
Chapter 2

Group Theory

The formal mathematical treatment of the symmetry of physical systems discussed

in Chap.1 is called group theory. This chapter summarizes the fundamental proper-

ties of group theory that will be used to treat physical examples of symmetry in the

succeeding chapters. This book is focused on the practical use of group theory and

does not attempt to cover derivations of the fundamental postulates or advanced

aspects of this topic. For a rigorous treatment of group theory the reader is referred

to [1].

A group is defined as a collection of elements that obey certain criteria and are

related to each other through a specific rule of interaction. The rule of interaction is

referred to generically as the “multiplication” of two elements. However, the

interaction may not be the normal multiplication of two numbers since the elements

of a group may not be simple numbers. The number of elements in group h is called
the order of the group. There are four requirements for a set of elements to form a

group:

1. One element, designated E and called the identity element, commutes with all

the other elements of the group and multiplication of an element by E leaves the

element unchanged. That is, EA¼AE¼A.
2. The result of multiplying any two elements in a group (including the product of

an element with itself) is an element of the group. That is, AB¼Cwhere A, B, and
C are all elements of the group.

3. Every element of the group must have a reciprocal element that is also an

element of the group. That is, AR¼RA¼E where A is an element of the group,

R is its reciprocal, and E the identity element and R and E are both members of

the group.

4. The associative law of multiplication is valid for the product of any three

elements of the group. That is, A(BC)¼(AB)C.

It is not necessary for the products of elements of a group to obey the

commutative law. That is, the element resulting in the product AB may not be the

same as the element resulting in the product BA. If the elements of a specific group

happen to obey the commutative law the group is said to be Abelian.
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The properties of a group discussed above can be exemplified in a group

multiplication table. Consider a group consisting of six elements represented by

the letters A, B, C, D, E, and F that obey the multiplication table shown above. The

elements in the table are the product of the element designating its column and

the element designating its row. Following this convention, the table shows that the

identity element is a member of the group, the product of any two elements is

an element of the group, and each group element has an element in the group that

is its inverse. Each element appears only once in any given row or column.

The associative law holds but the commutative law does not hold for all products

so the group is not Abelian. The order of the group is 6.

The multiplication table is useful in identifying subgroups within the whole group.

These are subsets of the total set of group elements thatmeet the requirements of being

a groupwithout requiring the other elements of the total group. By inspection, it can be

seen that the elements D, E, and F form a subgroup of order 3. Also there are three

subgroups of order 2: E,A; E,B; and E,C. Of course the element E by itself always

forms a subgroup of order 1. Note that the orders of the subgroups are integral factors

of the order of the total group.

Another useful concept in dealing with a group is organizing its elements in

conjugate pairs through the use of a similarity transformation. To find the conjugate

of an element A, the triple product of A with another element of the group and its

reciprocal element is formed. For example,

B ¼ X�1AX:

This type of product is a similarity transformation, and the elements A and B are said

to be conjugates of each other. Every element is conjugate with itself. Also, if A is

conjugate with two elements B and C then B and C are conjugate with each other. A

complete set of elements that are conjugate to each other form a class of the group.
From the multiplication table of the group of elements A, B, C, D, E, F shown

above, it is easily seen that E by itself forms a class of order 1. The elements A, B, C
form a class of order 3. This can be seen by taking all possible similarity

transformations on element A, which gives

E�1AE ¼ A; A�1AA ¼ A; B�1AB ¼ C; C�1AC ¼ B; D�1AD ¼ B;

F�1AF ¼ C;

Group multiplication Table

E A B C D F

E E A B C D F
A A E D F B C
B B F E D C A
C C D F E A B
D D C A B F E
F F B C A E D
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and then doing the same for elements B and C. Similarly, taking all possible

similarity transformations on elements D and F show that they form a class of

order 2. Note that it is always true that the order of a class is an integral factor of the

order of the group.

The type of group of interest here is a symmetry group. The elements of this type

of group are a complete set of relevant symmetry operations that obey the rules of a

group. The specific symmetry groups of interest are those defining the crystal

classes discussed in Chap. 1.

2.1 Basic Concepts of Group Theory

The basic concepts of group theory can be demonstrated by considering the spatial

symmetry of an object with a specific geometrical shape. The way such an object is

transformed by operations about a specific point in space is referred to as point
group symmetry. The symmetry operations for point groups include rotations about

axes, reflections through planes, inversion through a central point, and combina-

tions of these.

By convention, different types of symmetry elements have specific designations

[1–4]. To reiterate the designations listed in Chap.1, the identity operation,

describing the situation where no transformation takes place, is designated as E.
Rotation about an axis of symmetry is designated by Cn which indicates that the

object is spatially identical after a rotation of 2p/n about this axis. For example, a

rotation of 180� is represented by the twofold symmetry operation C2 while a

fourfold symmetry axis C4 represents a rotation of 90�. Since n rotations of Cn

take the object back to its original position, Cn
n ¼ E. If a reflection plane is perpen-

dicular to the highest order symmetry axis, it is designated by sh. If the reflection
plane contains the highest order symmetry axis, it is designated by sv. Mirror planes

diagonal to the rotation axes are designated as sd. Mirror operations take twice result

in E. For an object possessing a center of symmetry, the inversion operation is

designated by i and i2¼E. There are also combined operations. For example the

inversion operation is a combined rotation and reflection, i¼C2sh. A combined

rotation–reflection operation with the mirror plane perpendicular to the rotation

axis is called an improper rotation and designated by Sn. Thus, Sn¼shCn. The

order of successive symmetry operations is important since not all of them commute.

As discussed above, it is convenient to organize the elements of a group into

classes where all elements in the same class are related to each other by a unitary

transformation of another operator of the group. For example, if T�1AT ¼ A0 where
all of these are elements of the group, A and A0 are members of the same class.

As stated before, the order of a class must be an integral factor of the order of the

group.

The action of the elements of a symmetry group on the physical properties of a

system is described in terms of mathematical transformations. The physical proper-

ties may be expressed as vectors, matrices, or tensors of higher rank as discussed in
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Chap. 3. These form vector spaces, and their transformations in this vector space

are the image of the symmetry transformations in coordinate space. For example,

the state vectors of a quantum mechanical system transform into each other in the

same way as the symmetry transformations of the coordinates describing the

system. When the mathematical description of the physical properties of a system

transform in the same way as a symmetry group, they are said to be a representation
of that group. The symmetry elements act as linear operators to produce transfor-

mations in a specific representation of the group. A group will have a number of

different types of representations associated with different physical properties.

Every group has a one-dimensional trivial representation consisting of assigning
the number one to all elements of the group. In general, a set of matrices of a

specific dimension are assigned to the elements of the group to make a representa-

tion of the group. These matrices must obey the same multiplication table as the

elements of the group. The matrix of a representation is square and the number of

elements in a row or column is the dimension of the representation, which is equal

to its degeneracy. It is possible to construct many different representations of this

type for the same group.

It is always possible to find a similarity transformation that puts a matrix into a

box diagonal form

A0 ¼ T0AT ¼
½A1� 0

½A2�
0 ½A3�

0
@

1
A: (2.1)

In this case A and A0 are matrices representing reducible representations while the
Ai are matrices represent irreducible representations. The sum of the squares of

the dimensions of the irreducible representations of a group is equal to the order of

the group: X
i

d2i ¼ h: (2.2)

The number of irreducible representations of a group is equal to the number of

classes in the group.

