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Potential Flow: Velocity Potential

For irrotational flow there exists a velocity potential:

Take one component of vorticity to show that the velocity potential is irrotational:

Substitute u and v components:
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we could do this to show all vorticity components are zero.

Then, rewriting the u,v, and w components as a vector:
For an incompressible flow:

Then for incompressible irrotational flow:

And, the above equation is known as Laplace’s Equation.



Potential Flow: Velocity Potential
Laplacian Operator in Cartesian Coordinates:

Laplacian Operator in Cylindrical Coordinates:

Where the gradient in cylindrical coordinates, the gradient operator,

Then,

May choose cylindrical 
coordinates based on the 
geometry of the flow problem, 
i.e. pipe flow.

If a Potential Flow exists, with 
appropriate boundary 
conditions, the entire velocity 
and pressure field can be 
specified.



Potential Flow: Plane Potential Flows
Laplace’s Equation is a Linear Partial Differential Equation, thus there are 
know theories for solving these equations.
Furthermore, linear superposition of solutions is allowed:

where and
are solutions to Laplace’s equation

For simplicity, we consider 2D (planar) flows:

Cartesian:

Cylindrical:

We note that the stream functions also exist for 2D planar flows

Cartesian:

Cylindrical:



Potential Flow: Plane Potential Flows
For irrotational, planar flow:

Now substitute the stream function:

Then, Laplace’s Equation

For plane, irrotational flow, we use either the potential or the stream function, 
which both must satisfy Laplace’s equations in two dimensions.

Lines of constant Ψ are streamlines:

Now, the change of ϕ from one point (x, y) to a nearby point (x + dx, y + dy):

Along lines of constant φ we have dφ = 0,

0



Potential Flow: Plane Potential Flows
Lines of constant φ are called equipotential lines.

The equipotential lines are orthogonal to lines of constant Ψ, streamlines 
where they intersect.

The flow net consists of a family of streamlines and equipotential lines.

The combination of streamlines and equipotential lines are used to visualize a 
graphical flow situation.

The velocity is inversely proportional 
to the spacing between streamlines.

Velocity increases 
along this streamline.

Velocity decreases 
along this streamline.



Potential Flow: Uniform Flow
The simplest plane potential flow is a uniform flow in which the streamlines 
are all parallel to each other.
Consider a uniform flow in the x-direction:

Integrate the two equations:

φ = Ux + f(y) + C

φ = f(x) + C 

Matching the solution

C is an arbitrary constant, can be set to zero:
Now for the stream function solution:

Integrating the two equations similar 
to above.



Potential Flow: Uniform Flow
For Uniform Flow in an Arbitrary direction, α:



Potential Flow: Source and Sink Flow
Source/Sink Flow is a purely radial flow.

Fluid is flowing radially from a line through 
the origin perpendicular to the x-y plane.
Let m be the volume rate emanating from the line (per 
unit length.
Then, to satisfy mass conservation:

Since the flow is purely radial:

Now, the velocity potential can be obtained:

Integrate

0
If m is positive, the flow is radially outward, source flow.
If m is negative, the flow is radially inward, sink flow.

m is the strength of the source or sink!
This potential flow does not exist at r = 0, the origin, because it is not a “real” flow, but can 
approximate flows.

Source Flow:



Potential Flow: Source and Sink Flow

0

Now, obtain the stream function for the flow:

Then, integrate to obtain the solution:

The streamlines are radial lines and the equipotential
lines are concentric circles centered about the origin:

φ lines

Ψ lines



Potential Flow: Vortex Flow
In vortex flow the streamlines are concentric circles, and the equipotential
lines are radial lines.

where K is a constant.

Solution:

The sign of K determines whether the flow rotates 
clockwise or counterclockwise.

In this case, ,
The tangential velocity varies inversely with the distance from the origin.  At the 
origin it encounters a singularity becoming infinite.

φ lines

Ψ lines



Potential Flow: Vortex Flow
How can a vortex flow be irrotational?

Rotation refers to the orientation of a fluid element and not the path 
followed by the element.

Irrotational Flow: Free Vortex Rotational Flow: Forced Vortex

Traveling from A to B, consider two sticks

Initially, sticks aligned, one in the flow direction, and the 
other perpendicular to the flow.
As they move from A to B the perpendicular-aligned 
stick rotates clockwise, while the flow-aligned stick 
rotates counter clockwise.
The average angular velocities cancel each other, thus, the 
flow is irrotational.

Irrotational Flow:

Velocity 
increases 
inward.

Velocity 
increases 
outward.

Rotational Flow: Rigid Body Rotation
Initially, sticks aligned, one in the flow 
direction, and the other perpendicular to the 
flow.

As they move from A to B they sticks move 
in a rigid body motion, and thus the flow is 
rotational.

i.e., water 
draining  from 
a bathtub

i.e., a rotating 
tank filled with 
fluid



Potential Flow: Vortex Flow
A combined vortex flow is one in which there is a forced vortex at the core, and 
a free vortex outside the core.

