

i

About the Tutorial

Assembly language is a low-level programming language for a computer or other

programmable device specific to a particular computer architecture in contrast to

most high-level programming languages, which are generally portable across

multiple systems. Assembly language is converted into executable machine code

by a utility program referred to as an assembler like NASM, MASM, etc.

Audience

This tutorial has been designed for those who want to learn the basics of

assembly programming from scratch. This tutorial will give you enough

understanding on assembly programming from where you can take yourself to

higher levels of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of

Computer Programming terminologies. A basic understanding of any of the

programming languages will help you in understanding the Assembly

programming concepts and move fast on the learning track.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ii

Table of Contents

About the Tutorial ··

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ·· i

Table of Contents ·· ii

1. INTRODUCTION ··· 1

What is Assembly Language? ·· 1

Advantages of Assembly Language ··· 1

Basic Features of PC Hardware·· 1

Binary Number System ··· 2

Hexadecimal Number System ··· 3

Binary Arithmetic ·· 4

Addressing Data in Memory ·· 6

2. ENVIORNMENT SETUP ·· 7

Try it Option Online ·· 7

Local Environment Setup ·· 7

Installing NASM ·· 8

3. BASIC SYNTAX ··· 9

The data Section ··· 9

The bss Section ··· 9

The text section ·· 9

Comments ·· 9

Assembly Language Statements ·· 10

Syntax of Assembly Language Statements ·· 10

The Hello World Program in Assembly ·· 11

iii

Compiling and Linking an Assembly Program in NASM ··· 11

4. MEMORY SEGMENTS ·· 13

Memory Segments ·· 13

5. REGISTERS ··· 15

Processor Registers ··· 15

Data Registers ··· 15

Pointer Registers ··· 16

Index Registers ··· 17

Control Registers··· 17

Segment Registers ·· 18

6. SYSTEM CALLS ··· 21

Linux System Calls ··· 21

7. ADDRESSING MODES ·· 24

Register Addressing ·· 24

Immediate Addressing ·· 24

Direct Memory Addressing ··· 25

Direct-Offset Addressing ··· 25

Indirect Memory Addressing ··· 25

The MOV Instruction ··· 26

8. VARIABLES ··· 29

Allocating Storage Space for Initialized Data ··· 29

Allocating Storage Space for Uninitialized Data ·· 30

Multiple Definitions ·· 31

Multiple Initializations ·· 31

9. CONSTANTS ·· 33

iv

The EQU Directive ··· 33

The %assign Directive ··· 35

The %define Directive ··· 35

10. ARITHMETIC INSTRUCTIONS ··· 36

The INC Instruction ··· 36

The DEC Instruction··· 36

The ADD and SUB Instructions ·· 37

The MUL/IMUL Instruction ··· 41

The DIV/IDIV Instructions ··· 43

11. LOGICAL INSTRUCTIONS ·· 47

The AND Instruction ·· 47

The OR Instruction ·· 49

The XOR Instruction ·· 50

The TEST Instruction ··· 51

The NOT Instruction ·· 51

12. CONDITIONS ··· 52

CMP Instruction ·· 52

Conditional Jump ·· 54

13. LOOPS ··· 58

14. NUMBERS ··· 60

ASCII Representation ·· 61

BCD Representation ·· 62

15. STRINGS ·· 65

String Instructions ··· 65

MOVS·· 67

v

LODS ··· 68

STOS ··· 69

CMPS ·· 70

SCAS ·· 71

Repetition Prefixes ··· 73

16. ARRAYS ··· 74

17. PROCEDURES ·· 77

Stacks Data Structure ·· 78

18. RECURSION ··· 81

19. MACROS ·· 83

20. FILE MANAGEMENT ·· 86

File Descriptor ··· 86

File Pointer ··· 86

File Handling System Calls ··· 86

Creating and Opening a File ·· 87

Opening an Existing File ·· 87

Reading from a File ··· 87

Writing to a File ·· 88

Closing a File ··· 88

Updating a File ·· 88

21. MEMORY MANAGEMENT ··· 92

Assembly Programming

1

What is Assembly Language?

Each personal computer has a microprocessor that manages the computer's

arithmetical, logical, and control activities.

Each family of processors has its own set of instructions for handling various

operations such as getting input from keyboard, displaying information on

screen, and performing various other jobs. These set of instructions are called

'machine language instructions'.

A processor understands only machine language instructions, which are strings

of 1's and 0's. However, machine language is too obscure and complex for using

in software development. So, the low-level assembly language is designed for a

specific family of processors that represents various instructions in symbolic

code and a more understandable form.

Advantages of Assembly Language

Having an understanding of assembly language makes one aware of:

 How programs interface with OS, processor, and BIOS;

 How data is represented in memory and other external devices;

 How the processor accesses and executes instruction;

 How instructions access and process data;

 How a program accesses external devices.

Other advantages of using assembly language are:

 It requires less memory and execution time;

 It allows hardware-specific complex jobs in an easier way;

 It is suitable for time-critical jobs;

 It is most suitable for writing interrupt service routines and other memory

resident programs.

Basic Features of PC Hardware

The main internal hardware of a PC consists of processor, memory, and

registers. Registers are processor components that hold data and address. To

execute a program, the system copies it from the external device into the

internal memory. The processor executes the program instructions.

1. INTRODUCTION

Assembly Programming

2

The fundamental unit of computer storage is a bit; it could be ON (1) or OFF (0).

A group of nine related bits makes a byte, out of which eight bits are used for

data and the last one is used for parity. According to the rule of parity, the

number of bits that are ON (1) in each byte should always be odd.

So, the parity bit is used to make the number of bits in a byte odd. If the parity

is even, the system assumes that there had been a parity error (though rare),

which might have been caused due to hardware fault or electrical disturbance.

The processor supports the following data sizes:

 Word: a 2-byte data item

 Doubleword: a 4-byte (32 bit) data item

 Quadword: an 8-byte (64 bit) data item

 Paragraph: a 16-byte (128 bit) area

 Kilobyte: 1024 bytes

 Megabyte: 1,048,576 bytes

Binary Number System

Every number system uses positional notation, i.e., each position in which a digit

is written has a different positional value. Each position is power of the base,

which is 2 for binary number system, and these powers begin at 0 and increase

by 1.

The following table shows the positional values for an 8-bit binary number,

where all bits are set ON.

Bit value 1 1 1 1 1 1 1 1

Position
value as a

power of
base 2

128 64 32 16 8 4 2 1

Bit number 7 6 5 4 3 2 1 0

The value of a binary number is based on the presence of 1 bits and their
positional value. So, the value of a given binary number is:

1 + 2 + 4 + 8 +16 + 32 + 64 + 128 = 255

which is same as 28 - 1.

Assembly Programming

3

Hexadecimal Number System

Hexadecimal number system uses base 16. The digits in this system range from

0 to 15. By convention, the letters A through F is used to represent the

hexadecimal digits corresponding to decimal values 10 through 15.

Hexadecimal numbers in computing is used for abbreviating lengthy binary

representations. Basically, hexadecimal number system represents a binary data

by dividing each byte in half and expressing the value of each half-byte. The

following table provides the decimal, binary, and hexadecimal equivalents:

Decimal

number

Binary

representation

Hexadecimal

representation

0 0 0

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

6 110 6

7 111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

Assembly Programming

4

12 1100 C

13 1101 D

14 1110 E

15 1111 F

To convert a binary number to its hexadecimal equivalent, break it into groups

of 4 consecutive groups each, starting from the right, and write those groups

over the corresponding digits of the hexadecimal number.

Example: Binary number 1000 1100 1101 0001 is equivalent to hexadecimal -

8CD1.

To convert a hexadecimal number to binary, just write each hexadecimal digit

into its 4-digit binary equivalent.

Example: Hexadecimal number FAD8 is equivalent to binary - 1111 1010 1101

1000.

Binary Arithmetic

The following table illustrates four simple rules for binary addition:

(i) (ii) (iii) (iv)

 1

0 1 1 1

+0 +0 +1 +1

=0 =1 =10 =11

Rules (iii) and (iv) show a carry of a 1-bit into the next left position.

Assembly Programming

5

Example

Decimal Binary

60 00111100

+42 00101010

102 01100110

A negative binary value is expressed in two's complement notation.

According to this rule, to convert a binary number to its negative value is

to reverse its bit values and add 1.

Example

Number 53 00110101

Reverse the bits 11001010

Add 1 1

Number -53 11001011

To subtract one value from another, convert the number being subtracted to

two's complement format and add the numbers.

Example

Subtract 42 from 53.

Number 53 00110101

Number 42 00101010

Reverse the bits of 42 11010101

Add 1 1

Number -42 11010110

Assembly Programming

6

53 - 42 = 11 00001011

Overflow of the last 1 bit is lost.

Addressing Data in Memory

The process through which the processor controls the execution of instructions is

referred as the fetch-decode-execute cycle or the execution cycle. It

consists of three continuous steps:

 Fetching the instruction from memory

 Decoding or identifying the instruction

 Executing the instruction

The processor may access one or more bytes of memory at a time. Let us

consider a hexadecimal number 0725H. This number will require two bytes of

memory. The high-order byte or most significant byte is 07 and the low-order

byte is 25.

The processor stores data in reverse-byte sequence, i.e., a low-order byte is

stored in a low memory address and a high-order byte in high memory address.

So, if the processor brings the value 0725H from register to memory, it will

transfer 25 first to the lower memory address and 07 to the next memory

address.

x: memory address

When the processor gets the numeric data from memory to register, it again

reverses the bytes. There are two kinds of memory addresses:

 Absolute address – a direct reference of specific location.

 Segment address (or offset) – starting address of a memory segment with

the offset value.

Assembly Programming

7

Try it Option Online

We already have set up NASM assembler to experiment with Assembly

programming online, so that you can execute all the available examples online

at the same time when you are doing your theory work. This gives you

confidence in what you are reading and to check the result with different

options. Feel free to modify any example and execute it online.

Try the following example using our online compiler option available at

http://www.compileonline.com/

section . text

 global _start ; must be declared for linker (ld)

_start : ; tells linker entry point

 mov edx, len ; message length

 mov ecx, msg ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

msg db 'Hello, world!' , 0xa ; our dear string

len equ $ - msg ; length of our dear string

For most of the examples given in this tutorial, you will find a Try it option in our

website code sections at the top right corner that will take you to the online

compiler. So just make use of it and enjoy your learning.

