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ABSTRACT

We investigate a new approach to the design of distributed, shared-
nothing RDF engines. Our engine, coined “TriAD”, combines join-

ahead pruning via a novel form of RDF graph summarization with
a locality-based, horizontal partitioning of RDF triples into a grid-
like, distributed index structure. The multi-threaded and distributed
execution of joins in TriAD is facilitated by an asynchronous Mes-

sage Passing protocol which allows us to run multiple join oper-
ators along a query plan in a fully parallel, asynchronous fashion.
We believe that our architecture provides a so far unique approach
to join-ahead pruning in a distributed environment, as the more
classical form of sideways information passing would not permit
for executing distributed joins in an asynchronous way. Our experi-
ments over the LUBM, BTC and WSDTS benchmarks demonstrate
that TriAD consistently outperforms centralized RDF engines by
up to two orders of magnitude, while gaining a factor of more than
three compared to the currently fastest, distributed engines. To our
knowledge, we are thus able to report the so far fastest query re-
sponse times for the above benchmarks using a mid-range server
and regular Ethernet setup.

Categories and Subject Descriptors

H.2.4 [Systems]: Distributed Databases, Query Processing

Keywords

Distributed RDF Indexing & SPARQL Processing, Asynchronous
Message Passing, Parallel Join Evaluation, Join-Ahead Pruning

1. INTRODUCTION
The Resource Description Framework (RDF) and the SPARQL que-
ry language1 are two recent standards recommended by the W3C
for representing and querying linked data on the Web. RDF has
become the main standard for semantic data and meanwhile found
a wide adoption in the Database as well as the Semantic Web com-
munities. With the increasing number of both commercial and non-
commercial organizations, which actively publish RDF data, the
amount and diversity of openly available RDF repositories is grow-
ing at an unprecedented pace. DBpedia2, for example, which serves

1
http://www.w3.org/TR/rdf-sparql-query/

2
http://dbpedia.org
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as the main hub for the Linked Open Data3 (LOD) initiative, cur-
rently consists of more than 1 billion RDF triples. As of 2011, the
entire LOD cloud already consisted of more than 31 billion RDF
triples which are distributed across more than 300 LOD sources.

Consequently, and in response to this explosion of RDF data that
is available on both the surface and the deep Web, much research
effort has been invested recently in the development of scalable,
both centralized and distributed, techniques for indexing RDF data
and for processing SPARQL queries. Among the centralized ap-
proaches, native RDF stores like Jena, Sesame, HexaStore [26],
SW-Store [1], MonetDB-RDF [22], RDF-3X [14, 15], BitMat [2]
and TripleBit [28] have been carefully designed to keep up pace
with the growing scale of RDF collections. Efficient centralized ar-
chitectures either employ various forms of horizontal [14, 26] and
vertical [1, 22] partitioning schemes, or apply sophisticated encod-
ing schemes over the subjects’ properties [2, 28].

With the increasing popularity of shared-nothing architectures
based on the MapReduce paradigm [3], systems like SHARD [17],
[8] (an offspring of SW-Store, in the following referred to as “H-
RDF-3X”), and EAGRE [31] have been proposed for the scalable,
distributed evaluation of SPARQL queries. While MapReduce al-
lows for an easy adaptation of parallel (both Map- and Reduce-
side [10]) join algorithms on top of RDF-specific index structures,
MapReduce frameworks are known to incur a non-negligible over-
head due to their iterative, synchronous communication protocols
and fault-tolerant job scheduling strategies. Even with the cur-
rently fastest, openly available MapReduce implementations, such
as Hadoop++ [4] and Spark [29], this typically renders sub-second
query response times for distributed joins infeasible. Systems like
H-RDF-3X [8] and EAGRE [31] thus make use of aggressive data
replication to avoid iterative joins in Hadoop and to restrict query
executions to the local RDF stores as much as possible. However,
with longer-diameter queries or unexpected workloads, there is no
alternative to running joins via Hadoop, which often slows down
query response times by two or more orders of magnitude.

Trinity.RDF [30] is the first distributed RDF engine that employs
a custom communication protocol based on the Message Passing
Interface (MPI) standard [6]. Instead of joining index lists, Trin-
ity.RDF follows a graph-exploration strategy on top of a distributed,
in-memory key-value store. Although Trinity.RDF is only single-
threaded in its final join phase, it often allows for faster response
times compared to Hadoop-based RDF engines, especially when
queries are selective and the graph exploration starts from just a
few initial nodes. For non-selective queries, however, the generic
architecture of Trinity.RDF, which is based on the Trinity graph
engine [21], does not allow for the integration of parallel join tech-
niques, as they are common, on the other hand, in Hadoop [8, 31].

3
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We summarize this analysis by highlighting the following two
limitations that all existing, distributed RDF engines currently face.

Problem 1: Synchronous vs. Asynchronous Join Executions.

Although Hadoop-based joins allow for the execution of multiple
join operators in parallel, they need to synchronize at each level of

the query plan before they can continue to process the plan with
the next iteration of joins. These synchronization steps are heavily
dominated by a few stragglers or imbalanced query plans.

Problem 2: Graph Exploration vs. Relational Joins. Parallel
graph exploration is very efficient for queries that aim to select just
a few subgraphs out of the RDF data graph. For a row-oriented out-
put format, as it is required by the SPARQL 1.0 and 1.1 standards,
graph exploration is not sufficient to generate the final join results.
Thus, the parallel execution of joins remains a crucial factor for the
efficiency and scalability of a SPARQL engine.

1.1 TriAD Overview
To address the above problems, we propose a novel, shared-

nothing, main-memory architecture in combination with an asyn-
chronous Message Passing [6] protocol. Our engine, coined TriAD
(for “Triple-Asynchronous-Distributed”), aims at closing the gap
between current shared-nothing Hadoop engines [8, 17, 31], on the
one hand, and pure graph-exploration strategies based on Message
Passing [21, 30], on the other hand. TriAD is designed to achieve
higher parallelism and less synchronization overhead during query
executions than Hadoop engines by adding an additional layer of
multi-threading for entire paths of a query plan that can be exe-
cuted in parallel. TriAD is the first RDF engine that employs asyn-
chronous join executions (using a custom MPI protocol) which are
coupled with a lightweight join-ahead pruning technique for the
distributed processing of SPARQL queries. Specifically, TriAD
builds on the following principles.

Parallel and Asynchronous Join Executions. TriAD in principle
follows a classical master-slave architecture. During query execu-
tion, however, the slave nodes operate largely autonomously and
communicate directly via asynchronously exchanged messages to
run multiple join operators along the query plan in parallel. Our
form of communication is asynchronous because sibling execution
paths of a query plan can be processed in a freely multi-threaded
fashion and only need to be merged (i.e., be synchronized) once the
intermediate results of entire such execution paths are joined.

Distributed RDF Indexes with Join-Ahead Pruning. We em-
ploy six primary SPO permutation indexes which are encoded into
a distributed main-memory data structure that consists only of sim-
ple integer structs and vectors. Each SPO permutation list is first
hash-partitioned (“sharded”) according to its join key and then lo-
cally sorted in lexicographic order. Thus, even in its basic con-
figuration without any multi-threaded execution of the query plan,
TriAD can perform efficient, distributed merge-joins over the hash-
partitioned permutation lists. In addition to the primary SPO in-
dexes, we employ a form of join-ahead pruning via an additional
RDF summary graph at the master node, in order to prune entire
partitions of triples from the SPO lists that cannot contribute to the
results of a given SPARQL query.

Distribution-Aware Query Optimizer. Similar to [14], TriAD
employs a bottom-up dynamic programming (DP) algorithm for
join-order enumeration. In addition to [14], we also consider the
locality of the index structures at the slave nodes, the shipping cost
of intermediate join results, and the option to execute sibling paths
of the query plan in a multi-threaded fashion, in order to deter-
mine the plan with the overall least cost estimate. This enables the
optimizer to take much better advantage of the actual hardware ca-
pabilities, by taking the network latency and bandwidth, the CPU

capacity for merging and hashing, and parallel query executions via
multi-threading and distribution into account.

1.2 Contributions
We summarize the novel aspects of our work as follows.

• We investigate a new approach to the design of distributed RDF
engines. TriAD exploits both intra-node multi-threading and
asynchronous inter-node communication to run multiple join
operators of a query plan in a distributed and parallel way.

• We propose a novel form of RDF graph summarization to facil-
itate join-ahead pruning in a distributed environment. In con-
trast to sideways information passing, the graph summary is
directly merged into the RDF-specific SPO indexes and thus
allows us to perform this kind of join-ahead pruning in combi-
nation with an asynchronous execution of the join operators.

• TriAD employs two stages of query optimization (and execu-
tion) over both the RDF summary graph and the RDF data
graph. Our distribution-aware query optimizer employs de-
tailed summary- and data-graph statistics to determine the best

exploration-order for the summary graph and the best join-order

for the data graph, respectively. Both optimization steps are im-
plemented via an efficient DP algorithm.

