\mathbf{X}	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Fractions, Decimals and Percentages

Factors of a number are values that will go in to that number exactly.
Examples The factors of 10 are 1, 2,5 and 10.
The factors of 15 are $1,3,5$ and 15.
7 is not a factor of 12 .

Multiples of a number are values in that number's times table.
Examples Multiples of 5 are $5,10,15,20,25, \ldots$
Multiples of 7 are $7,14,21,28,35, \ldots$
500 is a multiple of 10 (because $50 \times 10=500$)
13 is not a multiple of 2 .

Multiplying and Dividing with Negative Numbers

Fraction	Decimal	Percentage
$\frac{1}{2}$	0.5	50%
$\frac{1}{4}$	0.25	25%
$\frac{3}{4}$	0.75	75%
$\frac{1}{10}$	0.10	10%
$\frac{1}{3}$	$0.3333333333 \ldots$	33.3%
$\frac{3}{10}$	0.3	30%
$\frac{1}{5}$	0.2	20%

	\times	Positive	$=$ Positive
	\div		
Positive	\times	Negative	$=$ Negative
	\div		
Negative	\times	Positive	$=$ Negative
	\div		
Negative	\times	Negative	$=$ Positive

This is the order in which calculations should be done.

Brackets
Indices
Division
Multiplication
Addition
Subtraction

Examples:
$(5 \times 4) \div 2$
$20 \div 2$
10

$$
20-2 \times 3^{2}
$$

$$
20-2 \times 9
$$

$$
20-18
$$

$$
2
$$

Finding percentages of amounts
The 'building blocks' of percentages:
To find 50% of a number, just half it.
To find 10% of a number, divide it by 10 .
To find 1% of a number, divide it by 100 .
You can then use these to find other percentages, for example... To find 5%, just half your 10%.
To find 60%, just add your 50% and 10% together.

Or if it's on the calculator paper...
To find 35% of 600 3 (\%) 区 0 0 0

Prime Numbers
A prime number is a number that has only 2 factors -1 and itself.
Here are the first 12 prime numbers...

$$
2,3,5,7,11,13,17,19,23,29,31,37
$$

Note that 1 is not a prime number - this is because 1 only has 1 factor!

Example

Find $\frac{2}{5}$ of $20 \frac{1}{5}=20 \div 5=4$, so $\frac{2}{5}=4 \times 2=8$

When you square a number, you times it by itself.
e.g. $\quad 3^{2}$ means ' 3 squared' which means 3×3 so $3^{2}=9$.

When you cube a number, you times a number by itself 3 times.
e.g. $\quad 4^{3}=4 \times 4 \times 4=64$

Whatever the power (small number) is, this is how many times you multiply the number by itself.

Example Exam Question
Which is bigger 5^{2} or 2^{5} ? You must show your working.
$5^{2}=5 \times 5=25$
$2^{5}=2 \times 2 \times 2 \times 2 \times 2=32 \quad$ so 2^{5} is bigger

Square \& Cube Roots

Square roots

$$
\begin{aligned}
\sqrt{ } 1 & =1 \\
\sqrt{ } 4 & =2 \\
\sqrt{ } 9 & =3 \\
\sqrt{ } 16 & =4 \\
\sqrt{ } 25 & =5 \\
\sqrt{ } 36 & =6 \\
\sqrt{ } 49 & =7 \\
\sqrt{ } 64 & =8 \\
\sqrt{ } 81 & =9 \\
\sqrt{ } 100 & =10
\end{aligned}
$$

Square numbers are the result of squaring a number.

$$
\begin{array}{llll}
\text { e.g. } & 1^{2}=1 \times 1=1, & \text { so } 1 \text { is a square number } \\
2^{2}=2 \times 2=4, & \text { so } 4 \text { is a square number } \\
3^{2}=3 \times 3 & =9, & \text { so } 9 \text { is a square number } \\
& 10^{2}=10 \times 10=100, & \text { so } 100 \text { is a square number }
\end{array}
$$

Similarly, cube numbers are the result of cubing a number.