Local Environment Setup

Assembly language is dependent upon the instruction set and the architecture of

the processor. In this tutorial, we focus on Intel 32 processors like Pentium. To

follow this tutorial, you will need:

 An IBM PC or any equivalent compatible computer

2. ENVIORNMENT SETUP

http://www.compileonline.com/

Assembly Programming

8

 A copy of Linux operating system

 A copy of NASM assembler program

There are many good assembler programs such as:

 Microsoft Assembler (MASM)

 Borland Turbo Assembler (TASM)

 The GNU assembler (GAS)

We will use the NASM assembler, as it is:

 Free. You can download it from various web sources.

 Well-documented and you will get lots of information on net.

 Could be used on both Linux and Windows.

Installing NASM

If you select "Development Tools" while installing Linux, you may get NASM

installed along with the Linux operating system and you do not need to

download and install it separately. For checking whether you already have NASM

installed, take the following steps:

1. Open a Linux terminal.

2. Type whereis nasm and press ENTER.

3. If it is already installed, then a line like, nasm: /usr/bin/nasm appears.

Otherwise, you will see just nasm:, then you need to install NASM.

To install NASM, take the following steps:

1. Check The netwide assembler (NASM) website for the latest version.

2. Download the Linux source archive nasm-X.XX.ta.gz, where X.XX is the

NASM version number in the archive.

3. Unpack the archive into a directory which creates a subdirectory nasm-X.

XX.

4. cd to nasm-X. XX and type ./configure . This shell script will find the best

C compiler to use and set up Makefiles accordingly.

5. Type make to build the nasm and ndisasm binaries.

6. Type make install to install nasm and ndisasm in /usr/local/bin and to

install the man pages.

This should install NASM on your system. Alternatively, you can use an RPM

distribution for the Fedora Linux. This version is simpler to install, just double-

click the RPM file.

Assembly Programming

9

An assembly program can be divided into three sections:

 The data section,

 The bss section, and

 The text section.

The data Section

The data section is used for declaring initialized data or constants. This data

does not change at runtime. You can declare various constant values, file

names, or buffer size, etc., in this section.

The syntax for declaring data section is:

section . data

The bss Section

The bss section is used for declaring variables. The syntax for declaring bss

section is:

section . bss

The text section

The text section is used for keeping the actual code. This section must begin

with the declaration global _start, which tells the kernel where the program

execution begins.

The syntax for declaring text section is:

section . text

 global _start

_start :

Comments

Assembly language comment begins with a semicolon (;). It may contain any

printable character including blank. It can appear on a line by itself, like:

3. BASIC SYNTAX

Assembly Programming

10

; This program displays a message on screen

or, on the same line along with an instruction, like:

add eax , ebx ; adds ebx to eax

Assembly Language Statements

Assembly language programs consist of three types of statements:

 Executable instructions or instructions,

 Assembler directives or pseudo-ops, and

 Macros.

The executable instructions or simply instructions tell the processor what to

do. Each instruction consists of an operation code (opcode). Each executable

instruction generates one machine language instruction.

The assembler directives or pseudo-ops tell the assembler about the various

aspects of the assembly process. These are non-executable and do not generate

machine language instructions.

Macros are basically a text substitution mechanism.

Syntax of Assembly Language Statements

Assembly language statements are entered one statement per line. Each

statement follows the following format:

[label] mnemonic [oper ands] [; comment]

The fields in the square brackets are optional. A basic instruction has two parts,

the first one is the name of the instruction (or the mnemonic), which is to be

executed, and the second are the operands or the parameters of the command.

Following are some examples of typical assembly language statements:

INC COUNT ; Increment the memory variable COUNT

MOV TOTAL, 48 ; Transfer the value 48 in the

 ; memory variable TOTAL

ADD AH, BH ; Add the content of the

 ; BH register into the AH register

AND MASK1, 128 ; Perform AND operation on the

 ; variable MASK1 and 128

ADD MARKS, 10 ; Add 10 to the variable MARKS

Assembly Programming

11

MOV AL, 10 ; Transfer the value 10 to the AL register

The Hello World Program in Assembly

The following assembly language code displays the string 'Hello World' on the

screen:

section . text

 global _start ; must be declared for linker (ld)

_start : ; tells linker entry point

 mov edx, len ; message length

 mov ecx, msg ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

msg db 'Hello, world!' , 0xa ; our dear string

len equ $ - msg ; length of our dear string

When the above code is compiled and executed, it produces the following result:

Hello , world !

Compiling and Linking an Assembly Program in NASM

Make sure you have set the path of nasm and ld binaries in your PATH

environment variable. Now, take the following steps for compiling and linking

the above program:

1. Type the above code using a text editor and save it as hello.asm.

2. Make sure that you are in the same directory as where you

saved hello.asm.

3. To assemble the program, type nasm -f elf hello.asm

4. If there is any error, you will be prompted about that at this stage.

Otherwise, an object file of your program named hello.o will be created.

Assembly Programming

12

5. To link the object file and create an executable file named hello, type ld -

m elf_i386 -s -o hello hello.o

6. Execute the program by typing ./hello

If you have done everything correctly, it will display ‘Hello, world!’ on the

screen.

Assembly Programming

13

We have already discussed the three sections of an assembly program. These

sections represent various memory segments as well.

Interestingly, if you replace the section keyword with segment, you will get the

same result. Try the following code:

segment . text ; code segment

 global _start ; must be declared for linker

_start : ; tell linker entry point

 mov edx, len ; message length

 mov ecx , msg ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system cal l number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

segment . data ; data segment

msg db 'Hello, world!' , 0xa ; our dear string

len equ $ - msg ; length of our dear str ing

When the above code is compiled and executed, it produces the following result:

Hello , world !

Memory Segments

A segmented memory model divides the system memory into groups of

independent segments referenced by pointers located in the segment registers.

Each segment is used to contain a specific type of data. One segment is used to

contain instruction codes, another segment stores the data elements, and a third

segment keeps the program stack.

In the light of the above discussion, we can specify various memory segments

as:

4. MEMORY SEGMENTS

Assembly Programming

14

 Data segment - It is represented by .data section and the .bss. The

.data section is used to declare the memory region, where data elements

are stored for the program. This section cannot be expanded after the

data elements are declared, and it remains static throughout the program.

The .bss section is also a static memory section that contains buffers for

data to be declared later in the program. This buffer memory is zero-

filled.

 Code segment - It is represented by .text section. This defines an area

in memory that stores the instruction codes. This is also a fixed area.

 Stack - This segment contains data values passed to functions and

procedures within the program.

Assembly Programming

15

Processor operations mostly involve processing data. This data can be stored in

memory and accessed from thereon. However, reading data from and storing

data into memory slows down the processor, as it involves complicated

processes of sending the data request across the control bus and into the

memory storage unit and getting the data through the same channel.

To speed up the processor operations, the processor includes some internal

memory storage locations, called registers.

The registers store data elements for processing without having to access the

memory. A limited number of registers are built into the processor chip.

Processor Registers

There are ten 32-bit and six 16-bit processor registers in IA-32 architecture. The

registers are grouped into three categories:

 General registers,

 Control registers, and

 Segment registers.

The general registers are further divided into the following groups:

 Data registers,

 Pointer registers, and

 Index registers.

Data Registers

Four 32-bit data registers are used for arithmetic, logical, and other operations.

These 32-bit registers can be used in three ways:

 As complete 32-bit data registers: EAX, EBX, ECX, EDX.

 Lower halves of the 32-bit registers can be used as four 16-bit data

registers: AX, BX, CX and DX.

 Lower and higher halves of the above-mentioned four 16-bit registers can

be used as eight 8-bit data registers: AH, AL, BH, BL, CH, CL, DH, and DL.

5. REGISTERS

Assembly Programming

16

Some of these data registers have specific use in arithmetical operations.

AX is the primary accumulator; it is used in input/output and most arithmetic

instructions. For example, in multiplication operation, one operand is stored in

EAX or AX or AL register according to the size of the operand.

BX is known as the base register, as it could be used in indexed addressing.

CX is known as the count register, as the ECX, CX registers store the loop

count in iterative operations.

DX is known as the data register. It is also used in input/output operations.

It is also used with AX register along with DX for multiply and divide operations

involving large values.

Pointer Registers

The pointer registers are 32-bit EIP, ESP, and EBP registers and corresponding

16-bit right portions IP, SP, and BP. There are three categories of pointer

registers:

 Instruction Pointer (IP) - The 16-bit IP register stores the offset

address of the next instruction to be executed. IP in association with the

CS register (as CS:IP) gives the complete address of the current

instruction in the code segment.

 Stack Pointer (SP) - The 16-bit SP register provides the offset value

within the program stack. SP in association with the SS register (SS:SP)

refers to be current position of data or address within the program stack.

 Base Pointer (BP) - The 16-bit BP register mainly helps in referencing

the parameter variables passed to a subroutine. The address in SS

register is combined with the offset in BP to get the location of the

parameter. BP can also be combined with DI and SI as base register for

special addressing.

Assembly Programming

17

Index Registers

The 32-bit index registers, ESI and EDI, and their 16-bit rightmost portions, SI

and DI, are used for indexed addressing and sometimes used in addition and

subtraction. There are two sets of index pointers:

 Source Index (SI) - It is used as source index for string operations.

 Destination Index (DI) - It is used as destination index for string

operations.

Control Registers

The 32-bit instruction pointer register and the 32-bit flags register combined are

considered as the control registers.

Many instructions involve comparisons and mathematical calculations and

change the status of the flags and some other conditional instructions test the

value of these status flags to take the control flow to other location.

The common flag bits are:

 Overflow Flag (OF): It indicates the overflow of a high-order bit

(leftmost bit) of data after a signed arithmetic operation.

 Direction Flag (DF): It determines left or right direction for moving or

comparing string data. When the DF value is 0, the string operation takes

left-to-right direction and when the value is set to 1, the string operation

takes right-to-left direction.

 Interrupt Flag (IF): It determines whether the external interrupts like

keyboard entry, etc., are to be ignored or processed. It disables the

external interrupt when the value is 0 and enables interrupts when set to

1.

Assembly Programming

18

 Trap Flag (TF): It allows setting the operation of the processor in single-

step mode. The DEBUG program we used sets the trap flag, so we could

step through the execution one instruction at a time.

 Sign Flag (SF): It shows the sign of the result of an arithmetic operation.

This flag is set according to the sign of a data item following the

arithmetic operation. The sign is indicated by the high-order of leftmost

bit. A positive result clears the value of SF to 0 and negative result sets it

to 1.

 Zero Flag (ZF): It indicates the result of an arithmetic or comparison

operation. A nonzero result clears the zero flag to 0, and a zero result sets

it to 1.

 Auxiliary Carry Flag (AF): It contains the carry from bit 3 to bit 4

following an arithmetic operation; used for specialized arithmetic. The AF

is set when a 1-byte arithmetic operation causes a carry from bit 3 into bit

4.

