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Abstract

In this introductory paper, we use Santilli’s iso-topic lifting as a platform to explore
Mandelbrot’s set. The objective is to upgrade Mandelbrot’s complex quadratic poly-
nomial with iso-multiplication and then probe the effects on this revolutionary fractal.
For this, we define the “iso-complex quadratic polynomial” and engage it to generate
an array of “Mandelbrot iso-sets” by varying the iso-unit. The computational results
indicate two general topological effects: scale-deformation and boundary-deformation,
which are consequently connected to dynamic iso-spaces. In total, these new and pre-
liminary developments spark further insight into the emerging realm of iso-fractals.

Keywords: Geometry and topology; Chaos theory; Santilli iso-number; Fractal; Iso-
fractal; Mandelbrot set; Mandelbrot iso-set.



1 Introduction
The Mandelbrot set is often considered to be the most famous fractal. It

is a mathematical set of points in a Euclidean complex space C, with a dis-
tinctive boundary that characterizes a fractal structure with self-similarity
[1, 2]. The set is closely related to Julia sets [3] and is named after the
French mathematician Benoit Mandelbrot, the pioneer who analyzed and
popularized it [1, 2]. Images of Mandelbrot’s set are created by iteratively
sampling complex numbers and determining, for each one, if the result tends
towards infinity when a particular mathematical operation is iterated on it
[1, 2]. For each complex number, the real and imaginary components serve
as 2D image coordinates in C [4], where the pixels are colored to encode the
sequence divergence rate [1, 2]. In particular, the Mandelbrot set is the set
of values of c ∈ C for which the orbit of 0 under iteration of Mandelbrot’s
complex quadratic polynomial [1, 2]

zn+1 = z2n + c, (1)

remains bounded, where zn, zn+1, c ∈ C are complex numbers. That is, c
is part of the Mandelbrot set if, when starting with z0 = 0 and applying
the iteration repeatedly, the absolute value of zn remains bounded however
large n gets [1, 2]. Beyond the discipline of mathematics, the Mandelbrot
set has become prominent in various art forms due to its aesthetic appeal
[5, 6, 7] and, moreover, because it is an emergent complex structure that
arises from the application of simple rules [1, 2].

So why are the Mandelbrot set and other such fractals an important
subject to study in science and mathematics? Well, it turns out that fractal
geometry is the language of chaos theory [4, 8], and fractal/chaotic patterns
are abundant in the physical, chemical, and biological expressions of nature
[9, 10, 6]. Moreover, fractal geometry and chaos theory are a relatively new
discipline [4]. Chaos theory examines the behavior of dynamical systems
that are highly sensitive to initial conditions [11, 9]. In a chaotic dynamical
system, miniscule differences in initial conditions yield widely diverging out-
comes, thereby generally rendering long-term predictions impossible [11, 9].
For this, additional examples of chaos and fractals are also observed in
lightning discharges [12, 13, 14, 15], weather patterns [16, 17, 18], aquatic
ecosystems [19, 20], population biology [21], the biological allometric scaling
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laws [22, 23, 24, 25, 26], cancers and genetics [27, 28], viruses and pathogens
[29, 30], the human brain [31, 32, 33], earthquakes [34, 35, 36], volcanoes
[37, 38, 39], the global stock market [40, 41], and more. Certainly, fractals
such as the Mandelbrot set must play a fundamental role in classifying and
demystifying such complex systems—but how?

In this paper, we resume the iso-fractal developments of [4] and attack
this complex problem by utilizing the power of Santilli’s new iso-topic lifting
[42, 43, 44, 45, 46] to probe Mandelbrot’s set [1, 2]. For this, we launch with
Section 2, where we deploy Santilli’s iso-numbers [4, 42, 43, 44, 45, 46] to
upgrade Mandelbrot’s complex quadratic polynomial—eq. (1)—with iso-
multiplication to construct the iso-complex quadratic polynomial, which is
used to construct a Mandelbrot iso-set. For this, we identify the proce-
dure and results for a computational experiment that assesses the impact
of Santilli’s iso-unit [4, 42, 43, 44, 45, 46] for various Mandelbrot iso-sets.
Finally, we conclude with Section 3, where we briefly recapitulate this mode
of research and suggest future actions to take.

2 Experiment
Here, motivated by the iso-fractal initiation of [4], we engage Santilli’s

iso-numbers [42, 43, 44, 45, 46] to explore Mandelbrot’s set [1, 2] in Eu-
clidean complex space. In the procedure of Section 2.1, we attack our
objective by upgrading Mandelbrot’s complex quadratic polynomial—eq.
(1)—with Santilli’s iso-multiplication [4, 42, 43, 44, 45, 46] to construct the
iso-complex quadratic polynomial, which is used to construct a Mandelbrot
iso-set. Afterwards, in Section 2.2, we examine the computational results
for an array of Mandelbrot iso-sets with distinct iso-topic liftings to assess
the impact of varying the iso-units.

