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Abstract

A method is presented for the solution of an incompressible viscous fluid flow with heat transfer using a fully

Lagrangian description of the motion. Due to the severe element distortion, a frequent remeshing is performed in an

efficient manner. An implicit time integration through a classical fractional step is presented. The non-linearities of

the formulation are taken into account and solved with the fixed-point iteration method. The displacement and tem-

perature solutions are coupled through the Boussinesq approximation. The Lagrangian formulation provides an ele-

gant way of solving free-surface problems with thermal convection as the particles are followed during their motion.

To illustrate the method, the Rayleigh–Bénard instability with and without free surface in two dimensions has been

computed.
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1. Introduction

The classical Navier–Stokes equations have been

studied for a long time, both from the theoretical and

numerical points of view. These equations were mostly

associated with an Eulerian description of motion which

led to the impressive results in computational fluid
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dynamics (CFD) during the last 20 years. Surprisingly,

the Lagrangian description was much less exploited, de-

spite of the advantage of this method for certain types of

problems like free surface tracking [37] and fluid–struc-

ture interaction including heat transfer effects. The first

problem dealing with a Lagrangian formulation for flu-

ids is the need for a constant remeshing due to the severe

distortion of the mesh as the nodes move in time. Parti-

cle type methods offer an appealing alternative to this

remeshing and have been used extensively. A precursor

in this field was Monoghan [19] for the treatment of

astrophysical hydrodynamic problem with the so called

Smooth Particle Hydrodynamics Method (SPH). Kernel

approximations are used in the SPH method to interpo-

late the unknowns.
ed.
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On the other hand, meshless methods have been

developed both for structural [2,13] and fluid mechanical

problems [33,34]. All these methods use the idea of a

polynomial interpolant that fits a number of points min-

imizing the distance between the interpolated function

and the values of the unknown point. Meshless methods

however still require to compute the nodal connectivities

of each �star� node in a cloud of nodes and this can be a
costly task. Lately the meshless ideas were generalized to

derive finite element type approximations where meshes

are generated in a computing time of the order of the

number of nodes in the mesh [23].

In this paper, a Lagrangian method will be used to-

gether with a particular form of the FEM, the Particle

finite element method (PFEM) [25,32] in order to solve

thermal convection for incompressible fluid flows. The

method combines the best features of particle (meshless)

techniques and finite element methods. In the first part,

the basis of the Lagrangian and Eulerian descriptions

are briefly presented. In the second part, the heat and

Navier–Stokes equations and their weak expressions

are derived in a form suitable for the non-linear coupled

problem. The discretization of these equations in space

and time is then discussed. A fractional scheme for the

time integration of the equations of motion using the fi-

nite element method is presented. Details on the linear-

ization of the equations and the treatment of the

coupled terms induced by the Boussinesq approximation

are given. After a few computational remarks on pres-

sure stability, reference configuration, remeshing strate-

gies, and particle behaviour of the method, numerical

results in two dimensions problems are presented.
2. Lagrangian versus Eulerian formulation

In this section, the main features of the Lagrangian

and Eulerian approaches are recalled, the notations are

defined and the incompressibility condition is derived

in both formulations.

2.1. A few relations between Lagrangian and Eulerian

tensor derivatives

In the Lagrangian formulation, the notions of refer-

ence and current configuration play a central part [35].

The Lagrangian formulation describes all the measured

quantities with respect to the position of a particle on

a previously chosen reference configuration and to time,

asM =M(X, t) whereM is whatever interesting quantity

and X the reference position. On the other hand, the

Eulerian description uses the position x of a given parti-

cle on the current configuration to define the quantity

M = m(x, t). Quantities in the reference and current con-

figuration will be written with capital and lower case let-

ters, respectively. Obviously, both should describe the
same property, which is noted introducing the configu-

ration as a mapping of the location of a particle X of

a body into Rn as x ¼ XðX; tÞ, writing
M ¼ mðx; tÞ ¼ mðXðX; tÞ; tÞ ¼ MðX; tÞ ð1Þ

All tensor fields and their derivatives will be written with

respect to a particular reference. A classical issue is to re-

late a derivative of a scalar tensorM in the Eulerian and

Lagrangian descriptions. There, the deformation gradi-

ent F, plays an important role

F ¼ gradX ðXðX; tÞ ¼ gradX ðxÞ ð2Þ

Using differential calculus, one gets

omðx; tÞ
ox

¼ oMðX ; tÞ
oX

oX
ox

ð3Þ

which leads, for a scalar quantity M, to

gradxðmÞ ¼ F�TgradX ðMÞ ð4Þ

and, for a first-order tensor V

gradxðvÞ ¼ gradX ðVÞF�1 ð5Þ

The well-known Nanson�s formula is helpful to get a
similar relation for the divergence of a second-order

tensor

ndS ¼ JF�TNdS ð6Þ

where J = det F, n and N are the normals to a current

and reference area element. Multiplicating both sides

to the left by a first or second-order tensor, integrating

on a closed surface using Gauss theorem and finally

changing the variables in the right-hand side, one gets

for a vector v

divxðvÞ ¼
1

J
divX ðJ � F�1VÞ ð7Þ

and for a second-order tensor r

divxðrÞ ¼
1

J
divX ðJr � F�TÞ ð8Þ

These relations are classically known as the Piola trans-

form of a tensor [28]. Finally, differentiating

V ¼ VðX; tÞ ¼ vðXðXÞ; tÞ with respect to time leads to
DV

Dt
¼ ov

ot
þ v � gradxðvÞ ð9Þ

The first term refers to the material derivative of a vector

V and the second one to the spatial derivative. In a

Lagrangian formulation the convective term is implic-

itely contained in the material derivative as the velocities

are function of the material particles.
2.2. The incompressibility condition in the Lagrangian