• Each individual join operator runs against a distributed, hori-

zontally partitioned RDF index, such that even for a single join
or path-like queries TriAD benefits from the distributed eval-
uation of these joins. In addition, for a more “bushy” query
plan, consisting of multiple root-to-leaf paths (called “execu-
tion paths”), the execution of the joins runs in multiple threads
at each compute node, which allows us to evaluate multiple op-
erators in the query plan in parallel and asynchronously along
these execution paths.

• We provide an extensive experimental comparison of TriAD to
no less than nine state-of-the-art RDF, DBMS and Hadoop en-
gines. We achieve the—to our knowledge—so far fastest query
response times for the LUBM, BTC and WSDTS benchmarks
reported for a mid-range server and regular Ethernet setup.

2. RELATED WORK
We next discuss a selection of RDF engines, which we believe

are most related to our approach, and briefly discuss their differ-
ences to our architecture. We refer the reader to [5, 18, 22] for a
comprehensive overview of recent approaches.

Relational Approaches. The majority of the existing RDF stores,
both centralized and distributed, follow a relational approach to-
wards storing and indexing RDF data. Recent approaches, such as
SW-store by Abadi et al. [1], vertically partition RDF triples into
multiple property tables. Hexastore [26] and RDF-3X [14, 15] em-
ploy index-based solutions by storing triples directly in B+-trees
over multiple, redundant SPO permutations. Including all permu-
tations and projections of the SPO attributes, this may result in up
to 15 such B+-trees [14]. Coupled with sophisticated statistics and
query-optimization techniques, these centralized, index-based ap-
proaches still are very competitive as recently shown in [24].

Join-Order Optimization. Determining the optimal join-order for
a query plan is arguably the main factor that impacts query pro-
cessing performance. RDF-3X [14] thus performs an exhaustive
plan enumeration in combination with a bottom-up DP algorithm
and aggressive pruning in order to identify the best join-order. In
TriAD, we adopt the DP algorithm as it is described in [14], and we
adapt it to finding both the best exploration-order for the summary
graph and the best join-order for the subsequent processing against
the SPO indexes. Moreover, by including detailed distribution in-
formation and the ability to run multiple joins in parallel into the
underlying cost model of the optimizer, we obtain query plans that



are more specifically tuned towards parallel execution than with a
pure selectivity-based cost model.

Join-Ahead Pruning. Join-ahead pruning is a second main fac-
tor that influences the performance of a relational query processor.
In join-ahead pruning, triples that might not qualify for a join are
pruned even before the actual join operator is invoked. This prun-
ing of triples ahead of the join operators may thus save a substan-
tial amount of computation time for the actual joins. Instead of the
sideways information passing (SIP) strategy used in RDF-3X [14,
15], which is a runtime form of join-ahead pruning, TriAD em-
ploys a similar kind of pruning via graph summarization [12, 16,
32]. Graph summarization serves as a preprocessing step to the ac-
tual query executions and thus has the crucial advantage that it can
be adapted to an asynchronous execution of the join operators.

MapReduce. Based on the MapReduce paradigm, distributed en-
gines like H-RDF-3X [8] and SHARD [17] horizontally partition
an RDF collection over a number of compute nodes and employ
Hadoop as a communication layer for queries that span multiple
nodes. H-RDF-3X [8] partitions an RDF graph into as many par-
titions as there are compute nodes via METIS [9]. Then, a one-
or two-hop replication is applied to index each of the local graphs
via RDF-3X [15]. Query processing in both systems is performed
using iterative Reduce-side joins, where the Map phase performs
selections and the Reduce phase performs the actual joins [10]. Al-
though such a setting works well for queries that scan large portions
of the RDF data graph, for less data-intensive queries the overhead
of iteratively running MapReduce jobs and scanning all—or large
amounts—of the RDF tuples during the Map phase is significant.
Even recent approaches like EAGRE [31] that focus on minimizing
I/O costs by carefully scheduling Map tasks and utilizing extensive
data replication cannot completely avoid Hadoop-based joins in the
case of longer-diameter queries or unexpected workloads. Our ex-
perimental evaluation clearly shows that running joins via Hadoop
should be avoided if interactive query response are desired.

Native Graph Approaches. Recently, a number of approaches
were proposed to store RDF triples in native graph format. These
approaches typically employ adjacency lists as a basic building
block for storing and processing RDF data. Moreover, by using so-
phisticated indexes, like gStore [32], BitMat [2] and TripleBit [28],
or by using graph exploration, like in Trinity.RDF [30], these ap-
proaches prune many triples before invoking relational joins to fi-
nally generate the row-oriented results of a SPARQL query. We
believe that with Trinity.RDF [30], we provide a detailed experi-
mental comparison to such graph approaches for RDF, which thus
also represents a wider family of more generic graph engines such
as Pregel [11] or Neo4j [25]. Other kinds of graph queries, such as
reachability, shortest-paths or random walks, are partly already in-
cluded in the SPARQL 1.1 standard and required for RDF/S-style
inferences. Such queries are targeted by various graph engines,
such as FERRARI [19] or GraphX [27], but we consider these to
be beyond the scope of this work. Also beyond our current scope
are workload awareness [20] and incremental updates [15].

Graph Partitioning. Apart from centralized engines like gStore
[32], BitMat [2] and TripleBit [28], Huang et al. [8] also follow a
graph partitioning approach over a distributed setting, where triples
are assigned to different machines using the METIS graph parti-
tioner. Graph partitioning allows triples that are close to each other
in the RDF data graph to be stored at the same machine, thus over-
coming the randomness issued by the purely hashing-based parti-
tioning schemes used in systems like SHARD [17].

Graph Exploration vs. Joins. To avoid the overhead of Hadoop-
based joins, Trinity.RDF [30] is based on a custom protocol based
on the Message Passing Interface (MPI) [6]. In Trinity.RDF, how-

ever, intermediate variable bindings are computed among all slave
nodes via graph exploration, while the final results need to be enu-
merated at the single master node using a single-threaded, left-deep
join over the intermediate bindings. As an example, consider a
SPARQL query with 3 variables ?x, ?y, ?z, which each become
bound to 10 distinct constants during graph exploration. Assuming
that each combination of the bindings generates a valid SPARQL
result, the 30 bindings lead to 1,000 rows that need to be generated
for the join. Thus, the ability to evaluate joins in parallel remains a
crucial factor for scaling-out an RDF engine.

3. BACKGROUND & PRELIMINARIES
In this section, we briefly review the key concepts that form the

basis for the design of TriAD. We also establish the notation used
throughout the rest of the paper.

3.1 RDF & SPARQL: Data & Query Model
An RDF collection consists of a set of triples of the form 〈subject,

predicate, object〉 (or 〈s, p, o〉, for short), where subject denotes
a globally unique resource, object may denote either a unique re-
source or a literal (i.e., a string or a number), and predicate denotes
a relationship between the subject and object. RDF data can be
represented as a directed, labeled multi-graph as defined next.

DEFINITION 1. An RDF data graph GD(VD, ED, L, φD) is a

directed, labeled multi-graph where VD is the set of data nodes,

ED is the set of directed edges connecting the nodes in VD , L is

the set of edge and node labels, and φD is a labeling function with

φD : VD ∪ ED → L s.t. ∀vi, vj ∈ VD , vi 6= vj , it holds that

φD(vi) 6= φD(vj).

An RDF example in triplet form (TTL/N3 format) is given below.
Barack_Obama <bornIn> Honolulu .

Barack_Obama <won> Peace_Nobel_Prize .

Barack_Obama <won> Grammy_Award .

Honolulu <locatedIn> USA .

A conjunctive SPARQL query can again be represented by a set
of triple patterns that together form the query graph. Each query
triple is of the form 〈s, p, o〉, where each of the s, p, o components
may denote either a query variable in Vars or a constant in L.

DEFINITION 2. A SPARQL query graph GQ(VQ, EQ, L,Vars,
φQ) is a labeled, directed multi-graph where VQ is the set of query

nodes, EQ is the set of edges connecting nodes in VQ, L is the

set of edge and node labels, and φQ is a labeling function with

φQ : VQ ∪ EQ → Vars ∪ L.

An example query (which retrieves all the people who are born
in a city that is located in “USA” and who won some prize) is ex-
pressed in SPARQL as follows.

SELECT ?person, ?city, ?prize WHERE {

?person <bornIn> ?city .

?city <locatedIn> USA .

?person <won> ?prize . }

Processing a SPARQL query graph GQ against an RDF data graph
GD thus resolves to finding all subgraph isomorphisms between
GQ and GD . The result of a SPARQL query, however, is not itself
a graph but—in analogy to SQL—a set of rows, each containing a
distinct set of bindings of query variables in Vars to constants in
L. For example, the result of the above SPARQL query over our
RDF data snippet is the following.

Barack_Obama, Honolulu, Peace_Nobel_Prize .