2.1 Procedure
In this section, the iso-complex quadratic polynomial for the experiment

is assembled as follows:

1. First, in accordance to Santilli’s iso-number methodology [4, 42, 43,
44, 45, 46], we select the positive-definite iso-unit r̂ > 0 with the
corresponding inverse κ̂ = 1

r̂
> 0.
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2. Second, given that C is the set of all complex numbers, then we demon-
strate that C is iso-topically lifted via C→ Cr̂ to establish Cr̂, which
is the set of all iso-complex numbers [42, 43, 44, 45, 46, 4]. Thus, if
z1, z2 ∈ C are complex numbers, then the corresponding iso-complex
numbers ẑ1, ẑ2 ∈ Cr̂ are directly related via [4, 42, 43, 44, 45, 46]

ẑ1 = z1 × r̂

ẑ2 = z2 × r̂
, ∀z1, z2 ∈ C→ ∀ẑ1, ẑ2 ∈ Cr̂, (2)

where the conventional complex multiplication ẑ1 × ẑ2 is upgraded
with the iso-multiplication [4, 42, 43, 44, 45, 46]

ẑ1 ×̂ ẑ2 = ẑ1 × κ̂× ẑ2 = ẑ1 ×
1

r̂
× ẑ2. (3)

3. Third, given the iso-multiplication of eq. (3), we deduce the iso-square
via the expansion

ẑ2n = ẑn ×̂ ẑn
= (zn × r̂)× κ̂× (zn × r̂)
= (zn × r̂)× 1

r̂
× (zn × r̂)

= zn × zn × r̂.

(4)

4. Fourth, we prove that the axiom of the multiplicative units of eqs.
(2–4) is confirmed by the expressions [4, 42, 43, 44, 45, 46]

1 ×̂ ẑn = 1× κ̂× ẑn = ẑn ×
1

r̂
× 1 = ẑn ×̂ 1, ∀ẑn ∈ Cr̂. (5)

5. Fifth, we establish that eqs. (2–5) are characterized by the iso-topic
lifting and its inverse [4, 42, 43, 44, 45, 46]

f(r̂) : C → Cr̂

f−1(r̂) : Cr̂ → C,
(6)

respectively.

4



6. Finally, we engage eqs. (2–6) to upgrade eq. (1) to define the iso-
complex quadratic polynomial as

ẑn+1 ≡ ẑ2n + ĉ ≡ (ẑn ×̂ ẑn)+ ĉ ≡ (zn×zn× r̂)+(c× r̂) ≡ zn+1× r̂, (7)

where ẑn, ẑn+1, ĉ ∈ Cr̂ are iso-complex numbers and zn, zn+1, c ∈ C are
the corresponding complex numbers. Hence, we can computationally
generate a Mandelbrot iso-set by systematically iterating eq. (7)!

At this point, we’ve successfully upgraded Mandelbrot’s complex quadratic
polynomial [1, 2] of eq. (1) with Santilli’s iso-multiplication [4, 42, 43, 44,
45, 46] to construct the iso-complex quadratic polynomial of eq. (7), which
are used to construct Mandelbrot iso-sets.

2.2 Results
In total, we computationally experimented with the 5 distinct iso-units:

r̂ ∈ {1

2
,
3

4
, 1,

4

3
, 2}. (8)

In eq. (8), we observe that 1
2

is the inverse of 2, 1 is the inverse of 1,
and 3

4
is the inverse of 4

3
, so these iso-unit values are in fact dual. Our

objective is to insert the various iso-units of eq. (8) into the iso-complex
quadratic polynomial of eq. (7) to observe the effect of Santilli’s iso-topic
lifting [4, 42, 43, 44, 45, 46] on Mandelbrot’s set [1, 2].

For our control, we started with r̂ = 1 and generated the Mandelbrot
set—see the middle graphic in Figure 1. Afterwards, we varied the iso-unit
for r̂ 6= 1, such that r̂ = 1

2
, 3
4
, 4
3
, 2, to generate the Mandelbrot iso-sets—see

the non-middle graphics in Figure 1. In this preliminary assessment, we
observe that the iso-unit variation impact results of Figure 1 indicate that
Santilli’s iso-topic lifting [4, 42, 43, 44, 45, 46] yields—at minimum—two
general topological effects:

1. scale-deformation, where the fractal is magnified (“zoom-in”) or
de-magnified (“zoom-out”); and

2. boundary-deformation, where the relative position of the fractal
boundaries and sequence divergence rates are restructured.
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Effects 1 and 2 prove the iso-mathematical existence of the proposed Man-
delbrot iso-sets, which are indeed locally iso-morphic to the Mandelbrot set.
Moreover, these computational results are an experimental implementation
of the discrete dynamic iso-spaces in [47], where the iso-unit is treated as a
dynamic iso-unit function of a parameter that varies by taking on discrete
values.

3 Conclusion
The outcomes of this investigation reveal and assess the preliminary

impact of Santilli’s iso-unit [42, 43, 44, 45, 46] on Mandelbrot’s set [1, 2].
More precisely, we were inspired by the iso-fractal developments of [4] and
deployed iso-topic liftings [42, 43, 44, 45, 46] to transform Mandelbrot’s com-
plex quadratic polynomial into an iso-complex quadratic polynomial, which
thereby enabled us to forge the new Mandelbrot iso-set—the Mandelbrot
set and a given Mandelbrot iso-set are locally iso-morphic. Subsequently,
the initial results of the computational experiment revealed that varying
the iso-units causes two general topological effects: scale-deformation and
boundary-deformation. For this, we noted that this experiment is an im-
plementation of discrete dynamic iso-spaces [47].

In our opinion, the said examination and results indicate an exciting
and promising future for this mode of cutting-edge research: the territory
of iso-fractals is a vast, uncharted frontier. Ultimately, the implications
of this venture are significant because they advance the borderland of iso-
mathematics to new trajectories of thought, inquiry, and experimentation.
Hence, with the objective of further implementing these developments in
the disciplines of science, technology, and engineering, we propose that
additional rigorous iso-mathematical investigations should be conducted
along this pattern to challenge, upgrade, and generalize these emerging
iso-fractals.
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Fig. 1: A depiction of the iso-unit impact, where the varying iso-units are listed in

the left column. In the right column, the middle graphic is the Mandelbrot set and the

non-middle graphics are the Mandelbrot iso-sets. Observe that Santilli’s iso-topic lifting

yields two general topological effects: scale-deformation and boundary-deformation.
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