The spatial position of an object is represented by vectors in Cartesian

coordinates. A transformation of the object can be represented by a transformation

of these coordinate vectors. The object moves from a vector position designated by

the coordinates (x,y,z) to a new position designated by the coordinates (x0, y0, z0) as
shown in Fig. 2.1. Any vector r can be expressed in terms of its Cartesian

coordinates using the unit vectors, x̂; ŷ, and ẑ. A transformation operation can

then be applied to each component and the new components recombined to

give the transformed vector r0. If a rotation about the major symmetry axis

(usually taken to be the z-axis) is designated by an angle y, the transformation is

given as
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x0 ¼x cos yþ y sin y

y0 ¼ � x sin yþ y cos y

z0 ¼z

: (2.3)

In matrix form this coordinate transformation is written as

x0

y0

z0

0
@

1
A ¼ A

*
* x

y
z

0
@

1
A ¼

ax0x ax0y ax0z
ay0x ay0y ay0z
az0x az0y az0z

0
@

1
A x

y
z

0
@

1
A: (2.4)

The matrix elements ai0j are the direction cosines of the coordinate represented by i
0

with respect to the coordinate represented by j as shown in Fig. 2.1. For the example

of a rotation about the z-axis given by (2.3) the transformation matrix is

A
*
*

ðCyðzÞÞ ¼
cos y sin y 0

� sin y cos y 0

0 0 1

0
@

1
A: (2.5)

A symmetry operation consisting of a mirror reflection plane perpendicular to the z-
axis would be represented by the matrix

A
*
*

ðshÞ ¼
1 0 0

0 1 0

0 0 �1

0
@

1
A; (2.6)

z’

z

y’

y

x’
x

cos–1ax’z

cos–1ay’z

cos–1az’z
Fig. 2.1 Transformation of

Cartesian coordinates
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so that the transformation is

x0 ¼x

y0 ¼y

z0 ¼ � z:

(2.7)

Every element of a symmetry group can be represented by a transformation matrix

such as the examples given in (2.5) and (2.6).

In the mathematical manipulation of matrices, one useful property is the sum of

the diagonal elements which is called the trace of the matrix. In the examples of the

two transformation matrices given above,

TrA
*
*

ðCyðzÞÞ ¼
X
i

aii ¼ 2 cos yþ 1 (2.8)

and

TrA
*
*

ðshÞ ¼
X
ii

aii ¼ 1: (2.9)

The trace of a transformation matrix representing a symmetry operation is called

the character of the operation in that representation and is designated by w.
Characters of matrix operators have special properties that make them useful

working with group theory.

1. Since the trace of a matrix is invariant under a similarity transformation, all

symmetry operations belonging to the same class of the group have the same

character.

2. The character of a reducible representation is equal to the sum of the characters

of the irreducible representations that it contains.

3. The number of times that a specific irreducible representation is contained in the

reduction of a reducible representation can be determined by

nðiÞ ¼ 1

h

X
A

wðiÞA wA: (2.10)

Here wðiÞA is the character of the operation A in the ith irreducible representation

while wA is the character of the same operation in the reducible representation.

The sum is over all of the symmetry operations of the group of order h.
4. For any irreducible representation, the sum of the squares of the characters of all

the operations equals the order of the group
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X
A

w2i ðAÞ ¼ h: (2.11)

5. The set of characters for two different irreducible representations are orthogonal

X
A

wiðAÞwjðAÞ ¼ 0; i 6¼ j: (2.12)

6. The direct product of two representations is found by multiplying the characters

of a specific operation in these two representations to give the character of that

operation in the product representation. A direct product representation is

usually a reducible representation of the group.

Another important property of transformation matrices is that irreducible repre-

sentations are orthogonal and obey the relationship

X
A

½GiðAÞmn� GjðAÞm0n0
� ��¼ hffiffiffiffiffiffiffiffi

didj
p dijdmm0dnn0 : (2.13)

Here Gi(A)mn is the mn matrix element of the transformation matrix for operation

A in the Gi irreducible representation.

Each representation of a symmetry group operates on a set of functions that

transform into each other under that representation of the group. These are

called basis functions for that representation. For physical systems they

represent a specific physical property of the system. In the example of the

coordinate transformation discussed above, the vector coordinates x, y, and z are
the set of basis functions. Any property described by a vector will transform like

this set of basis functions according to the representation of the group of symmetry

elements for the system. The rotation axes Rx, Ry, and Rz can also act as a set of

basis functions for irreducible representations of a group. These differ from the

spatial coordinates because a symmetry operation may change the direction of

rotation. A third common set of basis functions are the six components of a

pseudovector arising from a vector product. These basis functions are discussed

in the examples given below, and in Chap. 4 it is shown how spherical harmonic

functions can also be used as basis functions.

2.2 Character Tables

A character table for a symmetry group lists the characters for each class of

operations in the group for each of the irreducible representations of the group.

The character tables for each of the 32 crystallographic point groups discussed in

Chap. 1 are given in Tables 2.1–2.32. These are very useful in the application of

group theory to determine the properties of crystals [4–6].
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Table 2.3 Character table for point group Ci

Ci E i Basis components

Ag 1 1 Rx,Ry,Rz x2,y2,z2,xy,xz,yz
Au 1 �1 x,y,z

Table 2.4 Character table for point group for C2

C2 E C2 Basis components

A 1 1 z Rz x2,y2,z2, xy
B 1 �1 x,y Rx,Ry yz,xz

Table 2.5 Character table for point group C2h

C2h E C2 i sh Basis components

Ag 1 1 1 1 Rz x2,y2,z2, xy
Bg 1 �1 1 �1 Rx,Ry yz,xz
Au 1 1 �1 �1 z
Bu 1 �1 �1 1 x,y

Table 2.6 Character table for point group C2v

C2v E C2 sv(xz) sv
0
(yz) Basis components

A1 1 1 1 1 z x2,y2,z2

A2 1 1 �1 �1 Rz xy
B1 1 �1 1 �1 x Ry xy
B2 1 �1 �1 1 y Rx yz

Table 2.7 Character table for point group D2

D2 E C2(z) C2(y) C2(x) Basis components

A 1 1 1 1 x2,y2,z2

B1 1 1 �1 �1 z Rz xy
B2 1 �1 1 �1 y Ry xz
B3 1 �1 �1 1 x Rx yz

Table 2.1 Character table for point group C1

C1 E

A 1

Table 2.2 Character table for point group Cs

Cs E sh Basis components

A0 1 1 x,y, Rz x2,y2z2,xy
A00 1 �1 z, Rx,Ry yz,xz
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Table 2.8 Character table for point group D2h

D2h E C2(z) C2(y) C2(x) i s(xy) s(xz) s(yz) Basis components

Ag 1 1 1 1 1 1 1 1 x2,y2,z2

B1g 1 1 �1 �1 1 1 �1 �1 Rz xy
B2g 1 �1 1 �1 1 �1 1 �1 Ry xz
B3g 1 �1 �1 1 1 �1 �1 1 Rx yz
Au 1 1 1 1 �1 �1 �1 �1

