Saltford C of E Primary School - Progression in Multiplication

$\begin{gathered} \text { Year } \\ \text { group } \end{gathered}$	Objective	Method	Practical methods	Pictorial/written methods	Vocabulary	Mental recall
EYFS	Repeated grouping Counting in pairs Doubling	Practical / recorded using ICT (eg digital photos / pictures on IWB)	Toys, Beads, Rhymes, Counters, objects, number lines, stories, role play, number lines- hopping on Counting pairs	Begin to record using marks they can explain	Double, pair, twos, fives, tens, group, set	Chanting of counting in 2s

Saltford C of E Primary School - Progression in Multiplication

Y1	Consolidation of EYFS Begin to understand multiplication through grouping small quantities, Solve one-step problems involving multiplication Make connections between arrays and number patterns Double numbers and quantities Count in multiples of twos, fives and tens	Practical / recorded using ICT Informal written methods Horizontal recording	long number lines, tapes, 100 square, counting sticks, Dienes, coins, cubes, bead strings, peg boards counting groups of objects arranging objects in arrays	Pictures to represent working out Jumps along a number line in 2s	As previous. Count on in..., lots of, groups of pattern,	Consolidation of EYFS Chanting of counting in 2s, 5 s 10s Double pairs to 10 , then 20

Saltford C of E Primary School - Progression in Multiplication

Y2	Consolidation of Y 1 Count in steps of 2,3 , and 5 from 0 , and in 10s from any number, forward and backward Recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers Calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (\times) and equals (=) signs Show that multiplication of two numbers can be done in any order (commutativity) Solve problems involving multiplication using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts. Connect the $10 \times$ multiplication table to place value Relate multiplication to grouping discrete and continuous quantities, to arrays and to repeated addition. Use commutativity and inverse relations to develop multiplicative reasoning (for example, $4 \times 5=20$ and $20 \div 5$ = 4).	Practical Informal written methods Horizontal recording	Counting sticks, bead strings, number lines, 100 squares, Dienes, objects in groups and arrays Counting groups of... Counting on in... Arranging objects in arrays	Repeated addition in groups Horizontal recording as repeat addition and using x and $=$ $2 \times 5=10$ 66 Multiplying 2 is like adding lots of 2's. 99 Multiplying by 10 using place value	As previous. odd, even, every other, how many times, multiple of, sequence, times, multiply, multiplied by, multiple of, once, twice, three times, four times, five times... ten times... as (big, long, wide and so on), repeated addition, array, row, column, double	Consolidation of Y 1 Count in steps of 2,3 , and 5 from 0 , and in 10s from any number, forward and backward Recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers

Saltford C of E Primary School - Progression in Multiplication

Saltford C of E Primary School - Progression in Multiplication

Saltford C of E Primary School - Progression in Multiplication

Consolidation of Y4

Identify multiples and factors, ncluding finding all factor pairs of a number, and common actors of two numbers

Know and use the vocabulary of prime numbers, prime factors and composite (non- prime) numbers

Establish whether a number up to 100 is prime and recall prime numbers up to 19

ThHTU x U using a formal written method

ThHTU x TU
using a formal written method, including long multiplication for wo-digit numbers

Multiply numbers mentally drawing upon known facts

Multiply whole numbers and those involving decimals by 10 , 100 and 1000
umbers and cube numbers, and the notation for squared $\left({ }^{2}\right)$ and cubed (${ }^{3}$)

Solve problems involving multiplication including using heir knowledge of factors and multiples, squares and cubes

Solve problems involving multiplication. methods

Formal written method

Dienes, place value counters, coins

Written method: grid method (to be used

when introducing) when introducing)1000 600 \qquad 20 \qquad | | 6000 | 3600 | 120 | 24 |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 6000 | | | | 6000 3600 120 $\begin{array}{r}\quad 24 \\ +\quad 2744 \\ \hline\end{array}$

	1000	600	20	4
30	30000	18000	600	120
6	6000	3600	120	24

30000
 18000
 6000 3600 600 120 $\begin{array}{r}120 \\ +\quad 24 \\ \hline 58464\end{array}$ $\frac{5846}{11}$

Formal written method (expanded form) 1624 1624

1624	
$\times \quad 6$	
24	24 120
3600	3600
6000	6000
9744	
	80
	400
	12000
	$\frac{20000}{42224}$

Formal written method (compact form) 1624

| $x \quad 6$ |
| :--- | :--- |
| 9744 |

31

As previous.

Factorise, prime, prime factor

Multiply numbers mentally drawing upon known facts eg 300 x $6=1800$

Saltford C of E Primary School - Progression in Multiplication

Consolidation of Y5
ThHTU x TU using the formal written method of long multiplication
dentify common factors common multiples and prime numbers

Explore the order of operations using brackets; for example, 2 $1 \times 3=5$ and $(2+1) \times 3=9$.

Use common factors to find equivalent fractions

Multiply simple pairs of proper fractions, writing the answer in its simplest form ($1 / 2 \times 2 / 4=$ $2 / 8=1 / 4$)

Glossary:
Commutativity: can be done in any order: $3 \times 5=5 \times 3$. Multiplication and addition are commutative. Subtraction and division are not

Scaling: increasing a number by a scale facto

A scaling model is also used to compare two numbers or amounts involving phrases such as 'so many times as much (or as many)'

Correspondence: If you know a fact for one object, this can be used to find further facts, e.g. 1 sandwich costs $£ 2$, so 4 sandwiches cost £8

Associativity: The property that if the same operation is applied to the same numbers, the answer will be the same.

Addition is associative, e.g. $1+(2+3)=(1+2)+3$.
Multiplication is associative, e.g. $1 \times(2 \times 3)=(1 \times 2) \times 3$.

Subtraction and division are not associative because, as counter examples, $1-(2-3) \neq(1-2)-3$ and $1 \div(2 \div 3) \neq(1 \div 2) \div 3$.
We can use the associative law to help with multiplication calculations. For example: Find 5×26 :
 $10=130$.

Distributive law: The property that you will get the same answer when you:
multiply a number by a group of numbers added together, or do each multiplication separately then add them, eg $3 \times(2+4)$ is the same as $(3 \times 2)+(3 \times 4)$