$$
\begin{array}{llll}
\text { e.g. } & 1^{3}=1 \times 1 \times 1 & =1, & \text { so } 1 \text { is a cube number } \\
2^{3}=2 \times 2 \times 2 & =8, & \text { so } 8 \text { is a cube number } \\
3^{3}=3 \times 3 \times 3 & =27, & \text { so } 27 \text { is a cube number }
\end{array}
$$

Adding and Subtracting Fractions

When adding or subtracting fractions, the denominators must be the same. One way to make them the same is to multiply the first fraction by the denominator of the second fraction and vice versa.
e.g. $\frac{1}{4}+\frac{2}{5}=\frac{5}{20}+\frac{8}{20}=\frac{13}{20}$

We multiplied $\frac{1}{4}$ by 5 (top and bottom) to get $\frac{5}{20}$
We multiplied $\frac{2}{5}$ by 4 (top and bottom) to get $\frac{8}{20}$
We then added the numerators. The denominator stays the same.

If subtracting fractions, the only difference is that we must subtract the numerators instead of adding them.

Multiplying Fractions

Multiplying fractions is easy.
Just times the numerators together and times the denominators together.

Examples

$$
\begin{gathered}
\frac{1}{3} \times \frac{4}{5}=\frac{1 \times 4}{3 \times 5}=\frac{4}{15} \\
1 \frac{1}{2} \times \frac{2}{3}=\frac{5}{2} \times \frac{2}{3}=\frac{10}{6}=\frac{5}{3}=1 \frac{2}{3}
\end{gathered}
$$

Exchange Rates

Dividing Fractions

To divide fractions, flip the second fraction then multiply the fractions together.

Example

$$
\frac{2}{9} \div \frac{2}{3}=\frac{2}{9} \times \frac{3}{2}=\frac{2 \times 3}{9 \times 2}=\frac{6}{18}=\frac{1}{3}
$$

Rounding and Estimating

Significant figures are the first digits you reach in a number that aren't zero.

For example...
To 1 s.f. $597=600 \quad$ To 2 s.f. $0.00918=0.0092$

Estimating

When asked to estimate the answer to a problem, that is what you must do. You will not get credit for working out the actual answer.
Generally, when estimating, round all numbers to 1 significant figure and find the answer.
e.g. Estimate $\frac{\left(19.84^{2}+4.12\right)}{1.87}=\frac{\left(20^{2}+4\right)}{2}=\frac{(400+4)}{2}=\frac{404}{2}=202$
e.g. Estimate $\frac{3.12 \times 9.76}{0.49}=\frac{3 \times 10}{0.5}=\frac{30}{0.5}=60$
teemaths.com

Questions to do with exchange rates always involve either dividing or multiplying the values given.

Example

Given that $£ 1=€ 1.24$
a) Convert $£ 25.99$ to euros
b) If a pair of jeans costs $€ 69$, how many pounds is this?
a) $25.99 \times 1.24=32.2276=€ 32.23$
(Always round money to 2d.p. unless told otherwise).
b) $69 \div 1.24=55.64516129=£ 55.65$

When going from 'left to right' - pounds to euros, we multiplied. When going the other way, we divided.

Percentage Change

To work out a percentage change, use the following formula:

$$
\text { percentage change }=\frac{\text { actual change }}{\text { original amount }} \times 100
$$

Example

A television is reduced from $£ 800$ to $£ 520$ in a sale.
What percentage saving is this?
Answer
Actual change $=£ 800-£ 520=£ 280$
Percentage change $=\frac{280}{800} \times 100=0.35 \times 100=35 \%$

If given the total amount, find the total number of shares first.

Example
Divide f 80 in the ratio 7:2:1

Total shares $=7+2+1=10$
1 share $=£ 80 \div 10=£ 8$

$$
\begin{array}{ccc}
7 & : & 2
\end{array}: \begin{gathered}
1 \\
\times £ 8
\end{gathered} \times £ 8 \begin{gathered}
\times £ 8 \\
£ 56:
\end{gathered}
$$

When not given the total amount, you need a different method.

Example 2

Steve divides money between his son and daughter in the ratio 2:5 His daughter is given $£ 35$, how much does the son receive?