and Eulerian formulations

The conservation of mass and the incompressibility

condition are good examples of how to switch from
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the Lagrangian to the Eulerian formulation and vice-

versa. Writing the conservation of mass between two in-

stants in two different configurations and changing the

variables between both configurations, one obtains

q0 ¼ qJ ð10Þ

where q and q0 are the mass densities in the current and
reference configuration. The last equation describes the

conservation of mass in the Lagrangian formulation.

Differentiating (10) with respect to time leads to

_qJ ¼ �q _J ð11Þ

Using the fact that

_J ¼ JdivxðvÞ ð12Þ

one gets

� _q
q
¼

_J
J
¼ divxðvÞ ð13Þ

which is the classical mass conservation in the Eulerian

formulation. The incompressibility condition in a

Lagrangian frame is thus derived

q ¼ q0 or J ¼ 1 ð14Þ

whereas, from an Eulerian standpoint, it is classically

written

divxðvÞ ¼ 0 _J ¼ 0 ð15Þ

From the expression of the divergence of a vector, it can

also be written

TrðgradX ðVÞF�1Þ ¼ 0 ð16Þ

where �Tr� is the trace operator of a second-order tensor.
This expression will be used later on.
3. The heat and Navier–Stokes equations in the

Lagrangian formulation

The results of the preceding section are now used to

derive the heat equation and the Navier–Stokes equa-

tions in the Lagrangian formulation. These equations

will be the foundations of the numerical method pre-

sented in the next section.

3.1. The heat equation

In this paragraph, the strong form of the heat equa-

tion in a Lagrangian formulation will be obtained from

the well known Eulerian formulation. Then, the varia-

tional form will be derived and the relationships between

both formulations will be emphasized.
3.1.1. Strong form of the heat equation

There are several ways to introduce the Lagrangian

formulation, either directly from the conservation prin-
ciples or from the classical Eulerian equations. The

second way will be chosen as these equations are very

well-known. Writing the classical heat equation with

convection and a source term in an Eulerian form, one

obtains

qCotT þ qCðv � gradxðT ÞÞ ¼ divxðjgradxðT ÞÞ ð17Þ

where T is the temperature, j the thermal conductivity,
q the density, C the heat capacity and v represents the

convective velocity. As seen before, the term in the right

hand side represents the spatial derivative. Using the

material derivative and the Piola transform, the heat

equation in the Lagrangian description reads

q0C
DT
Dt

¼ divX ðjJF�1F�TgradX ðT ÞÞ ð18Þ

Here, the same notation has been used for the represen-

tation of the temperature in an Eulerian and in a

Lagrangian descriptions for the sake of simplicity.

Remark 3.1. No convective term appears in the last

equation which has a linear appearance. However, the

non-linearity of this equation comes from the fact that

F, the deformation gradient, depends on the displace-

ment U. As noted in [41], the Lagrangian equations are

highly non-linear in the space coordinates.
3.1.2. The variational form of the heat equation

Multiplying Eq. (18) by a test function W and inte-

grating on the whole domain X0, the equation readsZ
X0

q0C
DT
Dt

WdV 0 ¼
Z

X0

divX ðjJF�1F�TgradX ðT ÞÞWdV 0

ð19Þ

Integrating by parts the right term of Eq. (19) leads toZ
X0

q0C
DT
Dt

WdV 0

¼ �
Z

X0

jJF�1F�TgradX ðT Þ � gradX ðWÞdV 0 ð20Þ
3.2. The Navier–Stokes equations

The same structure as the preceeding part is followed

to derive the Lagrangian form of the Navier–Stokes

equations. First, the strong formulation is presented

through the introduction of the first Piola–Kirchhoff

stress tensor. Then, the variational formulation is de-

rived and the link between Eulerian and Lagrangian for-

mulation is also highlighted.

3.2.1. Strong form of the Navier–Stokes equations

In the Eulerian frame, the classical equation of

momentum conservation reads

qotvþ qv � gradxv ¼ divxðrÞ þ qf ð21Þ
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where v is the velocity, f an external force per unit of

mass, and the stresses r are related to the pressure and

the velocities by

r ¼ �pIþ 2lD ð22Þ

for a Newtonian fluid where, in Eq. (22), l is the fluid
viscosity and D is the symmetric part of the gradient

