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About the Tutorial 

Assembly language is a low-level programming language for a computer or other 

programmable device specific to a particular computer architecture in contrast to 

most high-level programming languages, which are generally portable across 

multiple systems. Assembly language is converted into executable machine code 

by a utility program referred to as an assembler like NASM, MASM, etc. 

Audience 

This tutorial has been designed for those who want to learn the basics of 

assembly programming from scratch. This tutorial will give you enough 

understanding on assembly programming from where you can take yourself to 

higher levels of expertise. 

Prerequisites 

Before proceeding with this tutorial, you should have a basic understanding of 

Computer Programming terminologies. A basic understanding of any of the 

programming languages will help you in understanding the Assembly 

programming concepts and move fast on the learning track. 

Copyright & Disclaimer 

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point 

(I) Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or 

republish any contents or a part of contents of this e-book in any manner without written 

consent of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely 

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) 

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of 

our website or its contents including this tutorial. If you discover any errors on our 

website or in this tutorial, please notify us at contact@tutorialspoint.com 
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What is Assembly Language? 

Each personal computer has a microprocessor that manages the computer's 

arithmetical, logical, and control activities. 

Each family of processors has its own set of instructions for handling various 

operations such as getting input from keyboard, displaying information on 

screen, and performing various other jobs. These set of instructions are called 

'machine language instructions'. 

A processor understands only machine language instructions, which are strings 

of 1's and 0's. However, machine language is too obscure and complex for using 

in software development. So, the low-level assembly language is designed for a 

specific family of processors that represents various instructions in symbolic 

code and a more understandable form. 

Advantages of Assembly Language 

Having an understanding of assembly language makes one aware of:  

 How programs interface with OS, processor, and BIOS; 

 How data is represented in memory and other external devices; 

 How the processor accesses and executes instruction; 

 How instructions access and process data; 

 How a program accesses external devices. 

Other advantages of using assembly language are: 

 It requires less memory and execution time; 

 It allows hardware-specific complex jobs in an easier way; 

 It is suitable for time-critical jobs; 

 It is most suitable for writing interrupt service routines and other memory 

resident programs. 

Basic Features of PC Hardware 

The main internal hardware of a PC consists of processor, memory, and 

registers. Registers are processor components that hold data and address. To 

execute a program, the system copies it from the external device into the 

internal memory. The processor executes the program instructions. 

1. INTRODUCTION 
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The fundamental unit of computer storage is a bit; it could be ON (1) or OFF (0). 

A group of nine related bits makes a byte, out of which eight bits are used for 

data and the last one is used for parity. According to the rule of parity, the 

number of bits that are ON (1) in each byte should always be odd. 

So, the parity bit is used to make the number of bits in a byte odd. If the parity 

is even, the system assumes that there had been a parity error (though rare), 

which might have been caused due to hardware fault or electrical disturbance. 

The processor supports the following data sizes: 

 Word: a 2-byte data item 

 Doubleword: a 4-byte (32 bit) data item 

 Quadword: an 8-byte (64 bit) data item 

 Paragraph: a 16-byte (128 bit) area 

 Kilobyte: 1024 bytes 

 Megabyte: 1,048,576 bytes 

Binary Number System 

Every number system uses positional notation, i.e., each position in which a digit 

is written has a different positional value. Each position is power of the base, 

which is 2 for binary number system, and these powers begin at 0 and increase 

by 1. 

The following table shows the positional values for an 8-bit binary number, 

where all bits are set ON. 

Bit value 1 1 1 1 1 1 1 1 

Position 
value as a 

power of 
base 2 

128 64 32 16 8 4 2 1 

Bit number 7 6 5 4 3 2 1 0 

The value of a binary number is based on the presence of 1 bits and their 
positional value. So, the value of a given binary number is:  

1 + 2 + 4 + 8 +16 + 32 + 64 + 128 = 255  

which is same as 28 - 1. 
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Hexadecimal Number System 

Hexadecimal number system uses base 16. The digits in this system range from 

0 to 15. By convention, the letters A through F is used to represent the 

hexadecimal digits corresponding to decimal values 10 through 15. 

Hexadecimal numbers in computing is used for abbreviating lengthy binary 

representations. Basically, hexadecimal number system represents a binary data 

by dividing each byte in half and expressing the value of each half-byte. The 

following table provides the decimal, binary, and hexadecimal equivalents: 

Decimal 

number 

Binary 

representation 

Hexadecimal 

representation 

0 0 0 

1 1 1 

2 10 2 

3 11 3 

4 100 4 

5 101 5 

6 110 6 

7 111 7 

8 1000 8 

9 1001 9 

10 1010 A 

11 1011 B 
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12 1100 C 

13 1101 D 

14 1110 E 

15 1111 F 

 

To convert a binary number to its hexadecimal equivalent, break it into groups 

of 4 consecutive groups each, starting from the right, and write those groups 

over the corresponding digits of the hexadecimal number. 

Example: Binary number 1000 1100 1101 0001 is equivalent to hexadecimal - 

8CD1. 

To convert a hexadecimal number to binary, just write each hexadecimal digit 

into its 4-digit binary equivalent. 

Example: Hexadecimal number FAD8 is equivalent to binary - 1111 1010 1101 

1000. 

Binary Arithmetic 

The following table illustrates four simple rules for binary addition: 

(i) (ii) (iii) (iv) 

   1 

0 1 1 1 

+0 +0 +1 +1 

=0 =1 =10 =11 

 

Rules (iii) and (iv) show a carry of a 1-bit into the next left position. 
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Example 

Decimal Binary 

60 00111100 

+42 00101010 

102 01100110 

 

A negative binary value is expressed in two's complement notation. 

According to this rule, to convert a binary number to its negative value is 

to reverse its bit values and add 1. 

Example 

Number 53 00110101 

Reverse the bits 11001010 

Add 1 1 

Number -53 11001011 

To subtract one value from another, convert the number being subtracted to 

two's complement format and add the numbers. 

Example 

Subtract 42 from 53. 

Number 53 00110101 

Number 42 00101010 

Reverse the bits of 42 11010101 

Add 1 1 

Number -42 11010110 
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53 - 42 = 11 00001011 

 

Overflow of the last 1 bit is lost. 

Addressing Data in Memory 

The process through which the processor controls the execution of instructions is 

referred as the fetch-decode-execute cycle or the execution cycle. It 

consists of three continuous steps: 

 Fetching the instruction from memory 

 Decoding or identifying the instruction 

 Executing the instruction 

The processor may access one or more bytes of memory at a time. Let us 

consider a hexadecimal number 0725H. This number will require two bytes of 

memory. The high-order byte or most significant byte is 07 and the low-order 

byte is 25. 

The processor stores data in reverse-byte sequence, i.e., a low-order byte is 

stored in a low memory address and a high-order byte in high memory address. 

So, if the processor brings the value 0725H from register to memory, it will 

transfer 25 first to the lower memory address and 07 to the next memory 

address. 

 

x: memory address 

When the processor gets the numeric data from memory to register, it again 

reverses the bytes. There are two kinds of memory addresses: 

 Absolute address – a direct reference of specific location. 

 Segment address (or offset) – starting address of a memory segment with 

the offset value. 
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Try it Option Online 

We already have set up NASM assembler to experiment with Assembly 

programming online, so that you can execute all the available examples online 

at the same time when you are doing your theory work. This gives you 

confidence in what you are reading and to check the result with different 

options. Feel free to modify any example and execute it online. 

Try the following example using our online compiler option available at  

http://www.compileonline.com/  

section  . text  

    global  _start   ; must be declared for  linker ( ld )  

_start :              ; tells linker entry point  

    mov edx, len     ; message length  

    mov ecx, msg     ; message to write  

    mov ebx, 1       ; file descriptor ( stdout )  

    mov eax, 4       ; system call number ( sys_write )  

    int  0x80        ; call kernel  

  

    mov eax, 1       ; system call number ( sys_exit )  

    int  0x80        ; call kernel  

 

section  . data  

msg db 'Hello, world!' ,  0xa  ; our  dear string  

len equ $ -  msg     ; length of our  dear string  

For most of the examples given in this tutorial, you will find a Try it option in our 

website code sections at the top right corner that will take you to the online 

compiler. So just make use of it and enjoy your learning. 

Local Environment Setup 

Assembly language is dependent upon the instruction set and the architecture of 

the processor. In this tutorial, we focus on Intel 32 processors like Pentium. To 

follow this tutorial, you will need: 

 An IBM PC or any equivalent compatible computer 

2. ENVIORNMENT SETUP 

http://www.compileonline.com/
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 A copy of Linux operating system 

 A copy of NASM assembler program 

There are many good assembler programs such as: 

 Microsoft Assembler (MASM) 

 Borland Turbo Assembler (TASM) 

 The GNU assembler (GAS) 

We will use the NASM assembler, as it is: 

 Free. You can download it from various web sources. 

 Well-documented and you will get lots of information on net. 

 Could be used on both Linux and Windows. 

Installing NASM 

If you select "Development Tools" while installing Linux, you may get NASM 

installed along with the Linux operating system and you do not need to 

download and install it separately. For checking whether you already have NASM 

installed, take the following steps: 

1. Open a Linux terminal. 

2. Type whereis nasm and press ENTER. 

3. If it is already installed, then a line like, nasm: /usr/bin/nasm appears. 

Otherwise, you will see just nasm:, then you need to install NASM. 

To install NASM, take the following steps: 

1. Check The netwide assembler (NASM) website for the latest version. 

2. Download the Linux source archive nasm-X.XX.ta.gz, where X.XX is the 

NASM version number in the archive. 

3. Unpack the archive into a directory which creates a subdirectory nasm-X. 

XX. 

4. cd to nasm-X. XX and type ./configure . This shell script will find the best 

C compiler to use and set up Makefiles accordingly. 

5. Type make to build the nasm and ndisasm binaries. 

6. Type make install to install nasm and ndisasm in /usr/local/bin and to 

install the man pages. 

This should install NASM on your system. Alternatively, you can use an RPM 

distribution for the Fedora Linux. This version is simpler to install, just double-

click the RPM file. 
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An assembly program can be divided into three sections: 

 The data section, 

 The bss section, and 

 The text section. 

The data Section 

The data section is used for declaring initialized data or constants. This data 

does not change at runtime. You can declare various constant values, file 

names, or buffer size, etc., in this section. 

The syntax for declaring data section is: 

section . data  

The bss Section 

The bss section is used for declaring variables. The syntax for declaring bss 

section is: 

section . bss 

The text section 

The text section is used for keeping the actual code. This section must begin 

with the declaration global _start, which tells the kernel where the program 

execution begins. 

The syntax for declaring text section is: 

section . text  

   global  _start  

_start :  

Comments 

Assembly language comment begins with a semicolon (;). It may contain any 

printable character including blank. It can appear on a line by itself, like: 

3. BASIC SYNTAX 
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;  This  program displays a message on screen  

or, on the same line along with an instruction, like: 

add eax , ebx    ;  adds ebx to eax  

Assembly Language Statements 

Assembly language programs consist of three types of statements: 

 Executable instructions or instructions, 

 Assembler directives or pseudo-ops, and 

 Macros. 

The executable instructions or simply instructions tell the processor what to 

do. Each instruction consists of an operation code (opcode). Each executable 

instruction generates one machine language instruction. 

The assembler directives or pseudo-ops tell the assembler about the various 

aspects of the assembly process. These are non-executable and do not generate 

machine language instructions. 

Macros are basically a text substitution mechanism. 

Syntax of Assembly Language Statements 

Assembly language statements are entered one statement per line. Each 

statement follows the following format: 

[ label ]    mnemonic   [ oper ands]    [; comment]  

The fields in the square brackets are optional. A basic instruction has two parts, 

the first one is the name of the instruction (or the mnemonic), which is to be 

executed, and the second are the operands or the parameters of the command. 

