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Abstract

Turbulence in a �uid has two mutually contradictory aspects, that is, the apparent ran-
domeness as a whole and the intrinsic determinicity due to the �uid-dynamical equations. In
the traditional approarch to this subject, the velocity �eld of turbulence has been represented
by the mean products of the turbulent velocities at several points and a time, and the equa-
tions governing the dynamical system composed of the mean velocity products are solved to
obtain the mean velocity products as the deterministic functions in time. The works along
this approach constitute the main body of turbulence research as outlined by Monin and
Yaglom (1975) under the title of �Statistical Fluid Mechanics�. It should be noted, however,
that this approach has the di¢ culty of unclosedness of the equations for the mean velocity
products due to the nonlinearity of the Navier-Stokes equations and an appropriate closure
hypothesis is still awaited.
In the statistical approach to turbulence, on the other hand, the random velocity �eld of

turbulence is represented by the joint-probability distributions of the multi-point turbulent
velocities. This approach has been taken by Lundgren (1967) and Monin (1967) indepen-
dently, and the system of equations for the probability distributions of the multi-point ve-
locities has been formulated. This system of equations is also unclosed, but in this case the
problem is much easier to deal with since the unclosedness is not due to the nonlinearity but
to the higher-order derivatives in the viscous term of the Navier-Stokes equations. Tatsumi
(2001) proposed the cross-independence closure hypothesis for this purpose and proved its
validity for homogeneous isotropic turbulence. More recently, the theory has extended by
Tatsumi (2011) to general inhomogeneous turbulence and the closure is shown to provide an
exact closure. This theory is outlined and discussed in the later part of this paper.

1 Introduction

The dual characters of turbulence, the randomness and the determinicity, are dealt with by
means of statistics and mechanis respectively, and then these two elements are incorporated
into �Statistical Mechanics of Fluid Turbulence�.

1.1 Statistics of turbulence

For turbulence in an incompressible viscous �uid, the �uid velocity u (x; t) at all points x
and time t is dealt with as the basic random function and the joint-probability distributions
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of the velocities um (t) = u (xm; t) at the points xm (m = 1; : : : ; n) and a time t are assumed
to exist and written as

f (n) (v1; : : : ;vn;x1; : : : ;xn; t) = h� (u1 (t)� v1) � � � � (un (t)� vn)i ; (1)

where vm (m = 1; : : : ; n) represent the probability variables corresponding to the random
velocities um (t) (m = 1; : : : ; n) ; � the three-dimensional delta function, and h i the average
with respect to the distribution of the variable inside.
Then the statistical averages of common use are de�ned as follows.

Mean velocity: u (x; t) = hu (x; t)i =
Z
v f (v;x; t) dv; (2)

Kinetic energy: E (x; t) =
1

2



ju (x; t)j2

�
=
1

2

Z
jvj2 f (v;x; t) dv; (3)

1.2 Dynamics of turbulence

As a �uid motion, turbulence in an incompressible viscous �uid is subject to the Navier-Stokes
equation for the velocity u(x; t) and the pressure p(x; t) of the �ow,

@u

@t
+

�
u � @
@x

�
u� �

���� @@x
����2 u = � @

@x

�
p

�

�
; (4)

and the non-divergence condition,

@

@x
� u = 0; (5)

where � and � denote the density and kinetic viscosity of the �uid respectively.
The pressure term in Eq.(4) can be eliminated using Eq.(5) with the result,

@u

@t
+

�
u � @
@x

�
u� �

���� @@x
����2 u = � @

@x

1

4�

Z
jx� x0j�1 @

@x0
�
�
u0 � @

@x0

�
u0dx0; (6)

where u0 (t) = u (x0; t) ; and the in�nite point is assumed to be occupied by the �uid. Eq.(6)
gives a deterministic equation for the velocity u(x; t) so that it is used more conveniently
than the original Eq.(4)