B1u 1 1 �1 �1 �1 �1 1 1 z
B2u 1 �1 1 �1 �1 1 �1 1 y
B3u 1 �1 �1 1 �1 1 1 �1 x

Table 2.9 Character table for point group C4

C4 E C4 C2 C3
4

Basis components

A 1 1 1 1 z Rz x2þy2,z2

B 1 �1 1 �1 x2�y2,xy
E* 2 0 �2 0 (x,y) (Rx,Ry) (yz,xz)

Table 2.12 Character table for point group S4

S4 E S4 C2 S34 Basis components

A 1 1 1 1 Rz x2þy2,z2

B 1 �1 1 �1 z x2�y2,xy
E* 2 0 �2 0 (x,y) (Rx,Ry) (yz,xz)

Table 2.10 Character table for point group C4h

C4h E C4 C2 C3
4

i S34 sh S4 Basis components

Ag 1 1 1 1 1 1 1 1 Rz x2þy2,z2

Bg 1 �1 1 �1 1 �1 1 �1 x2�y2,xy
Eg* 2 0 �2 0 2 0 �2 0 (Rx,Ry) (yz,xz)
Au 1 1 1 1 �1 �1 �1 �1 z
Bu 1 �1 1 �1 �1 1 �1 1

Eu* 2 0 �2 0 2 0 �2 0 (x,y)

Table 2.11 Character table for point group C4v

C4v E 2C4 C2 2sv 2sd Basis components

A1 1 1 1 1 1 z x2þy2,z2

A2 1 1 1 �1 �1 Rz

B1 1 �1 1 1 �1 x2�y2

B2 1 �1 1 �1 1 xy
E 2 0 �2 0 0 (x,y) (Rx,Ry) (yz,xz)

Table 2.13 Character table for point group D4

D4 E 2C4 C2 2C0
2 2C00

2 Basis components

A1 1 1 1 1 1 x2þy2,z2

A2 1 1 1 �1 �1 z Rz

B1 1 �1 1 1 �1 x2�y2

B2 1 �1 1 �1 1 xy
E 2 0 �2 0 0 (x,y) (Rx,Ry) (yz,xz)

2.2 Character Tables 33



Table 2.17 Character table for point group C3v

C3v E 2C3 3sv Basis components

A1 1 1 1 z x2þy2,z2

A2 1 1 �1 Rz

E 2 �1 0 (x,y) (Rx,Ry) (x2�y2,xy)(yz,xz)

Table 2.16 Character table for point group C3

C3 E C3 C2
3

Basis components

A 1 1 1 z Rz x2þy2,z2

E* 2 �1 �1 (x,y) (Rx,Ry) (x2�y2,xy)(yz,xz)

Table 2.14 Character table for point group D4h

D4h E 2C4 C2 2C0
2 2C00

2 i 2S4 sh 2sv 2sd Basis components

A1g 1 1 1 1 1 1 1 1 1 1 x2þy2,z2

A2g 1 1 1 �1 �1 1 1 1 �1 �1 Rz

B1g 1 �1 1 1 �1 1 �1 1 1 �1 x2�y2

B2g 1 �1 1 �1 1 1 �1 1 �1 1 xy
Eg 2 0 �2 0 0 2 0 �2 0 0 (Rx,Ry) (yz,xz)
A1u 1 1 1 1 1 �1 �1 �1 �1 �1

A2u 1 1 1 �1 �1 �1 �1 �1 1 1 z
B1u 1 �1 1 1 �1 �1 1 �1 �1 1

B2u 1 1 1 �1 1 �1 1 �1 1 �1

Eu 2 0 �2 0 0 �2 0 2 0 0 (x,y)

Table 2.15 Character table for point group D2d

D2d E 2S4 C2 2C0
2 2sd R 2RS4 RC2 2RC0

2 2Rsd Basis components

A1 1 1 1 1 1 1 1 1 1 1 x2þy2,z2

A2 1 1 1 �1 �1 1 1 1 �1 �1 Rz

B1 1 �1 1 1 �1 1 �1 1 1 �1 x2�y2

B2 1 �1 1 �1 1 1 �1 1 �1 1 z xy
E 2 0 �2 0 0 2 0 �2 0 0 (x,y) (Rx,Ry) (yz,xz)
D1/2 2

ffiffiffi
2

p
0 0 0 �2 � ffiffiffi

2
p

0 0 0

2S 2 � ffiffiffi
2

p
0 0 0 �2

ffiffiffi
2

p
0 0 0

Table 2.18 Character table for point group C3h

C3h E C3 C2
3

sh S3 S53 Basis components

A0 1 1 1 1 1 1 Rz x2þy2,z2

E0* 2 �1 �1 2 �1 �1 (x,y) (x2�y2,xy)
A00 1 1 1 �1 �1 �1 z
E00* 2 �1 �1 �2 1 1 (Rx,Ry) (yz,xz)
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Table 2.21 Character table for point group S6

S6 E C3 C2
3

i S56 S6 Basis components

Ag 1 1 1 1 1 1 Rz x2þy2,z2

E�
g 2 �1 �1 2 �1 �1 (Rx,Ry) (x2�y2,xy)(yz,xz)

Au 1 1 1 �1 �1 �1 z
E�
u 2 �1 �1 �2 1 1 (x,y)

Table 2.22 Character table for point group C6

C6 E C6 C3 C2 C2
3 C5

6
Basis components

A 1 1 1 1 1 1 z Rz x2þy2,z2

B 1 �1 1 �1 1 �1

E�
1 2 1 1 �2 1 1 (x,y) (Rx,Ry) (xz,yz)

E�
2 2 �1 1 2 1 �1 (x2�y2,xy)

Table 2.19 Character table for point group D3

D3 E 2C3 3C2 Basis components

A1 1 1 1 x2þy2,z2

A2 1 1 �1 z Rz

E 2 �1 0 (x,y) (Rx,Ry) (x2�y2,xy)(yz,xz)

Table 2.20 Character table for point group D3d

D3d E 2C3 3C2 i 2S6 3sd Basis components

A1g 1 1 1 1 1 1 x2þy2,z2

A2g 1 1 �1 1 1 �1 Rz

Eg 2 �1 0 2 �1 0 (Rx,Ry) (x2�y2,xy)(yz,xz)
A1u 1 1 1 �1 �1 �1

A2u 1 1 �1 �1 �1 1 z
Eu 2 �1 0 �2 1 0 (x,y)

Table 2.23 Character table for point group C6h

C6h E C6 C3 C2 C2
3 C5

6
i S53 S56 sh S6 S3 Basis components

Ag 1 1 1 1 1 1 1 1 1 1 1 1 Rz x2þy2,z2

Bg 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1

E�
1g 2 1 �1 �2 �1 1 2 1 �1 �2 �1 1 (Rx,Ry) (xz,yz)

E�
2g 2 �1 �1 2 �1 �1 2 �1 �1 2 �1 �1 (x2�y2,xy)

Au 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 z
Bu 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1

E�
1u 2 1 �1 �2 �1 1 �2 �1 1 2 1 �1 (x,y)

E�
2u 2 �1 �1 2 �1 �1 �2 1 1 �2 1 1
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Table 2.24 Character table for point group C6v

