Laws of indices and surds	
Law of Indices	Law of Surds
1) $a^{m} \times a^{m}=a^{m+n}$	i) $\sqrt[n]{a}=a^{\frac{1}{m}}$
ii) $\frac{a^{n}}{a^{n}}=a^{m-n}$	ii) $\sqrt[n]{a k}=\sqrt[m]{a} \times \sqrt[n]{v}$
iii) $\left(a^{m}\right)^{n}=a^{n m m}$	iii) $\sqrt[n]{a}=\sqrt[n]{a}$
iv) $(a v)^{\prime}=a^{n}{ }^{n}$	$\sqrt{\frac{\pi}{x}}=\frac{\sqrt{\sqrt{x}}}{}$
v) $\left(\frac{a}{v s}\right)=\frac{a^{1}}{v^{n}}$	iv) $(\sqrt{a})^{n}=a$
vi) $a^{0}=1$	v) $\sqrt[m]{\sqrt[m]{a}}=\sqrt[m]{a}$ vi) $(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$

Probability	
Experimental probability	= The frequency of the outcome / total number of trials
Relative frequancy	frequency of the outcome / total number of trials
Financial maths	
Dividing annual salary	Weekly $=52$ \| Fortnightly = 26 \| Monthly = 12
Calculating percentage of \$	$\begin{aligned} & 0 . \% * \$ \mid \text { EG. } 12 \% \text { of } 150= \\ & 0.12 \times 150 \end{aligned}$

Extra probablity

By Dragoneye34
cheatography.com/dragoneye34/

Linear and Non-linear graphs

Gradient	Gradient $=\mathrm{M} \mid \mathrm{M}=$ Rise divided
by run	

Gradient through two points	$\mathrm{M}=\mathrm{y} 2-\mathrm{y} 1 / \mathrm{x} 2-\mathrm{x} 1$
Gradient intercept method	$\mathrm{Y}=\mathrm{mx}+\mathrm{c} \mid$ Find gradient +x and y intercept
x and y intercept method	$\mathrm{X}=0$, Then plot the x and y intercepts
Intercepts	$\mathrm{Y}=\mathrm{C} \mid \mathrm{X}=\mathrm{A}$

Statistics

$$
\begin{aligned}
& \text { Mean }= \frac{\text { sum of all values }}{\text { total number of values }} \\
& \text { Median }= \text { middle value (when the } \\
& \text { data are arranged } \\
& \text { in order) }
\end{aligned}
$$

Mode $=$ most common value

Measurement	
TSA	Area of all sides added up
Volume	Area X Height
SA of cylinder	SA $=2 \pi r^{2}+2 \pi r h$

Published 26th November, 2016.
Last updated 26th November, 2016.
Page 1 of 1 .

Measurement (cont)	
SA of sphere and volume	$\mathrm{A}=4 \pi r^{2} \mid \mathrm{V}=4 / 3 \pi r^{3}$ (volume)
TSA of Cone	$\pi r \mid+\pi r^{2}$
Capacity	
Converting CAPACITY Units The Volume of Liquids and Solids is usually measured as a "Capacity". In the Metric System, Capacity is based on the Litre or " \mathbf{L} " unit.	

CAPACITY conversions use 1000 's, and usually create fairly large results. 32ML $=$? L Need to $\times 1000$ twice $32 \times 1000 \times 1000=32000000 \mathrm{~L} \sqrt{ }$

Area

Converting AREA Units

AREA consists of Square Units, so we need to SQUARE all our Lengths.
$\underbrace{\times 1000^{2}}_{\div 1000^{2}} \underbrace{\times 100^{2}}_{\div 100^{2}} \underbrace{\times 10^{2}}_{\div 10^{2}}$
$5 \mathrm{~km}^{2}=? \mathrm{~m}^{2} \quad$ Need to $\times 1000^{2} \quad 5 \times 1000 \times 1000=\mathbf{5 0 0 0} 000 \mathrm{~m}^{2} \sqrt{ }$ $1200 \mathrm{~cm}^{2}=$? $\mathrm{m}^{2} \quad$ Need to $\div 100^{2} \quad 1200 \div 100 \div 100=\mathbf{0 . 1 2} \mathrm{m}^{2} \checkmark$

Volume

Vowme comersiocs use powers of 3 , and usually crevte very large results. $3 \mathrm{~m}^{2}=? \mathrm{~cm}^{3} \quad$ Need to $\times 100^{2} \quad 3 \times 100 \times 100 \times 100=3000000 \mathrm{~cm}^{3} \sqrt{ }$

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

