1. Create $\mathrm{a}(\mathrm{n})$
(a) Addition table mod 5

Answer:

	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	1	1
3	3	4	0	1	2
4	4	0	1	2	3

(b) Multiplication table mod 5

Answer:

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

2. Decide which of the following are groups. Justify for answer by showing that either all group axioms hold, or by giving a specific example showing an axiom fails
(a) The set of rational numbers under addition

Answer:

Checking that addition is a binary operation on the rational numbers: $a, b \in \mathbb{Q}$, and $a+b \in \mathbb{Q}$

- Associativity:
$(a+b)+c=a+(b+c)$
- Identity:

0 is the additive identity, and $0 \in \mathbb{Q}$.

- Inverses

If $a \in \mathbb{Q}$, then $a+(-a)=-a+a=0$, and $-a \in \mathbb{Q}$

Thus the rational numbers under addition are a group.
(b) The set of complex numbers $S=\{1,-1, i,-i\}$

Answer:

- Associativity:
$(a b) c=a(b c)$ is true for all elements in the set
- Identity:

1 is the additive identity, and $1 \in \mathbb{S}$.

- Inverses

$$
\begin{aligned}
& 1(1)=(1) 1=1,1 \in S \\
& -1(-1)=(-1)-1=1,-1 \in S \\
& i(-i)=(-i) i=1,-i \in S \\
& (-i) i=i(-i)=1, i \in S
\end{aligned}
$$

Thus the set S under multiplication is a group.
(c) The set of even numbers under multiplication

Answer:

- Inverses:

1 is the multiplicative identity, but $1 \notin S$ (where S is the even numbers)
3. An element a in a group G under multiplication is called an idempotent if $a^{2}=a$. Prove that the only idempotent in a group is the identity element. (Hint: We're assuming a is in the group, so it must have an inverse.)

Answer:

$$
\begin{aligned}
a^{2} & =a \\
a^{-} 1\left(a^{2}\right) & =a^{-} 1(a) \\
a & =1
\end{aligned}
$$

Proof: We know that 1 is the identity of a group G under multiplication. Since we showed $a=1$ above, bo other element in group G can be idempotent. We disregard 0 because even though $0^{2}=0$, 0 has no multiplication, there for there is no possibility that $0 \in G$. Therefore, the only idempotent element in a multiplicative group G is the identity element.
4. A permutation of a finite set of numbers $\{1,2, \ldots, n\}$ is an arrangement of the numbers in the set. We can express this arrangement using an ordered list. For instance, all possible permutations of the set $\{1,2,3\}$ would be $(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2)$, and $(3,2,1)$.
(a) Find all possible permutations of the set $\{1,2,3,4\}$

Answer:

$(1,2,3,4)$	$(2,1,3,4)$	$(3,1,2,4)$	$(4,1,2,3)$
$(1,2,4,3)$	$(2,1,4,3)$	$(3,1,4,2)$	$(4,2,1,3)$
$(1,3,2,4)$	$(2,3,1,4)$	$(3,2,1,4)$	$(4,3,1,2)$
$(1,3,4,2)$	$(2,3,4,1)$	$(3,2,4,1)$	$(4,1,3,2)$
$(1,4,3,2)$	$(2,4,3,1)$	$(3,4,2,1)$	$(4,2,3,1)$
$(1,4,2,3)$	$(2,4,1,3)$	$(3,4,2,1)$	$(4,3,2,1)$

(b) Give a conjecture (ie, a guess) of the number of possible permutations on a set with n numbers. You do not need to prove your conjecture, you have n choices for the first number, which leaves n-1 choices for the second, n - 3 for the third, etc.)

Answer: For a given number n , you could figure out the number of permutations. If you have n numbers in your set, your permutations would be equal to $n(n-1)(n-2)(n-3) \ldots 1$ For example in part a, a set with 4 elements gives you 24 permutations, which $4 * 3 * 2 * 1=24$ In other words, you could have $n!$, where n is the number of permutations.