velocity, referred to the deformed configuration. Fur-

thermore, considering the incompressibility condition,

the classical Navier–Stokes equations read

qðotvþ v � gradxðvÞÞ ¼ �gradxðpÞ þ lDvþ qf ð23Þ

divxðvÞ ¼ 0 ð24Þ

In the reference configuration, using the Piola transform

for the second-order stress tensor r leads to

q
DV

Dt
¼ 1
J
divX ðJrF�TÞ þ qf ð25Þ

or

q0
DV

Dt
¼ divX ðPÞ þ q0f ð26Þ

where P is the first Piola–Kirchhoff stress tensor defined

as

P ¼ JrF�T ð27Þ

Using the constitutive equation (22), the Lagrangian

equations of motion for an incompressible fluid read

q0
DV

Dt
¼ �divX ðJpF�TÞ

þ ldivX ðJ gradX ðVÞF�1F�TÞ þ q0f ð28Þ

TrðgradX ðVÞF�1Þ ¼ 0 ð29Þ

Remark 3.2. As in the heat equation, the non-linearity

of these equations appears through the deformation

gradient. Both the velocity and the displacement appear

in these equations, coupled with the pressure.
3.2.2. The mixed variational form of the Navier–Stokes

equations

Eqs. (28) and (29) are multiplied by test functions W

and q, respectively. The variational form of the Lagrang-

ian Navier–Stokes equations reads, after integration by

parts of these equationsZ
X0

q0
DV

Dt
�WdV 0

¼
Z

X0

JpF
�T : gradX ðWÞdV 0

�
Z

X0

lJ gradX ðVÞF�1F�T : gradX ðWÞdV 0 ð30Þ
Z
X0

J TrðgradX ðVÞF�1ÞqdV 0 ¼ 0 ð31Þ
4. Discretization of the equations

In this section, the equations derived in the last sec-

tion are discretized. A classical time discretization is first

proposed. The space discretization is then described, and

a fractional step introduced. After the linearization of

the equations, the thermo-mechanical scheme is finally

derived.

4.1. Discretization in time

Consider a Newmark scheme [22]

Vnþ1 ¼ Vn þ dtðhAnþ1 þ ð1� hÞAnÞ ð32Þ

Unþ1 ¼ Un þ dtVn þ dt2

2
ð2bAnþ1 þ ð1� 2bÞAnÞ ð33Þ

where h and b are two numerical parameters which

determine the stability and accuracy of the algorithm.

Applying the Newmark scheme to the weak form of

the Navier–Stokes equations (30) and (31) leads toZ
X0

q0
Vnþ1 � Vn

dt
�WdV 0

¼
Z

X0

JpF�T : gradX ðWÞdV 0
�
�
Z

X0

lJ gradX ðVÞF�1F�T : gradX ðWÞdV 0
�nþh

ð34Þ

withZ
X0

J TrðgradX ðVnþ1ÞF�1ÞqdV 0 ¼ 0 ð35Þ

where

Xnþh ¼ hXnþ1 þ ð1� hÞXn ð36Þ

The values of h and b determine the order of the method.
However, as seen in the following sections, the order of

the method is limited to 1 so that values of h = 1 and
b = 0.25 are chosen.

4.2. Finite element discretization

The velocity, the displacement and the pressure are

discretized in the standard finite element manner as

V j ¼
X

NiðX ; tÞV ij Uj ¼
X

NiðX ; tÞUij

p ¼
X

NiðX ; tÞP i ð37Þ

where the Ni are the nodal shape functions. Substitut-

ing the finite element approximation (37) into the
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variational equation (30) and choosing a Galerkin for-

mulation (Wi = Ni) leads to the following system of

equations:

M

dt
ðVnþ1 � VnÞ þ KðUnþhÞVnþh þGðUnþhÞPnþh ¼ Fnþh

ð38Þ

DðUnþhÞVnþ1 ¼ 0 ð39Þ

where the previous matrices are

Mab
ij ¼ dab

Z
X0

q0NiNj dV 0 ð40Þ

Kab
ij ¼ dab

Z
X0

lJ gradX ðNiÞF�1 � gradX ðNjÞF�1dV 0 ð41Þ

Gij ¼ �
Z

X0

JF�T gradX ðNiÞNj dV 0 ð42Þ

and

Dij ¼
Z

X0

JNiF
�T gradX ðNjÞdV 0 ð43Þ

where the subscripts refer to the node indexes and the

superscripts to the space indexes. Note that G = �DT.

Remark 4.1. The mass matrix M does not have a non-

linear dependance with Un+1. However, this matrix is

assembled on the last known mesh, so that it happens to

be also function of Un+1. This dependance has not been

written for the sake of clarity.
4.3. The fractional step method

At this point, the classical fractional step method is

introduced for the solution in time of Eqs. (38) and

(39) as proposed in [9] and originated in [40] at the con-

tinuous level. However, the approach followed here is

the one chosen in [9] so that the fractional step is pre-

sented at the algebraic level as a matrix manipulation.

An auxiliary variable eV is introduced, representing the

intermediate velocity. An equivalent problem to Eqs.

