_exec (db, sql, callback , 0, &ErrMsg);
if (rc 1= SQLITE_OK){

(db));

-

A tutorialspoint

SIMPLYEASYLEARNINI G

144

SQLite

fprintf (stderr , "SQL error: %s \n", zErrMsg);
sqlite3_free (zErrMsg);
}else {
fprintf (stdout , "Records created successfully \n");
}
sqlite3_close (db);

return O;

}

When the above program is compiled and executed, it will create the given records in
COMPANY table and will display the following two lines:

Opened database successfully

Records created successfully

SELECT Operation

Before proceeding with actual example to fetch records, let us look at some detail about
the callback function, which we are using in our examples. This callback provides a way to
obtain results from SELECT statements. It has the following declaration:

type def int (* sqlite3_callback)(

void *, [* Data provided in the 4th argument of sqlite3_exec() */

int , [* The number of columns in row */

char **, /* An array of strings representing fields in the row */

char ** /* An array of strings representing column names */
);

If the above callback is provided in sqlite_exec() routine as the third argument, SQLite will
call this callback function for each record processed in each SELECT statement executed
within the SQL argument.

Following C code segment shows how you can fetch and display records from the COMPANY
table created in the above example.

#include <stdio.h>
#include <stdlib.h>

#include <sqlite3.h>

static int callback (void *data, int argc, char **argv, char **azColNameé{
int i;
fprintf (stderr , "%s:" , (const char*) data);
for (i=0; i<argc; i++){

printf ("%s =%s\n", azColNamdi], argv[i] ? argv[i] : "NULL");

145

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

}
printf ("\n");

return 0O;

int main(int argc, char* argv[])

{
sqlite3 *db;
char *zErrMsg = O;
int rc;
char *sql;
const char* data = "Callback function called" ;
/* Open database */
rc = sqlite3_open ("test.db" , &db);
if (rc)
fprintf (stderr , "Can't open database: %s \n", sqlite3_errmsg
return (0);
}else {
fprintf (stderr , "Opened database successfully \n");
}
/* Create SQL statement */
sql = "SELECT * from COMPANY",
/* Execute SQL statement */
rc = sqlite3_exec (db, sql, callback , (void *) data, &zErrMsg);
if (rc = SQLITE_OK)
fprintf (stderr , "SQL error: %s \n", zErrMsg);
sqlite3_free (zErrMsg);
}else {
fprintf (stdout , "Operation done successfully \n");
}
sqlite3_close (db);
return 0;
}

(db));

When the above program is compiled and executed, it will produce the following result.

Opened database successfully

Callback function «called : ID =1

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

NAME= Paul

AGE= 32
ADDRESS California
SALARY= 20000.0

Callback function called : ID = 2
NAME= Allen

AGE= 25

ADDRESS Texas

SALARY= 15000.0

Callback function called : ID = 3
NAME= Teddy

AGE= 23

ADDRESS Norway

SALARY= 20000.0

Callback function called : ID =4
NAME= Mark

AGE= 25

ADDRESS Rich - Mond

SALARY= 65000.0

Operation done successfully

UPDATE Operati on

Following C code segment shows how we can use UPDATE statement to update any record
and then fetch and display updated records from the COMPANY table.

#include <stdio.h>
#include <stdlib.h>

#include <sqlite3.h>

static int callback (void *data, int argc, char **argv, char **azColNamée{
int i;
fprintf (stderr , "%s:" , (const char*) data);
for (1=0; i<argc; i++){
printf ("%s =%s\n", azColNamdi], argv[i] ? argv[i] : "NULL");

[
LN
N

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

int

}

}
printf ("\n");

return 0O;

main(int argc, char* argv[])

sqlite3 *db;

char *zErrMsg = O;
int rc;

char *sql;

const char* data = "Callback function called" ;

/* Open database */
rc = sqlite3_open ("test.db" , &db);
if (rc)

fprintf (stderr , "Can't open database: %s \n", sqlite3_errmsg
return (0);
}else {

fprintf (stderr , "Opened database successfully \n");

/* Create merged SQL statement */
sqgl = "UPDATE COMPANY set SALARY = 25000.00 where ID=1; " \
"SELECT * from COMPANY"

/* Execute SQL statement */
rc = sqlite3_exec (db, sql, callback , (void *) data, &zErrMsg);
if (rc != SQLITE_OK)
fprintf (stderr , "SQL error: %s \n", zErrMsg);
sqlite3_free (zErrMsg);
}else {
fprintf (stdout , "Operation done successfully \n");
}
sqlite3_close (dby);

return O;

(db));

When the above program is compiled and executed, it will produce the following result.

-

A tutorialspoint

SIMPLYEASYLEARNINI G

148

SQLite

Opened database successfully
Callback function called : ID =1
NAME= Paul

AGE= 32

ADDRESS California

SALARY= 25000.0

Callback function called : ID = 2
NAME= Allen

AGE= 25

ADDRESS Texas

SALARY= 15000.0

Callback function called : ID = 3
NAME= Teddy

AGE= 23

ADDRESS Norway

SALARY= 20000.0

Callback function called : ID = 4
NAME= Mark

AGE= 25

ADDRESS Rich - Mond

SALARY= 65000.0

Operation done successfully

DELETE Operation

Following C code segment shows how you can use DELETE statement to delete any record

and then fetch and display the remaining records from the COMPANY table.

#include <stdio.h>
#include <stdlib.h>

#include <sqlite3.h>

-

A tutorialspoint

SIMPLYEASYLEARNINI G

149

SQLite

static int callback (void *data, int argc, char **argv, char **azColNamé{

int

int i;
fprintf (stderr , "%s:" , (const char*) data);
for (i=0; i<argc; i++)
printf ("%s =%s\n", azColNamdi], argv[i] ? argv[i] : "NULL");
}
printf ("\n");

return 0O;

main(int argc, char* argv[])

sqlite3 *db;

char *zErrMsg = O;
int rc;

char *sql ;

const char* data = "Callback function called" ;

/* Open database */

rc = sqlite3_open ("test.db" , &db);

if (rc {
fprintf (stderr , "Can't open database: %s \n", sqlite3_errmsg (db));
return (0);

}else {

fprintf (stderr , "Opened database successfully \n");

/* Create merged SQL statement */
sql = "DELETE from COMPANY where ID=2; " \
"SELECT * from COMPANY",

/* Execute SQL statement */
rc = sqlite3_exec (db, sql, callback , (void *) data, &zErrMsg);
if (rc != SQLITE_OK)

fprintf (stderr , "SQL error: %s \n", zErrMsg);

sqlite3_free (zErrMsg);

-

A tutorialspoint

SIMPLYEASYLEARNINI G

150

SQLite

}else {
fprintf (stdout , "Operation done successfully \n");
}
sglite3_close (db);
return O;

}

When the above program is compiled and executed, it will produce the following result.