1.3 Mean �ow and turbulent �uctuation

It is useful to decompose the velocity u(x; t) and the pressure p(x; t) of the turbulent �ow
into their probability averages and the �uctuations around the averages as

u(x; t) = u(x; t) + bu(x; t); p(x; t) = p(x; t) + bp(x; t): (7)

whith

u(x; t) = hu(x; t)i ; p(x; t) = hp(x; t)i ; (8)

bu(x; t) = u(x; t)� u(x; t); bp(x; t) = p(x; t)� p(x; t); hbu(x; t)i = hbp(x; t)i = 0: (9)
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denoting the averages and the �uctuations respectively.
The equations of motion for the mean �ow u(x; t) and the turbulent �uctuation bu(x; t)

are obtained by substituting the decomposition (7) into Eq.(4) and taking the mean of the
resulting equations as follows:

@u

@t
+

�
u � @
@x

�
u+

��bu � @
@x

� bu�� � ���� @@x
����2 u = � @

@x

�
p

�

�
; (10)

for the mean �ow u(x; t); and

@bu
@t
+

�bu � @
@x

�
u+

�
u � @
@x

� bu+ �bu � @
@x

� bu���bu � @
@x

� bu�� � ���� @@x
����2 bu = � @

@x

�bp
�

�
;

(11)
for the �uctuation bu(x; t); with the non-divergence conditions which follows from Eq.(5) as

@

@x
� u = @

@x
� bu = 0: (12)

1.4 Unclosedness of statistical equations

Now the mean velocity u can be obtained as the solutions of Eq.(10). In this context, however,
we �nd that this equation is not closed since it includes the term,��bu � @

@x

� bu� = @

@xj

3X
i;j=1

hbui(x; t)buj(x; t)i = @

@xj

3X
i;j=1

Rij(x; t); (13)

which is known as the Reynolds stress �Rij (i; j = 1; 2; 3). Thus, in order to solve Eq.(10), we
have to know this term represented by Eq.(13). This unclosedness is not resolved even if we
proceed to the Reynolds stress Rij since the equation for Rij derived from Eq.(11) includes
the triple mean product of bu. This is the �closure problem�which constitutes the central
di¢ culty of turbulence theory.

2 Statistical Fluid Mechanics

In order to deal with the closure problem seriously, we have to minimize the mathematical
complexity of the equations as far as possible. For this purpose we consider homogeneous
isotropic turbulence with no mean �ow u = 0 which has been introduced by Taylor (1935).

2.1 Homogeneous isotropic turbulence

With no mean �ow, the velocity u(x; t) and the pressure p(x; t) of this turbulence are governed
by Eqs.(4) and (5) directly. Among the mean products of various orders, those of �rst order,
hu(x; t)i and hp(x; t)i ; vanish according to the homogeneity and hence those of the second
and third orders de�ned by

Bij(r; t) = hui(x; t)uj(x+ r; t)i ;
Tijk(r; r

0; t) = hui(x; t)uj(x+ r; t)uk(x+ r0; t)i ; i; j; k = (1; 2; 3); (14)
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play important role in this turbulence.
The equation for the velocity correlation Bij is derived from Eq.(4) and written by

Karmann-Howarth (1938) in the following nice scalar form:�
@

@t
� 2�

�
@2

@r2
+
4

r

@

@r

��
B (r; t) =

�
@

@r
+
4

r

�
T (r; t) ; (15)

where
B (r; t) =



uk(x; t)uk(x+ r; t)

�
; T (r; t) =



uk(x; t)

2uk(x+ r; t)
�
; (16)

represent the longitudinal components of Bij (r; t) and Tijk(r; 0; t) along the vector r and
called the double and triple velocity correlations respectively.

2.2 Fourier analysis of turbulence

The velocity �eld u (x; t) of homogeneous isotropic turbulence can be expressed in its three-
dimensional Fourier transform as

u (x; t) =

Z eu (k; t) exp [i (k � x)] dk; (17)

where i= X (�1) and eu (k; t) denotes the Fourier amplitude of the velocity u (x; t) at the wave
number k: In order that the Fourier transform eu (k; t) exists, the condition R ju (x; t)j dx <1
should be satis�ed,.but actually not in homogeneous turbulence. Then, equations should be
written in the Fourier-Stieltjes integral, but the above notation is being used for simplicity.
The equations for the amplitude velocity eu (k; t) are obtained by applying the Fourier

transform (17) to Eqs.(4) and (5) for the velocity u (x; t) as

�
@

@t
+ �k2

� eu (k; t) = �iZ (k � eu (k� k0; t))�eu (k0; t)� k

k2
(k � eu (k0; t))� dk0: (18)

where k = jkj and the pressure term has been eliminated using the non-divergence condition.
The velocity correlations de�ned by Eq.(14) are expressed in the Fourier space as