A Hurricane is 
approximately a 
combined vortex

Circulation is a quantity associated with vortex flow.  It is defined as the line 
integral of the tangential component of the velocity taken around a closed 
curve in the flow field.

For irrotational flow the 
circulation is generally 
zero.



Potential Flow: Vortex Flow

However, if there are singularities in the flow, the circulation is not zero if the 
closed curve includes the singularity.

For the free vortex:

The circulation is non-zero and constant for the free vortex:
The velocity potential and the stream function can be rewritten in terms of the 
circulation:

An example in which the closed surface circulation will be zero:

Beaker Vortex:



Potential Flow: Doublet Flow
Combination of a Equal Source and Sink Pair:

Rearrange and take tangent,

Note, the following:

Substituting the above expressions,

and

Then,

If a is small, then tangent of angle is approximated by the angle:



Potential Flow: Doublet Flow

Now, we obtain the doublet flow by letting the source and sink approach one 
another, and letting the strength increase.

K is the strength of the doublet, and is 
equal to ma/π.

is then constant.

The corresponding velocity potential then is the following:

Streamlines of a Doublet:



Potential Flow: Summary of Basic Flows



Potential Flow: Superposition of Basic Flows

Because Potential Flows are governed by linear partial differential equations, 
the solutions can be combined in superposition.

Any streamline in an inviscid flow acts as solid boundary, such that there is no 
flow through the boundary or streamline.

Thus, some of the basic velocity potentials  or stream functions can be 
combined to yield a streamline that represents a particular body shape.

The superposition representing a body can lead to describing the flow around 
the body in detail.



Superposition of Potential Flows: Rankine Half-Body
The Rankine Half-Body is a combination of a source and a uniform flow.

Stream Function (cylindrical coordinates):

Potential Function (cylindrical coordinates):

There will be a stagnation point, somewhere along the negative x-axis where 
the source and uniform flow cancel (θ = π):

For the source: For the uniform flow:

Evaluate the radial velocity:

θcosUvr =
For θ = π, Uvr =

Then for a stagnation point, at some r = -b, θ = π:

π2
mvr −= and



Superposition of Potential Flows: Rankine Half-Body
Now, the stagnation streamline can be defined by evaluating ψ at r = b, and 
θ = π .

Now, we note that m/2 = πbU, so following this constant streamline gives 
the outline of the body:

Then, describes the half-body outline.

So, the source and uniform can be used to describe an aerodynamic body.

The other streamlines can be obtained by setting ψ constant and plotting:
Half-Body:



Superposition of Potential Flows: Rankine Half-Body

The width of the half-body:

Total width then, 
The magnitude of the velocity at any point in the flow:

Noting,

and

Knowing, the velocity we can now determine the pressure field using the Bernoulli 
Equation:

Po and U are at a point far away from the body and are known.



Superposition of Potential Flows: Rankine Half-Body
Notes on this type of flow:

• Provides useful information about the flow in the front part of streamlined body.
• A practical example is a bridge pier or a strut placed in a uniform stream
• In a potential flow the tangent velocity is not zero at a boundary, it “slips”
• The flow slips due to a lack of viscosity (an approximation result).
• At the boundary, the flow is not properly represented for a “real” flow.
• Outside the boundary layer, the flow is a reasonable representation.
• The pressure at the boundary is reasonably approximated with potential flow.
• The boundary layer is to thin to cause much pressure variation.



Superposition of Potential Flows: Rankine Oval
Rankine Ovals are the combination a source, a sink and a uniform flow, 
producing a closed body.

Some equations describing the flow: The body half-length

The body  half-width

“Iterative”

Potential and Stream Function



Superposition of Potential Flows: Rankine Oval
Notes on this type of flow:

• Provides useful information about the flow about a streamlined body.
• At the boundary, the flow is not properly represented for a “real” flow.
• Outside the boundary layer, the flow is a reasonable representation.
• The pressure at the boundary is reasonably approximated with potential flow.
• Only the pressure on the front of the body is accurate though.
• Pressure outside the boundary is reasonably approximated.



Superposition of Potential Flows: Flow Around a Circular Cylinder
Combines a uniform flow and a doublet flow:

and

Then require that the stream function is constant for r = a, where a is the 
radius of the circular cylinder:

K = Ua2

Then, and

Then the velocity components:



Superposition of Potential Flows: Flow Around a Circular Cylinder

At the surface of the cylinder (r = a):

The maximum velocity occurs at the top and bottom of the cylinder, 
magnitude of 2U.



Superposition of Potential Flows: Flow Around a Circular Cylinder

Pressure distribution on a circular cylinder found with the Bernoulli equation

Then substituting for the surface velocity:

Theoretical and experimental agree 
well on the front of the cylinder.

Flow separation on the back-half in the 
real flow due to viscous effects causes 
differences between the theory and 
experiment.