Opened database successfully
Callback function called : ID =1
NAME= Paul

AGE= 32

ADDRESS California

SALARY= 20000.0

Callback function called : ID = 3
NAME= Teddy

AGE= 23

ADDRESS Norway

SALARY= 20000.0

Callback function called : ID = 4
NAME= Mark

AGE= 25

ADDRESS Rich - Mond

SALARY= 65000.0

Operation done successfully

151

-

A tutorialspoint

SIMPLYEASYLEARNINI G

47.SQLite Java

In this chapter, you will learn how to use SQLite in Java programs.

|l nstall ati on

Before you start using SQLite in your Java programs, you need to make sure that you
have SQLite JDBC Driver and Java set up on the machine. You can check Java tutorial for
Java installation on your machine. Now, let us check how to set up SQLite JDBC driver.

Step 1 : Download latest version of sqlite-jdbc-(VERSION).jar from sqglite-jdbc repository.

Step 2 : Add downloaded jar file sqlite-jdbc-(VERSION).jar in your class path, or you can
use it along with -classpath option as explained in the following examples.

Following section assumes you have little knowledge about Java JDBC concepts. If you
don't, then it is suggested to spent half an hour with JDBC Tutorial to become comfortable
with the concepts explained below.

Conne®dnat abase

Following Java programs show how to connect to an existing database. If the database
does not exist, then it will be created and finally a database object will be returned.

import java . sql .*;
public class SQLiteJDBC

{
public static void main(String args[])
{
Connection ¢ = null ;
try {
Class . forName("org.sqlite.JDBC");
¢ = DriverManager . getConnection ("jdbc:sqlite:test.db");
} catch (Exception e) {
System. err . printin (e. getClass (). getNamg) + " " + e.getMessage());
System. exit (0);
}
System. out . printin ("Opened database successfully");
}
}

152

A tutorialspoint

SIMPLYEASYLEARNINI G

https://bitbucket.org/xerial/sqlite-jdbc/downloads
https://www.tutorialspoint.com/jdbc/jdbc-create-database.htm

SQLite

Now, let's compile and run the above program to create our database test.db in the
current directory. You can change your path as per your requirement. We are assuming
the current version of JDBC driver sqlite -jdbc -3.7.2.jar is available in the current path.

$javac SQLiteJDBC. java
$java -classpath ".sqlite -jdbc -3.7.2.jar" SQLiteJDBC

Open database successfully

If you are going to use Windows machine, then you can compile and run your code as
follows:

$javac SQLiteJDBC. java
$java -classpath ".;sglite -jdbc -3.7.2.jar" SQLiteJDBC

Opened database successfully

Create a Tabl e

Following Java program will be used to create a table in the previously created database.

import java . sql .%;

public class SQLiteJDBC
{

public static void main(String args[])
{
Connection ¢ = null ;
Statement stmt = null ;
try {
Class . forName("org.sqlite.JDBC");
¢ = DriverManager . getConnection ("jdbc:sqlite:test.db");

System. out . printin ("Opened database successfully”);

stmt = c. createStatement ();

String sgl = "CREATE TABLE COMPANY+#

"(ID INT PRIMARY KEY NOT NULL," +
" NAME TEXT NOT NULL, " +
" AGE INT NOT NULL, " +
"ADDRESS CHAR(50), " +

" SALARY REAL)" ;
stmt . executeUpdate (sql);

stmt . close ();

153

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

c. close ();

} catch (Exception e) {
System. err . printin (e. getClass (). getNamg) + " " + e.getMessage());
System. exit (0);

}

System. out . printin ("Table created successfully”);

}

When the above program is compiled and executed, it will create COMPANY table in
your test.db and final listing of the file will be as follows:

-rw-r-- r-- . 1 root root 3201128 Jan 22 19: 04 sqglite -jdbc -3.7.2.jar

-rw-r-- r-- . 1 rootroot 1506 May 8 05:43 SQLiteJDBC. class
-rw-r-- r-- . 1 rootroot 832 May 8 05:42 SQLiteJDBC. java
-rw-r-- r-- . 1 root root 3072 May 8 05:43 test .db

| NSERT Operation

Following Java program shows how to create records in the COMPANY table created in
above example.

import java . sql .%

public class SQLiteJDBC
{
public static void main(String args[])
{
Connection ¢ = null ;
Statement stmt = null ;
try {
Class . forName("org.sqlite.JDBC");
¢ = DriverManager . getConnection ("jdbc:sqlite:test.db");
c. setAutoCommit (false);

System. out . printin ("Opened database successfully");

stmt = c. createStatement ();
String sgl = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY}+'
"VALUES (1, 'Paul’, 32, 'California’, 20000.00);" ;

stmt . executeUpdate (sql);

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

sgl = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY "
"VALUES (2, 'Allen’, 25, 'Texas', 15000.00);" ;

stmt . executeUpdate (sql);

sgl = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY}"
"VALUES (3, 'Teddy', 23, 'Norway', 20000.00);"

stmt . executeUpdate (sql);

sgl = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY }"
"VALUES (4, 'Mark’, 25, 'Rich -Mond ', 6500 0.00);" ;

stmt . executeUpdate (sql);

stmt . close ();
c. commit();
c. close ();
} catch (Exception e) {
System. err . printin (e. getClass (). getNamg) + " " + e.getMessage());
System. exit (0);
}

System. out . printin ("Records created successfully");

}

When the above program is compiled and executed, it will create the given records in the
COMPANY table and will display the following two lines.