C6v E 2C6 2C3 C2 3sv 3sd Basis components

A1 1 1 1 1 1 1 z x2þy2,z2

A2 1 1 1 1 �1 �1 Rz

B1 1 �1 1 �1 1 �1

B2 1 �1 1 �1 �1 1

E1 2 1 �1 �2 0 0 (x,y) (Rx,Ry) (xz,yz)
E2 2 �1 �1 2 0 0 (x2�y2,xy)

Table 2.26 Character table for point group D6h

D6h E 2C6 2C3 C2 3C0
2 3C00

2 i 2S3 2S6 sh 3sd 3sv Basis components

A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2þy2,z2

A2g 1 1 1 1 �1 �1 1 1 1 1 �1 �1 Rz

B1g 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1

B2g 1 �1 1 �1 �1 1 1 �1 1 �1 �1 1

E1g 2 1 �1 �2 0 0 2 1 �1 �2 0 0 (Rx,Ry) (xz,yz)
E2g 2 �1 �1 2 0 0 2 �1 �1 2 0 0 (x2�y2,xy)
A1u 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1

A2u 1 1 1 1 �1 �1 �1 �1 �1 �1 1 1 z
B1u 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1

B2u 1 �1 1 �1 �1 1 �1 1 �1 1 1 �1

E1u 2 1 �1 �2 0 0 �2 �1 1 2 0 0 (x,y)
E2u 2 �1 �1 2 0 0 �2 1 1 �2 0 0

Table 2.25 Character table for point group D6

D6 E 2C6 2C3 C2 3C0
2 3C00

2 Basis components

A1 1 1 1 1 1 1 x2þy2,z2

A2 1 1 1 1 �1 �1 z Rz

B1 1 �1 1 �1 1 �1

B2 1 �1 1 �1 �1 1

E1 2 1 �1 �2 0 0 (x,y) (Rx,Ry) (xz,yz)
E2 2 �1 �1 2 0 0 (x2�y2,xy)

Table 2.27 Character table for point group D3h

D3h E 2C3 3C2 sh 2S3 3sv Basis components

A1
0 1 1 1 1 1 1 x2þy2,z2

A2
0 1 1 �1 1 1 �1 Rz

E0 2 �1 0 2 �1 0 (x,y) (x2�y2,xy)
A1

00 1 1 1 �1 �1 �1

A2
00 1 1 �1 �1 �1 1 z

E00 2 �1 0 �2 1 0 (Rx,Ry) (xz,yz)

Table 2.28 Character table for point group T

T E 3C2 4C3 4C2
3

Basis Components

A 1 1 1 1 z2

E* 2 2 �1 �1 x2þy2, x2�y2

T 3 �1 0 0 (x,y,z) (Rx,Ry,Rz) (xz,yz, xy)
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Table 2.29 Character table for point group Th

Th E 3C2 4C3 4C2
3

i 3sh 4iC3 4iC2
3

Basis Components

Ag 1 1 1 1 1 1 1 1 x2þy2þz2

E�
g 2 2 �1 �1 2 2 �1 �1 (2z2�x2�y2,x2�y2)

Tg 3 �1 0 0 3 �1 0 0 (Rx,Ry,Rz) xz,yz,xy
Au 1 1 1 1 �1 �1 �1 �1

E�
u 2 2 �1 �1 �2 �2 1 1

Tu 3 �1 0 0 �3 1 0 0 (x,y,z)

Table 2.31 Character table for point group O

O E 8C3 6C2 6C4 3C2
4

Basis components

A1 1 1 1 1 1 x2þy2þz2

A2 1 1 �1 �1 1

E 2 �1 0 0 2 (2z2�x2�y2,x2�y2)
T1 3 0 �1 1 �1 (x,y,z) (Rx,Ry,Rz)

T2 3 0 1 �1 �1 (xz,yz,xy)

Table 2.30 Character table for point group Td

Td E 8C3 3C2 6S4 6sd Basis components

A1 1 1 1 1 1 x2þy2þz2

A2 1 1 1 �1 �1

E 2 �1 2 0 0 (2z2�x2�y2,x2�y2)
T1 3 0 �1 1 �1 (Rx,Ry,Rz)

T2 3 0 �1 �1 1 (x,y,z) (xz,yz,xy)

Table 2.32 Character table for point group Oh

Oh E 8C3 6C2 6C4 3C2
4
i 6S4 8S6 3sh 6sd Basis components

A1g 1 1 1 1 1 1 1 1 1 1 x2þy2þz2

A2g 1 1 �1 �1 1 1 �1 1 1 �1

Eg 2 �1 0 0 2 2 0 �1 2 0 (2z2�x2�y2,
x2�y2)

T1g 3 0 �1 1 �1 3 1 0 �1 �1 (Rx,Ry,Rz)

T2g 3 0 1 �1 �1 3 �1 0 �1 1 (xz,yz,xy)
D1/2g 2 1 0

ffiffiffi
2

p
0 2

ffiffiffi
2

p
1 0 0

2Sg 2 1 0 � ffiffiffi
2

p
0 2 � ffiffiffi

2
p

1 0 0

D3/2g 4 �1 0 0 0 4 0 �1 0 0

A1u 1 1 1 1 1 �1 �1 �1 �1 �1

A2u 1 1 �1 �1 1 �1 1 �1 �1 1

Eu 2 �1 0 0 2 �2 0 1 �2 0

T1u 3 0 �1 1 �1 �3 �1 0 1 1 (x,y,z)
T2u 3 0 1 �1 �1 �3 1 0 1 �1

D1/2u 2 1 0
ffiffiffi
2

p
0 �2 � ffiffiffi

2
p �1 0 0

2Su 2 1 0 � ffiffiffi
2

p
0 �2

ffiffiffi
2

p �1 0 0

D3/2u 4 �1 0 0 0 �4 0 1 0 0
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There are different notations used to designate irreducible representations in

group theory. G is used for a generic representation. The character tables shown

here use the Mulliken notation which distinguishes between different types of

irreducible representations. One-dimensional representations are designated by

either A or B. The former is used when the character of the major rotation operation

is 1 and the latter is used if the character of this operation is �1. Two-dimensional

irreducible representations are designated by E and three-dimensional representa-

tions are designated by T. Subscripts 1 and 2 are used if the representation has

symmetric (w(C2)¼1) or antisymmetric (w(C2)¼�1) twofold rotations perpendicu-

lar to the principal rotation axis or vertical symmetry plane. Primes and double

primes are used to indicate symmetric or antisymmetric operations with respect to a

horizontal plane of symmetry sh. If the group has a center of inversion symmetry,

the subscripts g (gerade) and u (ungerade) are used to designate representations that
are symmetric and antisymmetric with respect to this operation, respectively.

For each character table, the point group is designated by its Schoenflies notation

in the top left-hand corner. The next part of the top row lists the symmetry elements

of the group collected into classes. The final part of this row lists some of

the possible basis functions for the irreducible representations. The first column

of the character table below the first row lists the irreducible representations of the

group in the order of increasing dimensions. The main body of the table lists

the characters of the sy mmetry elements in each irreducible representation.

The last column shows the components of a vector, rotation, or vector product

basis function that transforms according to that specific irreducible representation

and therefore acts as a basis for that representation.