Son		Daughter
2	$:$	5
$\times £ 7$		$\times £ 7$
$£ 14$	$:$	$£ 35$

The daughter has received 7 'lots' of 5 so 1 share must be worth $£ 7$.
Therefore the son must receive 2 shares of $£ 7$, total $£ 14$.

Metric Units
teemaths.com

You are expected to know 'by heart' (and be able to use) all of the conversions below:

Length		
1 kilometre	=	1,000 metres
1 metre	=	100 centimetres (cm)
1 centimetre	=	10 millimetres (mm)
Weight		
1 kilogram (kg)	=	1,000 grams (g)
1 tonne	=	1,000 kilograms (kg)
Capacity		
1 litre (l)	=	1,000 millilitres (ml)
1 litre (l)	=	100 centilitres (cl)
1 ml	=	$1 \mathrm{~cm}^{3}$

Polygons and Prisms
teemaths.com

You should know and be able to use the following imperial and metric equivalents:

Circumference of a circle

The circumference of a circle is found using the formula:

$$
\text { Area }=\pi d
$$

Where d is the diameter* of the circle.
So if a circle has a diameter of 7.8 m ...

$$
\begin{aligned}
\text { Circumference } & =\pi \times 7.8 \\
& =24.5 \mathrm{~m}
\end{aligned}
$$

Notice the units of the answer are not square units as circumference is a length.

TIP: Check you are given the diameter. If you're given the radius, double it first.

The area of a circle is found using the formula:

$$
\text { Area }=\pi r^{2}
$$

Where r is the radius* of the circle.
So if a circle has a radius of 5.2 cm ...

$$
\begin{aligned}
\text { Area } & =\pi \times 5.2 \times 5.2 \\
& =84.9 \mathrm{~cm}^{2}
\end{aligned}
$$

Notice the units of the answer are square units as it is an area.
TIP: Check you are given the radius. If you're given the diameter, just half it.
*Don't know what the radius is? See the card 'Parts of a circle 1'.

Parts of a circle 1
teemaths.com

The radius of a circle is the distance from the centre of the circle to the edge.

A chord of a circle is a line joining 2 points on the circumference of a circle.

A tangent is a line that touches a circle on its circumference.

A sector is a 'slice' of a circle taken from the centre to the circumference.

The diameter of a circle is the distance from edge to edge through the centre.

A segment is a slice of a circle that is taken from the circumference. Or it can be described as the area between a chord and the circumference.

Angle Facts 1

teemaths.com

- Angles on a straight line add up to 180°
- Angles at a point add up to 360°
- Angles in a triangle add up to 180°
- Angles in a quadrilateral add up to 360°
- The total of the (interior) angles of an n-sided polygon can be found using this formula:

$$
(n-2) \times 180
$$

- The exterior (outside) angles of any shape always add up to 360°
- In a regular hexagon, each exterior angle (shown on the right) would be $60^{\circ}\left(360^{\circ} \div 6\right)$

Angle Facts 2

teemaths.com

The hypotenuse of a right-angled triangle is the longest side.
This is always opposite the right-
angle.

- Square both sides
- Looking for the longest side? Add them together.

Looking for a short side?
Subtract one from the other.

- Square root your answer.

Translations

A translation is when a shape just moves by a given amount.

This is sometimes stated in words. e.g. 'Translate the shape 4 squares right and 3 squares up'.

At other times this is given as a vector.
e.g. $\binom{-2}{5}$ This means move the shape 2 squares to the left and 5 squares up.

Example

Translate shape A by vector $\binom{-5}{1}$.
Label the new shape B.

Notice how we pick a point on the shape and move that point 5 squares to the left and 1 square up. This point was originally the bottom-left corner on A and still is on B.

Perpendicular Bisector

Rotations

teemaths.com
A rotation refers to a shape being turned or spun.

The order of rotation of a shape is how many times that shape fits in to itself when spun 360°.

*Every shape has at least order of rotation 1. If a shape only has order 1, we say it has no rotational symmetry.
\#Notice the colours affect the order of rotation

When told to describe a rotation, you must usually give:

- The degree of the rotation
- The direction of the rotation
- The centre of rotation.

