Inversion Invariant Bilipschitz Homogeneity

David Freeman

Department of Math, Physics, and Computer Science University of Cincinnati - Blue Ash

Eastern Sectional Meeting of the AMS Syracuse University, Syracuse, NY October 2, 2010

4 1 1 1 4 1 1 1

David Freeman (UC-Blue Ash) Inversion Invariant Bilipschitz Homogeneity

An embedding $f: X \to Y$ is *L*-bilipschitz provided that for all $x_1, x_2 \in X$ we have

$$L^{-1}d_X(x_1,x_2) \leq d_Y(f(x_1),f(x_2)) \leq L d_X(x_1,x_2).$$

3

An embedding $f : X \to Y$ is *L*-bilipschitz provided that for all $x_1, x_2 \in X$ we have

$$L^{-1}d_X(x_1,x_2) \leq d_Y(f(x_1),f(x_2)) \leq L d_X(x_1,x_2).$$

A space X is bilipschitz homogeneous (*BLH*) provided that for every pair $x_1, x_2 \in X$ there exists a bilipschitz homeomorphism $f : X \to X$ such that $f(x_1) = x_2$.

An embedding $f : X \to Y$ is *L*-bilipschitz provided that for all $x_1, x_2 \in X$ we have

$$L^{-1}d_X(x_1,x_2) \leq d_Y(f(x_1),f(x_2)) \leq L d_X(x_1,x_2).$$

A space X is bilipschitz homogeneous (*BLH*) provided that for every pair $x_1, x_2 \in X$ there exists a bilipschitz homeomorphism $f : X \to X$ such that $f(x_1) = x_2$.

If X is BLH with respect to L-bilipschitz maps, we say that X is uniformly BLH, and in particular, L-BLH.

3

イロト イポト イヨト イヨト

 \mathbb{R}^1

• *BLH* Jordan curves and lines have been extensively studied over the past decade (Bishop, Ghamsari, Herron, Mayer, Rohde, F).

- *BLH* Jordan curves and lines have been extensively studied over the past decade (Bishop, Ghamsari, Herron, Mayer, Rohde, F).
- What about higher dimensional BLH spaces?

- *BLH* Jordan curves and lines have been extensively studied over the past decade (Bishop, Ghamsari, Herron, Mayer, Rohde, F).
- What about higher dimensional BLH spaces?

Theorem (Bishop, 01; F, 09)

Suppose X is a bilipschitz homogeneous Jordan curve or line. If $X \subset \mathbb{R}^2$, then X is bounded turning.

- 4 E b

Theorem (Bishop, 01; F, 09)

Suppose X is a bilipschitz homogeneous Jordan curve or line. If $X \subset \mathbb{R}^2$, then X is bounded turning.

A space X is bounded turning provided that any two points $x, y \in X$ can be joined by a continuum E such that

$$\mathsf{diam}(E) \leq B|x-y|,$$

where B is independent of x, y.

Theorem (Bishop, 01; F, 09)

Suppose X is a bilipschitz homogeneous Jordan curve or line. If $X \subset \mathbb{R}^2$, then X is bounded turning.

A space X is bounded turning provided that any two points $x, y \in X$ can be joined by a continuum E such that

$$\mathsf{diam}(E) \leq B|x-y|,$$

where B is independent of x, y.

Note: There exist bilipschitz homogeneous curves in \mathbb{R}^3 that are not bounded turning ([Bishop, 01; Herron, Mayer, 99]).

Theorem (F, 09)

Suppose X is a bounded turning Jordan line in \mathbb{R}^n containing 0. If both X and the inversion of X at 0 are uniformly bilipschitz homogeneous, then X is Ahlfors Q-regular.

Theorem (F, 09)

Suppose X is a bounded turning Jordan line in \mathbb{R}^n containing 0. If both X and the inversion of X at 0 are uniformly bilipschitz homogeneous, then X is Ahlfors Q-regular.

A space X is Ahlfors Q-regular provided that for every $x \in X$ and 0 < r < diam(X) we have

$$A^{-1}r^Q \leq \mathcal{H}^Q(B(x;r)) \leq Ar^Q,$$

where A is independent of x and r.

Theorem (F, 09)

Suppose X is a bounded turning Jordan line in \mathbb{R}^n containing 0. If both X and the inversion of X at 0 are uniformly bilipschitz homogeneous, then X is Ahlfors Q-regular.

A space X is Ahlfors Q-regular provided that for every $x \in X$ and 0 < r < diam(X) we have

$$A^{-1}r^Q \leq \mathcal{H}^Q(B(x;r)) \leq Ar^Q,$$

where A is independent of x and r.

Can the above theorem be strengthened? generalized?