Opened database successfully

Records created successfully

SELEOperation

Following Java program shows how to fetch and display records from the COMPANY table
created in the above example.

import java . sql .*;

public class SQLiteJDBC
{

public static void main(String args[])

155

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Connection ¢ = null ;

Statement stmt = null ;

try {
Class . forName("org.sqlite.JDBC");
¢ = DriverManager . getConnection ("jdbc:sqlite:test.db");
c. setAutoCommit (false);

System. out . printin ("Opened database successfully");

stmt = c. createStatement ();
ResultSet rs = stmt. executeQuery ("SELECT * FROM COMPANY;};
while (rs.next()) {
int id =rs.getint ("id");
String name = rs. getString ("name");
int age = rs.getint ("age");
String address = rs. getString ("address");
float salary = rs.getFloat ("salary");
"D=" +id);
"NAME =" + name);

System. out . printin
System. out . printin
System. out . printin "ADDRESS =" + address);

(
(
System. out . printin ("AGE =" + age);
(
("SALARY =" + salary);

System. out . printin
System. out . printin ();
}
rs . close ();
stmt . close ();
c. close ();

} catch (Exception e) {

System. err . printin (e. getClass (). getNamg) + " " + e.getMessage());
System. exit (0);

}

System. out . printin ("Operation done successfully");

When the above program is compiled and executed, it will produce the following result.

Opened database successfully

156

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

ID =1

NAME= Paul

AGE= 32
ADDRESS California
SALARY= 20000.0

ID =2

NAME= Allen
AGE= 25
ADDRESS Texas
SALARY= 15000.0

ID =3

NAME= Teddy
AGE= 23
ADDRESS Norway
SALARY= 20000.0

ID =4

NAME= Mark

AGE= 25

ADDRESS Rich - Mond
SALARY= 65000.0

Operation done successfully

UPDATE Operation

Following Java code shows how to use UPDATE statement to update any record and then

fetch and display the updated records from the COMPANY table.

import java . sql .*;

public class SQLiteJDBC
{

public static void main(String args[])

{

Connection ¢ = null ;

Statement stmt = null ;

H

(0]

N

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

try {
Class . forName("org.sqlite.JDBC");

¢ = DriverManager . getConnection ("jdbc:sqlite:test.db”);
c. setAutoCommit (false);

System. out . printin ("Opened database successfully");

stmt = c. createStatement ();
String sgl = "UPDATE COMPANY set SALARY = 25000.00 where ID=1;" ;
stmt . executeUpdate (sql);

c. commit();

ResultSet rs = stmt . executeQuery ("SELECT * FROM COMPANY;);
while (rs.next()) {
int id =rs.getint ("id");
String name = rs. getString ("name");
int age = rs.getint ("age");
String address = rs. getString (“"address");
float salary = rs.getFloat ("salary");
"D=" +id);
"NAME =" + name);

System. out . printin
System. out . printin
System. out . printin "ADDRESS =" + address);

(
(
System. out . printin ("AGE =" + age);
(
("SALARY =" + salary);

System. out . printin
System. out . printin = ();
}
rs. close ();
stmt . close ();
c. close ();

} catch (Exception e) {

System. err . printin (e. getClass (). getNamg) + " " + e.getMessage());
System. exit (0);

}

System. out . printin ("Operation done successfully");

}

When the above program is compiled and executed, it will produce the following result.

Opened database successfully

=
)
(0]

SIMPLYEASYLEARNINI G

A tutorialspoint

SQLite

NAME= Paul

AGE= 32
ADDRESS California
SALARY= 25000.0

ID =2

NAME= Allen
AGE= 25
ADDRESS Texas
SALARY= 15000.0

ID =3

NAME= Teddy
AGE= 23
ADDRESS Norway
SALARY= 20000.0

ID =4

NAME= Mark

AGE= 25

ADDRESS Rich - Mond
SALARY= 65000.0

Operation done successfully

DELETE Operation

Following Java code shows how to use DELETE statement to delete any record and then

fetch and display the remaining records from the COMPANY table.

import java . sql .%

public class SQLiteJDBC
{
public static void main(String args[])
{
Connection ¢ = null ;

Statement stmt = null ;

try {

-

A tutorialspoint

SIMPLYEASYLEARNINI G

[y

ul

o)

SQLite

Class . forName("org.sqlite.JDBC");
¢ = DriverManager . getConnection ("jdbc:sqlite:test.db");
c. setAutoCommit (false);

System. out . printin ("Opened database successfully");

stmt = c. createStatement ();
String sgl = "DELETE from COMPANY where ID=2;";
stmt . executeUpdate (sql);

c. commit();

ResultSet rs = stmt. executeQuery ("SELECT * FROM COMPANY;};
while (rs.next()) {
int id =rs.getint ("id");
String name = rs. getString ("name");
int age = rs.getint ("age");
String address = rs. getString ("address");
float salary = rs.getFloat ("salary");
"D=" +id);
"NAME =" + name);

System. out . printin (
(

System. out . printin ("AGE =" + age);
(
(

System. out . printin

System. out . printin "ADDRESS =" + address);

System. out . printin "SALARY =" + salary);
System. out . println ();

}

rs. close ();

stmt . close ();

c. close ();

} catch (Exception e) {

System. err . printin (e. getClass (). getNamg) + " " + e.getMessage());
System. exit (0);

}

System. out . printin ("Operation done successfully");

}

When the above program is compiled and executed, it will produce the following result.

Opened database successfully
D =1
NAME= Paul

[Hy
(o))
(@)

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

AGE= 32
ADDRESS California
SALARY= 25000.0

ID =3
NAME= Teddy
AGE= 23
ADDRESS Norway
SALARY= 20000.0

ID =4

NAME= Mark

AGE= 25

ADDRESS Rich - Mond
SALARY= 65000.0

Operation done successfully

161

-

A tutorialspoint

SIMPLYEASYLEARNINI G

48.SQLite PHP

In this chapter, you will learn how to use SQLite in PHP programs.

|l nstall ati on

SQLite3 extension is enabled by default as of PHP 5.3.0. It's possible to disable it by using -
-without -sqlite3 at compile time.