In several of the character tables, the two-dimensional E representation is shown

with an asterisk, E*. This is because the characters for this representation are

imaginary or complex. Technically they should be decomposed into two different

Table 2.32 Character table for point group Oh (continued)

Oh R 8RC3 6RC2 6RC4 3RC2
4

Ri 6RS4 8RS6 3Rsh 6Rsd
A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 �1 �1 1 1 �1 1 1 �1

Eg 2 �1 0 0 2 2 0 �1 2 0

T1g 3 0 �1 1 �1 3 1 0 �1 �1

T2g 3 0 1 �1 �1 3 �1 0 �1 1

D1/2g �2 �1 0 � ffiffiffi
2

p
0 �2 � ffiffiffi

2
p �1 0 0

2Sg �2 �1 0
ffiffiffi
2

p
0 �2

ffiffiffi
2

p �1 0 0

D3/2g �4 1 0 0 0 �4 0 1 0 0

A1u 1 1 1 1 1 �1 �1 �1 �1 �1

A2u 1 1 �1 �1 1 �1 1 �1 �1 1

Eu 2 �1 0 0 2 �2 0 1 �2 0

T1u 3 0 �1 1 �1 �3 �1 0 1 1

T2u 3 0 1 �1 �1 �3 1 0 1 �1

D1/2u �2 �1 0 � ffiffiffi
2

p
0 2

ffiffiffi
2

p
1 0 0

2Su �2 �1 0
ffiffiffi
2

p
0 2 � ffiffiffi

2
p

1 0 0

D3/2u �4 1 0 0 0 4 0 �1 0 0
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representations whose characters are complex conjugates of each other. Doing this

allows for the rule of group theory to be fulfilled that the number of irreducible

representations of a group is equal to the number of classes of elements in the group.

However in applying group theory to physical problems, the characters need to be

real so the sum of the characters of these two complex representations is used for

the characters of the real representation. In each case the complex character for a

rotation axis of order n is

emn ¼ expð2pi=nÞ ¼ cos
2pm
n

þ i sin
2pm
n

: (2.14)

Using this expression, e0n ¼ enn ¼ 1, en=2n ¼ �1, and en=4n ¼ i. Thus the double-valued
representation E in the point group C3 is actually two complex representations with

sets of characters for the classes E, C3, and C2
3 of 1, ð�1=2þ i

ffiffiffi
3

p
=2Þ,

ð�1=2� i
ffiffiffi
3

p
=2Þ and 1, ð�1=2� i

ffiffiffi
3

p
=2Þ; ð�1=2þ i

ffiffiffi
3

p
=2Þ. Adding these gives

the set of characters for the classes of the E* irreducible representation 2,�1,�1.

Only the characters of the real representations are listed in the character tables.

If a system is characterized by a function that has half-integer values instead of

integer values, it is necessary to work with double groups [3, 7–9]. In this case the

order of the group increases and the number of irreducible representations increases

accordingly. This situation occurs most commonly in dealing with spin or half-

integer angular momentum in atomic physics. The spin of an electron is represented

by a function that has two orientations with respect to an axis of quantization.

The Pauli spin operators describing this situation are 2 � 2 matrices

sx ¼ 0 1

1 0

� �
; sy ¼ 0 �i

i 0

� �
; sz ¼ 1 0

0 �1

� �
: (2.15)

These are related to the angular momentum operator J by

s ¼ 2J:

Following the treatment of J in quantum mechanics, the angular momentum rais-

ing and lowering operators for spin can be expressed in terms of the Pauli spin

operators [3].

The Pauli spin operators obey a multiplication table that has the properties of a

group. A rotation about an axis n in the two dimensional spin representation is given

by the operator

Rð’;~nÞ ¼ e�ið1=2Þ’s�n ¼ cos
1

2
’� is � n sin 1

2
’: (2.16)

The operator R(j,n) is also a 2 � 2 matrix.

An important result of (2.16) is that a rotation of 2p is not the identity operator

for the group:
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Rð’þ 2p; nÞ ¼ cosðpþ ’=2Þ � is � n sinðpþ ’=2Þ
¼ � cosð’=2Þ þ is � n sinð’=2Þ ¼ �Rð’; nÞ:

Instead an operator representing a rotation of 4p must be introduced as the identity

E while a rotation of 2p is a new operator R. Then R multiplied by all of the other

operators of the group gives the additional group operators. This leads to additional

irreducible representations.

In group theory, spin is represented by a two-dimensional irreducible represen-

tation G1/2. For some spatial operations the characters for Cn and RCn are different

and these are referred to as double valued. The complete spatial and spin state of a

system is represented by the product of G1/2 with the irreducible representations

describing the spatial state of the system. In some cases this direct product results

in other new irreducible representations of the group. The character tables for the

D2d and Oh groups show examples of the extra elements and irreducible representa-

tions associated with double groups. These double-valued representations are dis-

cussed in greater detail in Chap. 4 and examples given of how to determine the

characters of the half-integer representations. These concepts are especially impor-

tant for treating magnetic properties and the effects of time reversal in quantum

mechanical systems.

The irreducible representations for space groups are discussed in Chap. 8.

2.3 Group Theory Examples

2.3.1 C3v Point Group

The best way to demonstrate the use of group theory is to work out some specific

examples. Consider an object with the shape of an equilateral triangle as shown

in Fig. 2.2. By inspection, this object has six symmetry elements: the identity E;
rotation by 120� around the z-axis C3; rotation by 240� around the z-axis C2

3;

mirror reflection through the plane containing the y and z axes s1; and mirror

reflections through the planes containing the z-axis and either axis 2 or axis 3,

designated s2 and s3, respectively. Therefore the order of the group is 6. These

elements can be displayed in a multiplication table as shown in Table 2.33. This

shows that the product of any two elements is an element of the group. It also shows

that every element of the group has a reciprocal element that is an element of the

group. It also shows that the associative law of multiplication holds for these

elements. Thus all of the criteria for being a group have been met.

The multiplication rules shown in Table 2.33 can be used to apply similarity

transformations to these elements which allow them to be grouped into classes:
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This shows that the elements C3 and C2
3 form one class having two symmetry

elements. Proceeding in the same way for the three mirror planes show that

the elementss1,s2, ands3 formanother class.Also, the elementE forms a class by itself.

