Multiplication table of Isom(Sq)

Multiplication is top row first, then side column. i.e. pick f from top row, g from side, then the corresponding entry in the table is $g \circ f$.

	1	R	R^2	R^3	$ ho_{x}$	$ ho_y$	α	eta
1	1	R	R^2	R^3	$ ho_x$	$ ho_y$	α	β
R	R	R^2	R^3	1	$ ho_x$ $lpha$	eta	$ ho_{y}$	$ ho_x$
R^2	R^2	R^3	1	R	$ ho_{y}$	$ ho_x$	eta	α
R^3	R^3	1	R	R^2	eta	α	$ ho_x$	$ ho_{y}$
		eta			etc			
$ ho_y$	$ ho_y$							
α	$egin{array}{c} lpha \ eta \end{array}$							
β	β							

1 = identity map.

 $R = \text{rotation } \pi/2 \text{ anticlockwise.}$

 ρ_x =reflection in x-axis, ρ_y = same in y-axis.

 α =reflection in diagonal (x = y).

 β =reflection in anti-diagonal (x = -y).