(38) and (39) reads

M

dt
ðeVnþ1

� VnÞ þ KðUnþhÞeVnþh
þ cGðUnþhÞPn ¼ Fnþh

ð44Þ

M

dt
ðVnþ1 � eVnþ1

Þ þGðUnþhÞðPnþh � cPnÞ ¼ 0 ð45Þ

DðUnþhÞVnþ1 ¼ 0 ð46Þ

In Eq. (44), c is a numerical parameter varying from 0 to
1. Eq. (45) is now multiplied by D. Then Eq. (46) and the

approximation DM�1G = L, where L is the matrix of the

Laplacian operator, lead to the following three steps:
M

dt
ðeVnþ1

� VnÞ þ KðUnþhÞeVnþh
þ cGðUnþhÞPn ¼ Fnþh

ð47Þ

dtLðUnþhÞðPnþh � cPnÞ ¼ DðUnþhÞeVnþ1
ð48Þ

M

dt
ðVnþ1 � eVnþ1

Þ þGðUnþhÞðPnþh � cPnÞ ¼ 0 ð49Þ

The efficiency of this procedure is particularly appre-

ciable in the resolution of the linear system. As a matter

of fact, the classical convective term in an Eulerian for-

mulation introduces the non-linearity of the system and

the non-symmetry of matrix K. With this fractional step

procedure, (dim + 1) symmetric matrices of size nare in-

verted instead of one matrix of size n*(dim + 1), where

�dim� is the dimension of the problem, with a pre-condi-
tioned conjugate gradient algorithm. With a complexity

of the linear solver of O(n1.25), an obvious gain of CPU

time has been reached. In [36], this scheme is interpreted

as the fully discrete counterpart of the projection

method of the Chorin–Temam scheme at the semi-

discrete level. Finally, the fractional step method pos-

sesses an intrinsic pressure stabilization property for

the first-order scheme, as it will be discussed in the next

section.

4.4. Linearization of the equations

The Picard method has been chosen to linearize Eqs.

(47)–(49), as the Newton–Raphson implies too many ex-

tra storage for a Newtonian fluid. As a matter of fact,

the Picard algorithm allows to perform the calculation

in the deformed configuration taking into account the

fully non-linear model with large rotations and finite

strains. Linearizing with a Newton–Raphson method,

as described in [37], produces many extra terms due to

the fact that the constitutive equation is given in the de-

formed configuration as we will try to show.

For hyperelastic incompressible materials [13,4] used

in finite strains, problems are usually solved by the New-

ton or a Newton-like method, which involves the linear-

ized form of balance equations. Considering an

hyperelastic material, where the fundamental assump-

tion is

S ¼ oW
oE

ð50Þ

where S is the second Piola–Kirchhoff stress tensor, E

the Green–Lagrange strain tensor and W the stored

strain energy function, the linearization of the Principle

of Virtual Work with respect to the displacement will

give [1, p.338]

_f
int ¼

Z
X0

_P: gradX ðNÞdX0 ð51Þ
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with S the first Piola–Kirchhoff stress tensor and N a test

function. Using the relationship between the first and

the second Piola–Kirchhoff stress tensor, the last equa-

tion reads

_f
int ¼

Z
X0

ð _SFT þ S _F
TÞ: gradX ðNÞdX0 ð52Þ

Introducing the elastic tensor C

C ¼ oS

oE
¼ o2W

oE2
ð53Þ

Eq. (52) becomes

_f
int ¼

Z
X0

ðC _EFT þ S _F
TÞ: gradX ðNÞdX0 ð54Þ

It finally appears that the first term of the last equation,

the material non-linearity, has been simplified thanks to

the fundamental asumption of Eq. (50), for which the

elastic tangent tensor puts in relation two quantities in

the reference configuration. However, in the case of a

fluid, the second Piola–Kirchhoff tensor is only known

through its spatial counterpart r, the Cauchy stress ten-

sor. As

S ¼ JF�1rF�T ð55Þ

the linearization of S will involve the linearization of J,

F�1, r, and F�T, whereas the geometric non-linearity

and all the other terms involving the pressure lineariza-

tion will present the same form. This difference is the

reason why the linearization of the Navier–Stokes equa-

tions in a Lagrangian formulation implies so many extra

terms compared with the Picard linearization and an

hyperelastic law formulation linearized with the Newton

method.

Furthermore, during a time step, the mesh can suffer

severe distortion due to the properties of a fluid to resist

only to deformation rates. In order to preserve the pos-

itivity of the Jacobian, the time step is limited by the dis-

tance between a node and its normal projection on the

opposite face weighted by the difference of velocity be-

tween these two points, so that the quick convergence

of the Newton method for big time steps is unnecessary.

A loop on the whole fractional step is performed. As the

time step is limited to small values and the stabilization

properties are limited to the first-order scheme in time,

we considering the case c ¼ 0. Writing as usual the index
of the time step as the first superscript, and the one of

the non-linear iteration as the second, the three steps

of the algorithm read

M

dt
þ hKðUnþh;iÞ

� �eVnþ1;iþ1

¼ Fnþh þ M

dt
� ð1� hÞKðUnÞ

� �
Vn ð56Þ
dtLðUnþh;iÞPnþh;iþ1 ¼ DðUnþh;iÞeVnþh;iþ1
ð57Þ

M

dt
ðVnþ1;iþ1 � eVnþ1;iþ1

Þ þGðUnþh;iÞðPnþh;iþ1Þ ¼ 0 ð58Þ
4.5. Coupled fluid-mechanics-thermal problems

Now, the full coupled system temperature-displace-

ment will be considered by introducing the Boussinesq

approximation for incompressible fluids [43]

q ¼ q0ð1� aðT � T 0ÞÞ ð59Þ
where a is the volume/thermal expansion coefficient of
the fluid, so that both previous schemes become with

the fractional step

M

dt
þ hKðUnþh;iÞ

� �eVnþ1;iþ1

¼ M

dt
� ð1� hÞKðUnÞ

� �
Vn

þ
Z

X0

q0Ngð1� aðTnþ1;i � T0ÞÞdV 0 ð60Þ

dtLðUnþh;iÞPnþh;iþ1 ¼ DðUnþh;iÞeVnþh;iþ1
ð61Þ

M

dt
ðVnþ1;iþ1 � eVnþ1;iþ1

Þ þGðUnþh;iÞðPnþh;iþ1Þ ¼ 0 ð62Þ

fM
dt

þ heKðUnþh;iÞ
 !