Windows users must enable php_sqlite3.dll in order to use this extension. This DLL is
included with Windows distributions of PHP as of PHP 5.3.0.

For detailed installation instructions, kindly check our PHP tutorial and its official website.

PHP I nterface API s

Following are important PHP routines which can suffice your requirement to work with
SQLite database from your PHP program. If you are looking for a more sophisticated
application, then you can look into PHP official documentation.

Sr.

No. API & Description

public void SQLite3::open (filename, flags, encryption_key)

Opens SQLite 3 Database. If the build includes encryption, then it will attempt
to use the key.

1 If the filename is given as memory:' , SQLite3::open() will create an in-
memory database in RAM that lasts only for the duration of the session.

If the filename is actual device file name, SQLite3::open() attempts to open
the database file by using its value. If no file by that name exists, then a new
database file by that hame gets created.

Optional flags used to determine how to open the SQLite database. By default,
open uses SQLITE3_OPEN_READWRITE | SQLITE3_OPEN_CREATE.

public bool SQLite3::exec (string $query)

2 This routine provides a quick, easy way to execute SQL commands provided
by sgl argument, which can consist of more than one SQL command. This
routine is used to execute a result-less query against a given database.

public SQLite3Result SQLite3::query (string $query)

162

MPLYEASYLEARMNINTI G

@' tutorialspoint

SQLite

This routine executes an SQL query, returning an SQLite3Result object if the
query returns results.
public int SQLite3::lastErrorCode (void)

4 This routine returns the numeric result code of the most recent failed SQLite
request.
public string SQLite3::lastErrorMsg (void)

5
This routine returns English text describing the most recent failed SQLite
request.
public int SQLite3::changes (void)

6
This routine returns the number of database rows that were updated, inserted,
or deleted by the most recent SQL statement.
public bool SQLite3::close (void)

7
This routine closes a database connection previously opened by a call to
SQLite3::open().
public string SQLite3::escapeString (string $value)

8
This routine returns a string that has been properly escaped for safe inclusion
in an SQL statement.

Connte®dat abase

Following PHP code shows how to connect to an existing database. If database does not
exist, then it will be created and finally a database object will be returned.

<?php
class MyDBextends SQLite3
{
function __ construct ()
{
$this - >open('test.db’);
}
}

[Hy
o))
W

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

$db = new MyDB);
if (! $db){

echo $db - >lastErrorMsg ();
} else {

echo "Opened database successfully \n";

>

Now, let's run the above program to create our database test.db

in the current directory.

You can change your path as per your requirement. If the database is successfully created,

then it will display the following message:

Open database successfully

Create a Tabl e

Following PHP program will be used to create a table in the previously created database.

<?php
class MyDBextends SQLite3
{

function

{

__construct ()

$this - >open(‘test.db’);

}
$db = new MyDB);
if (! $db){
echo $db - >lastErrorMsg ();
} else {

echo "Opened database successfully \n";

$sql =<<<EOF
CREATE TABLE COMPANY
(ID INT PRIMARY KEY NOT NULL
NAME TEXT NOT NULL ,
AGE INT NOT NULL ,
ADDRESS CHAR (50),
SALARY REAL);

SIMPLYEASYLEARNINI G

A tutorialspoint

164

SQLite

$ret = $db- >exec($sql);
if (! $ret)

echo $db - >lastErrorMsg ();
} else {

echo "Table created successfully \n";

}
$db- >close ();

7>

When the above program is executed, it will create the COMPANY table in your test.db and

it will display the following messages:

Opened database successfully

Table created successfully

| NSERT Operation

Following PHP program shows how to create records in the COMPANY table created in the

above example.

<?php
class MyDBextends SQLite3
{

function __ construct ()

{
$this - >open('test.db’);

}
$db = new MyDB);
if (! $db){
echo $db - >lastErrorMsg ();
} else {

echo "Opened database successfully \n";

$sql =<<<EOF
INSERT INTO COMPANYID, NAMEAGE ADDRESSALARY
VALUES(1, 'Paul' , 32, 'California’ , 20000.00);

INSERT INTO COMPANYID, NAMEAGE ADDRESSALARY

-

A tutorialspoint

SIMPLYEASYLEARNINI G

165

SQLite

VALUES(2, 'Allen’ , 25, 'Texas' , 15000.00);

INSERT INTO COMPANYID, NAMFAGE ADDRESSALARY
VALUES(3, 'Teddy' , 23, 'Norway' , 20000.00);

INSERT INTO COMPANYID, NAMEAGE ADDRESSALARY
VALUES(4, 'Mark' , 25, 'Rich -Mond', 65000.00);
EOE

$ret = $db- >exec($sql);
if (! $ret)
echo $db - >lastErrorMsg ();
} else {
echo "Records created successfully \n";
}
$db- >close ();

2>

When the above program is executed, it will create the given records in the COMPANY
table and will display the following two lines.

Opened database successfully

Records created successfully

SELECT Operation

Following PHP program shows how to fetch and display records from the COMPANY table
created in the above example.

<?php
class MyDBextends SQLite3
{
function __ construct ()
{
$this - >open('test.db’);
}
}
$db = new MyDB);
if (! $db){
echo $db - >lastErrorMsg ();
} else {

e
[e))
Q

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

echo "Opened database successfully \n";

}
$sql =<<<EOF
SELECT* from COMPANY
EOF

$ret = $db- >query ($sql);

while ($row = $ret - >fetchArray (SQLITE3_ASSQC)
echo "ID=" . $row['ID'] . "\n";
echo "NAME =". $row['NAME'] ."\n";
echo "ADDRESS =". $row['ADDRESS] ."\n";
echo "SALARY = " . $row['SALARY'] ."\n\n";

}

echo "Operation done successfully \n";

$db- >close ();

7>

When the above program is executed, it will produce the following result.