 Parity Flag (PF): It indicates the total number of 1-bits in the result

obtained from an arithmetic operation. An even number of 1-bits clears

the parity flag to 0 and an odd number of 1-bits sets the parity flag to 1.

 Carry Flag (CF): It contains the carry of 0 or 1 from a high-order bit

(leftmost) after an arithmetic operation. It also stores the contents of last

bit of a shift or rotate operation.

The following table indicates the position of flag bits in the 16-bit Flags register:

Flag: O D I T S Z A P C

Bit no: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment Registers

Segments are specific areas defined in a program for containing data, code and

stack. There are three main segments:

 Code Segment: It contains all the instructions to be executed. A 16-bit

Code Segment register or CS register stores the starting address of the

code segment.

 Data Segment: It contains data, constants and work areas. A 16-bit

Data Segment register or DS register stores the starting address of the

data segment.

 Stack Segment: It contains data and return addresses of procedures or

subroutines. It is implemented as a 'stack' data structure. The Stack

Segment register or SS register stores the starting address of the stack.

Assembly Programming

19

Apart from the DS, CS and SS registers, there are other extra segment registers

- ES (extra segment), FS and GS, which provide additional segments for storing

data.

In assembly programming, a program needs to access the memory locations. All

memory locations within a segment are relative to the starting address of the

segment. A segment begins in an address evenly divisible by 16 or hexadecimal

10. So, the rightmost hex digit in all such memory addresses is 0, which is not

generally stored in the segment registers.

The segment registers stores the starting addresses of a segment. To get the

exact location of data or instruction within a segment, an offset value (or

displacement) is required. To reference any memory location in a segment, the

processor combines the segment address in the segment register with the offset

value of the location.

Example:

Look at the following simple program to understand the use of registers in

assembly programming. This program displays 9 stars on the screen along with

a simple message:

section . text

 global _start ; must be declared for linker (gcc)

_start : ; tell linker entry point

 mov edx, len ; message length

 mov ecx, msg ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov edx, 9 ; message length

 mov ecx, s2 ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

msg db 'Displaying 9 stars' , 0xa ; a message

len equ $ - msg ; length of message

Assembly Programming

20

s2 times 9 db '*'

When the above code is compiled and executed, it produces the following result:

Displaying 9 stars

Assembly Programming

21

System calls are APIs for the interface between the user space and the kernel

space. We have already used the system calls, sys_write and sys_exit, for

writing into the screen and exiting from the program, respectively.

Linux System Calls

You can make use of Linux system calls in your assembly programs. You need to

take the following steps for using Linux system calls in your program:

 Put the system call number in the EAX register.

 Store the arguments to the system call in the registers EBX, ECX, etc.

 Call the relevant interrupt (80h).

 The result is usually returned in the EAX register.

There are six registers that store the arguments of the system call used. These

are the EBX, ECX, EDX, ESI, EDI, and EBP. These registers take the consecutive

arguments, starting with the EBX register. If there are more than six arguments,

then the memory location of the first argument is stored in the EBX register.

The following code snippet shows the use of the system call sys_exit:

mov eax, 1 ; system call number (sys_exit)

int 0x80 ; call kernel

The following code snippet shows the use of the system call sys_write:

mov edx, 4 ; message length

mov ecx, msg ; message to write

mov ebx, 1 ; file descriptor (stdout)

mov eax, 4 ; system call number (sys_write)

int 0x80 ; call kernel

All the syscalls are listed in /usr/include/asm/unistd.h, together with their

numbers (the value to put in EAX before you call int 80h).

The following table shows some of the system calls used in this tutorial:

%eax Name %ebx %ecx %edx %esx %edi

1 sys_exit int - - - -

6. SYSTEM CALLS

Assembly Programming

22

2 sys_fork struct pt_regs - - - -

3 sys_read unsigned int char * size_t - -

4 sys_write unsigned int const char * size_t - -

5 sys_open const char * int int - -

6 sys_close unsigned int - - - -

Example

The following example reads a number from the keyboard and displays it on the

screen:

section . data ; Data segment

 userMsg db 'Please enter a number: ' ; Ask the us er to enter a number

 lenUserMsg equ $ - userMsg ; The length of the message

 dispMsg db 'You have entered: '

 lenDispMsg equ $ - dispMsg

section . bss ; Uninitialized data

 num resb 5

section . text ; Code Segment

 global _start

_start :

 ; User prompt

 mov eax, 4

 mov ebx, 1

 mov ecx , userMsg

 mov edx, lenUserMsg

 int 80h

 ; Read and store the user input

 mov eax, 3

 mov ebx, 2

Assembly Programming

23

 mov ecx , num

 mov edx, 5 ; 5 bytes (numeric , 1 for sign) of that information

 int 80h

 ; Output the message 'The entered number is: '

 mov eax, 4

 mov ebx, 1

 mov ecx , dispMsg

 mov edx, lenDispMsg

 int 80h

 ; Output the number entered

 mov eax, 4

 mov ebx, 1

 mov ecx , num

 mov edx, 5

 int 80h

; Exit code

 mov eax, 1

 mov ebx, 0

 int 80h

When the above code is compiled and executed, it produces the following result:

Please enter a number :

1234

You have entered : 1234

Assembly Programming

24

Most assembly language instructions require operands to be processed. An

operand address provides the location, where the data to be processed is stored.

Some instructions do not require an operand, whereas some other instructions

may require one, two, or three operands.

When an instruction requires two operands, the first operand is generally the

destination, which contains data in a register or memory location and the second

operand is the source. Source contains either the data to be delivered

(immediate addressing) or the address (in register or memory) of the data.

Generally, the source data remains unaltered after the operation.

The three basic modes of addressing are:

 Register addressing

 Immediate addressing

 Memory addressing

Register Addressing

In this addressing mode, a register contains the operand. Depending upon the

instruction, the register may be the first operand, the second operand or both.

For example,

MOV DX, TAX_RATE ; Register in first operand

MOV COUNT, CX ; Register in second operand

MOV EAX, EBX ; Both the operands are in registers

As processing data between registers does not involve memory, it provides

fastest processing of data.

Immediate Addressing

An immediate operand has a constant value or an expression. When an

instruction with two operands uses immediate addressing, the first operand may

be a register or memory location, and the second operand is an immediate

constant. The first operand defines the length of the data.

For example,

BYTE_VALUE DB 150 ; A byte value is defined

WORD_VALUE DW 300 ; A word value is defined

7. ADDRESSING MODES

Assembly Programming

25

ADD BYTE_VALUE, 65 ; An immediate operand 65 is added

MOV AX, 45H ; Immediate constant 45H is transfe rred to AX

Direct Memory Addressing

When operands are specified in memory addressing mode, direct access to main

memory, usually to the data segment, is required. This way of addressing results

in slower processing of data. To locate the exact location of data in memory, we

need the segment start address, which is typically found in the DS register and

an offset value. This offset value is also called effective address.

In direct addressing mode, the offset value is specified directly as part of the

instruction, usually indicated by the variable name. The assembler calculates the

offset value and maintains a symbol table, which stores the offset values of all

the variables used in the program.

In direct memory addressing, one of the operands refers to a memory location

and the other operand references a register.

For example,

ADD BYTE_VALUE, DL ; Adds the register in the memory location

MOV BX, WORD_VALUE ; Operand from the memory is added to register

Direct-Offset Addressing

This addressing mode uses the arithmetic operators to modify an address. For

example, look at the following definitions that define tables of data:

BYTE_TABLE DB 14, 15, 22, 45 ; Tables of bytes

WORD_TABLE DW 134, 345, 564, 123 ; Tables of words

The following operations access data from the tables in the memory into

registers:

MOV CL, BYTE_TABLE[2] ; Gets the 3rd element of the BYTE_TABLE

MOV CL, BYTE_TABLE + 2 ; Gets the 3rd element of the BYTE_TABLE

MOV CX, WORD_TABLE[3] ; Gets the 4th element of the WORD_TABLE

MOV CX, WORD_TABLE + 3 ; Gets the 4th element of the WORD_TABLE

Indirect Memory Addressing

This addressing mode utilizes the computer's ability of Segment:Offset

addressing. Generally, the base registers EBX, EBP (or BX, BP) and the index

registers (DI, SI), coded within square brackets for memory references, are

used for this purpose.

Assembly Programming

26

Indirect addressing is generally used for variables containing several elements

like, arrays. Starting address of the array is stored in, say, the EBX register.

The following code snippet shows how to access different elements of the

variable.

MY_TABLE TIMES 10 DW 0 ; Allocates 10 words (2 bytes) each initialized to 0

MOV EBX, [MY_TABLE] ; Effective Address of MY_TABLE in EBX

MOV [EBX], 110 ; MY_TABLE[0] = 110

ADD EBX, 2 ; EBX = EBX +2

MOV [EBX], 123 ; MY_TABLE[1] = 123

The MOV Instruction

We have already used the MOV instruction that is used for moving data from one

storage space to another. The MOV instruction takes two operands.

Syntax

The syntax of the MOV instruction is:

MOV destination , source

The MOV instruction may have one of the following five forms:

MOV register , register

MOV register , immediate

MOV memory, immediate

MOV register , memory

MOV memory, register

Please note that:

 Both the operands in MOV operation should be of same size

 The value of source operand remains unchanged

The MOV instruction causes ambiguity at times. For example, look at the

statements:

MOV EBX, [MY_TABLE] ; Effective Address of MY_TABLE in EBX

MOV [EBX], 110 ; MY_TABLE[0] = 110

It is not clear whether you want to move a byte equivalent or word equivalent of

the number 110. In such cases, it is wise to use a type specifier.

Following table shows some of the common type specifiers:

Assembly Programming

27

Type Specifier Bytes addressed

BYTE 1

WORD 2

DWORD 4

QWORD 8

TBYTE 10

Example

The following program illustrates some of the concepts discussed above. It

stores a name 'Zara Ali' in the data section of the memory, then changes its

value to another name 'Nuha Ali' programmatically and displays both the names.

section . text

 global _start ; must be declared for linker (ld)

_start : ; tell linker entry point

; writing the name 'Zara Ali'

 mov edx, 9 ; message length

 mov ecx, name ; message to write

 mov ebx, 1 ; f ile descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov [name], dword 'Nuha' ; Changed the name to Nuha Ali

; writing the name 'Nuha Ali'

 mov edx, 8 ; message length

 mov ecx, name ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

Assembly Programming

28

 int 0x80 ; call kernel

section . data

name db 'Zara Ali '

When the above code is compiled and executed, it produces the following result:

Zara Ali Nuha Ali

Assembly Programming

29

NASM provides various define directives for reserving storage space for

variables. The define assembler directive is used for allocation of storage space.