Tnþ1;iþ1

¼
fM
dt

� ð1� hÞeKðUnÞ
 !

Tn ð63Þ

where fM and eK are deduced from M and K replacing

the viscosity l by the thermal conductivity j, and the
density q by product of the density multiplied by the
thermal capacity C, respectively. In order to smooth

the strong gradients produced between two materials

such as a mould and a melted metal in casting processes,

a lumped mass matrix is used for the temperature. It re-

duces the under and overshoots produced numerically

[7]. As boundary condition, a heat flux is taken into ac-

count on the free surface between the fluid and the exter-

nal media. This is written in the classical form

U ¼ hðT � T extÞ ð64Þ

where Text is the temperature of the external media and h

is the heat transfer coefficient between both considered

media. This heat flux induces an extra term in matrixeK of Eq. (63).
5. Computational features

In this section, particular computational aspects of

the method will be highlighted. In the first part, the
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pressure stability of the method is discussed. Then, the

choice of reference configuration and its relationship

with remeshing is presented. Finally, the particle fea-

tures of the method are described.
5.1. Pressure stabilization

Because of the equal order interpolation, well-known

problems appear in the computation of the pressure due

to spurious pressure modes. This type of interpolation

does not satisfy the discrete LBB condition

sup
vh2V h

bðvh; qhÞ
kvhkV h

P bkqhkQh
8qh 2 Qh; b > 0 ð65Þ

where Vh and Qh are, respectively, the finite element

spaces of the velocity and the pressure, which leads to

non-uniqueness of solution in pressure and possible

checkerboard pressure modes [3,20]. However, as

proved in [9], the first-order projection scheme used in

the fractional step (c = 0) brings in a stability term given
by the difference between the �discrete� and the continu-
ous Laplacian operator, which depends on the time step.

Eliminating eV from the fractional step as in [9], the con-
servation of mass now reads

DUnþ1 þ dtðDM�1G� LÞðPnþ1 � cPnþ1Þ ¼ 0 ð66Þ

For a first-order scheme, c = 0 and the stabilization
comes from the term dtBPn+1 where B = (DM�1G�
L)Pn+1. As demonstrated in [12], B is positive semi-def-

inite, provides a control on the orthogonals components

of grad(qh) to the finite element space Vh and increases

the stability of the method in the same way as other sta-

bilization methods [11]. As mentioned in [10], the inf–

sup condition is then weakened, as the space on which

runs Vh to fulfill (65) is then larger than Vh, which is sat-

isfied using our equal-order interpolation.

As it has been shown, the stability term depends on

the time step, so that for big time steps, the scheme is

stable but dissipative, whereas for short time steps, the

stability analysis does not provide any interesting

bound. An appropriate choice for the time step is the ex-

plicit time step of the monolitical scheme. For an explicit

scheme with convection dominant effects, which is our

case, dtcrit is basically equal to the Courant number
C = h/2U so that for a Courant number of one, the sta-

bility is guaranteed. As the nodes of the mesh cannot

move more than one element length with the Lagrangian

formulation, the values of C 6 1 ensure that pressure

stability can be easily achieved. However, it could hap-

pen that the condition on the Courant number could

be verified locally in one part of the mesh and not in an-

other because of the distortion of the mesh.

For second-order schemes in time, the stabilization

effect of the fractional step is not efficient enough and

other stabilization techniques must be used. The authors
have developed a simple and general stabilized fractional

step scheme, based on a Finite Calculus (FIC) formula-

tion, ensuring pressure stabilization for both the first

and second-order projection schemes (c = 0 and c = 1)
[30]. This formulation is based in the modification of

the governing differential equations of the problem in

evoking the balance of fluxes in a fluid domain of finite

size. This introduces naturally additional terms that pro-

vide the necessary stabilization to the discrete equations

obtained via the standard Galerkin finite element meth-

od. The final stabilized equations are

rmi �
hj
2

ormi

oxj
¼ 0 ð67Þ

for the momentum and

rd �
hj
2

ord
oxj

¼ 0 ð68Þ

for the mass balance, where the residuals rmi and rd are

defined as

rmi ¼ q
Dui
Dt

þ op
oxi

� orij

oxj
� qfi ð69Þ

rd ¼
oui
oxi

ð70Þ

with i,k = 1,d, d being the space dimensions of the prob-

lem. The hj in above equations are characteristic lengths

of the domain where the balance of momentum and

mass are enforced. However, as explained before, the

Lagrangian formulation implicitly contains the convec-

tive term so that there is no need for stabilizing convec-

tion. Therefore, the relevant term to stabilize the

incompressibility constraint is given by Eq. (68). Details

on how to obtain these equations can be found in [29]

for an Eulerian formulation and in [31] for a Lagrangian

formulation. The second-order scheme does not repre-

sent any difficulty with this stabilized scheme, but is

not used in these examples as, as was already mentioned,

the time step is short enough to provide an acceptable

time accuracy.