Bij(r; t) =

Z eBij(k; t) exp [i (k � r)] dk;
Tijk(r; r

0; t) =

Z Z eTijk(k;k0; t) exp [i (k � r+ k0�r0)] dkdk0: (19)

and the functions eBij and eTijk are called as the energy spectrum and the energy-transfer
respectively according to their physical meaning.
The equation for the energy spectrum eBij is obtained by taking the Fourier transform of

Eq.(15) as�
@

@t
+ 2�k2

� eBij(k; t) = ikk Z n�il (k) eTljk(k;k0; t)��jl (k) eTlik(�k;k0; t)o dk0; (20)

where �ij (k) = �ij � kikj=k2:
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For isotropic turbulence, the spectral functions in Eq.(20) are expressed as

eBij(k; t) = 1

4�k2
E(k; t)�ij (k) ;

Z eTijk(k;k0; t)dk0 = i
8�k4

W (k; t) fki�jk (k) + kk�ij (k)g ;
(21)

and then Eq.(20) for the energy spectrum eBij is written in a simple scalar form as�
@

@t
+ 2�k2

�
E(k; t) =W (k; t) ;

Z
W (k; t)dk = 0; (22)

where E(k; t) denotes the energy spectrum function representing the amount of the energy
included in a sphere of the radius k; while W (k; t) denotes the energy-transfer function
representing the transfer of the energy between the di¤erent values of k:

2.3 Dynamical closure problem

So far, the closure problem mentioned in §1.4 has mostly been dealt with using ad hoc
assumptions. For homogeneous isotropic turbulence, however, it has become possible to deal
with everything in more systematic way. Hence, the closure problem also has become to be
dealt with more systematically employing novel concepts and techniques in modern nonlinear
physics.

2.4 Quasi-normal closure

Probably, the simplest closure relation may be given by the quasi-normal relation, which is
symbolically written, to a few orders, as

hu1u2i = hu1i hu2i ;
hu1u2u3i = hu1u2i hu3i+ hu1u3i hu2i ;
hu1u2u3u4i = hu1u2i hu3u4i+ hu1u3i hu2u4i+ hu1u4i hu2u3i : (23)

These relations are exactly valid if humi (m = 1) are all normal averages, but otherwise,
they are valid only at large distances between the points of concern. In this sense, they are
called the quasi-normal closure. For homogeneous turbulence, in which humi = 0; the �rst
two relations vanish, so that the third relation gives the �rst meaningful expression of this
closure.
Tatsumi (1957) employed this closure for Eq.(22) and after some calculations, succeeded

to express the function W (k; t) in terms of the energy spectrum E (k; t) as follows:

W (k; t) =

Z 1

0

Z 1

�1
W (k; k0; �; 0) exp

�
�2�

�
k2 + k02 + �kk0

�
t
�
k02dk0d�

�
Z t

0

dt0
Z 1

0

Z 1

�1
exp

�
�2�

�
k2 + k02 + �kk0

�
(t� t0)

�
� (24)

�
�
E (k; t0) k02 � E (k0; t0) k2

	
E (k00; t0)

�
k2k02

k002
+ �kk0

��
1� �2

�
k00�2dk0d�;
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where � = (k � k0) =kk0, and W (k; k0; �; 0) denotes the initial condition for W (k; k0; �; t)
compatible with that for E (k; t) :
Eqs.(22) and (24) provide us with the closed set of equation for the energy spectrum

E (k; t). After publishing this result in a domestic congress, the author has learnt that
another work along the same line of idea has been done by Proudman and Reid (1954) with
the samel result but still in tensorial form. Thus, the closure problem of turbulence seemed
to have been solved so far as homogeneous isotropic turbulence is concerned.
A few years later, Ogura (1963) carried out numerical computation of the energy spectrum

E (k; t) using Eqs.(22) and (24) by Tatsumi (1957). To the author�s surprise, his result has
shown that the function E (k; t) is deformed largely in time to take negative values in some
range of k for large Reynolds numbers. The reason of the failure was not clear at that time,
but it seemed to be due to the lack of the inertial energy-dissipation, which will be discussed
below, in the framework of quasi-normal closure.