Following are some examples of typical assembly language statements: 

INC COUNT        ;  Increment  the memory variable COUNT  

MOV TOTAL,  48    ;  Transfer  the value 48 in  the  

                 ;  memory variable TOTAL  

ADD AH,  BH       ;  Add the content of the   

                 ;  BH register  into  the AH register  

AND MASK1,  128   ;  Perform  AND operation on the  

                 ;  variable MASK1 and 128 

ADD MARKS,  10    ;  Add 10 to the variable MARKS  
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MOV AL,  10       ;  Transfer  the value 10 to the AL register  

The Hello World Program in Assembly 

The following assembly language code displays the string 'Hello World' on the 

screen: 

section  . text  

    global  _start   ; must be declared for  linker ( ld )  

_start :              ; tells linker entry point  

    mov edx, len     ; message length  

    mov ecx, msg     ; message to write  

    mov ebx, 1       ; file descriptor ( stdout )  

    mov eax, 4       ; system call number ( sys_write )  

    int  0x80        ; call kernel  

  

    mov eax, 1       ; system call number ( sys_exit )  

    int  0x80        ; call kernel  

 

section  . data  

msg db 'Hello, world!' ,  0xa  ; our  dear string  

len equ $ -  msg              ; length of our  dear string  

When the above code is compiled and executed, it produces the following result: 

Hello ,  world !  

Compiling and Linking an Assembly Program in NASM 

Make sure you have set the path of nasm and ld binaries in your PATH 

environment variable. Now, take the following steps for compiling and linking 

the above program: 

1. Type the above code using a text editor and save it as hello.asm. 

2. Make sure that you are in the same directory as where you 

saved hello.asm. 

3. To assemble the program, type nasm -f elf hello.asm 

4. If there is any error, you will be prompted about that at this stage. 

Otherwise, an object file of your program named hello.o will be created. 
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5. To link the object file and create an executable file named hello, type ld -

m elf_i386 -s -o hello hello.o 

6. Execute the program by typing ./hello 

If you have done everything correctly, it will display ‘Hello, world!’ on the 

screen. 
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We have already discussed the three sections of an assembly program. These 

sections represent various memory segments as well. 

Interestingly, if you replace the section keyword with segment, you will get the 

same result. Try the following code: 

segment  . text           ; code segment  

    global  _start     ; must be declared for  linker  

_start :   ; tell linker entry point  

 mov edx, len   ; message length  

 mov ecx , msg       ; message to write  

 mov ebx, 1  ; file descriptor ( stdout )  

 mov eax, 4  ; system cal l number ( sys_write )  

 int  0x80  ; call kernel  

 

 mov eax, 1  ; system call number ( sys_exit )  

 int  0x80  ; call kernel  

 

segment . data                 ; data segment  

msg db 'Hello, world!' , 0xa   ; our  dear string  

len  equ $ -  msg            ; length of our  dear str ing  

When the above code is compiled and executed, it produces the following result: 

Hello ,  world !  

Memory Segments 

A segmented memory model divides the system memory into groups of 

independent segments referenced by pointers located in the segment registers. 

Each segment is used to contain a specific type of data. One segment is used to 

contain instruction codes, another segment stores the data elements, and a third 

segment keeps the program stack. 

In the light of the above discussion, we can specify various memory segments 

as: 

4. MEMORY SEGMENTS 
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 Data segment - It is represented by .data section and the .bss. The 

.data section is used to declare the memory region, where data elements 

are stored for the program. This section cannot be expanded after the 

data elements are declared, and it remains static throughout the program. 

The .bss section is also a static memory section that contains buffers for 

data to be declared later in the program. This buffer memory is zero-

filled. 

 Code segment - It is represented by .text section. This defines an area 

in memory that stores the instruction codes. This is also a fixed area. 

 Stack - This segment contains data values passed to functions and 

procedures within the program. 
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Processor operations mostly involve processing data. This data can be stored in 

memory and accessed from thereon. However, reading data from and storing 

data into memory slows down the processor, as it involves complicated 

processes of sending the data request across the control bus and into the 

memory storage unit and getting the data through the same channel. 

To speed up the processor operations, the processor includes some internal 

memory storage locations, called registers. 

The registers store data elements for processing without having to access the 

memory. A limited number of registers are built into the processor chip. 

Processor Registers 

There are ten 32-bit and six 16-bit processor registers in IA-32 architecture. The 

registers are grouped into three categories: 

 General registers, 

 Control registers, and 

 Segment registers. 

The general registers are further divided into the following groups: 

 Data registers, 

 Pointer registers, and 

 Index registers. 

Data Registers 

Four 32-bit data registers are used for arithmetic, logical, and other operations. 

These 32-bit registers can be used in three ways: 

 As complete 32-bit data registers: EAX, EBX, ECX, EDX. 

 Lower halves of the 32-bit registers can be used as four 16-bit data 

registers: AX, BX, CX and DX. 

 Lower and higher halves of the above-mentioned four 16-bit registers can 

be used as eight 8-bit data registers: AH, AL, BH, BL, CH, CL, DH, and DL. 

5. REGISTERS 
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Some of these data registers have specific use in arithmetical operations. 

AX is the primary accumulator; it is used in input/output and most arithmetic 

instructions. For example, in multiplication operation, one operand is stored in 

EAX or AX or AL register according to the size of the operand. 

BX is known as the base register, as it could be used in indexed addressing. 

CX is known as the count register, as the ECX, CX registers store the loop 

count in iterative operations. 

DX is known as the data register. It is also used in input/output operations. 

It is also used with AX register along with DX for multiply and divide operations 

involving large values. 

Pointer Registers 

The pointer registers are 32-bit EIP, ESP, and EBP registers and corresponding 

16-bit right portions IP, SP, and BP. There are three categories of pointer 

registers: 

 Instruction Pointer (IP) - The 16-bit IP register stores the offset 

address of the next instruction to be executed. IP in association with the 

CS register (as CS:IP) gives the complete address of the current 

instruction in the code segment. 

 Stack Pointer (SP) - The 16-bit SP register provides the offset value 

within the program stack. SP in association with the SS register (SS:SP) 

refers to be current position of data or address within the program stack. 

 Base Pointer (BP) - The 16-bit BP register mainly helps in referencing 

the parameter variables passed to a subroutine. The address in SS 

register is combined with the offset in BP to get the location of the 

parameter. BP can also be combined with DI and SI as base register for 

special addressing. 
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Index Registers 

The 32-bit index registers, ESI and EDI, and their 16-bit rightmost portions, SI 

and DI, are used for indexed addressing and sometimes used in addition and 

subtraction. There are two sets of index pointers: 

 Source Index (SI) - It is used as source index for string operations. 

 Destination Index (DI) - It is used as destination index for string 

operations. 

 

Control Registers 

The 32-bit instruction pointer register and the 32-bit flags register combined are 

considered as the control registers. 

Many instructions involve comparisons and mathematical calculations and 

change the status of the flags and some other conditional instructions test the 

value of these status flags to take the control flow to other location. 

The common flag bits are: 

 Overflow Flag (OF): It indicates the overflow of a high-order bit 

(leftmost bit) of data after a signed arithmetic operation. 

 Direction Flag (DF): It determines left or right direction for moving or 

comparing string data. When the DF value is 0, the string operation takes 

left-to-right direction and when the value is set to 1, the string operation 

takes right-to-left direction. 

 Interrupt Flag (IF): It determines whether the external interrupts like 

keyboard entry, etc., are to be ignored or processed. It disables the 

external interrupt when the value is 0 and enables interrupts when set to 

1. 
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 Trap Flag (TF): It allows setting the operation of the processor in single-

step mode. The DEBUG program we used sets the trap flag, so we could 

step through the execution one instruction at a time. 

 Sign Flag (SF): It shows the sign of the result of an arithmetic operation. 

This flag is set according to the sign of a data item following the 

arithmetic operation. The sign is indicated by the high-order of leftmost 

bit. A positive result clears the value of SF to 0 and negative result sets it 

to 1. 

 Zero Flag (ZF): It indicates the result of an arithmetic or comparison 

operation. A nonzero result clears the zero flag to 0, and a zero result sets 

it to 1. 

 Auxiliary Carry Flag (AF): It contains the carry from bit 3 to bit 4 

following an arithmetic operation; used for specialized arithmetic. The AF 

is set when a 1-byte arithmetic operation causes a carry from bit 3 into bit 

4. 

 Parity Flag (PF): It indicates the total number of 1-bits in the result 

obtained from an arithmetic operation. An even number of 1-bits clears 

the parity flag to 0 and an odd number of 1-bits sets the parity flag to 1. 

 Carry Flag (CF): It contains the carry of 0 or 1 from a high-order bit 

(leftmost) after an arithmetic operation. It also stores the contents of last 

bit of a shift or rotate operation. 

The following table indicates the position of flag bits in the 16-bit Flags register: 

Flag:     O D I T S Z  A  P  C 

Bit no: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Segment Registers 

Segments are specific areas defined in a program for containing data, code and 

stack. There are three main segments: 

 Code Segment: It contains all the instructions to be executed. A 16-bit 

Code Segment register or CS register stores the starting address of the 

code segment. 

 Data Segment: It contains data, constants and work areas. A 16-bit 

Data Segment register or DS register stores the starting address of the 

data segment. 

 Stack Segment: It contains data and return addresses of procedures or 

subroutines. It is implemented as a 'stack' data structure. The Stack 

Segment register or SS register stores the starting address of the stack. 
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Apart from the DS, CS and SS registers, there are other extra segment registers 

- ES (extra segment), FS and GS, which provide additional segments for storing 

data. 

In assembly programming, a program needs to access the memory locations. All 

memory locations within a segment are relative to the starting address of the 

segment. A segment begins in an address evenly divisible by 16 or hexadecimal 

10. So, the rightmost hex digit in all such memory addresses is 0, which is not 

generally stored in the segment registers. 

The segment registers stores the starting addresses of a segment. To get the 

exact location of data or instruction within a segment, an offset value (or 

displacement) is required. To reference any memory location in a segment, the 

processor combines the segment address in the segment register with the offset 

value of the location. 

Example: 

Look at the following simple program to understand the use of registers in 

assembly programming. This program displays 9 stars on the screen along with 

a simple message: 

section  . text  

    global   _start  ; must be declared for  linker ( gcc)  

_start :     ; tell linker entry point  

 mov edx, len  ; message length  

 mov ecx, msg ; message to write  

 mov ebx, 1  ; file descriptor ( stdout )  

 mov eax, 4  ; system call number ( sys_write )  

 int  0x80  ; call kernel  

  

 mov edx, 9  ; message length  

 mov ecx, s2 ; message to write  

 mov ebx, 1  ; file descriptor ( stdout )  

 mov eax, 4  ; system call number ( sys_write )  

 int  0x80   ; call kernel  

 mov eax, 1  ; system call number ( sys_exit )  

 int  0x80  ; call kernel  

 

section  . data  

msg db 'Displaying 9 stars' , 0xa ; a message 

len equ $ -  msg           ; length of message  
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s2 times 9 db '*'  

When the above code is compiled and executed, it produces the following result: 

Displaying  9 stars  

*********  
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System calls are APIs for the interface between the user space and the kernel 

space. We have already used the system calls, sys_write and sys_exit, for 

writing into the screen and exiting from the program, respectively. 

Linux System Calls 

You can make use of Linux system calls in your assembly programs. You need to 

take the following steps for using Linux system calls in your program: 

 Put the system call number in the EAX register. 

 Store the arguments to the system call in the registers EBX, ECX, etc. 

 Call the relevant interrupt (80h). 

 The result is usually returned in the EAX register. 

There are six registers that store the arguments of the system call used. These 

are the EBX, ECX, EDX, ESI, EDI, and EBP. These registers take the consecutive 

arguments, starting with the EBX register. If there are more than six arguments, 

then the memory location of the first argument is stored in the EBX register. 

The following code snippet shows the use of the system call sys_exit: 

mov eax, 1  ;  system call number ( sys_exit )  

int  0x80  ;  call kernel  

The following code snippet shows the use of the system call sys_write: 

mov edx, 4  ;  message length  

mov ecx, msg ;  message to write  

mov ebx, 1  ;  file descriptor ( stdout )  

mov eax, 4  ;  system call number ( sys_write )  

int  0x80  ;  call kernel  

All the syscalls are listed in /usr/include/asm/unistd.h, together with their 

numbers (the value to put in EAX before you call int 80h). 