Since there are three classes in this group there must be three irreducible repre-

sentations for the group and the sum of the squares of their dimensions must equal the

order of the group, 6. This is only possible if there are two one-dimensional irreducible

representations and one two-dimensional irreducible representation. There are two

ways to develop the character table for these representations. The first is to express the

character table in terms of unknown characters and then use the orthogonality of

irreducible representations to calculate the characters. In this case the three classes and

three irreducible representations can be written as

32

1

y

x

Fig. 2.2 Equilateral triangle. The z-axis direction is out of the page

Table 2.33 Multiplication table for equilateral triangle symmetry elements

E C3 C2
3

s1 s2 s3

E E C3 C2
3

s1 s2 s3

C3 C3 C2
3

E s3 s1 s2

C2
3 C2

3
E C3 s2 s3 s1

s1 s1 s2 s3 E C3 C2
3

s2 s2 s3 s1 C2
3

E C3

s3 s3 s1 s2 C3 C2
3

E

EC3E¼C3, EC2
3E ¼ C2

3;

C2
3C3C3 ¼ C3; C2

3C
2
3C3 ¼ C2

3;

C3C3C
2
3 ¼ C3; C3C

2
3C

2
3 ¼ C2

3;

s1C3s1 ¼ C2
3; s1C2

3s1 ¼ C3;

s2C3s2 ¼ C2
3; s2C2

3s2 ¼ C3;

s3C3s3 ¼ C2
3; s3C2

3s3 ¼ C3:
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which reflect the fact that the character of the identity operation is always the

dimension of the representation and there is always one totally symmetric irreduc-

ible representation in which the character of each class is 1. Using (2.11) provides

the following equations:

1

6

X
r

g A2
1

� �
g A2

2

� � ¼ ð1þ 2aþ 3bÞ=6 ¼ 0 ∴ 2aþ 3b ¼ �1 so a ¼ 1; b ¼ �1;

1

6

X
r

g A1ð ÞgðEÞ ¼ ð2þ 2cþ 3dÞ=6 ¼ 0 ∴ 2cþ 3d ¼ �2;

1

6

X
r

gðA2ÞgðEÞ ¼ ð2þ 2c� 3dÞ=6 ¼ 0 ∴ 2c� 3d ¼ �2:

Combining the last two expressions gives c¼�1 and d¼0, so the character table is

The second way to derive the character table for this group is to consider how the

Cartesian coordinates transform under the elements of the group. In this case

x0

y0

z0

0
@

1
A ¼ E

x
y
z

0
@

1
A ¼

x
y
z

0
@

1
A ∴ E ¼

1 0 0

0 1 0

0 0 1

0
@

1
A;

x0

y0

z0

0
@

1
A ¼ C3

x
y
z

0
@

1
A ¼

� 1
2
xþ

ffiffi
3

p
2
y

�
ffiffi
3

p
2
x� 1

2
y

z

0
B@

1
CA ∴ C3 ¼

� 1
2

ffiffi
3

p
2

0

�
ffiffi
3

p
2

� 1
2

0

0 0 1

0
B@

1
CA;

x0

y0

z0

0
@

1
A ¼ s1

x
y
z

0
@

1
A ¼

�x
y
z

0
@

1
A ∴ s1 ¼

�1 0 0

0 1 0

0 0 1

0
@

1
A:

This is a reducible representation G that has characters given in the following table:

The final line in this table shows the reduction of the representation G in terms of

the irreducible representations using the expression from (2.10)

E 2C3 3s

A1 1 1 1

A2 1 1 �1

E 2 �1 0

E 2C3 3s

A1 1 1 1

A2 1 a b
E 2 c d
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nðiÞ ¼ 1

h

X
A

wðiÞA wA:

For A1 this gives nðA1Þ ¼ ð1=6Þð3þ 0þ 3Þ ¼ 1. For A2 it gives n(A2)¼(1/6)

(3þ0–3)¼0. For E it gives n(E)¼(1/6)(6þ0þ0)¼1.

The three transformation matrices found above have a box diagonal form

E ¼
1 0 0

0 1 0

0 0 1

0
@

1
A; C3 ¼

� 1
2

ffiffi
3

p
2

0

�
ffiffi
3

p
2

� 1
2

0

0 0 1

0
B@

1
CA; s1 ¼

�1 0 0

0 1 0

0 0 1

0
@

1
A:

The boxes in the upper left-hand corner are the matrices for the irreducible repre-

sentation E while the boxes in the lower right-hand corner are the matrices for the

irreducible representation A1. Note that the traces of these box diagonal matrices

give the characters for the E and A1 representations and the characters for the A2

irreducible representation can then be found from the orthogonality condition.

The transformation matrices for the three classes of symmetry elements

operating on the vector components x,y,z as shown above shows that the z compo-

nent acts as a basis for the A1 irreducible representation while the components x and
y transform into combinations of each other according to the irreducible represen-

tation E. Thus the set (x,y) form the basis for E.
The rotation axisRz remains unchanged under operations of theE andC3 classes but

it changes sign under an operation of the s class. Thus it transforms according to the A2

irreducible representation. The other two rotation axes Rx and Ry transform into com-

binations of each other and therefore form a basis for the E irreducible representation.

Finally consider how the product of vector components transforms in this group.

The conventional way to write the components of an axial vector formed by the

product of two vectors is given in (2.17). The way the individual components

transform under the symmetry operations of this group was described above, and

this information can be used to determine how the product of these components

transform. Then transformation matrices can be constructed for each symmetry

element, and their traces are calculated to determine the characters of this reducible

representation as done previously.

The six-dimensional column matrix for a vector product is

E 2C3 3s

A1 1 1 1

A2 1 1 �1

E 2 �1 0

G 3 0 1 ¼ A1þE
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x2

y2

z2

2yz
2xz
2xy

0
BBBBBB@

1
CCCCCCA
: (2.17)

Using this as a basis vector, the transformation vectors for an element of each class

are written as

E ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0
BBBBBB@

1
CCCCCCA

∴ gE ¼ 6;

s1 ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 �1 0

0 0 0 0 0 �1

0
BBBBBB@

1
CCCCCCA

∴ gs1 ¼ 2;

C3 ¼

1
4

3
4

0 0 0
ffiffi
3

p
4

3
4

1
4

0 0 0
ffiffi
3

p
4

0 0 1 0 0 0

0 0 0 � 1
2

�
ffiffi
3

p
2

0

0 0 0
ffiffi
3

p
2

� 1
2

0ffiffi
3

p
2

�
ffiffi
3

p
2

0 0 0 � 1
2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

∴ gC3
¼ 0

This irreducible representation can be reduced in terms of 2E and 2A1 irreducible

representations. By observing the transformation properties, it can be seen that z2

forms a basis function for one of the A1 irreducible representations while (x2þy2)
forms a basis function for the other one. One of theE representations has the set (xz,yz)
for a basis function and the other has the basis function set (x2�y2,xy).

If all of the information on basis functions is included in the character table for

this group given above, it is identical with Table 2.17. This shows that the

symmetry group for an equilateral triangle is point group C3v.

For some applications it is important to take the direct product of representations

and reduce the results in terms of the irreducible representations of the group. As an

example for this group, the direct product of the E representation with itself is found
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by multiplying the character of the E representation for each symmetry class with

itself. This gives the characters 4, 1, and 0 for the E, C3, and s classes of symmetry

operations, respectively. These are the characters of a reducible representation and

(2.10) can be used to show that this reduces to one E, one A1, and one A2 irreducible

representations.

2.3.2 Oh Point Group

One of the most important symmetries in solid state physics is a regular octahedron

with a center of inversion symmetry. This describes seven atoms arrayed along the

x, y, and z axes of a cube as shown in Fig. 2.3 with the positions of the ions given in
Table 2.34. Each side of the cube has a length 2a. The angle ’ is measured around

the z-axis in the xy plane counterclockwise from the x-axis. The angle y is measured

around the y-axis in the xz plane counterclockwise from the z-axis.