Barack_Obama, Honolulu, Grammy_Award .

3.2 Graph Summarization
Graph summarization is an effective approach to prune dangling

triples prior to the actual query processing. In graph summariza-
tion, a large data graph is first summarized into a smaller graph that
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Figure 1: (a) RDF data graph GD with locality-based partition-

ing; and (b) summary graph GS for GD

retains the principal characteristics of the original RDF data graph
in a compact way. The main intuition behind graph summarization
is that processing a query over the summary graph allows us to re-
move large parts of the data graph that contain no relevant triples
with respect to the query. Running a complex query against both
the summary graph and subsequently against the pruned data graph
may thus be faster than running the query against the unpruned data
graph. We formally define an RDF summary graph as follows.

DEFINITION 3. An RDF summary graph GS(VS , ES , L, φS)
for a given RDF data graph GD(VD, ED, L, φD) again is a la-

beled, directed multi-graph where each node v ∈ VS , with v ⊆
VD , called supernode, is a subset of nodes in VD , and each edge

e ∈ ES , called superedge, connects two supernodes in VS , and

φS : ES → L maps each superedge e ∈ ES to a label in L.

Generating Graph Summaries. A few centralized RDF stores
have so far been proposed to perform join-ahead pruning via graph
summarization [16, 32]. These extend the idea of bisimulation [12],
which was originally employed for XML tree summarization, to
RDF graphs. Bisimulation-based summaries [16] are particularly
effective for join-ahead pruning if only the predicates of the query
triple patterns are labeled with constants, such that multiple, pos-
sibly disconnected components of the data graph are merged into
compact synopses for indexing. Locality-based summaries [32], on
the other hand, are similar to graph clustering, in which nodes of
the data graph are partitioned such that the nodes within each par-
tition share more neighbors than the nodes that are spread across
the partitions. Since SPARQL typically involves finding connected
components of the data graph, locality-based approaches are partic-
ularly effective in pruning if one or more of the subjects or objects
in the query graph are labeled with constants. Such queries are very
common in SPARQL. An example of an RDF data graph and a cor-
responding locality-based summary graph is shown in Figure 1.

EXAMPLE 1. Running our SPARQL query against the summary

graph GS of Figure 1 binds partitions ß1, ß2, ß4 to ?person, ß1,

ß2, ß4 to ?city and ß2, ß4 to ?prize. Thus, all RDF triples in

GD , which are associated with ß3, can safely be pruned when pro-

cessing the query against the data graph without introducing false

negatives to the result. By processing the query against GD , we

replace these supernode bindings of the query variables with their

actual RDF constants and thus remove also false positives from the

results. Often, this form of join-ahead pruning allows us to detect

empty join results without even touching the data graph at all.

4. SYSTEM ARCHITECTURE
An overview of the TriAD system architecture is depicted in

Figure 2. TriAD resembles a typical master-slave, shared-nothing
model, in which each compute node manages its own main mem-
ory area and stores disjoint partitions of the RDF index structures.
One designated compute node, the master node, stores all meta-
data about the indexed RDF facts and serves as the initial point of
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Figure 2: TriAD system architecture

contact for all indexing and query processing tasks. The remaining
slave nodes hold the local index structures and exchange intermedi-
ate query results via a direct, asynchronous communication proto-
col among each other. All communication is based on the Message
Passing Interface (MPI) using the MPICH24 API.

Master Node

RDF Parser & Partitioner. This component takes care of parsing
RDF files (provided in TTL/N3 format) and partitioning the com-
plete set of incoming RDF triples into the summary graph and the
local SPO index structures (Section 5).

SPARQL Parser. The SPARQL parser is responsible for prepro-
cessing incoming queries. Queries are turned into a graph represen-
tation, before the query optimizer compiles the query into a global
join plan which is then sent to all slaves (Section 6).

Summary Graph. The initial processing of a SPARQL query pat-
tern against the summary graph facilitates join-ahead pruning (us-
ing a locality-based summarization strategy) at the slaves by re-
moving graph partitions that contain no matching triples for the
graph pattern denoted by the query (Section 5.1).

Bidirectional Dictionaries. The RDF parsing step involves build-
ing bidirectional mappings for the incoming RDF triples in order
to quickly convert strings to integer ids and vice versa. To accom-
modate our graph partitioning scheme for the summary graph, the
forward dictionary maintains the combination of partition identifier
(a node in the summary graph) and component id (Section 5.2).

Global Statistics. When indexing finishes, the master receives the
local index statistics from the slaves and merges these into its own
global statistics to be used for query optimization (Section 5.5).

Query Optimizer. In a second processing step, the query optimizer
(Section 6.3) builds the global query plan based on the global statis-
tics, the locality of the SPO indexes, and cardinality re-estimations
after processing the query against the summary graph.

Slave Nodes

Local SPO Indexes. At each slave, a local indexer receives the
id-formatted triples and builds its local index structures for each of
the six primary SPO permutations (Sections 5.3 & 5.4).

Local Query Processors. Each slave receives a copy of the global
query plan from the master, whereupon the local query processors
initialize their own instances of the physical query operators in the
plan. The slaves concurrently start executing the same plan but
scan different partitions of their local SPO indexes. Along with the
global plan, the master also communicates the join-head pruning
information from the summary graph to the slaves (Section 6.4).

4
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5. INDEX ORGANIZATION
In this section, we provide a detailed description of the data par-

titioning and indexing strategies employed by TriAD.

5.1 Global Summary Graph
In order to avoid processing unnecessarily large SPO permuta-

tion lists at query time, we pursue a join-ahead pruning technique
at the master node. Specifically, we employ a summary graph, de-
noted as GS(VS , ES , L, φS), for this purpose, which is stored at
the master and serves as a concise summary of the actual RDF data
graph GD(VD, ED, L, φD) (see Definitions 1 & 3).

RDF Graph Partitioning. Incoming triples, as they are produced
by the RDF parser, are of the form 〈s, p, o〉, where s, o ∈ VD and
p is a label in L. Each distinct 〈s, p, o〉 triple is mapped to an edge
v ∈ ED with φD(v) = p. In order to create the summary graph, we
first consider this set of RDF facts as one large graph GD (using an
intermediate dictionary for mapping node and edge labels to integer
ids) and apply a non-overlapping graph-partitioning algorithm like
METIS [9] to it. In the resulting partitioning scheme, each distinct
subject s or object o that occurs in an RDF triple is assigned to
exactly one graph partition (i.e., supernode) ß ∈ VS .

The resulting summary graph is treated as a new set of triples of
the form 〈ß1, p, ß2〉, where ß1, ß2 ∈ VS are supernodes. For each
original 〈s, p, o〉 triple that lies in the cut between two supernodes
ß1,ß2, a new superedge v ∈ ES with the same label φS(v) = p
as the original edge in VD is introduced. Within each ßi ∈ VS ,
the original edges of the RDF data graph form self-loop edges of
ßi. Moreover, among each such pair of supernodes ßi, ßj ∈ VS , the
summary graph only stores edges with distinct labels p. Altogether,
this reduces the size of the summary graph in comparison to the
data graph drastically (see Figure 1).

Indexing the Summary Graph. After partitioning the data graph,
summary triples of the form 〈ß1, p, ß2〉 are indexed at the mas-
ter node. To support an efficient exploratory search over the sum-
mary graph, we index edges in GS in an adjacency-list-like for-
mat. These are stored as two large in-memory vectors holding the
PSO and POS permutations of the summary triples for both forward
(outgoing links) and backward (incoming links) lookups. Each of
the two vectors is sorted in lexicographical order and processed via
a combination of binary search and direct pointer accesses.

Optimal Number of Partitions. Determining the number of par-
titions that minimizes the combined query cost over both the sum-
mary and the (pruned) data graph purely empirically may be a very
tricky and costly procedure by itself. In order to obtain an estima-
tion of the best summary graph size, we formulate the following
cost model as an optimization problem that takes both the central-
ized query execution at the summary graph and the subsequent dis-
tributed execution at the pruned data graph into account.

Let |VD| and |ED| be the number of nodes and edges in the data

graph, respectively, and let d := |ED|
|VD|

be the average degree of a
node in the data graph. Further, let cD denote the cost of executing
a query against the data graph in a centralized setting. Ideally, the
cost cD,n for processing a query in a distributed setting linearly
scales with the number of slaves n, i.e., cD,n = cD

n
. Similarly, let

|VS | be the targeted number of nodes in the summary graph. Then
it is reasonable to assume that the cost cS of processing the query
against the summary graph is proportional to the summary graph
size, i.e., cS := |ES |

|ED|
· cD = d |VS |

|ED|
· cD . Finally, let |VP | and

|EP | be the number of nodes and edges in the data graph pruned
by preprocessing the query against the summary graph. Then the
cost cP,n of processing the query against the pruned graph in a

distributed setting is cP,n := |EP |
|ED|

· cD,n. Assuming further that
the size of the pruned data graph—at least for selective queries—

is inversely proportional to the size of the summary graph, we can
rewrite the latter cost as cP,n = λ

|VS |
· cD,n. Putting all these costs

together, we obtain the total cost cQ,n of processing a query against
the summary and subsequently against the data graph as follows.

cQ,n := cS + cP,n

=
d |VS |

|ED|
· cD +

λ

|VS |
·
cD
n

(1)

This yields a cost function that is convex in |VS |. Minimizing cQ,n

thus gives an optimal number of nodes when |VS | :=
√

λ|ED|
d n

. We

remark that this result coincides with information-theoretic results
for determining the optimal number of clusters in a data set [23].