The following table shows some of the system calls used in this tutorial: 

%eax Name %ebx %ecx %edx %esx %edi 

1 sys_exit int - - - - 

6. SYSTEM CALLS 
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2 sys_fork struct pt_regs - - - - 

3 sys_read unsigned int char * size_t - - 

4 sys_write unsigned int const char * size_t - - 

5 sys_open const char * int int - - 

6 sys_close unsigned int - - - - 

 

Example 

The following example reads a number from the keyboard and displays it on the 

screen: 

section  . data ; Data segment 

    userMsg db 'Please enter a number: '  ; Ask the us er to enter a number  

    lenUserMsg equ $ - userMsg             ; The length of the message  

    dispMsg db 'You have entered: '  

    lenDispMsg equ $ - dispMsg                  

 

section . bss            ; Uninitialized  data  

    num resb 5 

section . text           ; Code Segment 

       global  _start  

_start :  

       ; User prompt  

       mov eax,  4 

       mov ebx,  1 

       mov ecx ,  userMsg 

       mov edx,  lenUserMsg  

       int  80h 

 

       ; Read and store the user input  

       mov eax,  3 

       mov ebx,  2 
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       mov ecx ,  num   

       mov edx,  5       ; 5 bytes ( numeric ,  1 for  sign )  of that information  

       int  80h 

       ; Output  the message 'The entered number is: '  

       mov eax,  4 

       mov ebx,  1 

       mov ecx ,  dispMsg  

       mov edx,  lenDispMsg  

       int  80h   

 

       ; Output  the number entered  

       mov eax,  4 

       mov ebx,  1 

       mov ecx ,  num 

       mov edx,  5 

       int  80h   

;  Exit  code 

       mov eax,  1 

       mov ebx,  0 

       int  80h 

When the above code is compiled and executed, it produces the following result: 

Please  enter a number :  

1234   

You have entered : 1234 
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Most assembly language instructions require operands to be processed. An 

operand address provides the location, where the data to be processed is stored. 

Some instructions do not require an operand, whereas some other instructions 

may require one, two, or three operands. 

When an instruction requires two operands, the first operand is generally the 

destination, which contains data in a register or memory location and the second 

operand is the source. Source contains either the data to be delivered 

(immediate addressing) or the address (in register or memory) of the data. 

Generally, the source data remains unaltered after the operation. 

The three basic modes of addressing are: 

 Register addressing 

 Immediate addressing 

 Memory addressing 

Register Addressing 

In this addressing mode, a register contains the operand. Depending upon the 

instruction, the register may be the first operand, the second operand or both. 

For example, 

MOV DX,  TAX_RATE    ;  Register  in  first operand  

MOV COUNT,  CX    ;  Register  in  second operand  

MOV EAX,  EBX    ;  Both  the operands are in  registers  

As processing data between registers does not involve memory, it provides 

fastest processing of data. 

Immediate Addressing 

An immediate operand has a constant value or an expression. When an 

instruction with two operands uses immediate addressing, the first operand may 

be a register or memory location, and the second operand is an immediate 

constant. The first operand defines the length of the data. 

For example, 

BYTE_VALUE  DB  150    ;  A byte  value is  defined  

WORD_VALUE  DW  300    ;  A word value is  defined  

7. ADDRESSING MODES 
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ADD  BYTE_VALUE,  65    ;  An immediate operand 65 is  added 

MOV  AX,  45H           ;  Immediate  constant 45H is  transfe rred to AX  

Direct Memory Addressing 

When operands are specified in memory addressing mode, direct access to main 

memory, usually to the data segment, is required. This way of addressing results 

in slower processing of data. To locate the exact location of data in memory, we 

need the segment start address, which is typically found in the DS register and 

an offset value. This offset value is also called effective address. 

In direct addressing mode, the offset value is specified directly as part of the 

instruction, usually indicated by the variable name. The assembler calculates the 

offset value and maintains a symbol table, which stores the offset values of all 

the variables used in the program. 

In direct memory addressing, one of the operands refers to a memory location 

and the other operand references a register. 

For example, 

ADD BYTE_VALUE,  DL ;  Adds the register  in  the memory location  

MOV BX,  WORD_VALUE ;  Operand from  the memory is  added to register  

Direct-Offset Addressing 

This addressing mode uses the arithmetic operators to modify an address. For 

example, look at the following definitions that define tables of data: 

BYTE_TABLE DB  14,  15,  22,  45      ;  Tables  of bytes  

WORD_TABLE DW  134,  345,  564,  123  ;  Tables  of words  

The following operations access data from the tables in the memory into 

registers: 

MOV CL,  BYTE_TABLE[ 2]  ;  Gets the 3rd  element of the BYTE_TABLE  

MOV CL,  BYTE_TABLE + 2 ;  Gets the 3rd  element of the BYTE_TABLE  

MOV CX,  WORD_TABLE[ 3]  ;  Gets the 4th  element of the WORD_TABLE  

MOV CX,  WORD_TABLE + 3 ;  Gets the 4th  element of the WORD_TABLE  

Indirect Memory Addressing 

This addressing mode utilizes the computer's ability of Segment:Offset 

addressing. Generally, the base registers EBX, EBP (or BX, BP) and the index 

registers (DI, SI), coded within square brackets for memory references, are 

used for this purpose. 
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Indirect addressing is generally used for variables containing several elements 

like, arrays. Starting address of the array is stored in, say, the EBX register. 

The following code snippet shows how to access different elements of the 

variable. 

MY_TABLE TIMES 10 DW 0  ;  Allocates  10 words ( 2 bytes )  each initialized to 0 

MOV EBX,  [ MY_TABLE]      ;  Effective  Address  of MY_TABLE in  EBX 

MOV [ EBX],  110          ;  MY_TABLE[ 0]  = 110 

ADD EBX,  2              ;  EBX = EBX +2 

MOV [ EBX],  123          ;  MY_TABLE[ 1]  = 123 

The MOV Instruction 

We have already used the MOV instruction that is used for moving data from one 

storage space to another. The MOV instruction takes two operands. 

Syntax 

The syntax of the MOV instruction is: 

MOV  destination ,  source  

The MOV instruction may have one of the following five forms: 

MOV  register ,  register  

MOV  register ,  immediate  

MOV  memory,  immediate  

MOV  register ,  memory 

MOV  memory,  register  

Please note that: 

 Both the operands in MOV operation should be of same size 

 The value of source operand remains unchanged 

The MOV instruction causes ambiguity at times. For example, look at the 

statements: 

MOV  EBX,  [ MY_TABLE]    ;  Effective  Address  of MY_TABLE in  EBX 

MOV  [ EBX],  110       ;  MY_TABLE[ 0]  = 110 

It is not clear whether you want to move a byte equivalent or word equivalent of 

the number 110. In such cases, it is wise to use a type specifier. 

Following table shows some of the common type specifiers: 
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Type Specifier Bytes addressed 

BYTE 1 

WORD 2 

DWORD 4 

QWORD 8 

TBYTE 10 

 

Example 

The following program illustrates some of the concepts discussed above. It 

stores a name 'Zara Ali' in the data section of the memory, then changes its 

value to another name 'Nuha Ali' programmatically and displays both the names. 

section  . text  

    global   _start    ; must be declared for  linker ( ld )  

_start :     ; tell linker entry point  

  

; writing the name 'Zara Ali'  

 mov edx, 9       ; message length  

 mov ecx,  name   ; message to write  

 mov ebx, 1       ; f ile descriptor ( stdout )  

 mov eax, 4       ; system call number ( sys_write )  

 int  0x80        ; call kernel  

  

 mov [ name],   dword 'Nuha'     ;  Changed the name to Nuha Ali  

; writing the name 'Nuha Ali'  

 mov edx, 8       ; message length  

 mov ecx, name    ; message to  write  

 mov ebx, 1       ; file descriptor ( stdout )  

 mov eax, 4       ; system call number ( sys_write )  

 int  0x80        ; call kernel  

 mov eax, 1       ; system call number ( sys_exit )  
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 int  0x80        ; call kernel  

 

section  . data  

name db 'Zara Ali '  

When the above code is compiled and executed, it produces the following result: 

Zara  Ali  Nuha Ali  
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NASM provides various define directives for reserving storage space for 

variables. The define assembler directive is used for allocation of storage space. 

It can be used to reserve as well as initialize one or more bytes. 

Allocating Storage Space for Initialized Data 

The syntax for storage allocation statement for initialized data is: 

[ variable - name]     define - directive    initial - value   [, initi al - value ]...  

Where, variable-name is the identifier for each storage space. The assembler 

associates an offset value for each variable name defined in the data segment. 

There are five basic forms of the define directive: 

Directive Purpose Storage Space 

DB Define Byte allocates 1 byte 

DW Define Word allocates 2 bytes 

DD Define Doubleword allocates 4 bytes 

DQ Define Quadword allocates 8 bytes 

DT Define Ten Bytes allocates 10 bytes 

 

Following are some examples of using define directives: 

choice   DB 'y'  

number  DW 12345 

neg_number  DW - 12345 

big_number   DQ 123456789 

real_number1  DD 1.234  

real_number2  DQ 123.456  

 

8. VARIABLES 
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Please note that: 

 Each byte of character is stored as its ASCII value in hexadecimal. 

 Each decimal value is automatically converted to its 16-bit binary 

equivalent and stored as a hexadecimal number. 

 Processor uses the little-endian byte ordering. 

 Negative numbers are converted to its 2's complement representation. 

 Short and long floating-point numbers are represented using 32 or 64 

bits, respectively. 

The following program shows the use of define directive: 

section . text  

    global  _start    ; must be declared for  linker ( gcc)  

_start :     ; tell linker entry point  

 

 mov edx, 1  ; message length  

 mov ecx, choice  ; message to write  

 mov ebx, 1  ; file desc riptor ( stdout )  

 mov eax, 4  ; system call number ( sys_write )  

 int  0x80  ; call kernel  

 

 mov eax, 1  ; system call number ( sys_exit )  

 int  0x80  ; call kernel  

 

section . data  

choice DB 'y'  

When the above code is compiled and executed, it produces the following result: 

y 

Allocating Storage Space for Uninitialized Data 

The reserve directives are used for reserving space for uninitialized data. The 

reserve directives take a single operand that specifies the number of units of 

space to be reserved. Each define directive has a related reserve directive. 

There are five basic forms of the reserve directive: 
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Directive Purpose 

RESB Reserve a Byte 

RESW Reserve a Word 

RESD Reserve a Doubleword 

RESQ Reserve a Quadword 

REST Reserve a Ten Bytes 

Multiple Definitions 

You can have multiple data definition statements in a program. For example: 

choice    DB  'Y'    ; ASCII of y = 79H 

number1   DW  12345  ; 12345D = 3039H 

number2   DD    12345679  ; 123456789D = 75BCD15H 

The assembler allocates contiguous memory for multiple variable definitions. 

Multiple Initializations 

The TIMES directive allows multiple initializations to the same value. For 

example, an array named marks of size 9 can be defined and initialized to zero 

using the following statement: 

marks  TIMES  9  DW  0 

The TIMES directive is useful in defining arrays and tables. The following 

program displays 9 asterisks on the screen: 

section  . text  

    global  _start    ; must be declared for  linker ( ld )  

_start :     ; tell linker entry point  

 mov edx, 9  ; message length  

 mov ecx,  sta rs  ; message to write  

 mov ebx, 1  ; file descriptor ( stdout )  

 mov eax, 4  ; system call number ( sys_write )  

 int  0x80  ; call kernel  
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 mov eax, 1  ; system call number ( sys_exit )  

 int  0x80  ; call kernel  

 

section  . data  

stars   times 9 db '*'  

When the above code is compiled and executed, it produces the following result: 

*********  
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There are several directives provided by NASM that define constants. We have 

already used the EQU directive in previous chapters. We will particularly discuss 

three directives: 

 EQU 

 %assign 

 %define 

The EQU Directive 

The EQU directive is used for defining constants. The syntax of the EQU directive 

is as follows: 

CONSTANT_NAME EQU expression 

For example, 

TOTAL_STUDENTS equ 50 

You can then use this constant value in your code, like: 

mov  ecx ,   TOTAL_STUDENTS  

cmp  eax ,   TOTAL_STUDENTS 

The operand of an EQU statement can be an expression: 

LENGTH equ 20 

WIDTH  equ 10 

AREA   equ length *  width  

Above code segment would define AREA as 200. 