Opened database successfully
ID =1

NAME= Paul

ADDRESS California
SALARY= 20000

ID =2

NAME= Allen
ADDRESS Texas
SALARY= 15000

ID =3

NAME= Teddy
ADDRESS Norway
SALARY= 20000

ID =4
NAME= Mark
ADDRESS Rich - Mond

-

A tutorialspoint

SIMPLYEASYLEARNINI G

167

SQLite

SALARY= 65000

Operation done successfully

UPDATE Operati on

Following PHP code shows how to use UPDATE statement to update any record and then
fetch and display the updated records from the COMPANY table.

<?php
class MyDBextends SQLite3
{

function __ construct ()

{
$this - >open(‘test.db’);

}
$db = new MyDB);
if (! $db){
echo $db - >lastErrorMsg ();
} else {
echo "Opened database successfully \n";
}
$sql =<<<EOF
UPDATE COMPAN¥t SALARY= 25000.00 where ID=1;
EOF
$ret = $db- >exec($sql);
if (! $ret }
echo $db - >lastErrorMsg ();
} else {

echo $db - >changes(), " Record updated successfully \n";

$sql =<<<EOF
SELECT* from COMPANY
EOFE
$ret = $db- >query ($sql);
while ($row = $ret - >fetchArray (SQLITE3_ASSQOC){

168

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

echo "ID=" . $row['ID'] . "\n";

echo "NAME =". $row['NAME'] ."\n";

echo "ADDRESS =". $row['ADDRESS] ."\n";

echo "SALARY = " . $row['SALARY'] ."\n\n";
}
echo "Operation done successfully \n";
$db- >close ();

2>

When the above program is executed, it will produce the following result.

Opened database successfully
1 Record updated successfully
ID =1

NAME= Paul

ADDRESS California
SALARY= 25000

ID =2

NAME= Allen
ADDRESS Texas
SALARY= 15000

ID = 3

NAME= Teddy
ADDRESS Norway
SALARY= 20000

ID =4

NAME= Mark
ADDRESS Rich - Mond
SALARY= 65000

Operation done successfully

DELETE Operation

Following PHP code shows how to use DELETE statement to delete any record and then

fetch and display the remaining records from the COMPANY table.

-

A tutorialspoint

SIMPLYEASYLEARNINI G

169

SQLite

<?php
class MyDBextends SQLite3
{

function __ construct ()

{
$this - >open(‘test.db’);

}
$db = new MyDB);
if (! $db){

echo $db - >lastErrorMsg ();
} else {

echo "Opened database successfully \n";
}
$sql =<<<EOF

DELETEfrom COMPANWYhere ID=2;

EOF
$ret = $db- >exec($sql);
if (! $ret)
echo $db - >lastErrorMsg ();

} else {

echo $db - >changes(), " Record deleted successfully \n";

$sql =<<<EOF

SELECT* from COMPANY
EOF

$ret = $db- >query ($sql);

while ($row = $ret - >fetchArray (SQLITE3_ASSQC)
echo "ID=" . $row['ID'] . "\n";
echo "NAME =". $row['NAME'] ."\n";
echo "ADDRESS =". $row['ADDRESS] ."\n";
echo "SALARY = " . $row['SALARY'] ."\n\n";

}

echo "Operation done successfully \n";

$db- >close ();

170

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

>

When the above program is executed, it will produce the following result.

Opened database successfully
1 Record deleted successfully
ID =1

NAME= Paul

ADDRESS California
SALARY= 25000

ID =3

NAME= Teddy
ADDRESS Norway
SALARY= 20000

ID =4

NAME= Mark
ADDRESS Rich - Mond
SALARY= 65000

Operation done successfully

171

-

A tutorialspoint

SIMPLYEASYLEARNINI G

49. SQLite Perl

In this chapter, you will learn how to use SQLite in Perl programs.

|l nstall ati on

SQLite3 can be integrated with Perl using Perl DBI module, which is a database access
module for the Perl programming language. It defines a set of methods, variables, and
conventions that provide a standard database interface.

Following are simple steps to install DBI module on your Linux/UNIX machine:

$ wget http : //search.cpan.org/CPAN/authors/id/T/TI/TIMB/DBI -1.62 5.tar.gz
$tarxvfizDBI -1.625.tar .gz

$cd DBI -1.625

$ perl Makefile . PL

$ make

$ make install

If you need to install SQLite driver for DBI, then it can be installed as follows:

$ wget http : //search.cpan.org/CPAN/authors/id/M/IMS/MSERGEANT/DBD - SQLite -
1.11.tar.gz

$tar xvfz DBD - SQLite-1.11 . tar . gz
$ cd DBD- SQLite -1.11

$ perl Makefile . PL

$ make

$ make install

DBI |l nterface API s

Following are important DBI routines, which can suffice your requirement to work with
SQLite database from your Perl program. If you are looking for a more sophisticated
application, then you can look into Perl DBI official documentation.

172

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Sr. .

No. API & Description
DBI ->connect($data_source, ", ", \ %attr)
Establishes a database connection, or session, to the requested $data_source.
Returns a database handle object if the connection succeeds.
Datasource has the form like: DBI:SQLite:dbname="test.db' where SQLite
is SQLite driver name and test.db is the name of SQLite database file. If the
filename is given as "memory:' , it will create an in-memory database in RAM

1 that lasts only for the duration of the session.

If the filename is actual device file name, then it attempts to open the database
file by using its value. If no file by that name exists, then a new database file
by that name gets created.

You keep second and third parameter as blank strings and the last parameter
is to pass various attributes as shown in the following example.

$dbh ->do($sql)

5 This routine prepares and executes a single SQL statement. Returns the
number of rows affected or undef on error. A return value of -1 means the
number of rows is not known, not applicable, or not available. Here, $dbh is a
handle returned by DBI->connect() call.
$dbh ->prepare($sql)

3 This routine prepares a statement for later execution by the database engine
and returns a reference to a statement handle object.
$sth ->execute()

This routine performs whatever processing is necessary to execute the

4 prepared statement. An undef is returned if an error occurs. A successful
execute always returns true regardless of the number of rows affected. Here,
$sth is a statement handle returned by $dbh->prepare($sql) call.
$sth ->fetchrow_array()

5

This routine fetches the next row of data and returns it as a list containing the
field values. Null fields are returned as undef values in the list.

