
18. Lagrange Theorem and Classification of groups of small

order

18.1. Lagrange Theorem and its immediate consequences.

Lagrange Theorem. Let G be a finite group and H a subgroup of G. Then

|H| divides |G|.

We will prove Lagrange Theorem next week. In this lecture we will discuss

some of its applications. We start with an immediate corollary:

Corollary 18.1. Let G be a finite group and g ∈ G. Then

(A) o(g) divides |G|
(B) g|G| = e.

Proof. (A) We know that the order of an element is the order of the cyclic

subgroup generated by that element: o(g) = |〈g〉|. Thus (A) follows from

Lagrange Theorem applied to H = 〈g〉.
(B) Let m = o(g) and n = |G|. Then gm = e by definition of the order

and n = mk for some k ∈ Z by (A). Hence gn = gmk = (gm)k = e. �

Here is another important consequence.

Theorem 18.2. Let p be a prime, and let G be a group of order p. Then

G is cyclic (hence G is isomorphic to (Zp,+) by Lecture 15).

Proof. Since |G| = p > 1, we can choose a non-identity element a ∈ G. By

Corollary 18.1(A), o(a) divides p, so o(a) = 1 or o(a) = p since p is prime.

But a 6= e, so o(a) 6= 1. Therefore, o(a) = p, whence |〈a〉| = o(a) = p = |G|.
Hence 〈a〉 = G, so G is cyclic. �

18.2. Classification of groups of small order up to isomorphism.

Theorem 18.2 shows that for any prime p, there is only one group of order p,

up to isomorphism, namely Zp (with addition). The next Theorem describes

groups or order 4 (which is the smallest composite natural number) up to

isomorphism.

Note that there are at least two non-isomorphic groups of order 4: Z4 and

Z2 ⊕Z2 (these groups are not isomorphic since Z4 is cyclic while Z2 ⊕Z2 is

not by HW#7.6).

Theorem 18.3. Any group of order 4 is isomorphic to Z4 or Z2 ⊕ Z2.
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Proof. We already know that a cyclic group of order 4 is isomorphic to Z4.

Thus, it will be sufficient to show that any non-cyclic group of order 4 is

isomorphic to Z2 ⊕ Z2. We will prove the latter by showing that any two

non-cyclic groups of order 4 are isomorphic to each other.

First we make an observation about orders of elements in a non-cyclic

group of order 4. If |G| = 4, then by Corollary 18.1(A) for any g ∈ G

we have o(g)|4, so o(g) = 1, 2 and 4. If in addition G is non-cyclic, then

G cannot have elements of order 4, so all non-identity elements of G must

have order 2. Thus, we have

g2 = e for all g ∈ G (∗ ∗ ∗)

(of course this equality also holds if g is the identity element).

Now let us take any two non-cyclic groups of order 4, denote them by G

and G′. Let e (respectively e′) denote the identity element of G (respectively

G′), and let x, y, z (respectively x′, y′, z′) be the three non-identity elements

of G (respectively G′) listed in an arbitrary order. By (***) we must have

x2 = y2 = z2 = e and (x′)2 = (y′)2 = (z′)2 = e′, so we can fill a substantial

portion of the multiplication table for both G and G′:

G e x y z
e e x y z
x x e
y y e
z z e

G′ e′ x′ y′ z′

e′ e′ x′ y′ z′

x′ x′ e′

y′ y′ e′

z′ z′ e′

Note that there is unique way to complete the remainder of those tables

using Sudoku property (which we know should hold in group multiplication

tables by HW#5). (For instance, in the multiplication table for G the x-row

already contains x and e and y-column contains y and e, so we must have

xy = z for the Sudoku property to hold). Thus, multiplication tables for G

and G′ look as follows:
G e x y z
e e x y z
x x e z y
y y z e x
z z y x e

G′ e′ x′ y′ z′

e′ e′ x′ y′ z′

x′ x′ e′ z′ y′

y′ y′ z′ e′ x′

z′ z′ y′ x′ e′

It is clear from these multiplication tables that the map ϕ : G→ G′ given

by ϕ(e) = e′, ϕ(x) = x′, ϕ(y) = y′ and ϕ(z) = z′, is an isomorphism. �

Earlier in the course we encountered some other non-cyclic groups of

order 4, namely Z×8 and Z×12. Theorem 18.3 implies that those groups are

isomorphic to Z2 ⊕ Z2.

Theorem 18.3 has a natural generalization classifying groups of order p2:
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Theorem 18.4. Let p be a prime. Any group of order p2 is isomorphic to

Zp2 or Zp ⊕ Zp.

The proof of Theorem 18.4 requires more advanced tools.

We finish the lecture by stating (without proof) classification of groups

of orders 6, 8, 9 and 10 up to isomorphism.

Groups of order 6: There are two groups up to isomorphism: Z6 and S3.

These groups are not isomorphic since Z6 is abelian while S3 is not.

Groups of order 8: There are five groups up to isomorphism: Z8, Z4⊕Z2,

Z2⊕Z2⊕Z2, D8 (groups of isometries of a square) and Q8 (quaternion group

– see HW#7). It was proved in HW#7 that D8 and Q8 are not isomorphic

to each other; also it is clear that D8 or Q8 is not isomorphic to any of the

first three groups on the list since those groups are abelian while D8 and Q8

are not abelian. Finally, to show that Z8, Z4⊕Z2 and Z2⊕Z2⊕Z2 are not

isomorphic to each other one can compute the maximal order of an element

in each group: it is easy to show that the maximal order of an element is 8

for Z8 (since this group is cyclic), 4 for Z4⊕Z2 and 2 for Z2⊕Z2⊕Z2. Hence

by Corollary 15.4, these three groups are not isomorphic to each other.

Groups of order 9: According to Theorem 18.4 above, there are two groups

up to isomorphism: Z9 and Z3 ⊕ Z3.

Groups of order 10: There are two groups up to isomorphism: Z10 and

D10, where D10 is the group of isometries of a regular pentagon. These

groups are not isomorphic to each other since Z6 is abelian while D10 is not.

More generally, we have the following classification of groups of order 2p,

where p is prime.

Theorem 18.5. Let p be a prime. Any group of order 2p is isomorphic to

Z2p or D2p (the group of isometries of a regular p-gon).

Note that the statement of Theorem 18.5 for p = 3 does not seem to

match what we previously said about groups of order 6. The reason there is

no contradiction is that D6 (the group of isometries of a regular 3-gon AKA

equilateral triangle) is isomorphic to S3. A natural isomorphism ϕ : D6 →
S3 is given as follows: label vertices of a equilateral triangle ∆ by 1, 2 and

3. Any isometry f of ∆ permutes the vertices, so f naturally determines a

permutation of the set {1, 2, 3} (that is, an element of S3); we denote this

element by ϕ(f). It is easy to check that ϕ : D6 → S3 is as an isomorphism.

One can define analogous map ϕn : D2n → Sn for any n ≥ 3. The map

ϕnwill not be an isomorphism unless n = 3; however, it will always be an

injective homomorphism.