Example 

The following example illustrates the use of the EQU directive: 

SYS_EXIT  equ 1 

SYS_WRITE equ 4 

STDIN     equ 0 

STDOUT    equ 1 

section   . text  

9. CONSTANTS 
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   global  _start    ; must be declared for  using  gcc 

_start :    ; tell linker entry point  

 mov eax,  SYS_WRITE          

    mov ebx,  STDOUT          

    mov ecx ,  msg1          

     mov edx,  len1  

     int  0x80                 

  

 mov eax,  SYS_WRITE          

    mov ebx,  STDOUT          

    mov ecx ,  msg2          

     mov edx,  len2  

     int  0x80  

  

 mov eax,  SYS_WRITE          

    mov ebx,  STDOUT          

    mov ecx ,  msg3          

     mov edx,  len3  

     int  0x80 

        mov eax, SYS_EXIT    ; system call number ( sys_exit )  

        int  0x80            ; call kernel  

 

section   . data  

msg1 db 'Hello, programmers!' , 0xA, 0xD   

len1 equ $ -  msg1    

msg2 db 'Welcome to the world of,' ,  0xA, 0xD  

len2 equ $ -  msg2  

msg3 db 'Linux assembly programming! '  

len3 equ $ -  msg3 

When the above code is compiled and executed, it produces the following result: 

Hello ,  programmers !  

Welcome to the world of ,  

Linux  assembly programming !  
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The %assign Directive 

The %assign directive can be used to define numeric constants like the EQU 

directive. This directive allows redefinition. For example, you may define the 

constant TOTAL as: 

%assign TOTAL 10 

Later in the code, you can redefine it as: 

%assign  TOTAL  20 

This directive is case-sensitive. 

The %define Directive 

The %define directive allows defining both numeric and string constants. This 

directive is similar to the #define in C. For example, you may define the 

constant PTR as: 

%define PTR [ EBP+4]  

The above code replaces PTR by [EBP+4]. 

This directive also allows redefinition and it is case-sensitive. 
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The INC Instruction 

The INC instruction is used for incrementing an operand by one. It works on a 

single operand that can be either in a register or in memory. 

Syntax 

The INC instruction has the following syntax: 

INC destination  

The operand destination could be an 8-bit, 16-bit or 32-bit operand. 

Example 

INC EBX   ;  Increments  32- bit register  

INC DL       ;  Increments  8- bit register  

INC [ count ]   ;  Increments  the count variable  

The DEC Instruction 

The DEC instruction is used for decrementing an operand by one. It works on a 

single operand that can be either in a register or in memory. 

Syntax 

The DEC instruction has the following syntax: 

DEC destination  

The operand destination could be an 8-bit, 16-bit or 32-bit operand. 

Example 

segment . data  

 count dw  0 

 value db  15 

segment . text  

 inc [ count ]  

 dec [ value ]  

 mov ebx,  count  

10. ARITHMETIC INSTRUCTIONS 
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 inc word [ ebx]  

 mov esi ,  value  

 dec byte  [ esi ]  

The ADD and SUB Instructions 

The ADD and SUB instructions are used for performing simple 

addition/subtraction of binary data in byte, word and doubleword size, i.e., for 

adding or subtracting 8-bit, 16-bit or 32-bit operands, respectively. 

Syntax 

The ADD and SUB instructions have the following syntax: 

ADD/ SUB destination ,  source  

The ADD/SUB instruction can take place between: 

 Register to register 

 Memory to register 

 Register to memory 

 Register to constant data 

 Memory to constant data 

However, like other instructions, memory-to-memory operations are not possible 

using ADD/SUB instructions. An ADD or SUB operation sets or clears the 

overflow and carry flags. 

Example 

The following example will ask two digits from the user, store the digits in the 

EAX and EBX register, respectively, add the values, store the result in a memory 

location 'res' and finally display the result. 

SYS_EXIT  equ 1 

SYS_READ  equ 3 

SYS_WRITE equ 4 

STDIN     equ 0 

STDOUT    equ 1 

 

segment . data  

 

    msg1 db "Enter a digi t " ,  0xA, 0xD  
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    len1 equ $ -  msg1  

 

    msg2 db "Please enter a second digit" ,  0xA, 0xD  

    len2 equ $ -  msg2  

 

    msg3 db "The sum is: "  

    len3 equ $ -  msg3 

 

segment . bss 

 

    num1 resb 2  

    num2 resb 2  

    res resb 1     

 

section  . text  

    global  _start    ; must be declared for  using  gcc 

_start :     ; tell linker entry point  

    mov eax,  SYS_WRITE          

    mov ebx,  STDOUT          

    mov ecx ,  msg1          

    mov edx,  len1  

    int  0x80                 

 

    mov eax,  SYS_READ  

    mov ebx,  STDIN   

    mov ecx ,  num1  

    mov edx,  2 

    int  0x80             

 

    mov eax,  SYS_WRITE         

    mov ebx,  STDOUT          

    mov ecx ,  msg2           

    mov edx,  len2          

    int  0x80 
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    mov eax,  SYS_READ   

    mov ebx,  STDIN   

    mov ecx ,  num2  

    mov edx,  2 

    int  0x80         

 

    mov eax,  SYS_WRITE          

    mov ebx,  STDOUT          

    mov ecx ,  msg3           

    mov edx,  len3          

    int  0x80 

 

    ;  moving the first number to eax register  and second number to ebx  

    ;  and subtractin g ascii '0'  to convert it into  a decimal  number 

    mov eax,  [ number1]  

    sub eax,  '0'  

    mov ebx,  [ number2]  

    sub ebx,  '0'  

 

    ;  add eax and ebx 

    add eax ,  ebx 

    ;  add '0'  to to convert the sum from  decimal  to ASCII  

    add eax ,  '0'  

 

    ;  storin g the sum in  memory location res  

    mov [ res ],  eax 

 

    ;  print  the sum  

    mov eax,  SYS_WRITE         

    mov ebx,  STDOUT 

    mov ecx ,  res          

    mov edx,  1         

    int  0x80 
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exit :      

    mov eax,  SYS_EXIT    

    xor ebx ,  ebx  

    int  0x80 

When the above code is compiled and executed, it produces the following result: 

Enter  a digit :  

3 

Please  enter a second digit :  

4 

The sum is :  

7 

The program with hardcoded variables: 

section  . text  

    global  _start    ; must be declared for  using  gcc 

_start :     ; tell linker entry point  

 mov eax, '3'  

 sub     eax,  '0'  

 mov  ebx,  '4'  

 sub     ebx,  '0'  

 add  eax,  ebx 

 add eax,  '0'  

 mov  [ sum],  eax 

 mov ecx, msg  

 mov edx,  len  

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; cal l kernel  

 mov ecx, sum 

 mov edx,  1 

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

 mov eax, 1 ; system call number ( sys_exit )  
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 int  0x80 ; call kernel  

 

section . data  

 msg db "The sum is:" ,  0xA, 0xD  

 len eq u $ -  msg    

 segment . bss 

 sum resb 1 

When the above code is compiled and executed, it produces the following result: 

The sum is :  

7 

The MUL/IMUL Instruction 

There are two instructions for multiplying binary data. The MUL (Multiply) 

instruction handles unsigned data and the IMUL (Integer Multiply) handles 

signed data. Both instructions affect the Carry and Overflow flag. 

Syntax 

The syntax for the MUL/IMUL instructions is as follows: 

MUL/ IMUL multiplier  

Multiplicand in both cases will be in an accumulator, depending upon the size of 

the multiplicand and the multiplier and the generated product is also stored in 

two registers depending upon the size of the operands. Following section 

explains MUL instructions with three different cases: 

SN Scenarios 

1 When two bytes are multiplied - 

The multiplicand is in the AL register, and the multiplier is a byte in the 

memory or in another register. The product is in AX. High-order 8 bits of 

the product is stored in AH and the low-order 8 bits are stored in AL. 

 

2 When two one-word values are multiplied - 

 

The multiplicand should be in the AX register, and the multiplier is a word 



Assembly Programming 

42 

 

in memory or another register. For example, for an instruction like MUL 

DX, you must store the multiplier in DX and the multiplicand in AX. 

The resultant product is a doubleword, which will need two registers. The 

high-order (leftmost) portion gets stored in DX and the lower-order 

(rightmost) portion gets stored in AX. 

 

3 When two doubleword values are multiplied - 

 

When two doubleword values are multiplied, the multiplicand should be in 

EAX and the multiplier is a doubleword value stored in memory or in 

another register. The product generated is stored in the EDX:EAX 

registers, i.e., the high order 32 bits gets stored in the EDX register and 

the low order 32-bits are stored in the EAX register. 

 

Example 

MOV AL,  10 

MOV DL,  25 

MUL DL 

...  

MOV DL,  0FFH ;  DL= - 1 

MOV AL,  0BEH ;  AL = - 66 

IMUL DL 

Example 

The following example multiplies 3 with 2, and displays the result: 

section  . text  

    global  _start    ; must be declared for  using  gcc 

_start :     ; tell linker entry point  

 

 mov al , '3'  

 sub     al ,  '0'  

 mov  bl ,  '2'  



Assembly Programming 

43 

 

 sub     bl ,  '0'  

 mul  bl  

 add al ,  '0'  

 mov  [ res ],  al  

 mov ecx, msg  

 mov edx,  len  

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

 mov ecx, res  

 mov edx,  1 

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

 mov eax, 1 ; syst em call number ( sys_exit )  

 int  0x80 ; call kernel  

 

section . data  

msg db "The result is:" ,  0xA, 0xD  

len equ $ -  msg    

segment . bss 

res resb 1 

When the above code is compiled and executed, it produces the following result: 

The result is :  

6 

The DIV/IDIV Instructions 

The division operation generates two elements - a quotient and a remainder. 

In case of multiplication, overflow does not occur because double-length 

registers are used to keep the product. However, in case of division, overflow 

may occur. The processor generates an interrupt if overflow occurs. 

The DIV (Divide) instruction is used for unsigned data and the IDIV (Integer 

Divide) is used for signed data. 

Syntax 
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The format for the DIV/IDIV instruction: 

DIV/ IDIV  divisor  

The dividend is in an accumulator. Both the instructions can work with 8-bit, 16-

bit or 32-bit operands. The operation affects all six status flags. Following 

section explains three cases of division with different operand size: 

SN Scenarios 

1 When the divisor is 1 byte - 

 

The dividend is assumed to be in the AX register (16 bits). After division, 

the quotient goes to the AL register and the remainder goes to the AH 

register. 

 

2 When the divisor is 1 word - 

 

The dividend is assumed to be 32 bits long and in the DX:AX registers. 

The high-order 16 bits are in DX and the low-order 16 bits are in AX. 

After division, the 16-bit quotient goes to the AX register and the 16-bit 

remainder goes to the DX register. 

 

3 When the divisor is doubleword - 

 

The dividend is assumed to be 64 bits long and in the EDX:EAX registers. 

The high-order 32 bits are in EDX and the low-order 32 bits are in EAX. 