It can be used to reserve as well as initialize one or more bytes.

Allocating Storage Space for Initialized Data

The syntax for storage allocation statement for initialized data is:

[variable - name] define - directive initial - value [, initi al - value]...

Where, variable-name is the identifier for each storage space. The assembler

associates an offset value for each variable name defined in the data segment.

There are five basic forms of the define directive:

Directive Purpose Storage Space

DB Define Byte allocates 1 byte

DW Define Word allocates 2 bytes

DD Define Doubleword allocates 4 bytes

DQ Define Quadword allocates 8 bytes

DT Define Ten Bytes allocates 10 bytes

Following are some examples of using define directives:

choice DB 'y'

number DW 12345

neg_number DW - 12345

big_number DQ 123456789

real_number1 DD 1.234

real_number2 DQ 123.456

8. VARIABLES

Assembly Programming

30

Please note that:

 Each byte of character is stored as its ASCII value in hexadecimal.

 Each decimal value is automatically converted to its 16-bit binary

equivalent and stored as a hexadecimal number.

 Processor uses the little-endian byte ordering.

 Negative numbers are converted to its 2's complement representation.

 Short and long floating-point numbers are represented using 32 or 64

bits, respectively.

The following program shows the use of define directive:

section . text

 global _start ; must be declared for linker (gcc)

_start : ; tell linker entry point

 mov edx, 1 ; message length

 mov ecx, choice ; message to write

 mov ebx, 1 ; file desc riptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

choice DB 'y'

When the above code is compiled and executed, it produces the following result:

y

Allocating Storage Space for Uninitialized Data

The reserve directives are used for reserving space for uninitialized data. The

reserve directives take a single operand that specifies the number of units of

space to be reserved. Each define directive has a related reserve directive.

There are five basic forms of the reserve directive:

Assembly Programming

31

Directive Purpose

RESB Reserve a Byte

RESW Reserve a Word

RESD Reserve a Doubleword

RESQ Reserve a Quadword

REST Reserve a Ten Bytes

Multiple Definitions

You can have multiple data definition statements in a program. For example:

choice DB 'Y' ; ASCII of y = 79H

number1 DW 12345 ; 12345D = 3039H

number2 DD 12345679 ; 123456789D = 75BCD15H

The assembler allocates contiguous memory for multiple variable definitions.

Multiple Initializations

The TIMES directive allows multiple initializations to the same value. For

example, an array named marks of size 9 can be defined and initialized to zero

using the following statement:

marks TIMES 9 DW 0

The TIMES directive is useful in defining arrays and tables. The following

program displays 9 asterisks on the screen:

section . text

 global _start ; must be declared for linker (ld)

_start : ; tell linker entry point

 mov edx, 9 ; message length

 mov ecx, sta rs ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

Assembly Programming

32

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

stars times 9 db '*'

When the above code is compiled and executed, it produces the following result:

Assembly Programming

33

There are several directives provided by NASM that define constants. We have

already used the EQU directive in previous chapters. We will particularly discuss

three directives:

 EQU

 %assign

 %define

The EQU Directive

The EQU directive is used for defining constants. The syntax of the EQU directive

is as follows:

CONSTANT_NAME EQU expression

For example,

TOTAL_STUDENTS equ 50

You can then use this constant value in your code, like:

mov ecx , TOTAL_STUDENTS

cmp eax , TOTAL_STUDENTS

The operand of an EQU statement can be an expression:

LENGTH equ 20

WIDTH equ 10

AREA equ length * width

Above code segment would define AREA as 200.

Example

The following example illustrates the use of the EQU directive:

SYS_EXIT equ 1

SYS_WRITE equ 4

STDIN equ 0

STDOUT equ 1

section . text

9. CONSTANTS

Assembly Programming

34

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx , msg1

 mov edx, len1

 int 0x80

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx , msg2

 mov edx, len2

 int 0x80

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx , msg3

 mov edx, len3

 int 0x80

 mov eax, SYS_EXIT ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

msg1 db 'Hello, programmers!' , 0xA, 0xD

len1 equ $ - msg1

msg2 db 'Welcome to the world of,' , 0xA, 0xD

len2 equ $ - msg2

msg3 db 'Linux assembly programming! '

len3 equ $ - msg3

When the above code is compiled and executed, it produces the following result:

Hello , programmers !

Welcome to the world of ,

Linux assembly programming !

Assembly Programming

35

The %assign Directive

The %assign directive can be used to define numeric constants like the EQU

directive. This directive allows redefinition. For example, you may define the

constant TOTAL as:

%assign TOTAL 10

Later in the code, you can redefine it as:

%assign TOTAL 20

This directive is case-sensitive.

The %define Directive

The %define directive allows defining both numeric and string constants. This

directive is similar to the #define in C. For example, you may define the

constant PTR as:

%define PTR [EBP+4]

The above code replaces PTR by [EBP+4].

This directive also allows redefinition and it is case-sensitive.

Assembly Programming

36

The INC Instruction

The INC instruction is used for incrementing an operand by one. It works on a

single operand that can be either in a register or in memory.

Syntax

The INC instruction has the following syntax:

INC destination

The operand destination could be an 8-bit, 16-bit or 32-bit operand.

Example

INC EBX ; Increments 32- bit register

INC DL ; Increments 8- bit register

INC [count] ; Increments the count variable

The DEC Instruction

The DEC instruction is used for decrementing an operand by one. It works on a

single operand that can be either in a register or in memory.

Syntax

The DEC instruction has the following syntax:

DEC destination

The operand destination could be an 8-bit, 16-bit or 32-bit operand.

Example

segment . data

 count dw 0

 value db 15

segment . text

 inc [count]

 dec [value]

 mov ebx, count

10. ARITHMETIC INSTRUCTIONS

Assembly Programming

37

 inc word [ebx]

 mov esi , value

 dec byte [esi]

The ADD and SUB Instructions

The ADD and SUB instructions are used for performing simple

addition/subtraction of binary data in byte, word and doubleword size, i.e., for

adding or subtracting 8-bit, 16-bit or 32-bit operands, respectively.

Syntax

The ADD and SUB instructions have the following syntax:

ADD/ SUB destination , source

The ADD/SUB instruction can take place between:

 Register to register

 Memory to register

 Register to memory

 Register to constant data

 Memory to constant data

However, like other instructions, memory-to-memory operations are not possible

using ADD/SUB instructions. An ADD or SUB operation sets or clears the

overflow and carry flags.

Example

The following example will ask two digits from the user, store the digits in the

EAX and EBX register, respectively, add the values, store the result in a memory

location 'res' and finally display the result.

SYS_EXIT equ 1

SYS_READ equ 3

SYS_WRITE equ 4

STDIN equ 0

STDOUT equ 1

segment . data

 msg1 db "Enter a digi t " , 0xA, 0xD

Assembly Programming

38

 len1 equ $ - msg1

 msg2 db "Please enter a second digit" , 0xA, 0xD

 len2 equ $ - msg2

 msg3 db "The sum is: "

 len3 equ $ - msg3

segment . bss

 num1 resb 2

 num2 resb 2

 res resb 1

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx , msg1

 mov edx, len1

 int 0x80

 mov eax, SYS_READ

 mov ebx, STDIN

 mov ecx , num1

 mov edx, 2

 int 0x80

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx , msg2

 mov edx, len2

 int 0x80

Assembly Programming

39

 mov eax, SYS_READ

 mov ebx, STDIN

 mov ecx , num2

 mov edx, 2

 int 0x80

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx , msg3

 mov edx, len3

 int 0x80

 ; moving the first number to eax register and second number to ebx

 ; and subtractin g ascii '0' to convert it into a decimal number

 mov eax, [number1]

 sub eax, '0'

 mov ebx, [number2]

 sub ebx, '0'

 ; add eax and ebx

 add eax , ebx

 ; add '0' to to convert the sum from decimal to ASCII

 add eax , '0'

 ; storin g the sum in memory location res

 mov [res], eax

 ; print the sum

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx , res

 mov edx, 1

 int 0x80

Assembly Programming

40

exit :

 mov eax, SYS_EXIT

 xor ebx , ebx

 int 0x80

When the above code is compiled and executed, it produces the following result:

Enter a digit :

3

Please enter a second digit :

4

The sum is :

7

The program with hardcoded variables:

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov eax, '3'

 sub eax, '0'

 mov ebx, '4'

 sub ebx, '0'

 add eax, ebx

 add eax, '0'

 mov [sum], eax

 mov ecx, msg

 mov edx, len

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; cal l kernel

 mov ecx, sum

 mov edx, 1

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

Assembly Programming

41

 int 0x80 ; call kernel

section . data

 msg db "The sum is:" , 0xA, 0xD

 len eq u $ - msg

 segment . bss

 sum resb 1

When the above code is compiled and executed, it produces the following result:

The sum is :

7

The MUL/IMUL Instruction

There are two instructions for multiplying binary data. The MUL (Multiply)

instruction handles unsigned data and the IMUL (Integer Multiply) handles

signed data. Both instructions affect the Carry and Overflow flag.

Syntax

The syntax for the MUL/IMUL instructions is as follows:

MUL/ IMUL multiplier

Multiplicand in both cases will be in an accumulator, depending upon the size of

the multiplicand and the multiplier and the generated product is also stored in

two registers depending upon the size of the operands. Following section

explains MUL instructions with three different cases:

SN Scenarios

1 When two bytes are multiplied -

The multiplicand is in the AL register, and the multiplier is a byte in the

memory or in another register. The product is in AX. High-order 8 bits of

the product is stored in AH and the low-order 8 bits are stored in AL.

2 When two one-word values are multiplied -

The multiplicand should be in the AX register, and the multiplier is a word

Assembly Programming

42

in memory or another register. For example, for an instruction like MUL

DX, you must store the multiplier in DX and the multiplicand in AX.

The resultant product is a doubleword, which will need two registers. The

high-order (leftmost) portion gets stored in DX and the lower-order

(rightmost) portion gets stored in AX.

3 When two doubleword values are multiplied -

When two doubleword values are multiplied, the multiplicand should be in

EAX and the multiplier is a doubleword value stored in memory or in

another register. The product generated is stored in the EDX:EAX

registers, i.e., the high order 32 bits gets stored in the EDX register and

the low order 32-bits are stored in the EAX register.

Example

MOV AL, 10

MOV DL, 25

MUL DL

...