5.2. Reference configurations and (re)meshings

The selection of the reference configuration X0 has
not yet been discussed. Mainly, three choices are avai-

lable for the reference configuration: the initial configu-

ration (total Lagrangian formulation), the configuration

at each time step, i.e. the deformed configuration (up-

dated Lagrangian formulation), or the last known con-

figuration, namely the one of the non-linear iteration.

This choice is a priori completely independent of the

type of non-linear problem considered.

However, as mentioned before, a fluid resists only to

deformation rates, which implies to perform frequent

remeshings in order to avoid the severe distortion of
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the elements. Really, only two possibilities are appeal-

ing, that is remeshing at each time step or at each non-

linear iteration. It could be observed that the choice of

the reference configuration will decide the frequency of

the meshing process. The results presented below have

been performed with the first option, namely a mesh is

generated once a convergent solution has been reached

for each time step. Typically, between 2 and 4 iterations

are necessary to obtain a strong convergence of order

10�3. Keeping the reference configuration constant with-

in a time step allows to use the same shape functions and

their derivatives during the non-linear iteration.

The numerical scheme of the last section can be ap-

plied for both formulations. If a new mesh is generated

at each non-linear iteration, then it suffices to replace the

gradient transformation by the identity matrix, and J by

1 and integrate on the current configuration. This meth-

od is presented in more detail in [24] and does not need

the computation of the jacobian of the transformation

as the current configuration is always the reference

configuration.

The key point of the Lagrangian method lies on an

accurate and powerful mesh generator. An efficient Del-
Fig. 1. Thermally coupled incompressible flow
aunay kernel is constructed with the reduced incremen-

tal method [18], verifying the star-shaped property of

the cavity of each inserted point. Some acceleration pro-

cedures are required, as the use of a neighborhood grid,

the transport of the centres of the circumdiscs and a spe-

cial neighbor updating [17]. Obviously, a quasi linear

relationship between time and data can only be obtained

by the appropriate use of data structures, as described in

[27] and [38]. The whole algorithm is summarized in

Fig. 1.

5.3. Particle methods

In a previous work [23], the authors proposed a def-

inition of a meshless method.

A meshless method is an algorithm that satisfies both

of the following statements:

• the definition of the shape functions depends only on

the node positions.

• the evaluation of the nodes connectivity is bounded in

time and it depends exclusively on the total number

of nodes in the domain.
solved with the Lagrangian algorithm.
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In this work, the first statement is not verified as

usual finite element shape functions are used, which de-

pend on the element geometry and not on the nodes po-

sition. However, the second statement, which constitutes

the most important fact of the meshless methods is ver-

ified through an efficient Delaunay triangulation. In the

PFEM, the most salient characteristic is that all the

information is transferred through the particles. At each

time step, each particle carries its own information like

its type of material and the value of all the unknowns
Fig. 2. Temperature distribution in a c
of the considered problem, here the velocity, pressure

and temperature. Furthermore, as the computational

domain is also unknown, the decision on the choice of

the geometrical domain in the analysis will exclusively

rely on the boundary definition and the node informa-

tion. This last feature is typical of the meshless methods,

where the physical properties are directly associated with

the type of material of the node.

The boundary definition follows the work of [24]. In

particle methods, the connectivity between each node is
losed cavity for h 2 {19.5;20.5}.
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constructed at each time step. This connection gives

plenty of freedom to define the system to be studied,

the inner connections, and the possible multiple bound-

aries of the system. As the system is constantly moving,

the location of the boundaries must also be redefined

accordingly. In order to characterize the boundaries,

the alpha shape method [16] is used, which could be for-

mulated as

Given a particle distribution depending on h(x), where

h(x) is the minimum distance between two particles, all
Fig. 3. Temperature distribution at differe
particles on an empty sphere with a radius r(x) larger

than ah(x) are considered as boundary particles. In this

criterion, a is a parameter close to, but greater than one.
Respect to the inner connections, an interesting fea-

ture of this method happens when a particle is suddenly

separated from the rest of the body. In this case, the par-

ticle is considered as dimensionless and thermally iso-

lated from the rest of the particles. Hence two options

are possible: whether it will conserve the same tempera-

ture than the last time step, or the temperature of the
nt instants during the mould filling.
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external media will be imposed to this particle. In both

cases, this particle will follow its motion under gravity

forces at a constant temperature.

Finally, as the particles are constantly convected,

they could get closer and closer, until they superimpose.

During this process, a particle has been lost which in-

duces a loss of information of the studied variables.

Moreover, the mesh quality diminishes as quick as the

time step. To avoid this problem, a background grid

(bucket sort) is used to filter the relative position of

the points between each other. Thus, if a particle is clo-

ser than a certain tolerance, it is taken away and reintro-

duced in another part with low density of particles, in

order to homogenize the information. A standard linear

projection of the problem variables is used to transfer

the information from the current grid to the new parti-

cle. This type of problem appears frequently in closed

domains were the fluid particles do not have possibilities

to cover a large space, as it will be noted in the numerical

results presented next.
6. Numerical examples

In this section, four 2-D numerical experiments are

presented to illustrate the viability of the PFEM. The

first example has been chosen to validate the method
Fig. 4. Temperature distribution for the rigid–rigid Rayleigh–Bénar
by comparison with previous established numerical re-

sults obtained for the same problem using an Eulerian

formulation. The second example describes a typical free

surface problem with contact on a solid. The third and

fourth examples involve a complete thermo-mechanical

coupling with the classical Rayleigh–Bénard instability.