After division, the 32-bit quotient goes to the EAX register and the 32-bit 

remainder goes to the EDX register. 
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Example 

The following example divides 8 with 2. The dividend 8 is stored in the 16-bit 

AX register and the divisor 2 is stored in the 8-bit BL register. 

section  . text  

    global  _start    ; must be declared for  using  gcc 

_start :     ; te ll linker entry point  

 mov ax, '8'  

 sub     ax,  '0'  

 mov  bl ,  '2'  

 sub     bl ,  '0'  

 div  bl  

 add ax,  '0'  

 mov  [ res ],  ax 

 mov ecx, msg  

 mov edx,  len  

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

 mov ecx, res  

 mov edx,  1 

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

 mov eax, 1 ; system call number ( sys_exit )  

 int  0x80 ; call kernel  

 

section . data  
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msg db "The result is:" ,  0xA, 0xD  

len equ $ -  msg    

segment . bss 

res resb 1 

When the above code is compiled and executed, it produces the following result: 

The result is :  

4 
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The processor instruction set provides the instructions AND, OR, XOR, TEST, and 

NOT Boolean logic, which tests, sets, and clears the bits according to the need of 

the program. 

The format for these instructions: 

SN Instruction Format 

1 AND AND operand1, operand2 

2 OR OR operand1, operand2 

3 XOR XOR operand1, operand2 

4 TEST TEST operand1, operand2 

5 NOT NOT operand1 

 

The first operand in all the cases could be either in register or in memory. The 

second operand could be either in register/memory or an immediate (constant) 

value. However, memory-to-memory operations are not possible. These 

instructions compare or match bits of the operands and set the CF, OF, PF, SF 

and ZF flags. 

The AND Instruction 

The AND instruction is used for supporting logical expressions by performing 

bitwise AND operation. The bitwise AND operation returns 1, if the matching bits 

from both the operands are 1, otherwise it returns 0. For example: 

             Operand1:   0101 

             Operand2:   0011 

----------------------------  

After  AND - > Operand1:  0001 

The AND operation can be used for clearing one or more bits. For example, say 

the BL register contains 0011 1010. If you need to clear the high-order bits to 

zero, you AND it with 0FH. 

11. LOGICAL INSTRUCTIONS 
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AND BL,    0FH   ;  This  sets BL to 0000 1010 

Let's take up another example. If you want to check whether a given number is 

odd or even, a simple test would be to check the least significant bit of the 

number. If this is 1, the number is odd, else the number is even. 

Assuming the number is in AL register, we can write: 

AND AL,  01H     ;  ANDing with  0000 0001 

JZ    EVEN_NUMBER 

The following program illustrates this: 

Example 

section    . text  

   global  _start               ; must be declared for  using  gcc 

_start :                         ; tell linker entry point  

    mov   ax ,    8h           ; getting 8 in  the ax  

    and   ax,  1              ; and ax with  1 

    jz    evnn  

    mov   eax ,  4             ; system call number ( sys_write )  

    mov   ebx ,  1             ; file descriptor ( stdout )  

    mov   ecx ,  odd_msg       ; message to write  

    mov   edx ,  len2          ; length of message  

    int    0x80               ; call kernel  

    jmp   outprog  

evnn:     

    mov   ah ,   09h 

    mov   eax ,  4             ; system call number ( sys_write )  

    mov   ebx ,  1             ; file descriptor ( stdout )  

    mov   ecx ,  even_msg      ; message to write  

    mov   edx ,  len1          ; lengt h of message  

    int    0x80               ; call kernel  

outprog :  

    mov   eax , 1              ; system call number ( sys_exit )  

    int    0x80               ; call kernel  

section   . data  

even_msg  db  'Even Number!'  ; message showing even number  
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len1  equ  $ -  even_msg     

odd_msg db  'Odd Number!'     ; message showing odd number  

len2  equ  $ -  odd_msg 

When the above code is compiled and executed, it produces the following result: 

Even Number!  

Change the value in the ax register with an odd digit, like: 

mov  ax ,  9h                  ;  getting 9 in  the ax  

The program would display: 

Odd Number!  

Similarly, to clear the entire register, you can AND it with 00H. 

The OR Instruction 

The OR instruction is used for supporting logical expression by performing 

bitwise OR operation. The bitwise OR operator returns 1, if the matching bits 

from either or both operands are one. It returns 0, if both the bits are zero. 

For example, 

             Operand1:      0101 

             Operand2:      0011 

----------------------------  

After  OR - > Operand1:     0111 

The OR operation can be used for setting one or more bits. For example, let us 

assume the AL register contains 0011 1010, you need to set the four low-order 

bits, you can OR it with a value 0000 1111, i.e., FH. 

OR BL,  0FH                   ;  This  sets BL to  0011 1111 

Example 

The following example demonstrates the OR instruction. Let us store the value 5 

and 3 in the AL and the BL registers, respectively, then the instruction, 

OR AL,  BL 

should store 7 in the AL register: 

section    . t ext  
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    global  _start            ; must be declared for  using  gcc 

_start :                       ; tell linker entry point  

    mov    al ,  5             ; getting 5 in  the al  

    mov    bl ,  3             ; getting 3 in  the bl  

    or      al ,  bl            ; or  al and bl registers ,  result should be 7 

    add    al ,  byte  '0'       ; converting decimal  to ascii  

    mov    [ result ],   al  

    mov    eax ,  4 

    mov    ebx ,  1 

    mov    ecx ,  result  

    mov    edx ,  1 

    int     0x80 

     

outprog :  

    mov    eax , 1             ; system call number ( sys_exit )  

    int     0x80              ; call kernel  

section    . bss 

result resb 1 

When the above code is compiled and executed, it produces the following result: 

7 

The XOR Instruction 

The XOR instruction implements the bitwise XOR operation. The XOR operation 

sets the resultant bit to 1, if and only if the bits from the operands are different. 

If the bits from the operands are same (both 0 or both 1), the resultant bit is 

cleared to 0. 

For example, 

             Operand1:      0101 

             Operand2:      0011 

----------------------------  

After  XOR - > Operand1:     0110 

XORing an operand with itself changes the operand to 0. This is used to clear a 

register. 
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XOR     EAX ,  EAX 

The TEST Instruction 

The TEST instruction works same as the AND operation, but unlike AND 

instruction, it does not change the first operand. So, if we need to check 

whether a number in a register is even or odd, we can also do this using the 

TEST instruction without changing the original number. 

TEST    AL ,  01H 

JZ      EVEN_NUMBER 

The NOT Instruction 

The NOT instruction implements the bitwise NOT operation. NOT operation 

reverses the bits in an operand. The operand could be either in a register or in 

the memory. 

For example, 

             Operand1:     0101 0011 

Aft er  NOT - > Operand1:     1010 1100 
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Conditional execution in assembly language is accomplished by several looping 

and branching instructions. These instructions can change the flow of control in a 

program. Conditional execution is observed in two scenarios: 

SN Conditional Instructions 

1 Unconditional jump 

This is performed by the JMP instruction. Conditional execution often 

involves a transfer of control to the address of an instruction that does 

not follow the currently executing instruction. Transfer of control may be 

forward, to execute a new set of instructions or backward, to re-execute 

the same steps. 

2 Conditional jump 

This is performed by a set of jump instructions j<condition> depending 

upon the condition. The conditional instructions transfer the control by 

breaking the sequential flow and they do it by changing the offset value 

in IP. 

 

Let us discuss the CMP instruction before discussing the conditional instructions. 

CMP Instruction 

The CMP instruction compares two operands. It is generally used in conditional 

execution. This instruction basically subtracts one operand from the other for 

comparing whether the operands are equal or not. It does not disturb the 

destination or source operands. It is used along with the conditional jump 

instruction for decision making. 

Syntax 

CMP destination ,  source  

CMP compares two numeric data fields. The destination operand could be either 

in register or in memory. The source operand could be a constant (immediate) 

data, register or memory. 

Example 

CMP DX,  00  ;  Compare the DX value with  zero  

12. CONDITIONS 
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JE  L7      ;  If  yes,  then  jump to label L7  

.  

.  

L7:  ...    

CMP is often used for comparing whether a counter value has reached the 

number of times a loop needs to be run. Consider the following typical condition: 

INC EDX 

CMP EDX,  10 ;  Compares whether the counter has reached 10 

JLE LP1      ;  If  it is  less than or  equal to 10,  then  jump to LP1   

Unconditional Jump 

As mentioned earlier, this is performed by the JMP instruction. Conditional 

execution often involves a transfer of control to the address of an instruction 

that does not follow the currently executing instruction. Transfer of control may 

be forward, to execute a new set of instructions or backward, to re-execute the 

same steps. 

Syntax 

The JMP instruction provides a label name where the flow of control is 

transferred immediately. The syntax of the JMP instruction is: 

JMP label  

Example 

The following code snippet illustrates the JMP instruction: 

MOV  AX,  00    ;  Initializing  AX to 0 

MOV  BX,  00    ;  Initializing  BX to 0 

MOV  CX,  01    ;  Initializing  CX to 1 

L20:  

ADD  AX,  01    ;  Increment  AX 

ADD  BX,  AX    ;  Add AX to BX  

SHL  CX,  1     ;  shift left CX ,  this  in  turn doubles the CX value  

JMP  L20       ;  repeats the statements  
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Conditional Jump 

If some specified condition is satisfied in conditional jump, the control flow is 

transferred to a target instruction. There are numerous conditional jump 

instructions depending upon the condition and data. 

Following are the conditional jump instructions used on signed data used for 

arithmetic operations: 

Instruction Description Flags tested 

JE/JZ Jump Equal or Jump Zero ZF 

JNE/JNZ Jump not Equal or Jump Not Zero ZF 

JG/JNLE Jump Greater or Jump Not Less/Equal OF, SF, ZF 

JGE/JNL Jump Greater or Jump Not Less OF, SF 

JL/JNGE Jump Less or Jump Not Greater/Equal OF, SF 

JLE/JNG Jump Less/Equal or Jump Not Greater OF, SF, ZF 

 

Following are the conditional jump instructions used on unsigned data used for 

logical operations: 

Instruction Description Flags tested 

JE/JZ Jump Equal or Jump Zero ZF 

JNE/JNZ Jump not Equal or Jump Not Zero ZF 

JA/JNBE Jump Above or Jump Not Below/Equal CF, ZF 

JAE/JNB Jump Above/Equal or Jump Not Below CF 

JB/JNAE Jump Below or Jump Not Above/Equal CF 

JBE/JNA Jump Below/Equal or Jump Not Above AF, CF 
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The following conditional jump instructions have special uses and check the 

value of flags: 

Instruction Description Flags tested 

JXCZ Jump if CX is Zero none 

JC Jump If Carry CF 

JNC Jump If No Carry CF 

JO Jump If Overflow OF 

JNO Jump If No Overflow OF 

JP/JPE Jump Parity or Jump Parity Even PF 

JNP/JPO Jump No Parity or Jump Parity Odd PF 

JS Jump Sign (negative value) SF 

JNS Jump No Sign (positive value) SF 

 

The syntax for the J<condition> set of instructions: 

Example 

CMP AL,  BL 

JE EQUAL 

CMP AL,  BH 

JE EQUAL 

CMP AL,  CL 

JE EQUAL 

NON_EQUAL:  ...  

EQUAL:  ...  
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Example 

The following program displays the largest of three variables. The variables are 

double-digit variables. The three variables num1, num2 and num3 have values 

47, 72 and 31, respectively: 

section  . text  

    global  _start         ; must be declared for  using  gcc 

 

_start :  ; tell linker entry point  

 mov   ecx ,  [ num1]  

       cmp   ecx ,  [ num2]  

       jg    check_third_num  

       mov   ecx ,  [ num3]  

   check_third_num :  

       cmp   e cx,  [ num3]  

       jg    _exit  

       mov   ecx ,  [ num3]  

   _exit :  

        mov   [ largest ],  ecx 

        mov   ecx , msg 

        mov   edx ,  len  

        mov   ebx , 1 ; file descriptor ( stdout )  

        mov   eax , 4 ; system call number ( sys_write )  

        int    0x80 ; call kernel  

        mov   ecx , largest  

        mov   edx ,  2 

        mov   ebx , 1 ; file descriptor ( stdout )  

        mov   eax , 4 ; system call number ( sys_write )  

        int    0x80 ; call kernel  

     

        mov   eax ,  1 

        int    80h 

 

section  . data  

    msg db "The largest digit is: " ,  0xA, 0xD  
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    len equ $ -  msg  

    num1 dd '47'  

    num2 dd '22'  

    num3 dd '31'  

 

segment . bss 

   largest resb 2   

When the above code is compiled and executed, it produces the following result: 

The largest digit is :   

47 
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The JMP instruction can be used for implementing loops. For example, the 

following code snippet can be used for executing the loop-body 10 times. 