MOV DL, 0FFH ; DL= - 1

MOV AL, 0BEH ; AL = - 66

IMUL DL

Example

The following example multiplies 3 with 2, and displays the result:

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov al , '3'

 sub al , '0'

 mov bl , '2'

Assembly Programming

43

 sub bl , '0'

 mul bl

 add al , '0'

 mov [res], al

 mov ecx, msg

 mov edx, len

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov ecx, res

 mov edx, 1

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; syst em call number (sys_exit)

 int 0x80 ; call kernel

section . data

msg db "The result is:" , 0xA, 0xD

len equ $ - msg

segment . bss

res resb 1

When the above code is compiled and executed, it produces the following result:

The result is :

6

The DIV/IDIV Instructions

The division operation generates two elements - a quotient and a remainder.

In case of multiplication, overflow does not occur because double-length

registers are used to keep the product. However, in case of division, overflow

may occur. The processor generates an interrupt if overflow occurs.

The DIV (Divide) instruction is used for unsigned data and the IDIV (Integer

Divide) is used for signed data.

Syntax

Assembly Programming

44

The format for the DIV/IDIV instruction:

DIV/ IDIV divisor

The dividend is in an accumulator. Both the instructions can work with 8-bit, 16-

bit or 32-bit operands. The operation affects all six status flags. Following

section explains three cases of division with different operand size:

SN Scenarios

1 When the divisor is 1 byte -

The dividend is assumed to be in the AX register (16 bits). After division,

the quotient goes to the AL register and the remainder goes to the AH

register.

2 When the divisor is 1 word -

The dividend is assumed to be 32 bits long and in the DX:AX registers.

The high-order 16 bits are in DX and the low-order 16 bits are in AX.

After division, the 16-bit quotient goes to the AX register and the 16-bit

remainder goes to the DX register.

3 When the divisor is doubleword -

The dividend is assumed to be 64 bits long and in the EDX:EAX registers.

The high-order 32 bits are in EDX and the low-order 32 bits are in EAX.

After division, the 32-bit quotient goes to the EAX register and the 32-bit

remainder goes to the EDX register.

Assembly Programming

45

Example

The following example divides 8 with 2. The dividend 8 is stored in the 16-bit

AX register and the divisor 2 is stored in the 8-bit BL register.

section . text

 global _start ; must be declared for using gcc

_start : ; te ll linker entry point

 mov ax, '8'

 sub ax, '0'

 mov bl , '2'

 sub bl , '0'

 div bl

 add ax, '0'

 mov [res], ax

 mov ecx, msg

 mov edx, len

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov ecx, res

 mov edx, 1

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

Assembly Programming

46

msg db "The result is:" , 0xA, 0xD

len equ $ - msg

segment . bss

res resb 1

When the above code is compiled and executed, it produces the following result:

The result is :

4

Assembly Programming

47

The processor instruction set provides the instructions AND, OR, XOR, TEST, and

NOT Boolean logic, which tests, sets, and clears the bits according to the need of

the program.

The format for these instructions:

SN Instruction Format

1 AND AND operand1, operand2

2 OR OR operand1, operand2

3 XOR XOR operand1, operand2

4 TEST TEST operand1, operand2

5 NOT NOT operand1

The first operand in all the cases could be either in register or in memory. The

second operand could be either in register/memory or an immediate (constant)

value. However, memory-to-memory operations are not possible. These

instructions compare or match bits of the operands and set the CF, OF, PF, SF

and ZF flags.

The AND Instruction

The AND instruction is used for supporting logical expressions by performing

bitwise AND operation. The bitwise AND operation returns 1, if the matching bits

from both the operands are 1, otherwise it returns 0. For example:

 Operand1: 0101

 Operand2: 0011

After AND - > Operand1: 0001

The AND operation can be used for clearing one or more bits. For example, say

the BL register contains 0011 1010. If you need to clear the high-order bits to

zero, you AND it with 0FH.

11. LOGICAL INSTRUCTIONS

Assembly Programming

48

AND BL, 0FH ; This sets BL to 0000 1010

Let's take up another example. If you want to check whether a given number is

odd or even, a simple test would be to check the least significant bit of the

number. If this is 1, the number is odd, else the number is even.

Assuming the number is in AL register, we can write:

AND AL, 01H ; ANDing with 0000 0001

JZ EVEN_NUMBER

The following program illustrates this:

Example

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov ax , 8h ; getting 8 in the ax

 and ax, 1 ; and ax with 1

 jz evnn

 mov eax , 4 ; system call number (sys_write)

 mov ebx , 1 ; file descriptor (stdout)

 mov ecx , odd_msg ; message to write

 mov edx , len2 ; length of message

 int 0x80 ; call kernel

 jmp outprog

evnn:

 mov ah , 09h

 mov eax , 4 ; system call number (sys_write)

 mov ebx , 1 ; file descriptor (stdout)

 mov ecx , even_msg ; message to write

 mov edx , len1 ; lengt h of message

 int 0x80 ; call kernel

outprog :

 mov eax , 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

even_msg db 'Even Number!' ; message showing even number

Assembly Programming

49

len1 equ $ - even_msg

odd_msg db 'Odd Number!' ; message showing odd number

len2 equ $ - odd_msg

When the above code is compiled and executed, it produces the following result:

Even Number!

Change the value in the ax register with an odd digit, like:

mov ax , 9h ; getting 9 in the ax

The program would display:

Odd Number!

Similarly, to clear the entire register, you can AND it with 00H.

The OR Instruction

The OR instruction is used for supporting logical expression by performing

bitwise OR operation. The bitwise OR operator returns 1, if the matching bits

from either or both operands are one. It returns 0, if both the bits are zero.

For example,

 Operand1: 0101

 Operand2: 0011

After OR - > Operand1: 0111

The OR operation can be used for setting one or more bits. For example, let us

assume the AL register contains 0011 1010, you need to set the four low-order

bits, you can OR it with a value 0000 1111, i.e., FH.

OR BL, 0FH ; This sets BL to 0011 1111

Example

The following example demonstrates the OR instruction. Let us store the value 5

and 3 in the AL and the BL registers, respectively, then the instruction,

OR AL, BL

should store 7 in the AL register:

section . t ext

Assembly Programming

50

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov al , 5 ; getting 5 in the al

 mov bl , 3 ; getting 3 in the bl

 or al , bl ; or al and bl registers , result should be 7

 add al , byte '0' ; converting decimal to ascii

 mov [result], al

 mov eax , 4

 mov ebx , 1

 mov ecx , result

 mov edx , 1

 int 0x80

outprog :

 mov eax , 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . bss

result resb 1

When the above code is compiled and executed, it produces the following result:

7

The XOR Instruction

The XOR instruction implements the bitwise XOR operation. The XOR operation

sets the resultant bit to 1, if and only if the bits from the operands are different.

If the bits from the operands are same (both 0 or both 1), the resultant bit is

cleared to 0.

For example,

 Operand1: 0101

 Operand2: 0011

After XOR - > Operand1: 0110

XORing an operand with itself changes the operand to 0. This is used to clear a

register.

Assembly Programming

51

XOR EAX , EAX

The TEST Instruction

The TEST instruction works same as the AND operation, but unlike AND

instruction, it does not change the first operand. So, if we need to check

whether a number in a register is even or odd, we can also do this using the

TEST instruction without changing the original number.

TEST AL , 01H

JZ EVEN_NUMBER

The NOT Instruction

The NOT instruction implements the bitwise NOT operation. NOT operation

reverses the bits in an operand. The operand could be either in a register or in

the memory.

For example,

 Operand1: 0101 0011

Aft er NOT - > Operand1: 1010 1100

Assembly Programming

52

Conditional execution in assembly language is accomplished by several looping

and branching instructions. These instructions can change the flow of control in a

program. Conditional execution is observed in two scenarios:

SN Conditional Instructions

1 Unconditional jump

This is performed by the JMP instruction. Conditional execution often

involves a transfer of control to the address of an instruction that does

not follow the currently executing instruction. Transfer of control may be

forward, to execute a new set of instructions or backward, to re-execute

the same steps.

2 Conditional jump

This is performed by a set of jump instructions j<condition> depending

upon the condition. The conditional instructions transfer the control by

breaking the sequential flow and they do it by changing the offset value

in IP.

Let us discuss the CMP instruction before discussing the conditional instructions.

CMP Instruction

The CMP instruction compares two operands. It is generally used in conditional

execution. This instruction basically subtracts one operand from the other for

comparing whether the operands are equal or not. It does not disturb the

destination or source operands. It is used along with the conditional jump

instruction for decision making.

Syntax

CMP destination , source

CMP compares two numeric data fields. The destination operand could be either

in register or in memory. The source operand could be a constant (immediate)

data, register or memory.

Example

CMP DX, 00 ; Compare the DX value with zero

12. CONDITIONS

Assembly Programming

53

JE L7 ; If yes, then jump to label L7

.

.

L7: ...

CMP is often used for comparing whether a counter value has reached the

number of times a loop needs to be run. Consider the following typical condition:

INC EDX

CMP EDX, 10 ; Compares whether the counter has reached 10

JLE LP1 ; If it is less than or equal to 10, then jump to LP1

Unconditional Jump

As mentioned earlier, this is performed by the JMP instruction. Conditional

execution often involves a transfer of control to the address of an instruction

that does not follow the currently executing instruction. Transfer of control may

be forward, to execute a new set of instructions or backward, to re-execute the

same steps.

Syntax

The JMP instruction provides a label name where the flow of control is

transferred immediately. The syntax of the JMP instruction is:

JMP label

Example

The following code snippet illustrates the JMP instruction:

MOV AX, 00 ; Initializing AX to 0

MOV BX, 00 ; Initializing BX to 0

MOV CX, 01 ; Initializing CX to 1

L20:

ADD AX, 01 ; Increment AX

ADD BX, AX ; Add AX to BX

SHL CX, 1 ; shift left CX , this in turn doubles the CX value

JMP L20 ; repeats the statements

Assembly Programming

54

Conditional Jump

If some specified condition is satisfied in conditional jump, the control flow is

transferred to a target instruction. There are numerous conditional jump

instructions depending upon the condition and data.