Although this makes the number of summary graph partitions
(e.g., for METIS) easy to compute, in practice, the best choice of
partitions certainly depends on a multitude of parameters, including
the particular characteristics of the given data set, the query work-
load, the hardware configuration, as well as the network bandwidth
and latency. We project all these latent parameters into a single pa-
rameter λ in our cost model, which we need to measure (only once)
empirically for a given hardware and benchmark setting.

EXAMPLE 2. We empirically verified how well a measured value

of λ generalizes to different scales of a given data set and query

workload as follows. Based on the LUBM-160 benchmark with

queries Q1–Q7 (see Section 7), we first stepwisely adjusted the

number of summary graph partitions to find the value of |VS | that

minimized the geometric mean of the queries’ runtimes. LUBM-

160 consists of |ED| = 27.9 · 106 triples with an average node

degree of d = 3.6, and by varying |VS |, we determined the best

number of summary graph partitions to lie at around |VS | = 17k
partitions. Thus, plugging the above values into Equation (1) for

a cluster of n = 5 slaves, we obtain a value of λ = 187. We

next use this value of λ to predict the best number of partitions for

the LUBM-10240 setting (using the same queries), which consists

of |ED| = 1.7 · 109 triples. Equation (1) predicts |VS | = 136k
partitions, which is very well within the range of the actual best

number of partitions, which we again manually determined to lie

in between 100k–200k partitions (see Figure 6.A.4).

5.2 Encoding Triples
After determining the summary graph partitions that each dis-

tinct subject s and object o in the RDF data graph belongs to, the
master node encodes the partitioning information directly into these
triples. For this, let 〈s, p, o〉 denote a triple in the RDF data graph,
and let 〈ß1, p, ß2〉 be its corresponding triple in the summary graph.
We then obtain the final encoding of triples in the RDF data graph
as 〈ß1||s, p, ß2||o〉. The integer ids of s and o are obtained by main-
taining one separate dictionary (a hash map) per summary graph
partition; the ids of p and ß1, ß2 are available from the intermediate
dictionary and the summary graph itself.

EXAMPLE 3. Following the summary graph shown in Figure 1,

the triple 〈Barack_Obama, bornIn, Honolulu〉 is encoded as

follows. The subject Barack_Obama is encoded as 1||1, the pred-

icate as 1, and finally the object as 1||2, thus yielding 〈1||1, 1, 1||2〉
(stored as a struct of integers) as the final encoding for this triple.

5.3 Horizontal Partitioning of Data Triples
As with any distributed system, we partition the set of encoded

RDF data triples across the slaves. Our horizontal partitioning
scheme aims to preserve the locality information obtained from the
summary graph by hashing entire summary graph partitions into the
grid-like distribution scheme shown in Figure 3. Since each com-
bined ß1||s and ß2||o identifier contains information about both the
summary graph partition and the actual subject and object identi-
fiers, we can now “shard” these triples as follows. Let 〈ß1||s, p,
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Figure 3: Locality-based & horizontal partitioning of triples

ß2||o〉 be an encoded RDF triple, and let n be the number of slaves.
Then each RDF triple is sharded twice, once by sending it to slave
(ß1 mod n) and once by sending it to slave (ß2 mod n).

EXAMPLE 4. Consider the two triples 〈Barack_Obama, won,

Nobel_Peace_Prize〉 and 〈Barack_Obama, bornIn, Hono-

lulu〉 shown in Figure 1. Here, Barack_Obama and Honolulu

belong to Supernode 1 and Nobel_Peace_Prize belongs to

Supernode 4. Considering a cluster of 5 slaves, we distribute the

first triple onto Slaves 1 and 4, whereas the second triple is hashed

twice (but sent only once) to Slave 1.

Locality-Based Sharding and Join-Ahead Pruning. As opposed
to the random partitioning schemes used, e.g., in [17], our hash-
ing scheme aims to preserve the locality information provided by
the summary graph. Triples belonging to the same supernode are
placed on the same horizontal partition which facilitates join-ahead
pruning of partitions that do not contain any triples that are relevant
with respect to an entire query. From Example 1, assume we know
that only partitions ß1, ß2, ß4 are relevant for processing the SPO
permutation of the query triple ?person <bornIn> ?city

because only ß1, ß2, ß4 are bound to the subject ?person after
processing the entire example query against the summary graph
shown in Figure 1. As shown in Figure 3 (and from Example 4),
only the first block each at Slaves 1, 2 and 4 thus is relevant for
scanning the SPO permutation for this triple in this query.

5.4 Local Permutation Indexes
Upon receiving the sharded triples from the master, the slaves

start creating their local permutation indexes in parallel. Each slave
creates six large, in-memory vectors of triples, which will serve as
our primary index structure for processing queries. Each of the six
vectors corresponds to one SPO permutation of the three encoded
〈ß1||s, p, ß2||o〉 fields. For fast lookups of a given query triple with
a set of supernode ids selected from the summary graph, we define
methods for random access (via binary search) and sequential ac-
cess (in the form of iterators) on top of these vector-based SPO lists.
Figure 3 depicts an example of these SPO indexes at the slaves.

SPO Indexes. At each slave, the six SPO permutations are ar-
ranged into two groups: i) the subject-key indexes (SPO, SOP,
PSO), and ii) the object-key indexes (OSP, OPS, POS). All triples
hashed onto a slave node via their subject field ß1||s are added to
the node’s subject-key indexes. Likewise, triples hashed by their
object field ß2||o are added to the node’s object-key indexes. This
way, each encoded RDF triple is replicated exactly six times across
the compute cluster. At each slave, the three subject-key and the
three object-key vectors have exactly the same size, respectively.

Sorting Triples. Each of the six triple vectors at a slave is sorted in
lexicographic order with respect to its corresponding permutation
of the 〈ß1||s, p, ß2||o〉 fields. The grid structure shown in Figure 3
thus preserves both locality information (i.e., the graph partitions)
of the summary graph and guarantees coherence of triples with the
same subjects, objects and predicates, respectively.

5.5 Local & Global Statistics
In order to create efficient join plans, we compute multiple statis-

tics over both the data and the summary graph. These statistics in-
clude i) cardinalities of individual p1||s (subject), p (predicate), and
p2||o (object) arguments in case of the data graph and ii) cardinali-
ties of individual ßi (supernode), p (predicate) arguments in case of
the summary graph. In addition, as in [14], we store cardinalities of
iii) (ß1||s, ß2||o) (subject, object), iv) (p, ß2||o) (predicate, object),
v) (p, ß1||s) (predicate, subject), and vi) selectivities of (p1, p2)
(predicate, predicate) pairs as part of the data graph statistics. We
follow a similar approach for the summary graph and also store the
cardinalities of individual vii) (p, ßi) (predicate, supernode) and
viii) selectivities of (p1, p2) (predicate, predicate) pairs.

These statistics can only provide us with an exact cost for the
first series of index scans, while cardinalities for joins need to be
approximated. Estimating the cost of an entire query plan thus re-
quires the recursive estimation of the cardinalities of intermediate
relations obtained from joins, which can be formalized as

Card(R1,2) := Card(R1) · Card(R2) · Sel(R1, R2) (2)

where Sel(R1, R2) denotes the selectivity of the pair of predicates
(p1, p2) associated with the triple patterns R1 and R2, respectively.
The selectivities for the entire RDF data graph are first aggregated
locally at the slaves (in the form of absolute cardinalities) and then
merged globally at the master, while the ones for the summary
graph are aggregated at the master node, only.

EXAMPLE 5. For the triple patterns R1 : 〈?person, bornIn,

?city〉 and R2 : 〈?city, locIn, USA〉, we store the cardinali-

ties Card(R1) = 4 and Card(R2) = 5 at the master node. Sim-

ilarly, we store the selectivity Sel(R1, R2) = 0.2 for the pair of

predicates (bornIn, locIn). From Equation (2), we thus obtain

Card(R1,2) = 4 as the estimated number of joined triples.

6. QUERY OPTIMIZATION &

DISTRIBUTED PROCESSING
In this section, we present a detailed description of the two-

staged optimization and processing strategy we follow in TriAD.

