

Accessing our array

- Terms: rows and columns

int[][] products $=$ new int[6][6];
int[] firstrow $=$ products[0]; // this is the first row
firstrow $[0]=0 ; \quad / /$ the first element of the first row
// we can combine our "subscripts"
products[4][3] $=12$;
products[2][2] $=4$;
products $[0][5]=0 ;$
products $[5][0]=0$;
For each of the above, show which element of the array we're talking about.

22001		205

Introduction

- Quick Review:

- Arrays
- Iterating over Arrays
- Using Arrays
- The Cosmology of Collections
- In this lesson:
- Multi-dimensional arrays
- Iterating over them.
\qquad

A Multiplication Table

- Suppose we want to implement a multiplication table (for 0..5)
-We want to represent 6 rows of integers, where each row has 6 items. If each row is an array of integers, then we need an array of arrays of integers. We can do this in Java:
int[][] products $=$ new int[6] [6];
- We are creating an array of arrays of integers.
- Pictures.
- What is the type of "products"?
\qquad

Processing the Array (1)

- Let's write a loop to fill in the array for us:
int[][] products $=$ new int[6][6];
// the outer loop iterates over the rows
for (int row $=0$; row <6; row $=$ row +1) \{
// the inner loop iterates over the columns for (int $\operatorname{col}=0$; col <6; col $=\mathrm{col}+1$) $\{$ products[row] [col] = row * col;
${ }_{3}{ }^{3}$
- Notice the indenting, and the names used.

2D Array Processing Pattern

- Many 2D array traversals look like this:
for (int row=0; row < array. length; row = row + 1) \{
for (int col=0; col < array[row].length; col = col + 1) \{ .. array[row][col]
\}
\}
- The inner loop iterates over a given row
- The outer loop iterates over each of the rows.

Processing the Array (2)

-Let's make the loop resilient to different array dimensions:
int[][] products $=$ new int[6][6];
// the outer loop iterates over the rows
for (int row $=0$; row < products. length; row $=$ row +1) \{
for (int col = 0; col 1 products [row]. length; col = col +1) \{ products[row] $[\mathrm{col}]=$ row * col;
\}
\}

Exercise: Printing the Table
•Write a loop that prints the multiplication table