Following are the conditional jump instructions used on signed data used for

arithmetic operations:

Instruction Description Flags tested

JE/JZ Jump Equal or Jump Zero ZF

JNE/JNZ Jump not Equal or Jump Not Zero ZF

JG/JNLE Jump Greater or Jump Not Less/Equal OF, SF, ZF

JGE/JNL Jump Greater or Jump Not Less OF, SF

JL/JNGE Jump Less or Jump Not Greater/Equal OF, SF

JLE/JNG Jump Less/Equal or Jump Not Greater OF, SF, ZF

Following are the conditional jump instructions used on unsigned data used for

logical operations:

Instruction Description Flags tested

JE/JZ Jump Equal or Jump Zero ZF

JNE/JNZ Jump not Equal or Jump Not Zero ZF

JA/JNBE Jump Above or Jump Not Below/Equal CF, ZF

JAE/JNB Jump Above/Equal or Jump Not Below CF

JB/JNAE Jump Below or Jump Not Above/Equal CF

JBE/JNA Jump Below/Equal or Jump Not Above AF, CF

Assembly Programming

55

The following conditional jump instructions have special uses and check the

value of flags:

Instruction Description Flags tested

JXCZ Jump if CX is Zero none

JC Jump If Carry CF

JNC Jump If No Carry CF

JO Jump If Overflow OF

JNO Jump If No Overflow OF

JP/JPE Jump Parity or Jump Parity Even PF

JNP/JPO Jump No Parity or Jump Parity Odd PF

JS Jump Sign (negative value) SF

JNS Jump No Sign (positive value) SF

The syntax for the J<condition> set of instructions:

Example

CMP AL, BL

JE EQUAL

CMP AL, BH

JE EQUAL

CMP AL, CL

JE EQUAL

NON_EQUAL: ...

EQUAL: ...

Assembly Programming

56

Example

The following program displays the largest of three variables. The variables are

double-digit variables. The three variables num1, num2 and num3 have values

47, 72 and 31, respectively:

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov ecx , [num1]

 cmp ecx , [num2]

 jg check_third_num

 mov ecx , [num3]

 check_third_num :

 cmp e cx, [num3]

 jg _exit

 mov ecx , [num3]

 _exit :

 mov [largest], ecx

 mov ecx , msg

 mov edx , len

 mov ebx , 1 ; file descriptor (stdout)

 mov eax , 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov ecx , largest

 mov edx , 2

 mov ebx , 1 ; file descriptor (stdout)

 mov eax , 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax , 1

 int 80h

section . data

 msg db "The largest digit is: " , 0xA, 0xD

Assembly Programming

57

 len equ $ - msg

 num1 dd '47'

 num2 dd '22'

 num3 dd '31'

segment . bss

 largest resb 2

When the above code is compiled and executed, it produces the following result:

The largest digit is :

47

Assembly Programming

58

The JMP instruction can be used for implementing loops. For example, the

following code snippet can be used for executing the loop-body 10 times.

MOV CL, 10

L1:

<LOOP- BODY>

DEC CL

JNZ L1

The processor instruction set, however, includes a group of loop instructions for

implementing iteration. The basic LOOP instruction has the following syntax:

LOOP label

Where, label is the target label that identifies the target instruction as in the

jump instructions. The LOOP instruction assumes that the ECX register

contains the loop count. When the loop instruction is executed, the ECX

register is decremented and the control jumps to the target label, until the ECX

register value, i.e., the counter reaches the value zero.

The above code snippet could be written as:

mov ECX, 10

l1 :

<loop body >

loop l1

Example

The following program prints the number 1 to 9 on the screen:

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov ecx , 10

 mov eax, '1'

l1 :

13. LOOPS

Assembly Programming

59

 mov [num], eax

 mov eax, 4

 mov ebx, 1

 push ecx

 mov ecx , num

 mov edx, 1

 int 0x80

 mov eax, [num]

 sub eax, '0'

 inc eax

 add eax , '0'

 pop ecx

 loop l1

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . bss

num resb 1

When the above code is compiled and executed, it produces the following result:

123456789:

Assembly Programming

60

Numerical data is generally represented in binary system. Arithmetic instructions

operate on binary data. When numbers are displayed on screen or entered from

keyboard, they are in ASCII form.

So far, we have converted this input data in ASCII form to binary for arithmetic

calculations and converted the result back to binary. The following code shows

this:

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov eax, '3'

 sub eax, '0'

 mov ebx, '4'

 sub ebx, '0'

 add eax, ebx

 add eax, '0'

 mov [sum], eax

 mov ecx, msg

 mov edx, len

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov ecx, sum

 mov edx, 1

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

msg db "The sum is:" , 0xA, 0xD

len equ $ - msg

14. NUMBERS

Assembly Programming

61

segment . bss

sum resb 1

When the above code is compiled and executed, it produces the following result:

The sum is :

7

Such conversions, however, have an overhead, and assembly language

programming allows processing numbers in a more efficient way, in the binary

form. Decimal numbers can be represented in two forms:

 ASCII form

 BCD or Binary Coded Decimal form

ASCII Representation

In ASCII representation, decimal numbers are stored as string of ASCII

characters. For example, the decimal value 1234 is stored as:

31 32 33 34H

Where, 31H is ASCII value for 1, 32H is ASCII value for 2, and so on. There are

four instructions for processing numbers in ASCII representation:

 AAA - ASCII Adjust After Addition

 AAS - ASCII Adjust After Subtraction

 AAM - ASCII Adjust After Multiplication

 AAD - ASCII Adjust Before Division

These instructions do not take any operands and assume the required operand

to be in the AL register.

The following example uses the AAS instruction to demonstrate the concept:

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 sub ah, ah

 mov al , '9'

 sub al , '3'

 aas

 or al , 30h

Assembly Programming

62

 mov [res], ax

 mov edx, len ; message length

 mov ecx, msg ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov edx, 1 ; message length

 mov ecx, res ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

msg db 'The Result is:' , 0xa

len equ $ - msg

section . bss

res resb 1

When the above code is compiled and executed, it produces the following result:

The Result is :

6

BCD Representation

There are two types of BCD representation:

 Unpacked BCD representation

 Packed BCD representation

In unpacked BCD representation, each byte stores the binary equivalent of a

decimal digit. For example, the number 1234 is stored as:

01 02 03 04H

Assembly Programming

63

There are two instructions for processing these numbers:

 AAM - ASCII Adjust After Multiplication

 AAD - ASCII Adjust Before Division

The four ASCII adjust instructions, AAA, AAS, AAM, and AAD, can also be used

with unpacked BCD representation. In packed BCD representation, each digit is

stored using four bits. Two decimal digits are packed into a byte. For example,

the number 1234 is stored as:

12 34H

There are two instructions for processing these numbers:

 DAA - Decimal Adjust After Addition

 DAS - decimal Adjust After Subtraction

There is no support for multiplication and division in packed BCD representation.

Example

The following program adds up two 5-digit decimal numbers and displays the

sum. It uses the above concepts:

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov esi , 4 ; pointing to the rightmost digit

 mov ecx , 5 ; num of digit s

 clc

add_loop :

 mov al , [num1 + esi]

 adc al , [num2 + esi]

 aaa

 pushf

 or al , 30h

 popf

 mov [sum + esi], al

 dec esi

 loop add_loop

Assembly Programming

64

 mov edx, len ; message length

 mov ecx, msg ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov edx, 5 ; message length

 mov ecx, sum ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

 i nt 0x80 ; call kernel

section . data

msg db 'The Sum is:' , 0xa

len equ $ - msg

num1 db '12345'

num2 db '23456'

sum db ' '

When the above code is compiled and executed, it produces the following result:

The Sum is :

35801

Assembly Programming

65

We have already used variable length strings in our previous examples. The

variable length strings can have as many characters as required. Generally, we

specify the length of the string by either of the two ways:

 Explicitly storing string length

 Using a sentinel character

We can store the string length explicitly by using the $ location counter symbol

that represents the current value of the location counter. In the following

example:

msg db 'Hello, world!' , 0xa ; our dear string

len equ $ - msg ; length of our dear string

$ points to the byte after the last character of the string variable msg.

Therefore, $ - msg gives the length of the string. We can also write

msg db 'Hello, world!' , 0xa ; our dear string

len equ 13 ; length of our dear string

Alternatively, you can store strings with a trailing sentinel character to delimit a

string instead of storing the string length explicitly. The sentinel character

should be a special character that does not appear within a string.

For example:

message DB 'I am loving it!' , 0

String Instructions

Each string instruction may require a source operand, a destination operand or

both. For 32-bit segments, string instructions use ESI and EDI registers to point

to the source and destination operands, respectively.

For 16-bit segments, however, the SI and the DI registers are used to point to

the source and destination, respectively.

There are five basic instructions for processing strings. They are:

 MOVS - This instruction moves 1 Byte, Word or Doubleword of data from

memory location to another.

15. STRINGS

Assembly Programming

66

 LODS - This instruction loads from memory. If the operand is of one byte,

it is loaded into the AL register, if the operand is one word, it is loaded

into the AX register and a doubleword is loaded into the EAX register.

 STOS - This instruction stores data from register (AL, AX, or EAX) to

memory.

 CMPS - This instruction compares two data items in memory. Data could

be of a byte size, word or doubleword.

 SCAS - This instruction compares the contents of a register (AL, AX or

EAX) with the contents of an item in memory.

Each of the above instruction has a byte, word, and doubleword version; and

string instructions can be repeated by using a repetition prefix.

These instructions use the ES:DI and DS:SI pair of registers, where DI and SI

registers contain valid offset addresses that refers to bytes stored in memory. SI

is normally associated with DS (data segment) and DI is always associated with

ES (extra segment).

The DS:SI (or ESI) and ES:DI (or EDI) registers point to the source and

destination operands, respectively. The source operand is assumed to be at

DS:SI (or ESI) and the destination operand at ES:DI (or EDI) in memory.

For 16-bit addresses, the SI and DI registers are used, and for 32-bit addresses,

the ESI and EDI registers are used.

The following table provides various versions of string instructions and the

assumed space of the operands.

Basic

Instruction

Operands

at

Byte

Operation

Word

Operation

Double word

Operation

MOVS ES:DI,

DS:EI

MOVSB MOVSW MOVSD

LODS AX, DS:SI LODSB LODSW LODSD

STOS ES:DI, AX STOSB STOSW STOSD

CMPS DS:SI, ES:

DI

CMPSB CMPSW CMPSD

SCAS ES:DI, AX SCASB SCASW SCASD

Assembly Programming

67

MOVS

The MOVS instruction is used to copy a data item (byte, word or doubleword)

from the source string to the destination string. The source string is pointed by

DS:SI and the destination string is pointed by ES:DI.

The following example explains the concept:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov ecx, len

 mov esi, s1

 mov edi, s2

 cld

 rep movsb

 mov edx,20 ;message length

 mov ecx,s2 ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

s1 db 'Hello, world!',0 ;string 1

len equ $-s1

section .bss

s2 resb 20 ;destination

When the above code is compiled and executed, it produces the following result:

Hello, world!

Assembly Programming

68

LODS

In cryptography, a Caesar cipher is one of the simplest known encryption

techniques. In this method, each letter in the data to be encrypted is replaced

by a letter some fixed number of positions down the alphabet.