6.1 Two-Staged Query Processing Overview
A SPARQL query is parsed and translated into a query graph of

the form GQ(VQ, EQ, L, Vars, φQ) (see Definition 2) by assign-
ing a unique id to each distinct variable in Vars , while constants in
L are replaced by ids obtained from the forward dictionary. In the
following, we refer to EQ = {R1, R2, . . . , Rn} as the set of query
triple patterns that capture a conjunctive query pattern.

Stage 1. The first stage, called “pruning stage”, is performed en-
tirely at the master node. We first process the query against the
summary graph to find bindings of supernode identifiers to query
variables. For this, we employ an exploratory algorithm (similar
to the one described in [2, 30]) for finding these supernode bind-
ings. The reason behind choosing an exploratory-based algorithm
over conventional joins is that, here, our objective is to only find
supernode bindings for each query variable to facilitate join-ahead
pruning at the actual SPO permutation indexes. For an efficient
graph exploration, we determine the best exploration order, the ex-

ploratory plan, using a first DP-based optimizer over the summary
graph statistics. The supernode bindings obtained from the pruning
stage are relayed to the physical operators at the second stage.

Stage 2. In the second stage, we process the query against the data
graph which is distributed across all slaves. Here, we follow a re-
lational style of processing, aiming to generate the final join results
of the SPARQL query. We determine the best join order by using a
second DP-based optimizer (see, e.g., [14]) in combination with a
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Figure 4: Global query plan for the query of Example 6

distribution-aware cost model as objective function. The supernode
bindings obtained at the pruning stage are also used to (re-)estimate
the cardinalities of input relations and are fed into the cost model
for optimization. This global query plan generated at the master
is then communicated to all slaves. Along with the global plan,
the supernode bindings from Stage 1 are passed on to the slaves
for pruning dangling triples (i.e., entire summary graph partitions)
from the SPO permutation indexes. At each slave, the local query
processor executes the plan by asynchronously sending and/or re-
ceiving intermediate join results to/from the other nodes. When
query processing terminates, each slave holds its own partial query
results which are then finally merged at the master.

6.2 Generating Supernode Bindings
The first stage of processing generates supernode bindings via

a graph exploration approach. However, unlike the simpler 1-hop
graph exploration described in [30], we perform a full graph explo-
ration with back-propagation. That is, we add a supernode binding
to a join variable only if this binding satisfies the entire query also
with respect to the remaining join variables.

EXAMPLE 6. Consider a SPARQL query consisting of the fol-

lowing four triple patterns R1 to R4.

R1 : ?person <bornIn> ?city.

R2 : ?city <locatedIn> USA.

R3 : ?person <won> ?prize

R4 : ?prize <hasName> ?name.

For the fixed exploration order 〈R1, R2, R3, R4〉, we first find

all possible bindings for variables ?person and ?city for the

query pattern R1. Next, for the second query pattern R2, we prune

those bindings for variable ?city that are not located in “USA”.

We propagate this information back to ?person and thus prune

supernode bindings for ?person. Finally, with query patterns

R3, R4, we filter out the bindings for variables ?person, ?city

and accordingly add new bindings to ?prize and ?name.

Exploratory Plan Optimization

A random exploration order of query patterns might make the sum-
mary graph processing inefficient and sometimes even slower than
processing the data graph. To avoid this, we estimate the best ex-
ploration order by leveraging the summary graph statistics. To do
so, we employ a first bottom-up DP algorithm to determine the or-
der of triple patterns that yields the overall least cost estimate. At
each DP step, we calculate the cost of the partial plan considered
so far and prune if the current branch cannot contribute to the plan
with the least cost anymore. Based on Equation (2), the cost of an
entire exploration plan that is represented by a fixed order of triple
patterns R1, . . . , Rn can thus be estimated as follows.

Cost(〈R1, . . . , Rn〉) ∝

Card(R1) +

n
∑

i=2

(

Card(Ri)

i
∏

j=1

Sel(Ri, Rj)
) (3)

Here, Card(Ri) denotes the precomputed cardinality of query
pattern Ri, and Sel(Ri, Rj) represents the join selectivity of pairs
of predicates (pi, pj) associated with triple patterns Ri, Rj , respec-
tively (Section 5.5). This selectivity is set to 1 if Ri and Rj do not
share any join variable. We remark that this estimation again as-
sumes independence among join patterns.

6.3 Querying the Data Graph
With the supernode bindings at hand, Stage 2 of the query eval-

uation is performed over the indexed and sharded RDF data graph.
Since there exist six SPO permutations of the entire RDF data graph,
which are distributed across n slaves, each individual query pattern
Ri could potentially be scanned in six different ways, and each
such scan can be done in parallel across the slaves.

Physical Operators. Inspired by the reduced set of query operators
in RDF-3X [14, 15], we employ only three distributed operators to
construct a query plan in TriAD:
• Distributed Index Scan (DIS): Invokes a parallel scan over a

permutation list that is sharded across n slaves.
• Distributed Merge Join (DMJ): Invokes a distributed merge-

join across n slaves when both input relations are sorted ac-
cording to the join key(s) in the query plan.

• Distributed Hash Join (DHJ): Invokes a distributed hash-join
across n slaves otherwise.

Each physical DIS operator is aware of the locality of the sharded
list it scans, the permutation order chosen by the optimizer, and the
pruned summary graph partitions determined by Stage 1. More-
over, both the DMJ and DHJ operators are aware of the locality of
their input relations and their join conditions (see Figure 4).

Query-Time Sharding. Both the DMJ and DHJ operators may re-
quire sharding a relation at query time. Due to our index layout, the
DMJ operator requires sharding of only at most one input relation
Ri obtained from a DIS operator when Ri’s triples were previously
sharded (Section 5.3) on a non-join key. For instance, consider the
left-hand DMJ shown in Figure 4. Here, using a DIS over the POS
index yields all triples for R2 whose objects are bound to “USA”.
Since R2’s object is not a join key for the left-hand DMJ, we need
to shard R2’s triples according to the join key ?city (the subject
of R2). On the other hand, the right-hand DMJ operator requires
no query-time sharding at all when scanning the POS and PSO in-
dexes, respectively, since both R3’s and R4’s triples were sharded
on the join key ?prize. Likewise, the upper DHJ operator re-
quires sharding both of its intermediate input relations, since R1,2

and R3,4 are not sorted on their common join key ?person and
thus are misplaced among the slaves with respect to this key.

Global Query Plan Optimization

The choice of a physical join operator strongly influences the cost
function determined by the DP optimizer. To initialize the DP table
for each pattern Ri and SPO permutation k, which is distributed
across n slaves, we set the DIS cost Cost(Rk

i ) ∝ Card(Ri)/n if
permutation k matches the binding pattern given by the constants
in Ri; and we set it to be proportional to |ED|/n otherwise. For ex-
ample, for the query pattern 〈Barack_Obama, ?p, ?o〉, the cost
of scanning the matching triples over the SPO, SOP permutations
is expected to be much lower compared to scanning them over the
OPS, OSP, PSO and POS permutations. For calculating the actual
costs Cost(Rk

i ) of an index scan, we multiply the basic cardinali-
ties with a constant cost factor ηDIS.

After initializing the DP table with the first series of DIS costs,
we continue to build a query plan that aims to reflect the opti-
mal order of both joining and shipping intermediate results across
the slaves. At each DP step, we join two subplans over two non-



overlapping subqueries Qleft and Qright into a new combined plan
Q. The cost of Q is then recursively defined as follows.

Cost(Q) :=



























Cost(Rk
i )

if Ri denotes a DIS over permutation k; (4.1)

Cost(Qleft) + Cost(Qright)

+ Cost(Qleft
✶

op Qright)

+ Cost(Qleft
⇋

op Qright) otherwise. (4.2)

Here, Cost(Qleft
✶

op Qright) denotes the cost of joining the
two subqueries via operator op, which depends on the cardinalities
of both Qleft, Qright times a constant cost factor ηop for the re-
spective join operator op ∈ {DMJ,DHJ}. Conversely, Cost(Qleft

⇋
op Qright) denotes the cost of shipping intermediate relations

for Qleft, Qright across the slaves before executing the actual join.
This is again computed from the cardinalities of Qleft, Qright,
which are each multiplied with the width of their intermediate re-
lations and a constant factor η⇋ for the communication cost.

Cardinality (Re-)Estimation. Equation (4.1) captures the scan
costs for a basic triple pattern Ri to be proportional to the cardi-
nality that is available from our precomputed global statistics. Pre-
processing the query against the summary graph however lets us re-
fine these cardinalities by the amount of summary graph partitions
that are actually selected for each Ri after the initial graph explo-
ration step. Thus, let Card(Ri) be the precomputed cardinality of
a query pattern Ri over the RDF data graph, and let |Cs|, |Co| be
the cardinalities of its subject s and object o, respectively, obtained
from the precomputed summary graph statistics. Let |C′

s|, |C
′
o| be

the number of supernode bindings obtained from Stage 1 of pro-
cessing the query over the summary graph. We then (re-)estimate
Card′(Ri) via a simple linear interpolation as follows.