-

pi

173

tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

$DBI::err

6 This is equivalent to $h->err, where $h is any of the handle types like $dbh,
$sth, or $drh. This returns native database engine error code from the last
driver method called.

$DBI::errstr

7 This is equivalent to $h->errstr, where $h is any of the handle types like $dbh,
$sth, or $drh. This returns the native database engine error message from the
last DBI method called.

$dbh ->disconnect()

8 This routine closes a database connection previously opened by a call to DBI-
>connect().

Conntctbat abase

Following Perl code shows how to connect to an existing database. If the database does
not exist, then it will be created and finally a database object will be returned.

#!/usr/bin/perl

use DBI,

use strict ;

my $driver = "SQLite" ;
my $database = "test.db" ;

my $dsn = "DBIl:$driver.dbname=$database" ;

my $userid ="

my $password = " ;

my $dbh = DBI- >connect ($dsn, S$userid , $password, { RaiseError =>11})
or die $DBI: errstr

print "Opened database successfully \n";

Now, let's run the above program to create our database test.db in the current directory.
You can change your path as per your requirement. Keep the above code in sqlite.pl file
and execute it as shown below. If the database is successfully created, then it will display
the following message:

174

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

$ chmod +x sqlite . pl
$./ sqlite . pl

Open database successfully

Create a Tabl e

Following Perl program is used to create a table in the previously created database.

#!/usr/bin/perl

use DBI,

use strict

my $driver = "SQLite" ;
my $database = "test.db" ;

my $dsn = "DBI:$driver.dbname=$database" ;

my $userid ="";

my $password = " ;

my $dbh = DBI- >connect ($dsn, S$userid , $password, { RaiseError =>11})
or die $DBI: errstr

print "Opened database successfully \n";

my $stmt = qq(CREATE TABLE COMPANY
(ID INT PRIMARY KEY NOT NULL
NAME TEXT NOT NULL ,
AGE INT NOT NULL ,
ADDRESS CHAR (50),
SALARY REAL)
my $rv = $dbh- >do($stmt);
if ($rv < 0f
print $DBI:: errstr
} else {
print "Table created successfully \n";

}
$dbh- >disconnect ();

175

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

When the above program is executed, it will create COMPANY table in your test.db and it
will display the following messages:

Opened database successfully

Table created successfully

Note : In case you see the following error in any of the operation:

DBD SQLite :: st execute failed : not anerror (21) atdbdimp .cline 398

In such case, open dbdimp.c file available in DBD-SQLite installation and find
out sqlite3_prepare() function and change its third argument to -1 instead of 0. Finally,
install DBD::SQLite using make and do make inst all to resolve the problem.

| NSERT Operation

Following Perl program shows how to create records in the COMPANY table created in the
above example.

#/usr/bin/perl

use DBI;

use strict ;

my $driver = "SQLite" ;
my $database = "test.db" ;

my $dsn = "DBIl:$driver.dbname=$database" ;

my $userid ="

my $password = "™

my $dbh = DBI- >connect ($dsn, S$userid , $password, { RaiseError =>11})
or die $DBI: errstr

print "Opened database successfully \n";

my $stmt = qq(INSERT INTO COMPANYID, NAMEAGE ADDRESSALARY
VALUES(1, 'Paul' , 32, 'California’ , 20000.00));
my $rv = $dbh- >do($stmt) or die $DBI: errstr ;

$stmt = gqq(INSERT INTO COMPANYID, NAMEAGEADDRESSALARY
VALUES(2, 'Allen' , 25, 'Texas' , 15000.00));

$rv = $dbh->do($stmt) or die $DBI: errstr

$stmt = gq(INSERT INTO COMPANYID, NAMEAGEADDRESSALARY

176

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

VALUES(3, 'Teddy’ , 23, 'Norway' , 20000.00));
$rv = $dbh->do($stmt) or die $DBI: errstr ;

$stmt = gq(INSERT INTO COMPANYID, NAMEAGEADDRESSALARY
VALUES(4, 'Mark' , 25, 'Rich -Mond', 65000.00););
$rv = $dbh->do($stmt) or die $DBI: errstr ;

print "Records created successfully \n";
$dbh- >disconnect ();

When the above program is executed, it will create the given records in the COMPANY
table and it will display the following two lines:

Opened database successfully

Records created successfully

SELECT Operation

Following Perl program shows how to fetch and display records from the COMPANY table
created in the above example.

#1/ usr/bin/perl

use DBI;

use strict;

my $driver ="SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver.dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI - >connect($dsn, $userid, $password, { RaiseError => 1 })
or die $DBI::errstr;

print "Opened database successfully \n";

my $stmt = qq(SELECT id, name, address, salary from COMPANY;);
my $sth = $dbh - >prepare($stmt);
my $rv = $sth - >execute() or die $DBI::errstr;
if($rv < 01
print $DBI:: errstr;

(=
N
Nl

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

}
while(my @row = $sth - >fetchrow_array()) {
print "ID = ". $row[0] . " \n";
print "NAME =". $row[1] ." \n";
print "ADDRESS =". $row[2] ." \n";
print "SALARY = ". $row[3] ." \n\n"
}
print "Operation done successfully \n";

$dbh- >disconnect();

When the above program is executed, it will produce the following result.

Opened database successfully
ID=1

NAME = Paul

ADDRESS = California
SALARY = 20000

ID=2

NAME = Allen
ADDRESS = Texas
SALARY = 15000

ID=3

NAME = Teddy
AIDRESS = Norway
SALARY = 20000

ID=4

NAME = Mark
ADDRESS = Rich Mond
SALARY = 65000

Operation done successfully

-

A tutorialspoint

SIMPLYEASYLEARNINI G

178

SQLite

UPDATE Operati on

Following Perl code shows how to use UPDATE statement to update any record and then
fetch and display the updated records from the COMPANY table.

