Lesson Planning Presentation

Academic years 2013-2014 (Old) Even Semesters Term Duration: From Jan 2014 To April 2014

Name of the Teacher : Mr. Kadam M MDesignation: Asst. ProfessorDepartment: EXTC

1. Name of the subject: Signals and Systems

2. Class/ Course /Sem: S. E. / EXTC/IV

3. Scheme of Instruction:

	Theory 4 Hrs		Practical	Tutorials 01	Period	ds / Week
4. Scheme	e of Examination	1:				
	Theory paper	(Duration)) Practical	Oral	T.W.	Total
Max Marks	100	3 Hrs			25	125

5. Aims & Objective of teaching the subject.

Part (1) Aims & Objective (Course objectives)

CO1 : To introduce students to the idea of signal and system analysis and characterization in time and frequency domain. CO2 : To provide foundation of signal and system concepts to areas like communication, control and comprehend applications of signal processing in communication systems.

- This course trains students for an intermediate level of fluency with signals and systems in both continuous time and discrete time, in preparation for more advanced subjects in digital signal processing (including audio, image and video processing), communication theory, and system theory, control, and robotics.
- This course will help to predict, with some certainty, the behavior of the systems when an engineer is subject to different signals. The mathematical approach also allow to design electrical circuit or algorithms that will operate on signals in such a way so as to produce desirable outcomes.
- Part (3) Expertise obtained after completion of the subject
 - Students will be able to understand significance of signals and systems in the time and frequency domains.
 - > Students will be able to interpret and analyze signal and report results.
 - Students will be able to evaluate the time and frequency response of continuous and discrete time, system which is useful in understanding behavior of Electronics circuits and communication systems.
- 6. Pre-requisites for teaching the subject.
 - Para (1) Knowledge already acquired by studying related Subjects.

ETS : 301 - Applied Mathematics III ETC : 304 - Circuits and Transmission Lines

Para (2) Inter- disciplinary & inter subject correlation of various topics to be covered – (Only introduction)

(One correlation of various topics / subjects, more emphasis is to be given while teaching a particular topic).

Linear Time Invariant (LTI) systems, Discrete Time Fourier Transform (DTFT) and Z-Transform

7.Lecture – Wise Lesson planning Details.

(Please Refer University	syllabus for division of sub	ject into units.) :-
· · · · · ·	•	•

Tast	T] ! 4	T ! /	C-14	Teaching	Text Book	Planned	Actual Determined	HOD
Lect.	Unit No	T opics /	Subtopics	aius & Methodolo	/Kelerences / website used	Dates	Dates of complet	кетагк
1.0.	1100	005		gy	website used.		ion	
1	1	Overview of signals and systems /CO1	Signals, Systems, Examples of systems for Controls and Communication	Blackboard ,DigiClass, quiz, group discussion,pres entation	Rodger E Ziemer, William H. Tranter and D. Ronald Fannin, Signals	8/01/15		
2		Elementary signals,/CO1	sine, step, impulse, ramp, exponential, rectangular, triangular and		and Systems, Alan V.	12/01/15		
3		Operations on signals/CO1	Modification of time axis : Time Reversal, Time Shifting and Time Scaling		Oppenhiem, Alan S. Willsky and S. Hamid	13/01/15		
4		Sampling theorem/ CO1	Explanation & sampling of continuous time signals		Nawab, Signals and Systems,	14/01/15		
5		Classificatio n of signals / CO1	Continuous and discrete time, deterministic and non deterministic, periodic and aperiodic,		Roberts, Fundamentals of	15/01/15		
6			Symmetric (even) and asymmetric (odd), energy and power, causal and anti-causal signals.		systems	19/01/15		
7-8	2	Classificatio n of systems/	Static and dynamic, time variant and time invariant, linear and nonlinear, Causal and noncausal, stable and	Blackboard ,DigiClass, quiz, group	Rodger E Ziemer, William H. Tranter and	20,21/01/1 5		
9-10		CO1	unstable systems.	discussion,pres entation	D. Ronald Fannin, Signals	22,27		
11-12		Linear Time	Representation of systems using		and Systems,	28,29		
13-14		(LTI) systems CO1/	Impulse, step and exponential response, system stability, examples on applications of LTI systems		Alan V. Oppenhiem, Alan S. Willsky and S. Hamid	2,3/02/15		
15-16		System Response CO1/	impulse response of interconnected systems, total response of a system		and Systems,	4,5		
17-18		Convolution and correlation/ CO1	Convolution auto-correlation, cross correlation, Properties of correlation Analogy between correlation and convolution,		Roberts, Fundamentals of Signals and systems	9,10/02/15		