Card′(Ri) :=
|C′

s|

|Cs|
·
|C′

o|

|Co|
· Card(Ri) (4)

These re-estimated cardinalities are plugged into Equation (4.1)
and used by the optimizer when determining the global query plan.

Accounting for Parallel Operations. To accommodate for the
parallel execution of two subplans Qleft, Qright (Section 6.4), we
further refine the cost function of Equation (4.2) as follows.

Cost(Q) := max
(

Cost(Qleft), Cost(Qright)
)

+ Cost(Qleft
✶

op Qright)

+ Cost(Qleft
⇋

op Qright) (5)

That is, at any DP step, the cost of the current (sub-)plan for Q is
proportional to the cost of the concurrent execution of the subplans
for Qleft, Qright, rather than to the cost of their sequential ex-
ecution. Another significant advantage of parallel executions—in
addition to speeding up computations—is that it also better exploits
the network bandwidth by sending more than one intermediate re-
lation at a time via asynchronously exchanged messages.

EXAMPLE 7. Figure 4 shows an example of a global plan re-

turned by the optimizer for a two-node distribution. One can ob-

serve that the plan explicitly includes the locality and pruning in-

formation that each DIS operator has at the leaves. For instance,

the POS list chosen for pattern R2 entirely resides at Slave 1,

whereas the ones for R1, R3, R4 are distributed across both slaves.

The plan also shows how the parallel execution of subplans affects

the cost estimates for the DMJ and DHJ operators.

6.4 Distributed Query Execution
The global query plan generated at the master is communicated

to all slaves along with the supernode bindings. Each slave receives

Algorithm 1: Local query processor at Slave i

Input: Global query plan with supernode bindings Plan ;
local SPO index Idx ; number of slaves n;
Output: Relation with partial query results Relation ;

1 method Main(Plan , Idx , n, i) {
2 EP [1..l]← CreateExecutionPaths(Plan); //plan with l leaf op’s
3 for j = 1..l do
4 START_THREAD((EP [j], Idx )→ Process);
5 Alive[i]← SendSlaveStatusToMaster(i);
6 WAIT_ALL(EP [1 ..l]); //synchronize on execution paths
7 return EP [1 ].Relation ; } //return partial result relation for this slave

8 method Process(EP , Idx ) {
9 while Op← NextOperator(EP) do

10 if Op is DIS then
11 SN [1 ..p] := GetSupernodeBindings(Op); //for join-ahead pruning
12 EP .Relation← GetIterator(Op, Idx , SN [1..p]); //binary search

13 else
14 Alive[1..n]← ReceiveSlaveStatusFromMaster();
15 if Op.Sharding then
16 Part[1 ..n]← Shard(EP .Relation); //repartition relation
17 EP .Relation← Part[i]; //keep partition i locally
18 for j 6= i && Alive[j ] do
19 Ack [j ]← MPI_Isend(Part[j ], j, EP .Id);
20 for j 6= i && Alive[j ] do
21 Ack [n + j ]← MPI_Ireceive(Part[j ], j, EP .Id);
22 EP .Relation←Merge(EP.Relation , Part[j ]);
23 WAIT_ALL(Ack [1 ..2n]); //synchronize on incoming messages
24 SibEP ← FindSiblingExecutionPath(Op);
25 R1 ← EP .Relation ;
26 R2 ← SibEP .Relation ;
27 if SibEP .Id < EP .Id then
28 STOP_THREAD(EP);
29 EP .Relation← Join(R1 , R2 ,Op); } // Op is DMJ or DHJ

this plan, initializes its own instances of the physical operators (but
over different chunks of the sharded SPO lists), and then starts pro-
cessing the plan concurrently. The protocol that is executed at each
of the slave nodes concurrently is shown in Algorithm 1.

Multi-Threaded, Asynchronous Plan Execution. The key to al-
low for a parallel, asynchronous execution of the global query plan
lies in executing the plan in a multi-threaded fashion at each slave.
The Main method of Algorithm 1 invokes a new thread (using the
C++ Boost API) for each sequential execution path (EP) of opera-
tors in the query plan. An EP is a path from a leaf of the operator
tree up to its root (the vertical dashed lines in Figure 5). At each
slave, we start a separate thread for each such EP (Line 3), and
we later join (i.e., synchronize) two threads into one at the lowest
common join operator that two such EPs share (Line 27).

As shown in the Process method (and in Figure 5), the execution
of an EP always starts with the DIS operators. Each DIS operator
obtains the respective supernode bindings for join-ahead pruning as
part of the global query plan (Line 11). Instead of building an in-
termediate relation, a DIS operator returns an iterator that directly
points to the first qualifying tuple (obtained via binary search and
the supernode bindings) in a sorted SPO permutation list (Line 12).
These iterators are then passed to the parent DMJ operators to per-
form the joins directly on the raw indexes. Otherwise, if the opera-
tor is DMJ or DHJ and sharding is required, Slave i first shards the
intermediate relation that it holds at its current EP (Line 16). Only
in this case, Slave i needs to synchronize on incoming messages
(Line 20) from the other n− 1 slaves in order to merge the incom-
ing (resharded) tuples into the current EP’s intermediate relation
(Line 22). Thus, each EP holds an intermediate relation which is
iteratively passed on to a subsequent join operator (Line 29) in the
execution path. Although the operators within an EP are executed
sequentially, multiple such EPs (and thus operators) run in parallel
and asynchronously at each slave, and across all slave nodes.

Asynchronous MPI Communication. Sharding an intermediate
relation for a DMJ or DHJ operator at query time is a blocking op-
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Figure 5: Distributed execution of the query shown in Example 6 with asynchronous communication (horiz. dashed lines)

eration that requires a synchronization step among all slaves. This
may be a significant bottleneck, as it blocks the slaves from per-
forming their partial join operations until all the slaves have re-
ceived their corresponding chunks of tuples. We address this by
using the asynchronous MPI_Isend and MPI_Ireceive meth-
ods of the MPICH2 API (Lines 19 & 21). Thus, without waiting
for the entire sharding phase to finish among all slaves, a part of a
DMJ or DHJ operation can be invoked locally on a slave as soon as
this slave has received the n − 1 messages with the chunks of tu-
ples it is responsible for (denoted by the horizontal dashed lines in
Figure 5). Conversely, once a slave finishes all its execution paths,
it broadcasts its completion to all other slaves via the master.

In summary, if query-time sharding is required prior to a join,
then this step is comparable to a “Shuffle&Sort” phase of a Map-
side join in MapReduce [10]. In our case, shuffling is not always
required, and sorting is avoided entirely. Due to the layout of our
distributed index structures (Sections 5.2 & 5.3), we can always
rely on efficient DMJ operators for the first level of joins. At this
first level, we need query-time sharding only if we join the subject
of one query pattern on the object of another query pattern (i.e., we
have an S-O or O-S join) and at least one of the non-joining subjects
or objects is a constant. Conversely, a DHJ operator requires query-
time sharding of either one (or both) of its input relations. During
plan generation, this is taken into consideration by the optimizer
together with the constant cost factors of the operators, such that
we favor merge joins over hashing whenever possible.

EXAMPLE 8. Figure 5 illustrates the distributed execution of

the query plan depicted in Figure 4 (and shown in Example 6) for a

two-node distributed setup. At the leafs, the DIS operators (e.g., for

R1) obtain the supernode bindings and each create an iterator over

the pruned POS index (shaded partitions). Before invoking the left-

hand DMJ on ?city, and since R2 at Slave 2 is empty, we repar-

tition the triples of R2 at Slave 1 into two partitions, one of which

is sent to Slave 2 (denoted by a horizontal dashed line). The two

right-hand DMJs on ?prize at Slaves 1 and 2 require no commu-

nication, as their input triples are already in-place. Since the two

DMJs order tuples on different join keys for ?city and ?prize,

only the final DHJ requires sharding and shipping for both R1,2

and R3,4 for the join on ?person. All of the DIS operators are

performed in a fully distributed and multi-threaded fashion. Also

the next level of DMJ runs in an asynchronous fashion. Only the

final DHJ needs to wait until both of its incoming DMJ operators

have finished generating their intermediate results.