Table 2.34 Ion positions in Fig. 2.3

x y z r y ’

0 0 0 0 0 0

a 0 0 a p/2 0

0 a 0 a p/2 p/2
�a 0 0 a p/2 p
0 �a 0 a p/2 3p/2
0 0 a a 0 0

0 0 �a a p 0

z

y

x

Fig. 2.3 Cubic Oh symmetry
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The cubic Oh point group describes this symmetry. This group has 48 symmetry

elements divided into 10 classes. The character table for the group is given in

Table 2.32. The symmetry elements are as follows. First is the identity operation E
and the inversion operation iwhich each forms a class by itself. Next there is a class of

sixC4 elements describing�90� rotations about the x, y, or z axes. Then there are three
twofold axes of rotationC2 about the x, y, or z axes. Also there are six twofold rotation
axesC2

0 that run from the center of an edge through the center of the cube to the center

of the opposite edge. There are eight axes of�120� rotation about the body diagonals
of the cube. There are threemirror planes of symmetry going through the centers of the

edges of the cube in the xy, xz, and yz planes. Note that these are equivalent to

combined C2i operations. Similarly, there are six diagonal planes of symmetry

equivalent to combined C2
0i operations. The reflection operations can also be com-

bined with C3 rotations and C4 rotations to give eight S6 and six S4 operations,

respectively.

Since there are 10 classes, there must be 10 irreducible representations for the Oh

point group. The only way for the sum of the squares of the dimensions of 10

irreducible representations to equal the order of the group, 48, is 4(3)2þ2

(2)2þ4(1)2¼48. This shows that the group has four three-dimensional irreducible

representations, two two-dimensional irreducible representations, and four one-

dimensional representations. These are divided into two groups of five each, one

that is even parity under inversion designated by subscript g and one that is odd

parity under inversion designated by subscript u. These can by used to operate on

even and odd parity basis functions, respectively. The character for a symmetry

operation not involving inversion is the same for both even and odd parity.

However, the character for a symmetry operation involving inversion in an odd

parity representation is �1 times the character for the same element in the even

parity version of the same representation.

For use with half-integer functions such as spin, the additional operation R
of a 2p rotation must be introduced since E is a 4p rotation in this case. This

results in three new g and three new u irreducible representations as shown in

Table 4.32.

For situations involving high levels of symmetry such as Oh, it is sometimes

useful to work with subgroups of the total group. A subgroup of is a subset of

elements of the larger group that by themselves obey all of the mathematical

requirements to be a group. For example, D3d forms a subgroup of Oh consisting

of the identity element, two threefold rotation operations, three C2
0 operations, and

the inversion operation multiplied by each of these elements. The character table for

D3d is given in Table 2.30. The irreducible representations of the group can be

Oh D3d

A1g A1g

A2g A2g

Eg Eg

T1g A2gþEg

T2g A1gþEg
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decomposed in terms of combinations of the irreducible representations of the

subgroup. Comparing the characters of the common elements in Oh and D3d

shows the correlation between the irreducible representations of the group and its

subgroup. For the even parity representations this is:

The results of this method of inspection can be checked against the predictions of

(2.10). For example, for the T2g irreducible representation of Oh the A1g irreducible

representation of D3d will appear the following number of times:

nðT2gÞ ¼ 1

12
1� 1� 3þ 2� 1� 0þ 3� 1� 1þ 1� 1� 3þ 2� 1� 0þ 3� 1� 1ð Þ

¼ 1;

while the A2g irreducible representation will appear the following number of times:

nðT2gÞ ¼ 1

12
ð1� 1� 3þ 2� 1� 0þ 3� ð�1Þ � 1þ 1� 1� 3þ 2� 1� 0þ 3

� ð�1Þ � 1Þ
¼ 0:

This is consistent with the correlation table shown above.

From Table 2.32 it can be seen that the vector components (x,y,z) transform as

the T1u irreducible representations. As discussed in Sect. 2.4 and in Chap. 4, this is

important in using group theory to determine allowed electromagnetic transitions.

Also the irreducible representations for Oh involving half-integer quantities are

shown in the table. Section 4.4 describes an example of using these representations

for atoms with half-integer values of angular momentum.

2.4 Group Theory in Quantum Mechanics

In quantum mechanics a physical system is described by a Hamiltonian operator H.
The allowed states of a system are described by a set of orthonormal

eigenfunctions cn and the energy of these states is a set of eigenvalues En. The

sets of eigenfunctions and eigenvalues for the system are found by solving the

Schrödinger equation

Hjcni ¼ Enjcni

or

En ¼ hcnjHjcni: (2.18)
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Since the Hamiltonian describes the physical system, it should be invariant under

the same symmetry operations that leave the physical system invariant [2,5]. This is

described as a similarity transformation on H by a symmetry operator A

H ¼ A�1HA: (2.19)

This is the same as saying that a symmetry operator commutes with the

Hamiltonian operator [2, 5]. The symmetry operators that leave H invariant form

a group. Obviously an operator that does not change H at all is an element of the

group and this is the identity operator. For two elements A and B

AHA�1 ¼ H and BHB�1 ¼ H soðABÞHðABÞ�1 ¼ ðABÞHðB�1A�1Þ ¼ H;

which shows that the product of two elements is an element that leaves H invariant.

Also, the associative law holds. Finally, if (2.19) is multiplied from the left with A
and from the right with A�1 gives

AHA�1 ¼ H;

which shows that the inverse of the element also leaves H invariant. Thus all the

elements that leave H invariant conform to the properties of a group. This is called

the group of the Schrödinger equation or the group of the Hamiltonian and is the

same as the symmetry group of the system described by H.
If one of the operators of the group of the Hamiltonian A is applied to the initial

Schrödinger equation given above,

AHjcni ¼ EnAjcni

or

HjAcni ¼ EnjAcni

since A and H commute. This shows that j Acni is also an eigenfunction belonging

to the same eigenvalue En. In other words, the eigenfunctions transformed by

an operator of the group of H belong to the same eigenvalue as the initial

eigenfunctions. From (2.18),

En ¼ hcnjHjcni ¼ hcnjA�1HAjcni ¼ hAycnjHjAcni ¼ h’njHj’ni (2.20)

where

j’ni ¼ Aj’ni ¼ jA’ni: (2.21)

This derivation uses the fact that for symmetry operators in quantum mechanics

their inverse is equal to their adjoint A�1 ¼ A{.
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If En has only one eigenfunction then ’n ¼ cn except for a possible phase factor

and En is said to be nondegenerate. If an eigenvalue has associated with it an

orthonormal set of eigenfunctions, it is said to be degenerate, and any normalized

linear combination of these eigenfunctions will also have the eigenvalue En. This is

expressed as

En ¼ hCIjHjCIi

where

jCIi ¼
Xn
i

aijcii

and j CIi is normalized and a21 þ a22 þ � � � þ a2n ¼ 1. Thus

hCIjCIi ¼
Xn
i¼1

jaij2hcijcii ¼ 1:

There are n possible linear orthogonal combinations.

A symmetry operation of the system acting on a set of degenerate eigenfunctions

takes them into a different linear orthogonal combination of the degenerate eigen-

functions:

A

jc1i
jc2i
..
.

jcni

0
BBB@

1
CCCA ¼

a11jc1i þ a12jc2i þ � � � þ a1njcni
a21jc1i þ a22jc2i þ � � � þ a2njcni

..