19	3	Laplace Transform CO1	Overview of: Laplace Transform and properties,	Blackboard ,DigiClass, quiz, group	Nagoor Kani, Signals and Systems	11/02/15	
20			Relation between continuous time Fourier Transform and Laplace Transform, unilateral Laplace Transform.	entation	V. Krishnaveni and A.Rajeshwari,	12/02/15	
21- 22		Analysis of continuous time LTI	Transfer Function, causality and stability of systems,		Signals and Systems	23,24/02/1 5	
23- 24		systems using Laplace Transform/C 01/CO2	Solution of differential equation using Laplace Transform.			25,26/02/1 5	
25	4	Z- Transform/	Z-Transform of finite and infinite duration sequences.	Blackboard DigiClass.	Simon Haykin and Barry Van	2/03/15	
26- 27		C01/CO2	Relation between DTFT and z- Transform. Relation between Laplace Transform and z-Transform.	quiz, group discussion,pres entation	Veen, Signals and Sytems	3,4/03/15	
28- 29			Properties of Z-Transform and Inverse z-Transform and Numerals		B.P. Lathi, Principles of	5,9/03/15	
30			One sided z–Transform.	-	and Signals	10/03/15	
31- 32		Analysis of discrete time LTI systems using z- Transform/ C01/CO2	Transfer Function, causality and stability of systems, frequency response			11,12/03/1 5	
33- 34	5	Fourier series of	Trigonometric and exponential Fourier series	Blackboard ,DigiClass,	B.P. Lathi, Principles of	16/03/15	
35- 36		and discrete time signals C01/CO2/	Representation of signals, magnitude and phase spectra, power spectral density and bandwidth.	quiz, group discussion,pres entation	Linear Systems and Signals Alan V.	18,23/03/1 5	
37- 38		Properties of Fourier Series/ C01/CO2	Linearity, time reversal, time shifting, frequency shifting & Numerical		Oppenhiem, Alan S. Willsky and S. Hamid Nawab, Signals	24,2503/15	
39- 40			Time scaling, differentiation, symmetry. Parsevel's relation & Numerical.		and Systems	26/03/15	
41- 42			Examples based on properties, analogy between Continuous Time Fourier Series (CTFS) and Discrete Time Fourier Series (DTFS).			06/04/15	
43	6	Continuous Time	Fourier Transform on periodic and non-periodic signals	Blackboard DigiClass.	B.P. Lathi, Principles of	07/04/15	
44		Fourier Transform	Inverse Fourier Transform on periodic and non-periodic signals	quiz, group discussion, pres	Linear Systems and Signals	08/04/15	

	(CTFT) and	Limitations of Fourier Transform and	entation		7/04/15	
	Discrete	need for Laplace and z-Transform		Alan V.		
	Time			Oppenhiem,		
15	Fourier			Alan S. Willsky		
45	Transform			and S. Hamid		
	(DTFT) /			Nawab, Signals		
	C01/CO2			and Systems		
	Properties of	Linearity, time shifting, time			8/04/15	
46-	Fourier	reversal, frequency shifting, time and				
47	Transform	frequency scaling				
	C01/CO2/					
48-		Modulation, convolution in time			9/04/15	
49		domain, symmetry.				
50		Differentiation in time domain,			13/04/15	
30		differentiation in frequency domain,				
51-		Parsevel's relation. Energy, power			14/04/15	
52		spectral density and bandwidth.				
52		Definition and problems on DTFT				

Total No. of periods hrs. Required for planned lectures = 52

8. Planning details of special / revision lectures during the course : (The special lectures may be beyond the scope of the syllabus given but may be required for the the sake of completeness for better understanding of the subjects.