7. EVALUATION
We evaluated TriAD in comparison to two centralized RDF en-

gines, RDF-3X [14] and BitMat [2], four distributed RDF engines,
SHARD [17], H-RDF-3X [8], 4store [7] and the very recent Trin-
ity.RDF [30] engine, one main-memory DBMS, MonetDB [22], as
well as to Apache’s Hadoop and Spark engines (the latter for com-
paring to their plain join performance). To study join-ahead prun-
ing, we consider two variants of our system. The first, referred to

as TriAD-SG, makes use of the summary graph, while the second,
referred to as TriAD, performs a random partitioning of triples.
Benchmarks. We used the widely popular LUBM5 synthetic bench-
mark, the real-world BTC 20126 dataset, and the recent WSDTS7

SPARQL diversity test suite. For LUBM, we employed the data
generator using UBA 1.7 in N3 format. Concerning the queries,
we used the benchmark queries published in [2] and used by Trin-
ity.RDF [30]. For BTC, we defined 8 queries of varying complexity
similar to the ones published in [13], replacing only the operators
that TriAD currently does not support (i.e., DISTINCT and []).
TriAD Setup. We implemented TriAD in C++ using GCC-4.4 with
-O3 optimization. We used MPICH2-1.4.1 and Boost 1.54.0 as ex-
ternal libraries. For TriAD-SG, we constructed our summary graph
by partitioning the RDF data graph using the METIS 5.1 graph
partitioner with a default configuration. To achieve a better per-
formance during partitioning, we ignored edges connecting string
literals, resulting in both time and space savings. We ran all ex-
periments on a local compute cluster with 12 nodes (one of which
was dedicated as the master node) which are connected via a 1GBit
LAN connection. Each machine has 48GB of RAM, 16 quad-core
CPUs of 2.4GHz, and runs Debian Linux 6.0.6.
Competitor Setup. To compare against Hadoop-based engines,
we implemented H-RDF-3X [8] as our main competitor. For H-
RDF-3X, we first partition the graph using METIS and assign each
partition to a slave that runs RDF-3X 0.3.7 as its local RDF engine.
For a fair comparison, and given that all LUBM queries have a di-
ameter of less than 2, we employ a 1-hop replication. Moreover,
since neither Trinity.RDF [30] nor its underlying Trinity graph en-
gine [21] are openly available, Tables 1 and 4 thus depict the run-
ning times reported in [30] for the same benchmark setting but over
a much stronger hardware configuration. Most notably, our avail-
able network bandwidth and main memory lie at 1GBit and 48GB
as opposed to 40GBit and 96GB reported in [30], respectively. All
other competitors are off-the-shelf installations within our cluster.

7.1 Results – LUBM-10240 Dataset
In our first series of experiments, we use the LUBM-10240 data-

set which consists of about 1.84 billion triples (amounting to a size
of 730 GB in raw N3 format). Queries Q1–Q7 [2, 30] can be clas-
sified as non-selective (Q2), selective in both the input relations
and output size (Q4, Q5, Q6), and selective in output size (Q1,
Q3, Q7). This setup is identical to the one used for evaluating
Trinity.RDF [30], thus allowing us draw a careful comparison to
their performance results. In Table 1, we depict the wall-clock pro-
cessing times of both TriAD and TriAD-SG in comparison to all
competitors. For TriAD-SG, we experimented with different sum-
mary graph sizes. Table 1 depicts our best setting, where 200,000
supernodes and 130,744,241 superedges reside at the master node.

5
http://swat.cse.lehigh.edu/projects/lubm/

6
http://challenge.semanticweb.org/

7
https://cs.uwaterloo.ca/~galuc/wsdts/



TriAD TriAD-SG Trinity.RDF SHARD H-RDF-3X 4store RDF-3X BitMat
(200K) (cold) (warm) (cold) (warm) (cold) (warm) (cold) (warm)

Q1 7,631 2,146 12,648 6.9E5 2.3E6 1.7E5 aborted aborted 1.9E6 1.8E6 17,339 11,295
Q2 1,663 2,025 6,018 2.1E5 5.3E5 4,095 1.1E5 15,113 6.3E5 17,835 2.4E5 1.8E5
Q3 4,290 1,647 8,735 4.7E5 2.2E6 1.3E5 aborted aborted 1.7E6 1.7E6 8,429 2,679
Q4 2.1 1.3 5 3.9E5 166 1 1,903 12 243 3 aborted aborted
Q5 0.5 0.7 4 97,545 85 1 2,429 12 99 1 472 338
Q6 69 1.4 9 1.8E5 5.8E5 23,440 3,572 9 913 287 7,796 5,377
Q7 14,895 16,863 31,214 3.9E5 2.3E6 2.1E5 aborted aborted 6.5E5 46,262 71,157 36,905

Geo-
Mean 249 106 450 3.0E5 91,378 2,406 - - 31,345 2,991 - -

Table 1: LUBM-10240 – Query processing times (in ms)
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Figure 6: TriAD (Cols. 1–3) & TriAD-SG (Col. 4) scalability experiments for various configurations of the LUBM benchmark

Starting from the non-selective query Q2, which contains a sin-
gle join that returns a large number of results, TriAD outperforms
all competitors, thus taking advantage of its distributed join exe-
cution. Trinity.RDF is about 3 times slower, since here graph-ex-
ploration provides no benefit for non-selective queries, thus retain-
ing many bindings and performing a single, centralized join at the
master node. H-RDF-3X, due its use of local RDF stores, can ex-
ecute the join in parallel and runs faster than Trinity.RDF (warm
cache) but due to the unbalanced partition sizes across the local
RDF stores, H-RDF-3X remains slower than TriAD. In addition,
TriAD, which uses main-memory backed indexes, can perform fast
random-access jumps over its indexes. Here, the use of the sum-
mary graph (see TriAD-SG) even slightly hurts performance, since
Q2 does not benefit from join-ahead pruning either.

For the selective queries Q1, Q3, Q7, TriAD manages again to
outperform Trinity.RDF. The slower performance of Trinity.RDF
apparently is due to its 1-hop distributed graph exploration method
without back-propagation (which we conclude from the observa-
tion that these queries are only selective in their final output but
non-selective for the lowest level of joins). For both Q1 and Q3,
the summary graph with a full graph exploration (including back-
propagation) improves the performance of TriAD, since pruning is
very effective for these selective queries. Especially for Q3, which
has an empty result, the summary graph prunes many SPO par-
titions which leads to performance gains over Trinity.RDF. This
impact of full graph exploration is also shown by the centralized
BitMat system which is faster than TriAD but slower than TriAD-

SG. For query Q7, the pruning stage in TriAD-SG is not as effec-
tive, thus retaining many SPO partitions and resulting in an inferior
performance compared to TriAD due to the overhead of shipping
and comparing the supernode identifiers for our index scans. 4store
repeatedly crashed on queries Q1, Q3, Q7 (marked as “aborted”).

Queries Q4, Q5, which are processed against many low-cardina-
lity input relations, can be considered as the best cases for effective
join-ahead pruning. For these queries, the centralized RDF-3X en-
gine with join-ahead pruning is very efficient. TriAD is slightly
faster than RDF-3X (warm cache) and Trinity.RDF by using dis-
tributed joins with skip-ahead jumps over the index lists based on
the supergraph partitions. In the case of TriAD-SG, where the first-
stage processing is negligible, it performs similarly to TriAD.

Trinity.RDF performs better than TriAD for Q6, where large in-
termediate relations hamper the performance of TriAD. The use
of the summary graph in TriAD-SG however is almost 50 times
faster, thus reducing the size of the intermediate results signifi-
cantly and outperforming Trinity.RDF. H-RDF-3X performs sig-
nificantly worse in this case, since it breaks the query into smaller
subqueries and fails to capitalize on the SIP benefits of RDF-3X.

Scalability. We studied both the strong and weak scalability of
TriAD by increasing the number of available machines and the size
of the data set. The results are shown in Figure 6. Figures 6.C.1
and 6.B.1 show the strong scalability in terms of query time when
increasing the number of slaves from 2 to 11. Figure 6.C.1 shows
the average communication costs per slave for this increasing num-
ber of slaves. For measuring strong scalability, we use the LUBM-



10240 dataset. (We omit the setting with a single slave as our in-
dexes and statistics do not fit into 48GB of RAM.) We observe that
our processing time decreases linearly as the number of machines
increases and, as expected, we see the average communication cost
per slave decreasing while the total communication cost is increas-
ing. We also studied how TriAD performs as we increase the size
of the data while keeping the number of machines fixed. Results
are shown in Figures 6.A.3, 6.B3 and 6.C.3 and imply a very good
scalability for TriAD with respect to the data size. Similarly, Fig-
ures 6.A.2, 6.B.2, 6.C.2 depict the case when we increase both the
size of the data and the number of available machines. From the ge-
ometric means in Figure 6.A.2, we can observe that the variance is
very low, thus confirming the afore behavior also in terms of weak
scalability. Notice that the join multiplicities for Q1–Q7 are larger
than 1, such that the result sizes also grow super-linearly.