In this example, let us encrypt a data by simply replacing each alphabet in it

with a shift of two alphabets, so a will be substituted by c, b with d and so on.

We use LODS to load the original string 'password' into the memory.

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov ecx, len

 mov esi, s1

 mov edi, s2

loop_here:

 lodsb

 add al, 02

 stosb

 loop loop_here

 cld

 rep movsb

 mov edx,20 ;message length

 mov ecx,s2 ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

s1 db 'password', 0 ;source

len equ $-s1

section .bss

Assembly Programming

69

s2 resb 10 ;destination

When the above code is compiled and executed, it produces the following result:

rcuuyqtf

STOS

The STOS instruction copies the data item from AL (for bytes - STOSB), AX (for

words - STOSW) or EAX (for doublewords - STOSD) to the destination string,

pointed to by ES:DI in memory.

The following example demonstrates use of the LODS and STOS instruction to

convert an upper case string to its lower case value:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov ecx, len

 mov esi, s1

 mov edi, s2

loop_here:

 lodsb

 or al, 20h

 stosb

 loop loop_here

 cld

 rep movsb

 mov edx,20 ;message length

 mov ecx,s2 ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

Assembly Programming

70

s1 db 'HELLO, WORLD', 0 ;source

len equ $-s1

section .bss

s2 resb 20 ;destination

When the above code is compiled and executed, it produces the following result:

hello, world

CMPS

The CMPS instruction compares two strings. This instruction compares two data

items of one byte, word or doubleword, pointed to by the DS:SI and ES:DI

registers and sets the flags accordingly. You can also use the conditional jump

instructions along with this instruction.

The following example demonstrates comparing two strings using the CMPS

instruction:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov esi, s1

 mov edi, s2

 mov ecx, lens2

 cld

 repe cmpsb

 jecxz equal ;jump when ecx is zero

 ;If not equal then the following code

 mov eax, 4

 mov ebx, 1

 mov ecx, msg_neq

 mov edx, len_neq

 int 80h

 jmp exit

equal:

Assembly Programming

71

 mov eax, 4

 mov ebx, 1

 mov ecx, msg_eq

 mov edx, len_eq

 int 80h

exit:

 mov eax, 1

 mov ebx, 0

 int 80h

section .data

s1 db 'Hello, world!',0 ;our first string

lens1 equ $-s1

s2 db 'Hello, there!', 0 ;our second string

lens2 equ $-s2

msg_eq db 'Strings are equal!', 0xa

len_eq equ $-msg_eq

msg_neq db 'Strings are not equal!'

len_neq equ $-msg_neq

When the above code is compiled and executed, it produces the following result:

Strings are not equal!

SCAS

The SCAS instruction is used for searching a particular character or set of

characters in a string. The data item to be searched should be in AL (for

SCASB), AX (for SCASW) or EAX (for SCASD) registers. The string to be

searched should be in memory and pointed by the ES:DI (or EDI) register.

Look at the following program to understand the concept:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

Assembly Programming

72

 mov ecx,len

 mov edi,my_string

 mov al , 'e'

 cld

 repne scasb

 je found ; when found

 ; If not not then the following code

 mov eax,4

 mov ebx,1

 mov ecx,msg_notfound

 mov edx,len_notfound

 int 80h

 jmp exit

found:

 mov eax,4

 mov ebx,1

 mov ecx,msg_found

 mov edx,len_found

 int 80h

exit:

 mov eax,1

 mov ebx,0

 int 80h

section .data

my_string db 'hello world', 0

len equ $-my_string

msg_found db 'found!', 0xa

len_found equ $-msg_found

msg_notfound db 'not found!'

len_notfound equ $-msg_notfound

Assembly Programming

73

When the above code is compiled and executed, it produces the following result:

found!

Repetition Prefixes

The REP prefix, when set before a string instruction, for example - REP MOVSB,

causes repetition of the instruction based on a counter placed at the CX register.

REP executes the instruction, decreases CX by 1, and checks whether CX is zero.

It repeats the instruction processing until CX is zero.

The Direction Flag (DF) determines the direction of the operation.

 Use CLD (Clear Direction Flag, DF = 0) to make the operation left to right.

 Use STD (Set Direction Flag, DF = 1) to make the operation right to left.

The REP prefix also has the following variations:

 REP: It is the unconditional repeat. It repeats the operation until CX is

zero.

 REPE or REPZ: It is conditional repeat. It repeats the operation while the

zero flag indicates equal/zero. It stops when the ZF indicates not

equal/zero or when CX is zero.

 REPNE or REPNZ: It is also conditional repeat. It repeats the operation

while the zero flag indicates not equal/zero. It stops when the ZF indicates

equal/zero or when CX is decremented to zero.

Assembly Programming

74

We have already discussed that the data definition directives to the assembler

are used for allocating storage for variables. The variable could also be initialized

with some specific value. The initialized value could be specified in hexadecimal,

decimal or binary form.

For example, we can define a word variable ‘months’ in either of the following

way:

MONTHS DW 12

MONTHS DW 0CH

MONTHS DW 0110B

The data definition directives can also be used for defining a one-dimensional

array. Let us define a one-dimensional array of numbers.

NUMBERS DW 34, 45, 56, 67, 75, 89

The above definition declares an array of six words each initialized with the

numbers 34, 45, 56, 67, 75, 89. This allocates 2x6 = 12 bytes of consecutive

memory space. The symbolic address of the first number will be NUMBERS and

that of the second number will be NUMBERS + 2 and so on.

Let us take up another example. You can define an array named inventory of

size 8, and initialize all the values with zero, as:

INVENTORY DW 0

 DW 0

 DW 0

 DW 0

 DW 0

 DW 0

 DW 0

 DW 0

Which can be abbreviated as:

INVENTORY DW 0, 0 , 0 , 0 , 0 , 0 , 0 , 0

The TIMES directive can also be used for multiple initializations to the same

value. Using TIMES, the INVENTORY array can be defined as:

16. ARRAYS

Assembly Programming

75

INVENTORY TIMES 8 DW 0

Example

The following example demonstrates the above concepts by defining a 3-element

array x, which stores three values: 2, 3 and 4. It adds the values in the array

and displays the sum 9:

section . text

 global _start ; must be declared for linker (ld)

_start :

 mov eax , 3 ; number bytes to be summed

 mov ebx , 0 ; EBX will store the sum

 mov ecx , x ; ECX will point to the current element to be summed

top : add ebx , [ecx]

 add ecx , 1 ; move pointer to next element

 dec eax ; decrement counter

 jnz top ; if counter not 0, then loop again

done:

 add ebx , '0'

 mov [sum], ebx ; done, store result in "sum"

display :

 mov edx , 1 ; message length

 mov ecx , sum ; message to write

 mov ebx , 1 ; file descriptor (stdout)

 mov eax , 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax , 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

global x

x:

 db 2

 db 4

 db 3

Assembly Programming

76

sum:

 db 0

When the above code is compiled and executed, it produces the following result:

9

Assembly Programming

77

Procedures or subroutines are very important in assembly language, as the

assembly language programs tend to be large in size. Procedures are identified

by a name. Following this name, the body of the procedure is described which

performs a well-defined job. End of the procedure is indicated by a return

statement.

Syntax

Following is the syntax to define a procedure:

proc_name:

 procedure body

 ...

 ret

The procedure is called from another function by using the CALL instruction. The

CALL instruction should have the name of the called procedure as an argument

as shown below:

CALL proc_name

The called procedure returns the control to the calling procedure by using the

RET instruction.

Example

Let us write a very simple procedure named sum that adds the variables stored

in the ECX and EDX register and returns the sum in the EAX register:

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov ecx, '4'

 sub ecx, '0'

 mov edx, '5'

 sub edx, '0'

 call sum ; call sum procedure

 mov [res], eax

 mov ecx, msg

17. PROCEDURES

Assembly Programming

78

 mov edx, len

 mov ebx, 1 ; file descr iptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov ecx, res

 mov edx, 1

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

 i nt 0x80 ; call kernel

sum:

 mov eax , ecx

 add eax , edx

 add eax , '0'

 ret

section . data

msg db "The sum is:" , 0xA, 0xD

len equ $ - msg

segment . bss

res resb 1

When the above code is compiled and executed, it produces the following result:

The sum is :

9

Stacks Data Structure

A stack is an array-like data structure in the memory in which data can be

stored and removed from a location called the 'top' of the stack. The data that

needs to be stored is 'pushed' into the stack and data to be retrieved is 'popped'

out from the stack. Stack is a LIFO data structure, i.e., the data stored first is

retrieved last.

Assembly language provides two instructions for stack operations: PUSH and

POP. These instructions have syntaxes like:

PUSH operan d

Assembly Programming

79

POP address / register

The memory space reserved in the stack segment is used for implementing

stack. The registers SS and ESP (or SP) are used for implementing the stack.

The top of the stack, which points to the last data item inserted into the stack is

pointed to by the SS:ESP register, where the SS register points to the beginning

of the stack segment and the SP (or ESP) gives the offset into the stack

segment.

The stack implementation has the following characteristics:

 Only words or doublewords could be saved into the stack, not a byte.

 The stack grows in the reverse direction, i.e., toward the lower memory

address.

 The top of the stack points to the last item inserted in the stack; it points

to the lower byte of the last word inserted.

As we discussed about storing the values of the registers in the stack before

using them for some use; it can be done in following way:

; Save the AX and BX registers in the stack

PUSH AX

PUSH BX

; Use the registers for other purpose

MOV AX, VALUE1

MOV BX, VALUE2

...

MOV VALUE1, AX

MOV VALUE2, BX

; Restore the original values

POP AX

POP BX

Example

The following program displays the entire ASCII character set. The main

program calls a procedure named display, which displays the ASCII character

set.

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 call display

Assembly Programming

80

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

display :

 mov ecx , 256

next :

 push ecx

 mov eax , 4

 mov ebx , 1

 mov ecx, achar

 mov edx , 1

 int 80h

 pop ecx

 mov dx, [achar]

 cmp byte [achar], 0dh

 inc byte [achar]

 loop next

 ret

section . data

achar db '0'

When the above code is compiled and executed, it produces the following result:

0123456789: ;<=>? @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\] ^_`abcdefghijklmnopqrstuvwx

yz{|}

...

...

Assembly Programming

81

A recursive procedure is one that calls itself. There are two kind of recursion:

direct and indirect. In direct recursion, the procedure calls itself and in indirect

recursion, the first procedure calls a second procedure, which in turn calls the

first procedure.