David Freeman (UC-Blue Ash) Inversion Invariant Bilipschitz Homogeneity

Э

3

Image: A marked and A marked

Choose $p \in X$. Then for $x, y \in X_p := X \setminus \{p\}$,

3

Choose $p \in X$. Then for $x, y \in X_p := X \setminus \{p\}$,

$$d(x,y) \longmapsto d_p(x,y) \simeq \frac{d(x,y)}{d(x,p)d(y,p)}$$

Choose $p \in X$. Then for $x, y \in X_p := X \setminus \{p\}$,

$$d(x,y) \longmapsto d_p(x,y) \simeq \frac{d(x,y)}{d(x,p)d(y,p)}$$

Given $p \in X$, we write $Inv_p(X) := (\hat{X}_p, d_p)$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三里 - のへぐ

E

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

October 2, 2010 9 / 18

3

・ロト ・聞ト ・ヨト ・ヨト

Inversion invariant bilipschitz homogeneity (the IIBLH property): Both X and $Inv_p(X)$ are uniformly bilipschitz homogeneous

David Freeman (UC-Blue Ash) Inversion Invariant Bilipschitz Homogeneity

David Freeman (UC-Blue Ash) Inversion Invariant Bilipschitz Homogeneity

э

・ロト ・聞ト ・ヨト ・ヨト

• There exists $1 \le \lambda < +\infty$ s.t. for any r < diam(X) and any pair $\{x, y\} \subset B(a; r)$, there is a continuum $E \subset B(a; \lambda r)$ joining $\{x, y\}$.

イロト 人間ト イヨト イヨト

• There exists $1 \le \lambda < +\infty$ s.t. for any r < diam(X) and any pair $\{x, y\} \subset B(a; r)$, there is a continuum $E \subset B(a; \lambda r)$ joining $\{x, y\}$.

• There exists $1 \le \lambda < +\infty$ s.t. for any r < diam(X) and any pair $\{x, y\} \subset B(a; r)$, there is a continuum $E \subset B(a; \lambda r)$ joining $\{x, y\}$.

• There exists $1 \le \lambda < +\infty$ s.t. for any r < diam(X) and any pair $\{x, y\} \subset B(a; r)$, there is a continuum $E \subset B(a; \lambda r)$ joining $\{x, y\}$.

The LLC_2 condition is 'dual' to the LLC_1 condition:

• There exists $1 \le \lambda < +\infty$ s.t. for any r < diam(X) and any pair $\{x, y\} \subset B(a; r)$, there is a continuum $E \subset B(a; \lambda r)$ joining $\{x, y\}$.

The LLC_2 condition is 'dual' to the LLC_1 condition:

• There exists $1 \le \lambda < +\infty$ s.t. for any r < diam(X) and any pair $\{x, y\} \subset X \setminus B(a; r)$, there is a continuum $E \subset X \setminus B(a; r/\lambda)$ joining $\{x, y\}$.

• There exists $1 \le \lambda < +\infty$ s.t. for any r < diam(X) and any pair $\{x, y\} \subset B(a; r)$, there is a continuum $E \subset B(a; \lambda r)$ joining $\{x, y\}$.

The LLC_2 condition is 'dual' to the LLC_1 condition:

• There exists $1 \le \lambda < +\infty$ s.t. for any r < diam(X) and any pair $\{x, y\} \subset X \setminus B(a; r)$, there is a continuum $E \subset X \setminus B(a; r/\lambda)$ joining $\{x, y\}$.

• There exists $1 \le \lambda < +\infty$ s.t. for any r < diam(X) and any pair $\{x, y\} \subset B(a; r)$, there is a continuum $E \subset B(a; \lambda r)$ joining $\{x, y\}$.

The LLC_2 condition is 'dual' to the LLC_1 condition:

• There exists $1 \le \lambda < +\infty$ s.t. for any r < diam(X) and any pair $\{x, y\} \subset X \setminus B(a; r)$, there is a continuum $E \subset X \setminus B(a; r/\lambda)$ joining $\{x, y\}$.

Suppose X is proper, connected, locally connected, and doubling. Then the IIBLH property implies the LLC_1 condition. If, in addition, X contains no cut points, it also implies the LLC_2 condition.

Suppose X is proper, connected, locally connected, and doubling. Then the IIBLH property implies the LLC_1 condition. If, in addition, X contains no cut points, it also implies the LLC_2 condition.

Corollary

Suppose $X \subset \mathbb{R}^n$ is a Jordan curve or line. Then X has the IIBLH property if and only if X is bounded turning and Ahlfors Q-regular.

11 / 18

Suppose X is a proper, connected, D-doubling metric space. Then the L-IIBLH property implies Ahlfors Q-regularity, with regularity constant depending only on D, L.