Sp	Scheduled	Topics to be covered	T. Aid	Reference
Rev.	After Lr.		proposed	Used.
Lr	No.			

No.				
1	18	Real Life Applications	Blackboard Chalk, Duster, DigiClass	NA
2	37	Doubt clearing	Blackboard Chalk, Duster, DigiClass	NA
3*	During Semester	Guest Speaker		
4*	During Semester	NPTEL Lecture on Any syllabus topic		

* Subject to availability of time and resources

Total No of periods (hrs) required for sq/Rev. Lectures. = 04

- 9. Planning details of Assignments to be given: No of assignments to be given = 08
- 10. Planning details of units Tests/ prelim. Exam.

Unit Test	After	Tentative Date for tests			
No.	Completion of	To be Held on	Declaration of		
1	40	28/02/2015	Result on. 07/03/2015		
2	90	11/04/2015	15/04/2015		

11. Result Analysis of Unit Test / prelim Exam.

Corrective measure to be taken : An extra coaching can be arrange between 17/04/2015/ to 24/04/2015 (please elaborate & given planning details if extra coaching is required). After college working hours, an extra coaching can given to week student (between 5-6 pm)

- 12. Result expected in University Examination
 - a) Last years result of the subject: ____62____%
 - b) Result expected this year : 75%
- 13. Proposed Date of Submission of Final Term work / Journals. : 15/04/2015

14. Observation and Remarks: (Please specify if extra period are required for completion of course other than the period available as per scheduled time tables). No

Mapping of POs and COs

Name of the	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
Course	Name	of facult	v : Dr. I	ndad Ri	zvi						
CO1	S	S	S	W	W	S	W			W	S
CO2	S	S	W	W	W	S	S				S

Signature of Teacher

Date of submission of plan: 05/01/2015

Signature of HOD

<u>Annexure</u> :

Text books

1. Nagoor Kani, Signals and Systems, Tata McGraw Hill, Third Edition, 2011.

- 2. B.P. Lathi, Principles of Linear Systems and Signals, Oxford, Second Edition, 2010.
- 3. Simon Haykin and Barry Van Veen, Signals and Sytems, John Wiley and Sons, Second Edition, 2004.

Reference books

- 1) Hwei. P Hsu, Signals and Systems, Tata McGraw Hill, Third edition, 2010
- 2) V. Krishnaveni and A.Rajeshwari, Signals and Systems, Wiley-India, First Edition 2012.
- 3) Narayana Iyer, Signals and Systems, Cenage Learning, First Edition 2011.
- 4) Michael J Roberts, Fundamentals of Signals and systems, Tata McGraw Hill, special Indian Economy edition, 2009.
- 5) Rodger E Ziemer, William H. Tranter and D. Ronald Fannin, Signals and Systems, Pearson Education, Fourth Edition 2009.
- 6) Alan V. Oppenhiem, Alan S. Willsky and S. Hamid Nawab, Signals and Systems, Prentice-Hall of India, Second Edition, 2002.

Other references used.

IIT Bombay NPTEL website

http://www.cdeep.iitb.ac.in/nptel/Electrical%20%26%20Comm%20Engg/Signals%20and%20System/Course%20Object ive.htm

MIT Center for Advanced Engineering Studies. http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/

Georgia Institute of Technology's worked Problems

http://users.ece.gatech.edu/~bonnie/book/worked_problems.html

IIT Guwahati virtual Lab <u>http://iitg.vlab.co.in/?sub=59&brch=166</u>