MOV CL,  10 

L1:  

<LOOP- BODY> 

DEC CL 

JNZ L1 

The processor instruction set, however, includes a group of loop instructions for 

implementing iteration. The basic LOOP instruction has the following syntax: 

LOOP  label  

Where, label is the target label that identifies the target instruction as in the 

jump instructions. The LOOP instruction assumes that the ECX register 

contains the loop count. When the loop instruction is executed, the ECX 

register is decremented and the control jumps to the target label, until the ECX 

register value, i.e., the counter reaches the value zero. 

The above code snippet could be written as: 

mov ECX, 10 

l1 :  

<loop body > 

loop l1  

Example 

The following program prints the number 1 to 9 on the screen: 

section  . text  

    global  _start         ; must be declared for  using  gcc 

_start :                  ; tell linker entry point  

 mov ecx , 10 

 mov eax,  '1'  

  

l1 :  

13. LOOPS 
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 mov [ num],  eax 

 mov eax,  4 

 mov ebx,  1 

 push ecx  

 mov ecx ,  num         

     mov edx,  1         

     int  0x80 

 mov eax,  [ num]  

 sub eax,  '0'  

 inc eax  

 add eax ,  '0'  

 pop ecx  

 loop l1  

 mov eax, 1       ; system call number ( sys_exit )  

 int  0x80        ; call kernel  

section  . bss 

num resb 1 

When the above code is compiled and executed, it produces the following result: 

123456789:  

 

 

 

 

 

 

 

 

 



Assembly Programming 

60 

 

Numerical data is generally represented in binary system. Arithmetic instructions 

operate on binary data. When numbers are displayed on screen or entered from 

keyboard, they are in ASCII form. 

So far, we have converted this input data in ASCII form to binary for arithmetic 

calculations and converted the result back to binary. The following code shows 

this: 

section  . text  

    global  _start         ; must be declared for  using  gcc 

_start :  ; tell linker entry point  

 mov eax, '3'  

 sub   eax,  '0'  

 mov  ebx,  '4'  

 sub   ebx,  '0'  

 add  eax,  ebx 

 add eax,  '0'  

 mov  [ sum],  eax 

 mov ecx, msg  

 mov edx,  len  

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

 mov ecx, sum 

 mov edx,  1 

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

 mov eax, 1 ; system call number  ( sys_exit )  

 int  0x80 ; call kernel  

section . data  

msg db "The sum is:" ,  0xA, 0xD  

len equ $ -  msg    

14. NUMBERS 
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segment . bss 

sum resb 1 

When the above code is compiled and executed, it produces the following result: 

The sum is :  

7 

Such conversions, however, have an overhead, and assembly language 

programming allows processing numbers in a more efficient way, in the binary 

form. Decimal numbers can be represented in two forms: 

 ASCII form 

 BCD or Binary Coded Decimal form 

ASCII Representation 

In ASCII representation, decimal numbers are stored as string of ASCII 

characters. For example, the decimal value 1234 is stored as: 

31 32 33 34H 

Where, 31H is ASCII value for 1, 32H is ASCII value for 2, and so on. There are 

four instructions for processing numbers in ASCII representation: 

 AAA - ASCII Adjust After Addition 

 AAS - ASCII Adjust After Subtraction 

 AAM - ASCII Adjust After Multiplication 

 AAD - ASCII Adjust Before Division 

These instructions do not take any operands and assume the required operand 

to be in the AL register. 

The following example uses the AAS instruction to demonstrate the concept: 

section  . text  

    global  _start         ; must be declared for  using  gcc 

_start :  ; tell linker entry point  

 sub     ah,  ah 

 mov     al ,  '9'  

 sub     al ,  '3'  

 aas 

 or       al ,  30h 
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 mov     [ res ],  ax 

  

 mov edx, len  ; message length  

 mov ecx, msg ; message to write  

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

  

 mov edx, 1 ; message length  

 mov ecx, res  ; message to write  

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

 mov eax, 1 ; system call number ( sys_exit )  

 int  0x80 ; call kernel  

 

section  . data  

msg db 'The Result is:' , 0xa  

len equ $ -  msg    

section . bss 

res resb 1   

When the above code is compiled and executed, it produces the following result: 

The Result  is :  

6 

BCD Representation 

There are two types of BCD representation: 

 Unpacked BCD representation 

 Packed BCD representation 

In unpacked BCD representation, each byte stores the binary equivalent of a 

decimal digit. For example, the number 1234 is stored as: 

01 02 03 04H 
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There are two instructions for processing these numbers: 

 AAM - ASCII Adjust After Multiplication 

 AAD - ASCII Adjust Before Division 

The four ASCII adjust instructions, AAA, AAS, AAM, and AAD, can also be used 

with unpacked BCD representation. In packed BCD representation, each digit is 

stored using four bits. Two decimal digits are packed into a byte. For example, 

the number 1234 is stored as: 

12 34H 

There are two instructions for processing these numbers: 

 DAA - Decimal Adjust After Addition 

 DAS - decimal Adjust After Subtraction 

There is no support for multiplication and division in packed BCD representation. 

Example 

The following program adds up two 5-digit decimal numbers and displays the 

sum. It uses the above concepts: 

section  . text  

    global  _start         ; must be declared for  using  gcc 

 

_start :  ; tell linker entry point  

 

 mov     esi ,  4  ; pointing to the rightmost digit  

 mov     ecx ,  5  ; num of digit s 

 clc  

add_loop :    

 mov  al ,  [ num1 + esi ]  

 adc  al ,  [ num2 + esi ]  

 aaa 

 pushf  

 or   al ,  30h 

 popf  

 mov [ sum + esi ],  al  

 dec esi  

 loop  add_loop  
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 mov edx, len  ; message length  

 mov ecx, msg ; message to write  

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

  

 mov edx, 5 ; message length  

 mov ecx, sum ; message to write  

 mov ebx, 1 ; file descriptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

 

 mov eax, 1 ; system call number ( sys_exit )  

 i nt  0x80 ; call kernel  

 

section  . data  

msg db 'The Sum is:' , 0xa  

len equ $ -  msg    

num1 db '12345'  

num2 db '23456'  

sum db '     '  

When the above code is compiled and executed, it produces the following result: 

The Sum is :  

35801 
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We have already used variable length strings in our previous examples. The 

variable length strings can have as many characters as required. Generally, we 

specify the length of the string by either of the two ways: 

 Explicitly storing string length 

 Using a sentinel character 

We can store the string length explicitly by using the $ location counter symbol 

that represents the current value of the location counter. In the following 

example: 

msg  db  'Hello, world!' , 0xa ; our  dear string  

len  equ  $ -  msg            ; length of our  dear string  

$ points to the byte after the last character of the string variable msg. 

Therefore, $ - msg  gives the length of the string. We can also write 

msg db 'Hello, world!' , 0xa ; our  dear string  

len equ 13                 ; length of our  dear string  

Alternatively, you can store strings with a trailing sentinel character to delimit a 

string instead of storing the string length explicitly. The sentinel character 

should be a special character that does not appear within a string. 

For example: 

message DB 'I am loving it!' ,  0 

String Instructions 

Each string instruction may require a source operand, a destination operand or 

both. For 32-bit segments, string instructions use ESI and EDI registers to point 

to the source and destination operands, respectively. 

For 16-bit segments, however, the SI and the DI registers are used to point to 

the source and destination, respectively. 

There are five basic instructions for processing strings. They are: 

 MOVS - This instruction moves 1 Byte, Word or Doubleword of data from 

memory location to another. 

15. STRINGS 
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 LODS - This instruction loads from memory. If the operand is of one byte, 

it is loaded into the AL register, if the operand is one word, it is loaded 

into the AX register and a doubleword is loaded into the EAX register. 

 STOS - This instruction stores data from register (AL, AX, or EAX) to 

memory. 

 CMPS - This instruction compares two data items in memory. Data could 

be of a byte size, word or doubleword. 

 SCAS - This instruction compares the contents of a register (AL, AX or 

EAX) with the contents of an item in memory. 

Each of the above instruction has a byte, word, and doubleword version; and 

string instructions can be repeated by using a repetition prefix. 

These instructions use the ES:DI and DS:SI pair of registers, where DI and SI 

registers contain valid offset addresses that refers to bytes stored in memory. SI 

is normally associated with DS (data segment) and DI is always associated with 

ES (extra segment). 

The DS:SI (or ESI) and ES:DI (or EDI) registers point to the source and 

destination operands, respectively. The source operand is assumed to be at 

DS:SI (or ESI) and the destination operand at ES:DI (or EDI) in memory. 

For 16-bit addresses, the SI and DI registers are used, and for 32-bit addresses, 

the ESI and EDI registers are used. 

The following table provides various versions of string instructions and the 

assumed space of the operands. 

Basic 

Instruction 

Operands 

at 

Byte 

Operation 

Word 

Operation 

Double word 

Operation 

MOVS ES:DI, 

DS:EI 

MOVSB MOVSW MOVSD 

LODS AX, DS:SI LODSB LODSW LODSD 

STOS ES:DI, AX STOSB STOSW STOSD 

CMPS DS:SI, ES: 

DI 

CMPSB CMPSW CMPSD 

SCAS ES:DI, AX SCASB SCASW SCASD 
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MOVS 

The MOVS instruction is used to copy a data item (byte, word or doubleword) 

from the source string to the destination string. The source string is pointed by 

DS:SI and the destination string is pointed by ES:DI. 

The following example explains the concept: 

section .text 

    global _start         ;must be declared for using gcc 

_start: ;tell linker entry point 

 mov ecx, len 

 mov esi, s1 

 mov edi, s2 

 cld 

 rep movsb 

 mov edx,20 ;message length 

 mov ecx,s2 ;message to write 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov eax,1 ;system call number (sys_exit) 

 int 0x80 ;call kernel 

section .data 

s1 db 'Hello, world!',0 ;string 1 

len equ $-s1 

section  .bss 

s2 resb 20              ;destination 

When the above code is compiled and executed, it produces the following result: 

Hello, world! 
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LODS 

In cryptography, a Caesar cipher is one of the simplest known encryption 

techniques. In this method, each letter in the data to be encrypted is replaced 

by a letter some fixed number of positions down the alphabet. 

In this example, let us encrypt a data by simply replacing each alphabet in it 

with a shift of two alphabets, so a will be substituted by c, b with d and so on. 

We use LODS to load the original string 'password' into the memory. 

section .text 

   global _start         ;must be declared for using gcc 

_start:    ;tell linker entry point 

   mov    ecx, len 

   mov    esi, s1 

   mov    edi, s2 

loop_here: 

   lodsb 

   add al, 02 

   stosb 

   loop    loop_here           

   cld 

   rep     movsb 

   mov     edx,20   ;message length 

   mov     ecx,s2   ;message to write 

   mov     ebx,1    ;file descriptor (stdout) 

   mov     eax,4    ;system call number (sys_write) 

   int     0x80     ;call kernel 

   mov     eax,1    ;system call number (sys_exit) 

   int     0x80     ;call kernel 

section .data 

s1 db 'password', 0 ;source 

len equ $-s1 

section .bss 



Assembly Programming 

69 

 

s2 resb 10         ;destination 

When the above code is compiled and executed, it produces the following result: 

rcuuyqtf 

 

STOS 

The STOS instruction copies the data item from AL (for bytes - STOSB), AX (for 

words - STOSW) or EAX (for doublewords - STOSD) to the destination string, 

pointed to by ES:DI in memory. 