Suppose X is a proper, connected, D-doubling metric space. Then the L-IIBLH property implies Ahlfors Q-regularity, with regularity constant depending only on D, L.

Quantitative!

Suppose X is a proper, connected, D-doubling metric space. Then the L-IIBLH property implies Ahlfors Q-regularity, with regularity constant depending only on D, L.

Quantitative!

The previous two theorems yield...

Suppose X is a proper, connected, D-doubling metric space. Then the L-IIBLH property implies Ahlfors Q-regularity, with regularity constant depending only on D, L.

Quantitative!

The previous two theorems yield...

Corollary

When $X \approx S^2$ and has Hausdorff dimension 2, the IIBLH property implies the existence of a quasisymmetric homeomorphism $f : S^2 \to X$.

・ロト ・聞ト ・ヨト ・ヨト

3

13 / 18

• We first use bilipschitz homogeneity to show that X must be *LLC* at fixed scales.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We first use bilipschitz homogeneity to show that X must be *LLC* at fixed scales.
- Then we use inversion invariance to show that a single *LLC* constant holds at all scales.

- We first use bilipschitz homogeneity to show that X must be *LLC* at fixed scales.
- Then we use inversion invariance to show that a single *LLC* constant holds at all scales.

- We first use bilipschitz homogeneity to show that X must be *LLC* at fixed scales.
- Then we use inversion invariance to show that a single *LLC* constant holds at all scales.

 $\frac{d(x,y)}{AB^2} \le d_p(x,y) \le \frac{d(x,y)}{r^2}$

 First we show that bilipschitz homogeneity implies generalized Ahlfors regularity for some dimension gauge $\delta: (0, +\infty) \to (0, +\infty)$

 $\mathcal{G}^{\delta}(B(x;r)) \simeq \delta(r).$

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 First we show that bilipschitz homogeneity implies generalized Ahlfors regularity for some dimension gauge $\delta: (0, +\infty) \to (0, +\infty)$

$$\mathcal{G}^{\delta}(B(x;r))\simeq\delta(r).$$

• Then we show that $\delta(t) \simeq t^Q$.

(人間) とうてい くうい

• First we show that bilipschitz homogeneity implies generalized Ahlfors regularity for some dimension gauge $\delta : (0, +\infty) \rightarrow (0, +\infty)$

$$\mathcal{G}^{\delta}(B(x;r))\simeq\delta(r).$$

• Then we show that $\delta(t) \simeq t^Q$.

When X is bounded,

$$\delta(r) := N(r; X)$$

14 / 18

• First we show that bilipschitz homogeneity implies generalized Ahlfors regularity for some dimension gauge $\delta : (0, +\infty) \rightarrow (0, +\infty)$

$$\mathcal{G}^{\delta}(B(x;r))\simeq\delta(r).$$

• Then we show that $\delta(t) \simeq t^Q$.

When X is bounded,

$$\delta(r) := N(r; X)$$

When X is unbounded,

$$\delta(r) := \begin{cases} N(r; B(x; 1)) & \text{if } r \leq 1\\ N(1; B(x; r)) & \text{if } r \geq 1 \end{cases}$$

14 / 18

David Freeman (UC-Blue Ash) Inversion Invariant Bilipschitz Homogeneity

크

Question: Does bilipschitz homogeneity imply that a space X is LLC when X ⊂ Rⁿ and X ≈ Rⁿ⁻¹?

Question: Does bilipschitz homogeneity imply that a space X is LLC when X ⊂ Rⁿ and X ≈ Rⁿ⁻¹?

Let Y denote a planar bilipschitz homogeneous Jordan curve that is not Ahlfors Q-regular for any Q. Then $Y \times R$ is an *LLC* bilipschitz homogeneous surface in R^3 that is not Ahlfors Q-regular for any Q.

Question: Does bilipschitz homogeneity imply that a space X is LLC when X ⊂ Rⁿ and X ≈ Rⁿ⁻¹?

Let Y denote a planar bilipschitz homogeneous Jordan curve that is not Ahlfors Q-regular for any Q. Then $Y \times R$ is an *LLC* bilipschitz homogeneous surface in R^3 that is not Ahlfors Q-regular for any Q.

• **Question:** Does there exist a property that - when coupled with bilipschitz homogeneity - will imply that a space X is *LLC* but *not* Ahlfors *Q*-regular?

ヘロト 不得 とうき とうとう ほ

16 / 18

THANKS!

David Freeman (UC-Blue Ash) Inversion Invariant Bilipschitz Homogeneity

◆□ → ◆□ → ◆臣 → ◆臣 → □ 臣