Example

Describe the transformation that maps Shape A to Shape B.

A rotation 90° anti-clockwise, centre $(0,0)$

Congruent shapes are exactly the same as each other (though they may have been 'turned around' or flipped).

Similar shapes are 'similar' to each other! Sides are still in the same proportion though they may be bigger or smaller. Equivalent angles in similar shapes will be the same.

Example

Shapes A and D are congruent.
Shapes A and C are similar.
(Shape C is an enlargement of scale factor 2).
Shapes D and C are also similar.

Simplifying expressions

Important Examples

$b+b+b=3 b$
$b \times b \times b=b^{3}$
$a+b=a+b \quad$ (You cannot simplify expressions like this)
$5 s+7 t+4 s-9 t=9 s-2 t \quad$ (Because $5 \mathrm{~s}+4 \mathrm{~s}=9 \mathrm{~s}$ and $7 \mathrm{t}-9 \mathrm{t}=-2 \mathrm{t}$)
$a \times b=a b$
$4 p \times 5 q=20 p q$
$4 c \times 5 c=20 c^{2} \quad$ (Because $4 \times 5=20$ and $\left.c \times c=c^{2}\right)$

A tessellation is when a pattern is made from one or more shapes that fit together in such a way that no gaps are left.

Some examples of tessellations...

Expanding Brackets

teemaths.com
Remember that the word 'expand' in this case means to remove the brackets by multiplying terms.

Expand

$$
a b-a c
$$

Expand \& Simplify

Expand \& Simplify

$x^{2}-9 x+7 x-63$
$x^{2}-2 x-63$

Sequences ($\mathrm{n}^{\text {th }}$ term)

Using the $\mathrm{n}^{\text {th }}$ term

If the $\mathrm{n}^{\text {th }}$ term of a sequence is $\mathrm{n}^{2}+3$
The $1^{\text {st }}$ term is $(1 \times 1)+3=1+3=4$ The $2^{\text {nd }}$ term is $(2 \times 2)+3=4+3=7$ The $3^{\text {nd }}$ term is $(3 \times 3)+3=9+3=12$ and so on...

Drawing Graphs of Equations

Draw the graph of $y=3 x-2$
You will normally be given a table of values to fill in. If not, make your own! Pick easy values for x if you do.

$$
4 x=12
$$

$$
(\div 4) \quad(\div 4)
$$

$$
x=3
$$

Finding the $n^{\text {th }}$ term

As the sequence goes up by 5 each time, part of the formula is 5 n .

If there were another number 'in front' of the sequence, it would be -1.

Therefore, the nth term for this sequence is $5 n-1$

$$
\begin{aligned}
4(x-2) & =12 \\
4 x-8 & =12 \\
(+8) & (+8) \\
4 x & =20 \\
(\div 4) & (\div 4) \\
x & =5
\end{aligned}
$$

$$
\begin{gathered}
x^{2}=9 \\
(\sqrt{ }) \quad(\sqrt{ }) \\
x=3
\end{gathered}
$$

$$
\begin{aligned}
& 7 x-2=3 x+10 \\
& (-3 x) \quad(-3 x) \\
& 4 x-2=10 \\
& (+2) \quad(+2)
\end{aligned}
$$

Trial and Improvement

You will be told when to use trial and improvement in the question.

Example

Solve to 1 decimal place, using trial and improvement:

$$
x^{3}+\sqrt{x}=33
$$

x	$x^{3}+\sqrt{x}$	Too big/small
3	$28.73 \ldots$	Too small
4	66	Too big
3.2	$34.55 \ldots$	Too big
3.1	$31.55 \ldots$	Too small
3.15	33.03	Too big

So, to 1 decimal place $x=3.1$
Notice that the final trial was to 1 extra decimal place. As 3.15 was too big, we know the answer was definitely closer to 3.1 than to 3.2

Finding the Mean, Median, Mode and Range

Mean

Add all the values together.
Divide this answer by the number of values.
e.g. Mean of $2,4,5,5$ is $\frac{2+4+5+5}{4}=\frac{16}{4}=4$

Median
Put the values in order of size.
Find the middle value. If there are 2 middle values, add them together and half it.