The following example demonstrates use of the LODS and STOS instruction to 

convert an upper case string to its lower case value: 

section .text 

    global _start         ;must be declared for using gcc 

_start: ;tell linker entry point 

        mov    ecx, len 

        mov    esi, s1 

        mov    edi, s2 

loop_here: 

 lodsb 

 or      al, 20h 

 stosb 

 loop    loop_here  

 cld 

 rep movsb 

 mov edx,20 ;message length 

 mov ecx,s2 ;message to write 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov eax,1 ;system call number (sys_exit) 

 int 0x80 ;call kernel 

section .data 
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s1 db 'HELLO, WORLD', 0 ;source 

len equ $-s1 

section .bss 

s2 resb 20              ;destination 

When the above code is compiled and executed, it produces the following result: 

hello, world 

CMPS 

The CMPS instruction compares two strings. This instruction compares two data 

items of one byte, word or doubleword, pointed to by the DS:SI and ES:DI 

registers and sets the flags accordingly. You can also use the conditional jump 

instructions along with this instruction. 

The following example demonstrates comparing two strings using the CMPS 

instruction: 

section .text 

    global _start            ;must be declared for using gcc 

_start: ;tell linker entry point 

   mov esi, s1 

   mov edi, s2 

   mov ecx, lens2 

   cld 

   repe  cmpsb 

   jecxz  equal            ;jump when ecx is zero 

 

   ;If not equal then the following code 

   mov eax, 4 

   mov ebx, 1 

   mov ecx, msg_neq 

   mov edx, len_neq 

   int 80h 

   jmp exit 

equal: 
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   mov eax, 4 

   mov ebx, 1 

   mov ecx, msg_eq 

   mov edx, len_eq 

   int 80h 

exit: 

   mov eax, 1 

   mov ebx, 0 

   int 80h 

section .data 

s1 db 'Hello, world!',0    ;our first string 

lens1 equ $-s1 

s2 db 'Hello, there!', 0   ;our second string 

lens2 equ $-s2 

msg_eq db 'Strings are equal!', 0xa 

len_eq  equ $-msg_eq 

msg_neq db 'Strings are not equal!' 

len_neq equ $-msg_neq 

When the above code is compiled and executed, it produces the following result: 

Strings are not equal! 

 

SCAS 

The SCAS instruction is used for searching a particular character or set of 

characters in a string. The data item to be searched should be in AL (for 

SCASB), AX (for SCASW) or EAX (for SCASD) registers. The string to be 

searched should be in memory and pointed by the ES:DI (or EDI) register. 

Look at the following program to understand the concept: 

section .text 

    global _start         ;must be declared for using gcc 

_start: ;tell linker entry point 
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   mov ecx,len 

   mov edi,my_string 

   mov al , 'e' 

   cld 

   repne scasb 

   je found ; when found 

   ; If not not then the following code 

   mov eax,4 

   mov ebx,1 

   mov ecx,msg_notfound 

   mov edx,len_notfound 

   int 80h 

   jmp exit 

found: 

   mov eax,4 

   mov ebx,1 

   mov ecx,msg_found 

   mov edx,len_found 

   int 80h 

exit: 

   mov eax,1 

   mov ebx,0 

   int 80h 

section .data 

my_string db 'hello world', 0 

len equ $-my_string   

msg_found db 'found!', 0xa 

len_found equ $-msg_found 

msg_notfound db 'not found!' 

len_notfound equ $-msg_notfound    
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When the above code is compiled and executed, it produces the following result: 

found! 

Repetition Prefixes 

The REP prefix, when set before a string instruction, for example - REP MOVSB, 

causes repetition of the instruction based on a counter placed at the CX register. 

REP executes the instruction, decreases CX by 1, and checks whether CX is zero. 

It repeats the instruction processing until CX is zero. 

The Direction Flag (DF) determines the direction of the operation. 

 Use CLD (Clear Direction Flag, DF = 0) to make the operation left to right. 

 Use STD (Set Direction Flag, DF = 1) to make the operation right to left. 

The REP prefix also has the following variations: 

 REP: It is the unconditional repeat. It repeats the operation until CX is 

zero. 

 REPE or REPZ: It is conditional repeat. It repeats the operation while the 

zero flag indicates equal/zero. It stops when the ZF indicates not 

equal/zero or when CX is zero. 

 REPNE or REPNZ: It is also conditional repeat. It repeats the operation 

while the zero flag indicates not equal/zero. It stops when the ZF indicates 

equal/zero or when CX is decremented to zero. 
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We have already discussed that the data definition directives to the assembler 

are used for allocating storage for variables. The variable could also be initialized 

with some specific value. The initialized value could be specified in hexadecimal, 

decimal or binary form. 

For example, we can define a word variable ‘months’ in either of the following 

way: 

MONTHS DW 12 

MONTHS DW 0CH 

MONTHS DW 0110B 

The data definition directives can also be used for defining a one-dimensional 

array. Let us define a one-dimensional array of numbers. 

NUMBERS DW  34,   45,   56,   67,   75,  89 

The above definition declares an array of six words each initialized with the 

numbers 34, 45, 56, 67, 75, 89. This allocates 2x6 = 12 bytes of consecutive 

memory space. The symbolic address of the first number will be NUMBERS and 

that of the second number will be NUMBERS + 2 and so on. 

Let us take up another example. You can define an array named inventory of 

size 8, and initialize all the values with zero, as: 

INVENTORY   DW  0 

            DW  0 

            DW  0 

            DW  0 

            DW  0 

            DW  0 

            DW  0 

            DW  0 

Which can be abbreviated as: 

INVENTORY   DW  0,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 

The TIMES directive can also be used for multiple initializations to the same 

value. Using TIMES, the INVENTORY array can be defined as: 

16. ARRAYS 
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INVENTORY TIMES 8 DW 0 

Example 

The following example demonstrates the above concepts by defining a 3-element 

array x, which stores three values: 2, 3 and 4. It adds the values in the array 

and displays the sum 9: 

section  . text  

    global  _start  ; must be declared for  linker ( ld )  

_start :   

    

      mov  eax , 3      ; number bytes to be summed  

      mov  ebx , 0      ; EBX will store the sum  

      mov  ecx ,  x     ; ECX will point to the current element to be summed  

top :   add  ebx ,  [ ecx]  

      add  ecx , 1      ; move pointer to next  element  

      dec  eax        ; decrement counter  

      jnz  top        ; if  counter not  0,  then  loop again  

done:   

      add   ebx ,  '0'  

      mov  [ sum],  ebx ; done,  store result in  "sum"  

display :  

      mov  edx , 1      ; message length  

      mov  ecx ,  sum   ; message to write  

      mov  ebx ,  1     ; file descriptor ( stdout )  

      mov  eax ,  4     ; system call number ( sys_write )  

      int   0x80       ; call kernel  

      mov  eax ,  1     ; system call number ( sys_exit )  

      int   0x80       ; call kernel  

 

section  . data  

global  x 

x:      

      db  2 

      db  4 

      db  3 
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sum:   

      db  0 

When the above code is compiled and executed, it produces the following result: 

9 
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Procedures or subroutines are very important in assembly language, as the 

assembly language programs tend to be large in size. Procedures are identified 

by a name. Following this name, the body of the procedure is described which 

performs a well-defined job. End of the procedure is indicated by a return 

statement. 

Syntax 

Following is the syntax to define a procedure: 

proc_name:  

   procedure body  

   ...  

   ret  

The procedure is called from another function by using the CALL instruction. The 

CALL instruction should have the name of the called procedure as an argument 

as shown below: 

CALL proc_name 

The called procedure returns the control to the calling procedure by using the 

RET instruction. 

Example 

Let us write a very simple procedure named sum that adds the variables stored 

in the ECX and EDX register and returns the sum in the EAX register: 

section  . text  

    global  _start         ; must be declared for  using  gcc 

_start :  ; tell linker entry point  

 mov ecx, '4'  

 sub   ecx,  '0'  

 mov  edx,  '5'  

 sub   edx,  '0'  

 call  sum     ; call sum procedure  

 mov  [ res ],  eax 

 mov ecx,  msg  

17. PROCEDURES 
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 mov edx,  len  

 mov ebx, 1 ; file descr iptor ( stdout )  

 mov eax, 4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

 mov ecx,  res  

 mov edx,  1 

 mov ebx,  1 ; file descriptor ( stdout )  

 mov eax,  4 ; system call number ( sys_write )  

 int  0x80 ; call kernel  

 mov eax, 1 ; system call number ( sys_exit )  

 i nt  0x80 ; call kernel  

sum:  

   mov     eax ,  ecx 

   add     eax ,  edx 

   add     eax ,  '0'  

   ret  

section . data  

msg db "The sum is:" ,  0xA, 0xD  

len equ $ -  msg    

segment . bss 

res resb 1 

When the above code is compiled and executed, it produces the following result: 

The sum is :  

9 

Stacks Data Structure 

A stack is an array-like data structure in the memory in which data can be 

stored and removed from a location called the 'top' of the stack. The data that 

needs to be stored is 'pushed' into the stack and data to be retrieved is 'popped' 

out from the stack. Stack is a LIFO data structure, i.e., the data stored first is 

retrieved last. 

Assembly language provides two instructions for stack operations: PUSH and 

POP. These instructions have syntaxes like: 

PUSH    operan d 
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POP     address / register  

The memory space reserved in the stack segment is used for implementing 

stack. The registers SS and ESP (or SP) are used for implementing the stack. 

The top of the stack, which points to the last data item inserted into the stack is 

pointed to by the SS:ESP register, where the SS register points to the beginning 

of the stack segment and the SP (or ESP) gives the offset into the stack 

segment. 

The stack implementation has the following characteristics: 

 Only words or doublewords could be saved into the stack, not a byte. 

 The stack grows in the reverse direction, i.e., toward the lower memory 

address. 

 The top of the stack points to the last item inserted in the stack; it points 

to the lower byte of the last word inserted. 

As we discussed about storing the values of the registers in the stack before 

using them for some use; it can be done in following way: 

;  Save the AX and BX registers in  the stack  

PUSH    AX  

PUSH    BX 

;  Use the registers for  other purpose  

MOV AX,  VALUE1 

MOV  BX,  VALUE2 

...  

MOV  VALUE1,  AX 

MOV VALUE2,  BX 

;  Restore  the original values  

POP AX 

POP BX 

Example 

The following program displays the entire ASCII character set. The main 

program calls a procedure named display, which displays the ASCII character 

set. 

section  . text  

    global  _start         ; must be declared for  using  gcc 

_start :  ; tell linker entry point  

 call  display  
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 mov eax, 1 ; system call number ( sys_exit )  

 int  0x80 ; call kernel  

display :  

 mov    ecx ,  256 

next :  

 push    ecx  

 mov     eax ,  4 

 mov     ebx ,  1 

 mov     ecx,  achar  

 mov     edx ,  1 

 int      80h 

 pop     ecx   

 mov dx,  [ achar ]  

 cmp byte  [ achar ],  0dh 

 inc  byte  [ achar ]  

 loop    next  

 ret  

section . data  

achar db '0'    

When the above code is compiled and executed, it produces the following result: 

0123456789: ;<=>? @ABCDEFGHIJKLMNOPQRSTUVWXYZ[ \ ] ^_`abcdefghijklmnopqrstuvwx

yz{|}  

...  

...  

 

 

 



Assembly Programming 

81 

 

A recursive procedure is one that calls itself. There are two kind of recursion: 

direct and indirect. In direct recursion, the procedure calls itself and in indirect 

recursion, the first procedure calls a second procedure, which in turn calls the 

first procedure. 

Recursion could be observed in numerous mathematical algorithms. For 

example, consider the case of calculating the factorial of a number. Factorial of a 

number is given by the equation: 

Fact  ( n)  = n *  fact ( n- 1)  for  n > 0 

For example: factorial of 5 is 1 x 2 x 3 x 4 x 5 = 5 x factorial of 4 and this can 

be a good example of showing a recursive procedure. Every recursive algorithm 

must have an ending condition, i.e., the recursive calling of the program should 

be stopped when a condition is fulfilled. In the case of factorial algorithm, the 

end condition is reached when n is 0. 