#!/usr/bin/perl

use DBI;

use strict;

my $driver ="SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver.dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI - >connect($dsn, $userid, $password, { RaiseError =>11})
or die $DBI::errstr;

print "Opened database successfully \n";

my $stmt = qq(UPDATE COMPANY set SALARY = 25000.00 where ID=1;);
my $rv = $dbh - >do($stmt) or die $DBI::errstr;
if($rv <0){
print $DBI::errstr;
lelse{
print "Total number of rows updated : $rv \n"
}
$stmt = qq(SELECT id, name, address, salary from COMPANY;);
my $sth = $dbh - >prepare($stmt);
$rv = $sth - >execute() or die $DBI::errstr;
if($rv < 01
print $DBI::errstr;

}
while(my @row = $sth - >fetchrow_array()) {
print "ID = ". $row[0] . " \n"
print "NAME =". $row[1] ." \n";
print "ADDRESS =". $row[2] ." \n"
print "SALARY = ". $row[3] ." \n\n"

179

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

print "Operation done successfully \n"

$dbh- >disconn ect();

When the above program is executed, it will produce the following result.

Opened database successfully
Total number of rows updated : 1
ID=1

NAME = Paul

ADDRESS = California

SALARY = 25000

ID=2

NAME = Allen
ADDRESS = Texas
SALARY = 15000

ID =3

NAME = Teddy
ADDRESS = Norway
SALARY = 20000

ID=4

NAME = Mark
ADDRESS = Rich Mond
SALARY = 65000

Operation done successfully

DELETE Operation

Following Perl code shows how to use DELETE statement to delete any record and then
fetch and display the remaining records from the COMPANY table.

#!/usr/bin/perl

use DBI;

use strict;

180

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

my $driver ="SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver.dbname=$database";

my $userid ="";

my $password = "";

my $dbh = DBI - >connect($dsn, $userid, $password, { RaiseError => 1 })
or die $DBI::errstr;

print "Opened database successfully \n";

my $stmt = qq(DELETE from COMPANY where 1D=2;);
my $rv = $dbh- >do($stmt) or die $DBI::errstr;
if($rv <0){
print $DBI::errstr;
lelse{
print "Total number of rows deleted : $rv \n"
}
$stmt = qq(SELECT id, name, address, salary from COMPANY;);
my $sth = $dbh - >prepare($stmt);

$rv = $sth - >execute() or die $DBI::errstr;
if($rv < 01
print $DBI::errstr;

}

while(my @row = $sth - >fetchrow_array()) {
print "ID = ". $row[0] . " \n"
print "NAME =". $row[1] ." \n";
print "ADDRESS =". $row[2] ." \n";
print "SALARY = ". $row[3] ." \n\n"

}

print "Operation done successfully \n";

$dbh- >disconnect();

181

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

When the above program is executed, it will produce the following result.

Opened database successfully
Total number of rows deleted : 1
ID=1

NAME = Paul

ADDRESS = California
SALARY = 25000

ID=3

NAME = Teddy
ADDRESS = Norway
SALARY = 20000

ID=4

NAME = Mark
ADDRESS = Rich Mond
SALARY = 65000

Operation done successfully

182

-

A tutorialspoint

SIMPLYEASYLEARNINI G

50. SQLite Python

In this chapter, you will learn how to use SQLite in Python programs.

|l nstall ati on

SQLite3 can be integrated with Python using sqlite3 module, which was written by Gerhard
Haring. It provides an SQL interface compliant with the DB-API 2.0 specification described
by PEP 249. You do not need to install this module separately because it is shipped by
default along with Python version 2.5.x onwards.

To use sqglite3 module, you must first create a connection object that represents the
database and then optionally you can create a cursor object, which will help you in
executing all the SQL statements.

Python sqlite3 modul e API s

Following are important sqlite3 module routines, which can suffice your requirement to
work with SQLite database from your Python program. If you are looking for a more
sophisticated application, then you can look into Python sqlite3 module's official
documentation.

Sr. .

No. API & Description
sqlite3.connect(database [,timeout ,other optional arguments])
This API opens a connection to the SQLite database file. You can use
":memory:" to open a database connection to a database that resides in RAM
instead of on disk. If database is opened successfully, it returns a connection
object.

1 When a database is accessed by multiple connections, and one of the processes

modifies the database, the SQLite database is locked until that transaction is
committed. The timeout parameter specifies how long the connection should
wait for the lock to go away until raising an exception. The default for the
timeout parameter is 5.0 (five seconds).

If the given database name does not exist, then this call will create the
database. You can specify filename with the required path as well if you want
to create a database anywhere else except in the current directory.

183

MPLYEASYLEARMNINTI G

@' tutorialspoint

SQLite

connection.cursor([cursorClass])

> This routine creates a cursor

which will be used throughout of your database
programming with Python. This method accepts a single optional parameter

cursorClass. If supplied, this must be a custom cursor class that extends
sqlite3.Cursor.

This routine executes an SQL statement. The SQL statement may be parametezize
3

cursor.execu te(sql [, optional parameters])

placeholders instead of SQL literals). The sqlite3 module supports two kinds of placeh
guestion marks and named placeholders (named style).

For example:cursor.execute("insert into people values (?, ?)", (who, age))

connection.execute(sql [, optional parameters])

This routine is a shortcut of the above execute method provided by the cursor
object and it creates an intermediate cursor object by calling the cursor
method, then calls the cursor's execute method with the parameters given.

cur sor.executemany(sql, seq_of parameters)

This routine executes an SQL command against all parameter sequences or
mappings found in the sequence sql.

connection.executemany(sql[, parameters])

This routine is a shortcut that creates an intermediate cursor object by calling

the cursor method, then calls the cursor.s executemany method with the
parameters given.

cursor.executescript(sql_script)

This routine executes multiple SQL statements at once provided in the form of
script. It issues a COMMIT statement first, then executes the SQL script it gets
as a parameter. All the SQL statements should be separated by a semicolon
().