2.5 Kolmogorov�s theory of local turbulence

The non-zero energy-dissipation rate of turbulence de�ned by

" (x; t) = �
3X

i;j=1

*�
@ui (x; t)

@xj

�2+
; (25)

for the limit of vanishing viscosity � ! 0 is the fundamental assumption in Kolmogorov�s
(1941).theory of local isotropic turbulence.
Under this premise, he has developed his theory of local isotropic turbulence in the wave-

number space, assuming that there exists a local range of turbulence at large values of
k = jkj = O

�
("=�3)

1=4
�
which is in a quasi-equilibrium between the energy in�ow from the

energy-containing range of O (") and the energy out�ow due to the molecular viscosity of
O (�) : Then he expresses the the energy spectrum E(k; t) at the local range of k in terms of
two parameters " and � by dimensional analysis as

E(k; t) = (�5")1=4F
�
k=
�
"=�3

�1=4�
; (26)

where F denotes a non-dimensional function.
He further argues that at extremely large Reynolds numbers � ! 0, the spectrum E(k; t)

will become independent of the viscosity �; so that the function F must be expressed as F
/ ��5=4 and it immediately follows that:

E(k; t) = C"2=3k�5=3; (27)

with an universal constant C: This is known as Kolmogorov�s �5=3 power energy spectrum .
Now it is apparent that the notion of the inertial engergy dissipation, " > 0 for � ! 0;

was out of scope in the quasi-normal theories of turbulence, and this is indeed the crucial
reason for the failure of the theory. Various attempts for modi�cation of the theory have
been made by several people including the author (see for instance McComb (1990)), but
the �nal answer to this question had to wait for Tatsumi (2001) which includes the inertial
energy dissipation " > 0 in its closure process.
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2.6 Kraichnan�s and related theories

At about the same time, the direct-interaction approximation (DIA) theory of Kraichnan
(1959) has appeared. This theory seemed to be fairly similar to the quasi-normal theories,
but being concerned with stationary turbulence according to Kolmogorov�s idea of local
turbulence, it has been free fom the trouble of the negaive energy spectrum. His theory
on turbulence has been developed to a unique nonlinear theory of turbulence which has
been nicely summarized in terms of the renormalization-group theory by McComb (1990).
Probably, we cannot talk about mechanics of turbulence without mentioning his and his
group�s contributions.

3 Statistical Mechanics of Fluid Turbulence

Now, it seems adequate to move to statistical mechanical approach to turbulence in terms
of the probability distributions of turbulent velocity, which constitutes the central part of
�statistical mechanics of �uid turbulence�.

3.1 Closure of equations for velocity distributions

The equations governing the multi-point probability distributions f (n) (v1; : : : ;vn; t) (n � 1)
have been obtained by Lundgren (1967) and Monin (1967), but any �nite subset of these
equations is not closed since each equation includes the higher-order velocity distributions
as new unknowns. Then, in order to close these equations, we have to introduce a closure
hypothesis. This �statistical closure�problem, however, is much easier to deal with than the
�dynamical closure�problem, and it will be shown that this closure can be even carried out
exactly.

3.2 Cross-Independence closure

If we consider the �rst two members f and f (2) of the velocity distributions f (n) represented
by Eq.(1), the simplest relationship between these distributions may be given by the inde-
pendence relation,

f (2) (v1;v2;x1;x2; t) = f (v1;x1; t) f (v2;x2; t) : (28)

This relation corresponds to the �rst line of the quasi-normal closure (23) for the velocity
products, which is known to be valid at large distances r = jx2 � x1j ! 1 but not otherwise.
On the other hand, if we de�ne the sum and di¤erence of the velocities u1 and u2 as

u+� =
1
2
(�u1 + u2) and consider the distributions of these cross-velocities u� as

g� (v�;x1;x2; t) = h� (u� (t)� v�)i ;
g(2) (v+;v�;x1;x2; t) = h� (u+ (t)� v+) � (u� (t)� v�)i ; (29)

we can assume the cross-independence relation for the distributions g(2) and g� as

g(2) (v+;v�;x1;x2; t) = g+ (v+;x1;x2; t) g� (v�;x1;x2; t) : (30)
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The relation (30) gives, according to the identity,

f (2) (v1;v2;x1;x2; t) dv1dv2 = g
(2) (v+;v�;x1;x2; t) dv+dv�; (31)

another closure relation for the distribution f (2) as

f (2) (v1;v2;x1;x2; t) = 2�3g(2) (v+;v�;x1;x2; t)