Examples

- Median of $1,2,3,4,5$ is 3 as this is the middle value.
- Median of 2, 4, 6, 8 is 5 .

4 and 6 are the 2 middle numbers.
$(4+6) \div 2=10 \div 2=5$

Mode

The mode is the most common value.

- The mode of $2,3,3,5,6$ is 3
- The mode of dog, cat, dog, bird is dog.

You can have more than one mode or no mode.

- The mode of $1,1,3,4,4,5,6$ is 184
- 1, 2, 3, 4, 5 has no mode

Range

The range is the difference between the largest and smallest values.
e.g. 6, 7, 3, 5, 4, 9, 4

The range of these numbers is $9-3=6$

Number of pets (x)	Frequency (f)	fx
0	2	$0 \times 2=0$
1	3	$1 \times 3=3$
2	8	$2 \times 8=16$
3	4	$3 \times 4=12$
4	1	$4 \times 1=4$
Total	18	35

Mean $=35 \div 18=1.94$ (2d.p.)
Multiply the first 2 columns.
Find the totals shown.

You always divide by total frequency, though the column isn't always called this!

Height, cm (h)	Midpoint (x)	Freq. (f)	fx
$140<\mathrm{h} \leq 150$	145	2	290
$150<\mathrm{h} \leq 160$	155	8	1240
$160<\mathrm{h} \leq 170$	165	5	825
$170<\mathrm{h} \leq 190$	180	1	180
	Total	16	2535

Mean $=2535 \div 16=158.4 \mathrm{~cm}$ (1d.p.)
This time we have to add a midpoint column to give us values to use. Then we do the same as for a 'normal' table like that on the right.

Drawing a pie chart

You are normally asked to draw a pie chart from a table of data. You need to work out what angle each section needs to be. Add up all your frequencies and then see what you need to times/divide these by to make the total 360.

Favourite Console	Frequency	Angle
Xbox 360	21	126°
PS3	18	108°
DS	12	72°
Other	9	54°
TOTAL	60	360°
$\times 6 \rightarrow$		

Scatter Graphs
teemaths.com

Scatter graphs show the correlation (relationship) between 2 variables.

A positive correlation. As the x-value increases, so does the y-value.

This is a moderately strong correlation as the points are reasonably close to a straight line.

A negative correlation. As the x-value increases, the y -values decrease.

This is a strong correlation as the points are very close to a straight line.

No correlation
There is no relationship visible.

Tally chart/Frequency table -
quickly collect data

Eye Colour	Tally	Frequency
Blue	IIIII	7
Green	IIIIIII	11
Other	IIIIII	8

Stem-and-leaf diagram
(don't forget the key!)

\section*{14679
 2258
 | 3 | 23 |
| :--- | :--- |
| | Key: |
| 16 | |}

$1 / 6$
means 16
Grouped Bar Chart - good for comparing multiple values for 2 or more groups

Some graphs to know...

$x=-3$

$y=4$

Probability

teemaths.com
Probabilities may be given as fractions, percentages or decimals.
You should only use words to describe a probability when the question clearly states you should.

The total of probabilities for outcomes of any given event should always equal 1.
e.g. The probability a football team wins is 0.3

The probability they draw is 0.1
What is the probability they lose?
Answer: $\quad 1-0.3-0.1=0.6$
Also, for any event...
Probability of an event occurring $=\frac{\text { number of ways event can occur }}{\text { number of possible outcomes }}$
e.g. The probability of getting an even number on a normal dice is $\frac{3}{6}$ There are 3 even numbers on a dice and 6 sides altogether.

Copyright Notice

All content is ©2012 teemaths.com (R. Foxton)
You may print and photocopy this resource only for use with students in educational institutions.

Outside of the above, you may not redistribute or resell this document without the express permission of the copyright holder.

It is also forbidden for anyone but the copyright holder to host this document anywhere on the worldwide web.

If you have any queries or enquiries then please contact the author through the 'Contact Us' page on www.teemaths.com

I hope you find this resource useful and please leave any feedback on the site.