-

pi

184
tutorialspoint

MPLYEASYLEARMNINTI G

SQLite

connection.executescript(sqgl_script)

8 This routine is a shortcut that creates an intermediate cursor object by calling
the cursor method, then calls the cursor's executescript method with the
parameters given.
connection.total_changes()

E This routine returns the total number of database rows that have been modified,
inserted, or deleted since the database connection was opened.
connection.commit()

10 This method commits the current transaction. If you don’t call this method,
anything you did since the last call to commit() is not visible from other
database connections.
connection.rollback()

11 This method rolls back any changes to the database since the last call to
commit().
connection.close()

12 This method closes the database connection. Note that this does not
automatically call commit(). If you just close your database connection without
calling commit() first, your changes will be lost!
cursor.fetchone()

13 This method fetches the next row of a query result set, returning a single
sequence, or None when no more data is available.
cursor.fetchmany([size=cursor.arraysize])

14 This routine fetches the next set of rows of a query result, returning a list. An
empty list is returned when no more rows are available. The method tries to
fetch as many rows as indicated by the size parameter.
cursor.fetchall()

15

This routine fetches all (remaining) rows of a query result, returning a list. An
empty list is returned when no rows are available.

pi

185

tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

Connt®ctbat abase

Following Python code shows how to connect to an existing database. If the database does
not exist, then it will be created and finally a database object will be returned.

#!/usr/bin/python

import sqlite3

conn = sqlite3 . connect ('test.db’)

print "Opened database successfully" ;

Here, you can also supply database name as the special nhame :memory: to create a
database in RAM. Now, let's run the above program to create our database test.db in the
current directory. You can change your path as per your requirement. Keep the above
code in sqlite.py file and execute it as shown below. If the database is successfully
created, then it will display the following message.

$chmod +x sqlite . py
$./ sqlite . py

Open database successfully

Create a Tabl e

Following Python program will be used to create a table in the previously created database.

#!/usr/bin/python

import sqlite3

conn = sqlite3 . connect ('test.db’)

print "Opened database successfully" ;

conn. execute (""CREATE TABLE COMPANY
(ID INT PRIMARY KEY NOT NULL,

NAME TEXT NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR(50),
SALARY REAL);™)

print "Table created successfully" ;

conn. close ()

186

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

When the above program is executed, it will create the COMPANY table in your test.db and
it will display the following messages:

Opened database successfully

Table created successfully

| NSERT Operation

Following Python program shows how to create records in the COMPANY table created in
the above example.

#!/usr/bin/python

import sqlite3

conn = sqlite3 . connect (‘'test.db’)

print "Opened database successfully" ;

conn. execute ("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (1, 'Paul', 32, 'California’, 20000.00)");

conn. execute ("INSERT INTO COMPANYID,NAME,AGE,ADDRESS,SALARY)
VALUES (2, 'Allen', 25, 'Texas', 15000.00)");

conn. execute ("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (3, 'Teddy', 23, 'Norway', 20000.00)");

conn. execute (“INSERT INTO COMPANYID,NAME,AGE, ADDRESS,SALARY)
VALUES (4, 'Mark', 25, 'Rich -Mond ', 65000.00)");

conn. commit()
print "Records created successfully"

conn. close ()

When the above program is executed, it will create the given records in the COMPANY
table and it will display the following two lines:

Opened database successfully

Records created successfully

187

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

SELECT Operation

Following Python program shows how to fetch and display records from the COMPANY
table created in the above example.

#!/usr/bin/python

import sqlite3

conn = sqlite3 . connect ('test.db’)

print "Opened database successfully”

cursor = conn. execute ("SELECT id, name, address, salary from COMPANY")
for row in cursor :

print "ID=" , row[Q]

print "NAME =", row[1]

print "ADDRESS =", row[2]

print “"SALARY =", row[3], "\n"

print "Operation done successfully" ;

conn. close ()

When the above program is executed, it will produce the following result.

Opened database successfully
ID = 1

NAME= Paul

ADDRESS California
SALARY= 20000.0

ID = 2

NAME= Allen
ADDRESS Texas
SALARY= 15000.0

ID = 3

NAME= Teddy
ADDRESS Norway
SALARY= 20000.0

1506

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

ID = 4

NAME= Mark
ADDRESS Rich - Mond
SALARY= 65000.0

Operation done successfully

UPDATE Operati on

Following Python code shows how to use UPDATE statement to update any record and
then fetch and display the updated records from the COMPANY table.

#!/usr/bin/python

import sqlite3

conn = sqlite3 . connect ('test.db’)

print "Opened database succ essfully" ;

conn. execute ("UPDATE COMPANY set SALARY = 25000.00 where ID=1")
conn. commit

print "Total number of rows updated :" , conn. total_changes

cursor = conn. execute ("SELECT id, name, address, salary from COMPANY")

for row in cursor :

print "“ID=" , row[0]

print "NAME =", row[1]

print "ADDRESS =", row][2]

print "SALARY =", row[3], "\n"

print "Operation done successfully"

conn. close ()

When the above program is executed, it will produce the following result.

Opened database successfully

Total number of rows updated 1
D=1
NAME= Paul

189

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

ADDRESS California
SALARY= 25000.0

ID = 2

NAME= Allen
ADDRESS Texas
SALARY= 15000.0

ID = 3

NAME= Teddy
ADDRESS Norway
SALARY= 20000.0

ID = 4

NAME= Mark
ADDRESS Rich-Mond
SALARY= 65000.0

Operation done successfully

DELETE Operation

Following Python code shows how to use DELETE statement to delete any record and then
fetch and display the remaining records from the COMPANY table.

#!/usr/bin/python

import sqlite3

conn = sqlite3 .connect ('test.db’)

print "Opened database successfully" ;

conn. execute ("DELETE from COMPANY where ID=2;")
conn. commit

print "Total number of rows deleted :" , conn. total_changes

cursor = conn. execute ("SELECT id, name, address, salary from COMPANY")
for row in cursor :

print "ID=" , row[0]

190

-

A tutorialspoint

SIMPLYEASYLEARNINI G

SQLite

print "NAME =", row[1]
print "ADDRESS =", row[2]
print "SALARY =", row[3], "\n"

print "Operation done successfully" ;

conn. close ()

When the above program is executed, it will produce the following result.

Opened database successfully

Total number of rows deleted 1
ID = 1
NAME= Paul

ADDRESS California
SALARY= 20000.0

ID = 3

NAME= Teddy
ADDRESS Norway
SALARY= 20000.0

ID = 4

NAME= Mark
ADDRESS Rich-Mond
SALARY= 65000.0

Operation done successfully

191

-

A tutorialspoint

SIMPLYEASYLEARNINI G