However, the last example introduces a not so classical

free–rigid boundary condition.

6.1. Thermal convection with the Boussinesq

approximation in a cavity

This example is a classical benchmark for Eulerian

formulations. The fluid is inside a cavity, the left wall

is heated isothermally to 20.5 �C, and the right wall is
heated isothermally to 19.5 �C, the other sides being adi-
abatic. The fluid is initially at 20 �C, which is the refer-
ence temperature. The Rayleigh number, defined as

Ra ¼ agDTL3

mj
ð71Þ

has been chosen as in [39], and is equal to 106. The Pra-

ndtl number, defined as

Pr ¼ m
j

ð72Þ

is equal to 1. The cavity is a square, as in [39]. The mesh

is composed of 16,400 nodes during the whole analysis,
d instability for t = {0.1,38,78,108,158,400} and h 2 {19;21}.
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and 32,000 elements at the beginning, 2/3 for the fluid

part. As explained in the last section, if a node is too

close to another one, it is removed and placed in

another part, but the total number of nodes remains

constant.

The temperature and velocity distributions are pre-

sented in Fig. 2 at different time values. The results

are in perfect agreement with the one obtained by

Strada and Heinrich [39]. It should be noticed that

these kind of examples are typical Eulerian examples,

the configuration being particularly bad for the

Lagrangian approach computationally. As a matter

of fact, as the cavity is closed, there is much more

contact with the wall than in usual free surface prob-

lems, and the space to fill for the element is much

more reduced. However, the results obtained here

demonstrate the validity of the method, even in this

difficult case.
Fig. 5. Velocity norm for the rigid–rigid Rayleigh–Bén
6.2. Mould filling

This example represents a mould filling by water at

100 �C. The mould initially has a temperature of

20 �C. The coupling between the mechanical and ther-
mal parts is only partial due to the mesh movement,

but the velocity is not influenced by the temperature.

An external flux is applied with an external temperature

of 10 �C on all the boundaries, namely the mould

boundary as well as the fluid boundary. The mesh is ini-

tially formed by 12,000 nodes and 23,000 elements. We

represent a mould with two floors, which is often the

case in the industry, to emphasize the problem for the

fluid to follow the main channel and not to enter directly

in the first floor, which is a classical difficulty for Eule-

rian methods with the use of pseudo-concentration. In

the Lagrangian formulation, the motion of the fluid is

naturally driven by the gravity forces so that this kind
ard instability for t = {0.1,38,78,108,158,400}.
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of examples do not really represent a difficulty. The con-

tact is explicitly treated by the remeshing. The only po-

tential problem could be to choose a time step too big so

that the particle goes through the wall without having

created an element of contact with it. However, the dis-

tortion of the mesh can not imply such non-acceptable

time steps.

Numerical results are shown in Fig. 3. It can be

appreciated how the fluid breaks against the sides of

the mould and produces in the four squares a mixing

by convection which diffuses quickly the temperature.

The wave created on the upper part of the fluid when

the mould is completely filled, is depicted in the last pic-

ture. Despite of the remeshing, the boundary definition,

and the reintroduction of nodes, the global filling pos-

sesses a clear symmetry. There is no loss of mass during

the process and the second floor really begins to fill when

the first floor is already filled.
Fig. 6. Temperature distribution for the free–rigid Rayleigh–Bénar
6.3. The Rayleigh–Bénard instability

This example is a classical problem of hydrodynamic

instabilities, see [14] and [21] for a good description of it.

The problem considered is a fluid initially at rest, which

is heated from below. Assuming an infinitesimal pertur-

bation of temperature, the Boussinesq approximation

will induce a vertical movement towards the cooler re-

gion for the hotter lower part and viceversa, which will

reinforce the initial perturbation. Given a critical Ray-

leigh number, the state of the flow will depend on the

fact that its Rayleigh number is lesser or greater than

the critical value. For Ra < Rac, no convection will

occur and the flow is subcritical. If Ra > Rac, the insta-

bility will begin and produce the convection. The flow is

then supercritical. For a slightly supercritical Rayleigh

number, after passing through successive bifurcations,

a steady state is reached as illustrated in [42], p 82. By
d instability for t = {4,38,78,108,158,400} and h 2 {19;21}.
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increasing the Rayleigh number, other bifurcations

occur after the primary bifurcations, according to the

Prandtl number, as depicted experimentally in [14], until

reaching a turbulent flow.