= 2�3g+ (v+;x1;x2; t) g� (v�;x1;x2; t) : (32)

where the Jacobian @ (dv+; dv�) =@ (dv1; dv2) = 2�3 has been used.:
Unlike the ordinary independence relation (28), the cross-independence relation (32) is

shown to be not only valid for large r ! 1 but exactly satis�ed at r ! 0 according to the
coincidence conditions at r = jx2 � x1j ! 0 as follows:

lim
jx2�x1j!0

f (2) (v1;v2;x1;x2; t) = f (v1;x1; t) � (v2 � v1) ;

lim
jx2�x1j!0

g+ (v+;x1;x2; t) = f (v1;x1; t) ;

lim
jx2�x1j!0

g� (v�;x1;x2; t) = � (v�) = 2
3� (v2 � v1) : (33)

4 The Cross-Independence Theory

In the velocity distribution formalism of turbulence, the closed equations for the one- and
two-point velocity distributions f and f (2) constitute the minimum deterministic dynamical
system. Thus, let us brie�y outline and discuss these equations.

4.1 Closure of One-Point Equation

The Lundgren-Monin equation for the one-point velocity distribution f is expressed for gen-
eral inhomogeneous turbulence as follows:�

@

@t
+ v1 �

@

@x1

�
f (v1;x1; t) = �� lim

jx2�x1j!0

���� @@x2
����2 @

@v1
�
Z
v2f

(2) (v1;v2;x1;x2; t) dv2

+
@

@v1
� @
@x1

1

4�

Z Z
jx2 � x1j�1

�
v2 �

@

@x2

�2
f (2) (v1;v2;x1;x2; t) dv2dx2; (34)

which includes the higher-order distributions f (2) on the right-hand side.
The closure of this equation by means of the cross-independence closure hypothesis (32)

has been made by Tatsumi (2001) for homogeneous isotropic turbulence and by Tatsumi
(2011) for general inhomogeneous turbulence as

"
@

@t
+ v1 �

@

@x1
+ �

@

@v1
� v1

���� @@x1
����2 + � (x1; t) ���� @@v1

����2 � @

@v1
� @
@x1

� (v1;x1; t)

#
�

�f (v1;x1; t) = 0; (35)

where the parameters � (x1; t) and � (v1;x1; t) are de�ned as

8

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 042024 doi:10.1088/1742-6596/318/4/042024

8



� (x1; t) =
2

3
� lim
jx2�x1j!0

���� @@x2
����2 Z jv�j2 g� (v�;x1;x2; t) dv�

=
2

3
� lim
jx2�x1j!0

���� @@x2
����2 
ju� (x1;x2; t)j2�

=
1

3
�

3X
i;j=1

*�
@ui (x1; t)

@x1j

�2+
=
1

3
" (x1; t) ; (36)

� (v1;x1; t) =
1

4�

Z Z
jx2 � x1j�1

�
v2 �

@

@x2

�2�
1 + v� �

@

@v1

�
�

�g� (v�;x1;x2; t) dv�dx2: (37)

where the equivalence of the parameter � with the energy dissipation rate " follows from
Eq.(25).
It should be noted that the energy dissipation rate � = "=3 has been expressed by Eq.(36)

in terms of an integral of the velocity-di¤erence distribution g� which is mostly contributed
from small turbulent �uctuations. This clearly manifests the "�uctuation-dissipation theo-
rem" in non-equilibrium statistical mechanics. Another important point is that the �rst-order
moment equation of Eq.(35) is identical with the version (6) of the Navier-Stokes equation.
This gives an evidence proof to the exactness of the cross-independence closure.