Communication Costs. With regard to the communication costs
among slaves, our measurements for LUBM-10240 are shown in
Table 2 (in KB). The use of the summary graph generally achieves
a better query performance by reducing the size of the intermediate
results via join-ahead pruning, thus decreasing both the communi-
cation costs and the computational costs of the joins. The maxi-
mum gains appear for selective queries Q1, Q3, and Q7.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

TriAD (KB) 35,720 0 439 <0.1 <0.1 1.13 73,141
TriAD-SG (KB) 4,587 0 107 0 0 0 21,051

Table 2: Communication costs for LUBM-10240

Impact of Summary Graph Size. The query times and the av-
erage communication costs for queries Q1–Q7 for different sum-
mary graph sizes are shown in Figures 6.A.4, 6.B.4 and 6.C.4. With
increasing summary graph sizes, we generally observe increasing
query times, which become dominated by processing the queries
against the summary graph. We can also observe a decreasing
trend for the communication costs (except for Q7) because of more
pruning. Figures 6.A.4, 6.B.4 and 6.C.4 show the optimal number
of partitions predicted by our cost model (blue vertical line). The
TriAD baseline (red horizontal bar) is shown in Figure 6.A.4. The
cost predicted by our cost model (green curve in Figure 6.A.4, see
also Section 5.1) has been scaled linearly to fit this plot, which
however does not affect the shape of the plot nor its minimum.
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Figure 7: Impact of multi-threading in TriAD

Impact of Multi-Threading. We evaluated the gain of multi-thread-
ing and its effect on plan generation for the LUBM-10240 dataset
on a 10-node setup. Figure 7 shows the query times of the different
variants of TriAD on a logarithmic scale. To measure the effective-
ness of multi-threading on both plan generation and query execu-
tion, we defined two variants: i) TriAD-noMT1 (using our multi-
threading-aware cost model for optimization but single-threaded
executions), and ii) TriAD-noMT2 (using a single-threaded mode
for optimization and execution). For queries Q3 and Q4, allow-
ing multi-threaded operations achieves an order of magnitude bet-
ter performance results. A main reason for this large difference—
besides a better CPU and network utilization—are improved query
plans generated by the optimizer when multi-threading is enabled.

Relation Sizes Q5 Q2

R1 / R2

LUBM-1000 10B / 3MB 9MB / 180MB
LUBM-10240 70B / 29MB 103MB / 2GB

Query Time (in sec) Q5 Q2

TriAD
LUBM-1000 <0.01 0.16
LUBM-10240 <0.01 1.20

Apache Hadoop
LUBM-1000 21.17 29.69
LUBM-10240 21.83 73.36

Apache Spark (cold / warm)
LUBM-1000 4.07 / 0.14 26.72 / 15.04
LUBM-10240 9.36 / 0.48 116.25 / 96.12

MonetDB (cold / warm)
LUBM-1000 0.05 / 0.01 1.52 / 0.05
LUBM-10240 0.11 / 0.02 26.83 / 0.23

Table 3: Single-join performance of various engines

TriAD TriAD-SG Trinity RDF-3X MonetDB BitMat
(17K) .RDF (cold) (warm) (cold) (warm) (cold) (warm)

Q1 427 97 281 38,802 27,702 10,600 1,500 1,078 1,053
Q2 117 140 132 32,936 347 279 174 3,055 3,030
Q3 210 31 110 27,692 27,678 10,900 1,700 47 40
Q4 2 1 5 76 2 39 25 5,421 5,357
Q5 0.5 0.2 4 1 1 80 23 6 6
Q6 19 1.8 9 59 7 130 51 132 128
Q7 693 711 630 35,485 1,086 10,100 1,700 1,642 1,583

Geo.-
Mean 39 14 46 1,280 170 748 216 277 362

Table 4: LUBM-160 – Query processing times (in ms)

Single-Join Performance. To evaluate the basic performance of
joins in Apache Hadoop and Spark versus TriAD, we compared
the built-in Map-side join function of Hadoop (over two sorted and
key-partitioned input files) with the DMJ operator in TriAD. We
ran the comparison over a 10-node cluster setup with two different
LUBM scale factors. Table 3 shows the relation sizes and the query
performance (this time in seconds) of Hadoop and Spark [29] for
both a selective (Q5) and a non-selective (Q2) LUBM query, each
consisting of just a single join operation. We can clearly observe
that Hadoop-based joins should be avoided. MonetDB, in compari-
son, yields the by far best join performance when the input relations
fit into the main memory of a single machine. It however degrades
when optimizing complex SPARQL queries (see Table 4).

7.2 Results – LUBM-160 Dataset
We also evaluated the performance of TriAD and TriAD-SG over

a smaller dataset. For a fair comparison, we used a single slave
node setup for this, and the results are shown in Table 4. We can
observe that TriAD continues to perform well for selective queries
Q4, Q5, Q6 and the non-selective query Q2. For the remaining se-
lective queries Q1, Q3, Q7, the large intermediate relations hamper
performance, thus showing a negative impact on the centralized ex-
ecution. Still, TriAD-SG benefits from join-ahead pruning and de-
livers a much better performance than the other systems except for
query Q7. In this case, like in the LUBM-10240 dataset, TriAD-
SG performs no pruning in the first stage and thus the overhead in
the second stage marginally decreases its performance.

7.3 Results – BTC 2012 Dataset
Apart from the synthetic LUBM benchmark dataset, we evalu-

ated TriAD over the real-world BTC benchmark. We considered
queries Q1–Q8 published in [13]. Queries Q1, Q2, Q8 (4 joins),
Q3 (5 joins) are star queries with result sizes of 1, 2, 1, 292, respec-
tively. Queries Q4, Q7 (6 joins) and Q5, Q6 (4 joins) are combi-
nations of star and path queries. Table 5 shows the performance
of TriAD against the available competitors. (We omit SHARD and
BitMat from the table as they failed to finish the indexing step.)
We can observe that TriAD consistently outperforms the competi-
tors. In the case of Q6, which has an empty result, our summary
graph returns no bindings and thus entirely avoids query process-
ing against the data graph. Also, one can observe the high running



#Results TriAD TriAD-SG H-RDF-3X RDF-3X
(200K) (cold) (warm) (cold) (warm)

Q1 1 1.5 0.3 49 6 297 4
Q2 1 61 3 29 6 140 5
Q3 1 1 4 122 23 66 5
Q4 0 0.6 6 31,033 27,415 120 7
Q5 5 51 5 1.3E5 42,638 277 104
Q6 0 0.5 <0.1 5,476 153 53 24
Q7 0 50 39 89,922 34,906 2,900 2,386
Q8 292 128 7 1,338 7 4,590 31

Geo.-
Mean – 7.4 1.5 2,145 280 299 25

Table 5: BTC 2012 – Query processing times (in ms)

#Slaves L1-L5 S1-S7 F1-F5 C1-C3
(Geo.-Mean) (Geo.-Mean) (Geo.-Mean) (Geo.-Mean)

TriAD 1 2 2 94 494
TriAD-SG(75K) 1 8 4 35 767
TriAD 5 2 3 29 270
SHARD 5 3.2E5 5.8E5 7.1E5 7.7E5
RDF-3X (cold) 1 10,066 167 1,749 6,610
RDF-3X (warm) 1 18 2 41 354
MonetDB (cold) 1 3530 10,459 timeout timeout
MonetDB (warm) 1 171 744 timeout timeout

Table 6: WSDTS-1000 – Query processing times (in ms)

times for H-RDF-3X compared to RDF-3X. The reason again lies
in breaking the queries into smaller queries, such that the SIP gains
of RDF-3X remain under-utilized.

7.4 Results – WSDTS Dataset
We finally evaluated the performance of TriAD and TriAD-SG

over the more diverse WSDTS dataset which consists of about 109
million triples. We generated 20 queries using the WSDTS query
generator and categorize them into L (long path), S (star), F (snow-
flake) and C (complex). Table 6 shows the performance over TriAD
and TriAD-SG against the available competitors. We can observe
that TriAD continues to perform well for all query categories, espe-
cially for long path (L) and complex queries (C). On the other hand,
TriAD-SG with summary-based pruning performs well for class F
queries. For L, S, C class queries, TriAD-SG indeed shows some
overhead due to its additional summary-graph processing. The per-
formance dip of TriAD-SG here seems to be due to the dense na-
ture of the WSDTS data graph and the lack of constants (besides
predicates) in the SPARQL queries. MonetDB failed to finish S1,
F1–F5, C1–C3 within a 10-minute limit (marked as “timeout”).

8. CONCLUSIONS
We presented TriAD, which combines intra-node multi-threading

with asynchronous inter-node communication for the scalable pro-
cessing of SPARQL queries. TriAD consistently outperforms both
centralized and distributed RDF engines, which so far still largely
rely on Hadoop-based joins, in which multiple join operators may
indeed run in parallel but need to be synchronized at each level
of the query plan before the next iteration of Hadoop-based joins
is initiated. Especially our comparison to a single Map-side join
in Apache’s Hadoop and Spark platforms reveals the overhead of
the Map and Reduce paradigm for such a very basic query oper-
ation. For future work, we intend to further generalize our asyn-
chronous communication principles to memory-resident DBMS ar-
chitectures. We also intend to specifically investigate the behavior
of our approach under different main-memory hierarchies, includ-
ing recent NUMA architectures, which employ a similar form of
distributed (but shared) memory model with a dedicated memory
channel per CPU but slower memory access across channels.
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