By linearizing the mass conservation equation and

the Navier–Stokes equations coupled with the heat

equation in an Eulerian formulation, and by introducing

a decomposition in normal modes, as performed in [15],

a stability study leads to a solution of the form

w ¼ W ðzÞf ðw; yÞest; T ¼ T ðzÞf ðx; yÞest ð73Þ
where s is a complex number representing the eigenvalue

of the mode, w is the vertical component of the velocity,

and f an unknown function. The solution of the linear-

ized equation with non-physical free–free boundaries

has the form

W n ¼ A sinðnpzÞ ðn ¼ 1; 2 . . .Þ ð74Þ
Fig. 7. Velocity norm for the free–rigid Rayleigh–Bé
The sign of the real part of s will decide of the stability of

the flow. By solving the last equations with s = 0, and

minimizing the Rayleigh number with respect to the

wave number, it is possible to find the critical Rayleigh

number, analytically for the free–free boundary condi-

tion, and numerically for the rigid–rigid and free–rigid

boundary condition, as explained in [15] and [6]. For

the rigid–rigid case, Rac = 1708.

In this numerical example, the bottom is heated iso-

thermally at 21 �C, the top at 19 �C, and the reference
and initial temperature of the fluid is 20 �C. The sides
are adiabatic and Ra = 105 and Pr = 10�1. The flow is

then supercritical. The numerical results of Fig. 5,

which represent the norm of the velocity clearly depict

the typical cell pattern observed experimentally when

one horizontal side is much shorter than the other.

These cells form rolls rotating in opposite direction
nard instability for t = {4,38,78,108,158,400}.



Fig. 8. Detail of two cells for the free–rigid Rayleigh–Bénard

instability.
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for neighboring rolls, along the shortest side. However,

what can not be well appreciated on the picture and is

particularly remarkable, is that a quasi-steady state is

reached, with a periodic oscillation of the temperature

and the cells. This phenomenon is described in detail

in [26] by considering moderately non-linear convec-

tion, and it is to be noticed that the numerical results

coincide with experimental ones for low Prandtl num-

ber, which is exactly the situation here. The rolls oscil-

late as depicted in [8]. It is interesting to notice the

interaction between the different cells before the

quasi-steady state. The supercritical state could be ob-

served through the approximate regularity of the cells

at the last time step. The results are in agreement with

[5] in the sense that the solution is time dependant for

such a high Rayleigh number value. Fig. 4 represents

the temperature distribution at different moments and

corresponds to the theoretical expected result of a

supercritical flow.

6.4. The Rayleigh–Bénard instability with free surface

This example is rarely treated as it combines the dif-

ficulty of the thermal convection with the detection of

free surfaces. The problem considered here does not take

into account any surface tension, a phenomenon associ-

ated to the hydrodynamical instability of Bénard-

Marangoni. Here, the coupling between temperature

and displacement produces the instability, and circular

cells are expected, compared to the appearance of hexag-

onal cells in the case of the Bénard-Marangoni instabil-

ity [43].

The same conditions as in the previous example are

chosen. A temperature of 19 �C is imposed on the free
surface of the fluid. The same instants as above are re-

ported to compare with the rigid–rigid boundary case.

To follow the discussion on the critical Rayleigh num-

ber, the boundary conditions considered here imply

Rac = 1101 theoretically so that the numerical experi-

ment has a Rayleigh number far beyond Rac. As seen

in Fig. 7, the quasi-steady state has not been reached,

due to the high Rayleigh number value. Some parts of

the domain present a quasi static behaviour, but some

cells are unstable. The rolls oscillate as in the preceed-

ing example but some of the cells appear and disap-

pear which is well observed at the last time step for

the cells in the middle of the left part of the experi-

ment. If the calculation of the critical Rayleigh num-

ber for the free–rigid case is well-known, it has not

been possible to find in the literature theoretical results

about the pattern of the cells for this kind of bound-

ary conditions. Fig. 6 represents the temperature dis-

tribution which contains the same unstable behaviour

as the velocity. Fig. 8 represents a detail of two cells

with their temperature, norm of the velocity and veloc-

ity field.
7. Conclusion

A fully non-linear Lagrangian formulation to solve

incompressible fluids with thermal convection and free

surfaces has been presented in this paper. Details of

the mathematical model and the fractional step algo-

rithm chosen for solving the discrete equations in time

have been highlighted. The Lagrangian formulation al-

lows to avoid the instability problem induced by the

convection terms, typical of the Eulerian formulation.

This is done by transferring the convection to the mo-

tion of the nodes, and its inherent difficulty to the mesh

generation. However, with the last improvements real-

ized in the mesh generation field, it is now feasible to

incorporate the mesh generation step as an intrinsic

and fundamental part of the calculation process.

In the numerical examples presented, the method has

proved to be efficient even in an Eulerian context, where

the confined spaces produce difficulties at the mesh gen-

eration level. From a computational standpoint, only

symmetric matrices are inverted, so that the associated

linear equations can be solved in a very efficient manner

with a classical pre-conditioned conjugate gradient algo-

rithm. Furthermore, the fractional step approach has

proved to be an efficient procedure for solving accu-

rately the Lagrangian flow equations.

Future works will cover the extension of thermal re-

sults to three dimensional problems, and especially the
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introduction of solidification during mould filling in

casting problems. An other interesting feature of the

PFEM to be investigated is its ability to introduce par-

ticles at given location with a given density in order to

better capture special features of the solution.
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[30] Oñate E, Garcia J, Bugeda G, Idelsohn SR. A general

stabilized formulation for incompressible fluid flow using

finite calculus and the finite element method. In: Periaux J,

Chamption D, Pironneau O, Thomas Ph, editors. Towards

a new fluid dynamics with its challenges in aeronau-

tics. Barcelona, Spain: CIMNE; 2002.
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