Recursion could be observed in numerous mathematical algorithms. For

example, consider the case of calculating the factorial of a number. Factorial of a

number is given by the equation:

Fact (n) = n * fact (n- 1) for n > 0

For example: factorial of 5 is 1 x 2 x 3 x 4 x 5 = 5 x factorial of 4 and this can

be a good example of showing a recursive procedure. Every recursive algorithm

must have an ending condition, i.e., the recursive calling of the program should

be stopped when a condition is fulfilled. In the case of factorial algorithm, the

end condition is reached when n is 0.

The following program shows how factorial n is implemented in assembly

language. To keep the program simple, we will calculate factorial 3.

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov bx, 3 ; for calculating factorial 3

 call proc_fact

 add ax , 30h

 mov [fact], ax

 mov edx, len ; message length

 mov ecx, msg ; message to write

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov edx , 1 ; message length

 mov ecx, fact ; message to write

18. RECURSION

Assembly Programming

82

 mov ebx, 1 ; file descriptor (stdout)

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

proc_fact :

 cmp bl , 1

 jg do_calculation

 mov ax , 1

 ret

do_calculation :

 dec bl

 call proc_fact

 inc bl

 mul bl ; ax = al * bl

 ret

section . data

msg db 'Factorial 3 is:' , 0xa

len equ $ - msg

section . bss

fact resb 1

When the above code is compiled and executed, it produces the following result:

Factorial 3 is :

6

Assembly Programming

83

Writing a macro is another way of ensuring modular programming in assembly

language.

 A macro is a sequence of instructions, assigned by a name and could be

used anywhere in the program.

 In NASM, macros are defined with %macro and %endmacro directives.

 The macro begins with the %macro directive and ends with the

%endmacro directive.

The Syntax for macro definition:

%macro macro_name number_of_params

<macro body >

%endmacro

Where, number_of_params specifies the number parameters, macro_name

specifies the name of the macro.

The macro is invoked by using the macro name along with the necessary

parameters. When you need to use some sequence of instructions many times in

a program, you can put those instructions in a macro and use it instead of

writing the instructions all the time.

For example, a very common need for programs is to write a string of characters

in the screen. For displaying a string of characters, you need the following

sequence of instructions:

mov edx, len ; message length

mov ecx, msg ; message to write

mov ebx, 1 ; file descriptor (stdout)

mov eax, 4 ; system call number (sys_write)

int 0x80 ; call kernel

In the above example of displaying a character string, the registers EAX, EBX,

ECX and EDX have been used by the INT 80H function call. So, each time you

need to display on screen, you need to save these registers on the stack, invoke

INT 80H and then restore the original value of the registers from the stack. So,

it could be useful to write two macros for saving and restoring data.

19. MACROS

Assembly Programming

84

We have observed that, some instructions like IMUL, IDIV, INT, etc., need some

of the information to be stored in some particular registers and even return

values in some specific register(s). If the program was already using those

registers for keeping important data, then the existing data from these registers

should be saved in the stack and restored after the instruction is executed.

Example

Following example shows defining and using macros:

; A macro with two parameter s

; Implements the write system call

 %macro write_string 2

 mov eax , 4

 mov ebx , 1

 mov ecx , %1

 mov edx , %2

 int 80h

 %endmacro

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 write_string msg1 , len1

 write_string msg2 , len2

 write_string msg3 , len3

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

msg1 db 'Hello, programmers!' , 0xA, 0xD

len1 equ $ - msg1

msg2 db 'Welcome to the world of,' , 0xA, 0xD

len2 equ $ - msg2

msg3 db 'Linux assembly programming! '

len3 equ $ - msg3

Assembly Programming

85

When the above code is compiled and executed, it produces the following result:

Hello , programmers !

Welcome to the world of ,

Linux assembly programming !

Assembly Programming

86

The system considers any input or output data as stream of bytes. There are

three standard file streams:

 Standard input (stdin),

 Standard output (stdout), and

 Standard error (stderr).

File Descriptor

A file descriptor is a 16-bit integer assigned to a file as a file id. When a new

file is created or an existing file is opened, the file descriptor is used for

accessing the file.

File descriptor of the standard file streams - stdin, stdout and stderr are 0, 1

and 2, respectively.

File Pointer

A file pointer specifies the location for a subsequent read/write operation in the

file in terms of bytes. Each file is considered as a sequence of bytes. Each open

file is associated with a file pointer that specifies an offset in bytes, relative to

the beginning of the file. When a file is opened, the file pointer is set to zero.

File Handling System Calls

The following table briefly describes the system calls related to file handling:

%eax Name %ebx %ecx %edx

2 sys_fork struct pt_regs - -

3 sys_read unsigned int char * size_t

4 sys_write unsigned int const char * size_t

5 sys_open const char * int int

6 sys_close unsigned int - -

20. FILE MANAGEMENT

Assembly Programming

87

8 sys_creat const char * int -

19 sys_lseek unsigned int off_t unsigned int

The steps required for using the system calls are same, as we discussed earlier:

1. Put the system call number in the EAX register.

2. Store the arguments to the system call in the registers EBX, ECX, etc.

3. Call the relevant interrupt (80h).

4. The result is usually returned in the EAX register.

Creating and Opening a File

For creating and opening a file, perform the following tasks:

1. Put the system call sys_creat() number 8, in the EAX register.

2. Put the filename in the EBX register.

3. Put the file permissions in the ECX register.

The system call returns the file descriptor of the created file in the EAX register,

in case of error, the error code is in the EAX register.

Opening an Existing File

For opening an existing file, perform the following tasks:

1. Put the system call sys_open() number 5, in the EAX register.

2. Put the filename in the EBX register.

3. Put the file access mode in the ECX register.

4. Put the file permissions in the EDX register.

The system call returns the file descriptor of the created file in the EAX register,

in case of error, the error code is in the EAX register.

Among the file access modes, most commonly used are: read-only (0), write-

only (1), and read-write (2).

Reading from a File

For reading from a file, perform the following tasks:

1. Put the system call sys_read() number 3, in the EAX register.

2. Put the file descriptor in the EBX register.

Assembly Programming

88

3. Put the pointer to the input buffer in the ECX register.

4. Put the buffer size, i.e., the number of bytes to read, in the EDX register.

The system call returns the number of bytes read in the EAX register, in case of

error, the error code is in the EAX register.

Writing to a File

For writing to a file, perform the following tasks:

1. Put the system call sys_write() number 4, in the EAX register.

2. Put the file descriptor in the EBX register.

3. Put the pointer to the output buffer in the ECX register.

4. Put the buffer size, i.e., the number of bytes to write, in the EDX register.

The system call returns the actual number of bytes written in the EAX register,

in case of error, the error code is in the EAX register.

Closing a File

For closing a file, perform the following tasks:

1. Put the system call sys_close() number 6, in the EAX register.

2. Put the file descriptor in the EBX register.

The system call returns, in case of error, the error code in the EAX register.

Updating a File

For updating a file, perform the following tasks:

1. Put the system call sys_lseek () number 19, in the EAX register.

2. Put the file descriptor in the EBX register.

3. Put the offset value in the ECX register.

4. Put the reference position for the offset in the EDX register.

The reference position could be:

 Beginning of file - value 0

 Current position - value 1

 End of file - value 2

The system call returns, in case of error, the error code in the EAX register.

Assembly Programming

89

Example

The following program creates and opens a file named myfile.txt, and writes a

text 'Welcome to Tutorials Point' in this file. Next, the program reads from the

file and stores the data into a buffer named info. Lastly, it displays the text as

stored in info.

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

; create the file

 mov eax , 8

 mov ebx , file_name

 mov ecx , 0777 ; read , write and execute by all

 int 0x80 ; call kernel

 mov [fd_out], eax

; write into the file

 mov edx, len ; number of bytes

 mov ecx, msg ; message to write

 mov ebx, [fd_out] ; file des criptor

 mov eax, 4 ; system call number (sys_write)

 int 0x80 ; call kernel

 ; close the file

 mov eax, 6

 mov ebx, [fd_out]

; write the message indicating end of file write

 mov eax, 4

 mov ebx, 1

 mov ecx , msg_done

 mov edx, len_done

 int 0x80

; open the file for r eading

 mov eax, 5

Assembly Programming

90

 mov ebx, file_name

 mov ecx , 0 ; for read only access

 mov edx, 0777 ; read , write and execute by all

 int 0x80

 mov [fd_in], eax

; read from file

 mov eax, 3

 mov ebx, [fd_in]

 mov ecx , inf o

 mov edx, 26

 int 0x80

; close the file

 mov eax, 6

 mov ebx, [fd_in]

; print the info

 mov eax, 4

 mov ebx, 1

 mov ecx , info

 mov edx, 26

 int 0x80

 mov eax, 1 ; system call number (sys_exit)

 int 0x80 ; call kernel

section . data

file_name db 'myfile.txt'

msg db 'Welcome to Tutorials Point'

len equ $ - msg

msg_done db 'Written to file' , 0xa

len_done equ $ - msg_done

Assembly Programming

91

section . bss

fd_out resb 1

fd_in resb 1

info resb 26

When the above code is compiled and executed, it produces the following result:

Written to file

Welcome to Tutorials Point

Assembly Programming

92

The sys_brk() system call is provided by the kernel, to allocate memory without

the need of moving it later. This call allocates memory right behind the

application image in the memory. This system function allows you to set the

highest available address in the data section.

This system call takes one parameter, which is the highest memory address

needed to be set. This value is stored in the EBX register.

In case of any error, sys_brk() returns -1 or returns the negative error code

itself. The following example demonstrates dynamic memory allocation.

Example

The following program allocates 16kb of memory using the sys_brk() system

call:

section . text

 global _start ; must be declared for using gcc

_start : ; tell linker entry point

 mov eax, 45 ; sys_brk

 xor ebx, ebx

 int 80h

 add eax, 16384 ; number of bytes to be reserved

 mov ebx, eax

 mov eax, 45 ; sys_ brk

 int 80h

 cmp eax, 0

 jl exit ; exit , if error

 mov edi , eax ; EDI = highest available address

 sub edi , 4 ; pointing to the last DWORD

 mov ecx, 4096 ; number of DWORDs allocated

 xor eax, eax ; clear eax

 std ; backward

 rep stosd ; repete for entir e allocated area

 cld ; put DF flag to normal state

21. MEMORY MANAGEMENT

Assembly Programming

93

 mov eax, 4

 mov ebx, 1

 mov ecx, msg

 mov edx, len

 int 80h ; print a message

exit :

 mov eax, 1

 xor ebx, ebx

 int 80h

section . data

msg db "Allocated 16 kb of memory!" , 10

len equ $ - msg

When the above code is compiled and executed, it produces the following result:

Allocated 16 kb of memory !