Superposition of Potential Flows: Flow Around a Circular Cylinder

The resultant force per unit force acting on the cylinder can be determined 
by integrating the pressure over the surface (equate to lift and drag).

(Drag)

(Lift)

Substituting, 
Evaluating the integrals:
Both drag and lift are predicted to be zero on fixed cylinder in a uniform flow?
Mathematically, this makes sense since the pressure distribution is 
symmetric about cylinder, ahowever, in practice/experiment we see 
substantial drag on a circular cylinder (d’Alembert’s Paradox, 1717-
1783).

Viscosity in real flows is the Culprit Again!

Jean le Rond
d’Alembert
(1717-1783)



Viscous Flows: Surface Stress Terms
Now, we allow viscosity effects for a Newtonian Fluid:

Normal Stresses: Shear Stresses:

Cylindrical 
Coordinates:

Cartesian 
Coordinates:



Viscous Flows: Navier-Stokes Equations

Now plugging the stresses into the differential equations of motion for 
incompressible flow give Navier-Stokes Equations:

French Mathematician, L. M. H. Navier (1758-1836) 
and English Mathematician Sir G. G. Stokes (1819-
1903) formulated the Navier-Stokes Equations by 
including viscous effects in the equations of motion. 

L. M. H. Navier
(1758-1836)

Sir G. G. Stokes 
(1819-1903)

(x –direction)



Viscous Flows: Navier Stokes Equations

Local Acceleration Advective Acceleration
(non-linear terms)

Pressure term Weight term
Viscous terms

Terms in the x-direction:



Viscous Flows: Navier-Stokes Equations

The governing equations can be written in cylindrical coordinates as well:

(r-direction)



Viscous Flows: Navier-Stokes Equations

There are very few exact solutions to Navier-Stokes Equations, maybe a 
total of 80 that fall into 8 categories.  The Navier-Stokes equations are 
highly non-linear and are difficult to solve.

Some “simple” exact solutions presented in the text are the following:

1. Steady, Laminar Flow Between Fixed Parallel Plates
2. Couette Flow
3. Steady, Laminar Flow in Circular Tubes
4. Steady, Axial Laminar Flow in an Annulus



Viscous Flows: Exact Solutions/Parallel Plate Flow

Assumptions:
Plates are infinite
The flow is steady and laminar
Fluid flows in the x-direction only
u=u(y) only, v and w = 0

Navier-Stokes Equations Simplify Considerably:

Applying Boundary conditions (no-slip conditions at y = ± h) and solve:

The pressure gradient must be specified and is typically constant 
in this flow! The sign is negative.

(Integrate Twice)
“No-Slip”:



Viscous Flows: Exact Solutions/Parallel Plate Flow

Solution is Parabolic:

Can determine Volumetric Flow Rate:



Viscous Flows: Exact Solutions/Couette Flow
Again we simplify Navier-Stokes Equations:
Same assumptions a before except the no-slip 
condition at the upper boundary is u(b) = U.

Solving, 

If there is no Pressure Gradient:

Define, Determines effects of 
pressure gradient

Dimensionless, 



Viscous Flows: Exact Solutions/Pipe Flow
Assumptions:
Steady Flow and Laminar Flow
Flow is only in the z-direction
vz = f(r)

Simplifying the Navier-Stokes Equation in Cylindrical Coordinates:
Solving the equations with the no slip conditions 
applied at r = R (the walls of the pipe).

“Parabolic Velocity Profile”



Viscous Flows: Exact Solutions/Pipe Flow

The volumetric flow rate:

The mean velocity:

Pressure drop per length of pipe:

The maximum velocity:

Non-Dimensional velocity profile:

For Laminar Flow:

Substituing Q, 

“Laminar Flow”:



Computational Fluid Dynamics: Differential Analysis
Governing Equations:

Navier-Stokes:

Continuity:

The above equations can not be solved for most practical problems with analytical 
methods so Computational Fluid Dynamics or experimental methods are 
employed.

The numerical methods employed are the following:
1. Finite difference method
2. Finite element (finite volume) method
3. Boundary element method.

These methods provide a way of writing the governing equations in discrete 
form that can be analyzed with a digital computer.



Computational Fluid Dynamics: Finite Element
These methods discretize the domain of the flow of interest (Finite Element 
Method Shown):

The discrete governing equations are solved in every element. This 
method often leads to 1000 to 10,000 elements with 50,000 equations 
or more that are solved.

“CFD Analysis”:



Computational Fluid Dynamics: Finite Difference
These methods discretize the domain of the flow of interest as well (Finite 
Difference Method Shown):

Finite Difference Mesh:

Comparison between 
Experiment and CFD 
Analysis:



Computational Fluid Dynamics: Pitfalls

Numerical Solutions can diverge or exhibit unstable wiggles.

Finer grids may cause instability in the solution rather than better 
results.

Large flow domains can be computationally intensive.

Turbulent flows have yet to be well described with CFD.



Some Example Problems