.

an1jc1i þ an2jc2i þ � � � þ annjcni

0
BBB@

1
CCCA: (2.22)

The discussion above shows that for quantum mechanical systems, if all

symmetry operations for the system leave a specific eigenfunction unchanged

(except for a phase factor), that function transforms like a nondegenerate

solution of the Schrödinger equation. If some of the symmetry operations act

on an eigenfunction to create new linearly independent eigenfunctions, all of

these functions transform like members of a degenerate set of solutions to the

Schrödinger equation.

From the discussion above, it can be seen that the eigenfunctions belonging to the

same eigenvalue of a quantum mechanical system form a basis for one of

the irreducible representations of group describing the system. The dimension of the

irreducible representation is the same as the degeneracy of the eigenvalue. Thus

HAjcii ¼ EiAjcii

shows that both jcii and Ajcii are eigenfunctions of Ei. If Ei is nondegenerate

and the eigenfunctions are normalized, Ajcii ¼ �1jcii. Applying all of the
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symmetry operations of the group generates a one-dimensional irreducible repre-

sentation of the group with matrix elements (and characters) �1. That irreducible

representation thus can be used to represent the energy state of the system

associated with the eigenvalue for that specific eigenfunction. Considering the

same procedure for a degenerate state of the system generates an irreducible

representation of the system whose dimension is equal to the degeneracy of

the state it represents.

Consider the example of a system with C3v symmetry described in Sect. 2.3.1.

A quantum mechanical system with this symmetry will have a nondegenerate

eigenfunction that is the basis for the A1 irreducible representation so it remains

unchanged under all symmetry operations. It will have another nondegenerate

eigenfunction that remains invariant under operations of the E and C3 class but

changes sign under s class operations and therefore is the basis for the A2

irreducible representation. Two other degenerate eigenfunctions will form

the basis for the two-dimensional E irreducible representation. If this is desig-

nated G3,

Aðc1c2Þ ¼ ðc1c2Þ
G3ðAÞ11G3ðAÞ12
G3ðAÞ21G3ðAÞ22

 !
;

where A is a symmetry operator in C3v. This leads to

Ac1 ¼G3ðAÞ11c1 þ G3ðAÞ21c2;

Ac2 ¼G3ðAÞ12c1 þ G3ðAÞ22c2:

This shows that c1 transforms like the first column of the transformation matrix of

the symmetry operator while c2 transforms like the second column.

When spin–orbit interaction is important, the total wavefunction describing the

system is the product of spatial and spin functions:

Ci ¼ cisi;

where si represents the spin angular momentum of the system. In this case double-

valued representations must by used. An example of this is given in Chap. 4.

Any physical process interacting with the system can be expressed as a quantum

mechanical operator which also transforms according to one of the irreducible

representations of the group. The transformation of the specific ith operator On
i of

a set of n operators is expressed as

AOn
i A

�1 ¼
X
j

On
j GnðAÞji; (2.23)

where A is an element of the group of the Hamiltonian and Gn is a representation of

this group.
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The physical process may cause the system to undergo transitions from one

eigenstate to another or to split degenerate energy states into several states with

lower degeneracies. The qualitative features of these effects can be determined by

using group theory techniques such as the direct products and decompositions of

representations to evaluate matrix elements. In general the quantum mechanical

description of these physical processes involves evaluating matrix elements

cf Oj jcih i

where i and f designate initial and final states of the system and O represents the

physical operator. The matrix element represents an integral over all space and to

be nonzero the integrand must be symmetric. Instead of evaluating the complete

mathematical expression for the integral of the products of the operator and

eigenfunctions, we can rewrite this as the product of the group theory representa-

tions of the functions

cf Oj jcih i 6¼ 0; if Gf � GO � Gi ¼ A1g þ � � � (2.24)

and

cf Oj jcih i ¼ 0; if Gf � GO � Gi 6¼ A1g þ � � � :

Thus the matrix element is nonzero if the decomposition of the triple direct product

representation Gf � Go � Gi contains the totally symmetric A1g representation. This

is called an allowed transition. The matrix element is zero if it does not contain A1g.

This is called a forbidden transition. This can be stated in a different way knowing

that A1g will only appear in the decomposition of the direct product of a representa-

tion with itself. Thus for a nonzero matrix element the decomposition of the direct

product representation of the initial and final states must contain the irreducible

representation of the operator causing the transition.

These concepts can be visualized using a simple example of rectangular sym-

metry. If the square symmetry shown in Fig. 1.2 is stretched along the x direction
the symmetry group is lowered from D4h to D2h with the character table given in

Table 2.8. A quantum mechanical state of the system is designated by one of the

eight irreducible representations listed in the character table. The signs of the

eigenfunctions transforming as some of these representations within the rectangular

space are shown in Fig. 2.4. The effect of a symmetry operation on the sign of the

function is given by the character of the operation. A positive character leaves

the sign unchanged while a negative character changes the sign. For example, the

function transforming as the totally symmetric irreducible representation Ag is

positive throughout the rectangular space and does not change when it undergoes

under any of the symmetry operations. The function transforming as B1g changes

sign under the C2(y), C2(x), s(xz), and s(yz) operations, all of which have characters
of �1, and remains unchanged under the other four operations which have char-

acters of þ1. The function transforming as B2g changes sign under the C2(y), C2(z),
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i, and s(yz) operations. The triple product of the three irreducible representations

shown in Fig. 2.4 is a function that has positive values in the two upper quadrants

and negative values in the two lower quadrants. This forms the basis of a B2u

representation. Integrating this function over the area of the rectangle is identically

zero since there are equal positive and negative areas. The dipole moment operator

polarized in the x direction is also shown in Fig. 2.4. Applying the symmetry

operations of the D2h point group shows that this transforms according to the B3u

representation as indicated in the character table for the group. The fact that the

reduction of the triple direct product Ag�B3u�B1g ¼B2u does not contain Ag is

consistent with the fact that the matrix element is zero and the electric dipole

induced transition between states Ag and B1g is forbidden. The determination of

transition matrix elements in this way is discussed further in later chapters.

Using these concepts of group theory, the irreducible representations of the

group of symmetry operations that leave the Hamiltonian of the quantum mechan-

ical system invariant provide information about the degrees of degeneracy of the

eigenfunctions of the system and the transformation properties of these eigen-

functions. The group theory procedure of forming and decomposing direct pro-

ducts of representations is useful in quickly determining qualitatively whether a

transition is allowed or forbidden, or how many states occur in the splitting of an

energy level. However, it can not provide quantitative information about these

processes.

2.5 Problems

Consider the thin, square object with the basis set shown in the figure. (○ represents

objects above the plane of the square and l represents objects below this plane.) The

z-axis is directed out of the paper from the center of the square. Answer

the following questions:

y

x
+

Ag
+

+ +

y

B1g
x

− +

+ −

B3u

y

x
− +

− +

Dipole Moment Operator 
Polarized in the x Direction 

+−
erx

Fig. 2.4 Signs of the basis functions for some of the irreducible representations in a system with

rectangular symmetry
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y

x

1. Identify the symmetry elements for the point group of this object.

2. Develop the multiplication table for the symmetry elements.

3. Derive the classes of elements for this symmetry group. What is the order of the

group?

4. Derive the transition matrices for the group elements operating on the x,y,z
coordinates and find the character of each of these.

5. Derive the character table for this group using the concepts of box diagonaliza-

tion and the properties of characters (especially (2.11) and (1.12)).
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