The following program shows how factorial n is implemented in assembly 

language. To keep the program simple, we will calculate factorial 3. 

section  . text  

    global  _start         ; must be declared for  using  gcc 

_start :     ; tell linker entry point  

 

    mov bx,  3       ; for  calculating factorial 3 

    call  proc_fact  

    add   ax ,  30h 

    mov  [ fact ],  ax 

     

    mov   edx, len   ; message length  

    mov   ecx, msg   ; message to write  

    mov   ebx, 1     ; file descriptor ( stdout )  

    mov   eax, 4     ; system call number ( sys_write )  

    int    0x80      ; call kernel  

 

    mov   edx , 1     ; message length  

    mov   ecx, fact  ; message to write  

18. RECURSION 
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    mov   ebx, 1     ; file descriptor ( stdout )  

    mov   eax, 4     ; system call number ( sys_write )  

    int    0x80      ; call kernel  

     

    mov   eax, 1     ; system call number ( sys_exit )  

    int    0x80      ; call kernel  

proc_fact :  

    cmp   bl ,  1 

    jg    do_calculation  

    mov   ax ,  1 

    ret  

do_calculation :  

    dec   bl  

    call  proc_fact  

    inc   bl  

    mul   bl        ; ax = al *  bl  

    ret  

 

section  . data  

msg db 'Factorial 3 is:' , 0xa  

len equ $ -  msg    

 

section . bss 

fact resb 1 

When the above code is compiled and executed, it produces the following result: 

Factorial  3 is :  

6 
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Writing a macro is another way of ensuring modular programming in assembly 

language. 

 A macro is a sequence of instructions, assigned by a name and could be 

used anywhere in the program. 

 In NASM, macros are defined with %macro and %endmacro directives. 

 The macro begins with the %macro directive and ends with the 

%endmacro directive. 

The Syntax for macro definition: 

%macro macro_name  number_of_params  

<macro body > 

%endmacro 

Where, number_of_params specifies the number parameters, macro_name 

specifies the name of the macro. 

The macro is invoked by using the macro name along with the necessary 

parameters. When you need to use some sequence of instructions many times in 

a program, you can put those instructions in a macro and use it instead of 

writing the instructions all the time. 

For example, a very common need for programs is to write a string of characters 

in the screen. For displaying a string of characters, you need the following 

sequence of instructions: 

mov edx, len  ; message length  

mov ecx, msg ; message to write  

mov ebx, 1       ; file descriptor ( stdout )  

mov eax, 4       ; system call number ( sys_write )  

int  0x80        ; call kernel  

In the above example of displaying a character string, the registers EAX, EBX, 

ECX and EDX have been used by the INT 80H function call. So, each time you 

need to display on screen, you need to save these registers on the stack, invoke 

INT 80H and then restore the original value of the registers from the stack. So, 

it could be useful to write two macros for saving and restoring data. 

 

19. MACROS 
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We have observed that, some instructions like IMUL, IDIV, INT, etc., need some 

of the information to be stored in some particular registers and even return 

values in some specific register(s). If the program was already using those 

registers for keeping important data, then the existing data from these registers 

should be saved in the stack and restored after the instruction is executed. 

Example 

Following example shows defining and using macros: 

;  A macro with  two parameter s 

;  Implements  the write system call  

   %macro write_string 2  

      mov   eax ,  4 

      mov   ebx ,  1 

      mov   ecx ,  %1 

      mov   edx ,  %2 

      int    80h 

   %endmacro 

  

section  . text  

    global  _start            ; must be declared for  using  gcc 

_start :        ; tell linker entry point  

 write_string msg1 ,  len1                

 write_string msg2 ,  len2     

 write_string msg3 ,  len3    

 mov eax, 1          ; system call number ( sys_exit )  

 int  0x80           ; call kernel  

 

section  . data  

msg1 db 'Hello, programmers!' , 0xA, 0xD   

len1 equ $ -  msg1    

msg2 db 'Welcome to the world of,' ,  0xA, 0xD  

len2 equ $ -  msg2  

msg3 db 'Linux assembly programming! '  

len3 equ $ -  msg3 
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When the above code is compiled and executed, it produces the following result: 

Hello ,  programmers !  

Welcome to the world of ,  

Linux  assembly programming !  
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The system considers any input or output data as stream of bytes. There are 

three standard file streams: 

 Standard input (stdin), 

 Standard output (stdout), and 

 Standard error (stderr). 

File Descriptor 

A file descriptor is a 16-bit integer assigned to a file as a file id. When a new 

file is created or an existing file is opened, the file descriptor is used for 

accessing the file. 

File descriptor of the standard file streams - stdin, stdout and stderr are 0, 1 

and 2, respectively. 

File Pointer 

A file pointer specifies the location for a subsequent read/write operation in the 

file in terms of bytes. Each file is considered as a sequence of bytes. Each open 

file is associated with a file pointer that specifies an offset in bytes, relative to 

the beginning of the file. When a file is opened, the file pointer is set to zero. 

File Handling System Calls 

The following table briefly describes the system calls related to file handling: 

%eax Name %ebx %ecx %edx 

2 sys_fork struct pt_regs - - 

3 sys_read unsigned int char * size_t 

4 sys_write unsigned int const char * size_t 

5 sys_open const char * int int 

6 sys_close unsigned int - - 

20. FILE MANAGEMENT 
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8 sys_creat const char * int - 

19 sys_lseek unsigned int off_t unsigned int 

 

The steps required for using the system calls are same, as we discussed earlier: 

1. Put the system call number in the EAX register. 

2. Store the arguments to the system call in the registers EBX, ECX, etc. 

3. Call the relevant interrupt (80h). 

4. The result is usually returned in the EAX register. 

Creating and Opening a File 

For creating and opening a file, perform the following tasks: 

1. Put the system call sys_creat() number 8, in the EAX register. 

2. Put the filename in the EBX register. 

3. Put the file permissions in the ECX register. 

The system call returns the file descriptor of the created file in the EAX register, 

in case of error, the error code is in the EAX register. 

Opening an Existing File 

For opening an existing file, perform the following tasks: 

1. Put the system call sys_open() number 5, in the EAX register. 

2. Put the filename in the EBX register. 

3. Put the file access mode in the ECX register. 

4. Put the file permissions in the EDX register. 

The system call returns the file descriptor of the created file in the EAX register, 

in case of error, the error code is in the EAX register. 

Among the file access modes, most commonly used are: read-only (0), write-

only (1), and read-write (2). 

Reading from a File 

For reading from a file, perform the following tasks: 

1. Put the system call sys_read() number 3, in the EAX register. 

2. Put the file descriptor in the EBX register. 
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3. Put the pointer to the input buffer in the ECX register. 

4. Put the buffer size, i.e., the number of bytes to read, in the EDX register. 

The system call returns the number of bytes read in the EAX register, in case of 

error, the error code is in the EAX register. 

Writing to a File 

For writing to a file, perform the following tasks: 

1. Put the system call sys_write() number 4, in the EAX register. 

2. Put the file descriptor in the EBX register. 

3. Put the pointer to the output buffer in the ECX register. 

4. Put the buffer size, i.e., the number of bytes to write, in the EDX register. 

The system call returns the actual number of bytes written in the EAX register, 

in case of error, the error code is in the EAX register. 

Closing a File 

For closing a file, perform the following tasks: 

1. Put the system call sys_close() number 6, in the EAX register. 

2. Put the file descriptor in the EBX register. 

The system call returns, in case of error, the error code in the EAX register. 

Updating a File 

For updating a file, perform the following tasks: 

1. Put the system call sys_lseek () number 19, in the EAX register. 

2. Put the file descriptor in the EBX register. 

3. Put the offset value in the ECX register. 

4. Put the reference position for the offset in the EDX register. 

The reference position could be: 

 Beginning of file - value 0 

 Current position - value 1 

 End of file - value 2 

The system call returns, in case of error, the error code in the EAX register. 
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Example 

The following program creates and opens a file named myfile.txt, and writes a 

text 'Welcome to Tutorials Point' in this file. Next, the program reads from the 

file and stores the data into a buffer named info. Lastly, it displays the text as 

stored in info. 

section  . text  

   global  _start         ; must be declared for  using  gcc 

_start :    ; tell linker entry point  

; create the file  

    mov  eax ,  8 

    mov  ebx ,  file_name  

    mov  ecx ,  0777      ; read ,  write and execute by all  

    int   0x80           ; call kernel  

    mov [ fd_out ],  eax 

     

;  write into  the file  

    mov edx, len         ; number of bytes  

    mov ecx,  msg        ; message to write  

    mov ebx,  [ fd_out ]    ; file des criptor  

    mov eax, 4           ; system call number ( sys_write )  

    int  0x80            ; call kernel  

  

    ;  close the file  

    mov eax,  6 

    mov ebx,  [ fd_out ]  

     

;  write the message indicating end of file write  

    mov eax,  4 

    mov ebx,  1 

    mov ecx ,  msg_done 

    mov edx,  len_done  

    int   0x80 

     

; open the file for  r eading  

    mov eax,  5 
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    mov ebx,  file_name  

    mov ecx ,  0          ; for  read only access  

    mov edx,  0777       ; read ,  write and execute by all  

    int   0x80 

    mov  [ fd_in ],  eax 

     

; read from  file  

    mov eax,  3 

    mov ebx,  [ fd_in ]  

    mov ecx ,  inf o 

    mov edx,  26 

    int  0x80 

     

;  close the file  

    mov eax,  6 

    mov ebx,  [ fd_in ]  

     

;  print  the info  

    mov eax,  4 

    mov ebx,  1 

    mov ecx ,  info  

    mov edx,  26 

    int  0x80 

        

    mov eax, 1           ; system call number ( sys_exit )  

    int  0x80            ; call kernel  

 

section  . data  

file_name db 'myfile.txt'  

msg db 'Welcome to Tutorials Point'  

len equ  $ - msg 

msg_done db 'Written to file' ,  0xa 

len_done equ $ - msg_done 
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section . bss 

fd_out resb 1 

fd_in  resb 1 

info resb  26 

When the above code is compiled and executed, it produces the following result: 

Written  to file  

Welcome to Tutorials  Point  
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The sys_brk() system call is provided by the kernel, to allocate memory without 

the need of moving it later. This call allocates memory right behind the 

application image in the memory. This system function allows you to set the 

highest available address in the data section. 

This system call takes one parameter, which is the highest memory address 

needed to be set. This value is stored in the EBX register. 

In case of any error, sys_brk() returns -1 or returns the negative error code 

itself. The following example demonstrates dynamic memory allocation. 

Example 

The following program allocates 16kb of memory using the sys_brk() system 

call: 

section  . text  

    global  _start          ; must be declared for  using  gcc 

_start :     ; tell linker entry point  

 

 mov eax,  45  ; sys_brk  

 xor  ebx,  ebx 

 int  80h 

 

 add eax,  16384  ; number of bytes to be reserved  

 mov ebx,  eax 

 mov eax,  45  ; sys_ brk  

 int  80h 

 cmp eax,  0 

 jl  exit   ; exit ,  if  error  

 mov edi ,  eax ; EDI = highest available address  

 sub edi ,  4 ; pointing to the last  DWORD   

 mov ecx,  4096 ; number of DWORDs allocated  

 xor  eax,  eax ; clear eax  

 std    ; backward  

 rep  stosd   ; repete for  entir e allocated area  

 cld    ; put DF flag to normal state  

21. MEMORY MANAGEMENT 
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 mov eax,  4 

 mov ebx,  1 

 mov ecx,  msg 

 mov edx,  len  

 int  80h  ; print  a message 

exit :  

 mov eax,  1 

 xor  ebx,  ebx 

 int  80h 

section  . data  

msg     db "Allocated 16 kb of memory!" ,  10 

len     equ  $ -  msg 

When the above code is compiled and executed, it produces the following result: 

Allocated  16 kb of memory !  

 

 

 

 