4.2 Closure of Two-Point Equation

The closed equation for the two-point velocity distribution f (2) is obtained from the corre-
ponding Lundgren-Monin equation applying the cross-independence closure hypothesis (32)
to the pairs of the velocities (v1;v3) and (v2;v3) of the distribution f (3): The result depends
upon whether the distance r = jx2 � x1j belongs to the energy-containing range larger than
the distances r0 = jx3 � x1j and r00 = jx3 � x2j or to the local range comparable to r0 and r00:
If the distance r belongs to the energy-containing range, the closed equation for the

distribution f (2) is obtained as follows (see Tatsumi (2011)):

"
@

@t
+

2X
m=1

(
vm �

@

@xm
+ �

@

@vm
� vm

���� @@xm
����2
)#

f (2) (v1;v2;x1;x2; t)

= �
2X

m=1

(
� (xm; t)

���� @@vm
����2 � @

@vm
� @

@xm
� (vm;xm; t)

)
f (2) (v1;v2;x1;x2; t) (38)

where the parameters � and � are de�ned in the similar manner as those in §4.1.
The double integral moment of Eq.(38) gives the equation for the velocity correlation

U (2) (x1;x2; t) = hu1 (x1; t) � u2 (x2;t)i as"
@

@t
� �

 ���� @@x1
����2 + ���� @@x2

����2
!#

U (2) (x1;x2; t)�
�
u2 �

�
u1 �

@

@x1

�
u1

�
�
�
u1 �

�
u2 �

@

@x2

�
u

�
=

�
u2 �

@

@x1

�
p1
�

��
+

�
u1 �

@

@x2

�
p2
�

��
; (39)

9

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 042024 doi:10.1088/1742-6596/318/4/042024

9



which is again identical with the corresponding equation derived from the Navier-Stokes
equation, giving another con�rmation to the exactness of the cross-independence closure.

4.3 Closure of Two-Point Local Equation

In the local range, we have to use the local variables normalized by Kolmogorov�s length
� = (�3="0)

1=4 and velocity � = (�"0)
1=4 ; "0 being an initial value of " (x; t) : In this case, it is

also necessary to transform the velocities (v1;v2) in the degenerate distributions f (3) of the
Lundgren-Monin equation for the distribution f (2) into the cross-velocities (v+;v�) in order
to secure their mutual independence. Then, the closed two-point local equation is obtained
following the procedure as for Eq.(38) as follows (see Tatsumi (2011)):

"
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@t�
+
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m=1

(
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@x�m
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1

2
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� v�m

 ���� @@x�1
����2 + ���� @@x�2

����2
!)#

f (2) (v�1;v
�
2;x

�
1;x

�
2; t

�)

= �
"X

�
��� (x

�
1;x

�
2; t

�)

���� @@v��
����2 + 2X

m=1

@

@v�m
� @

@x�m
�� (v�m;x

�
m; t

�)

#
�f (2) (v�1;v�2;x�1;x�2; t�) ; (40)

where the parameters ��� (x
�
1;x

�
2; t

�) and �� (v�m;x
�
m; t

�) are de�ned as

��� (x
�
1;x

�
2; t

�) =
2

3
lim

jx�3�x�1j!0

���� @@x�3
����2 Z ��v�0����2 g�� �v�0��;x�1;x�2;x�3; t�� dv�0��; (41)

�� (v�m;x
�
m; t

�) =
1

4�

Z Z
jx�3�x�mj

�1
�
v�3 �

@

@x�3

�2�
1 + v��m �

@

@v�m

�
�

�g�
�
v�0�;x

�
m;x

�
3; t

�� dv��mdx�3; (42)

where v��m = (v�3�v�m) =2: The parameters ��� (x�1;x�2; t�) represent the energy-dissipation
rates in the local range of r� corresponding to � (x1; t) and � (x2; t) for the global range of
r�.
The double integral moment of Eq.(40) gives the equation for the two-point velocity

correlation in the local range, U (2)� (x�1;x
�
2; t

�) = hu�1 (x�1; t�) � u�2 (x�2; t�)i which is completely
compatible with the establised equation (39) for U (2) (x1;x2; t) (see Tatsumi (2011)).

5 Concluding Remarks

It has been established that the closed equations for the one-point velocity distribution f;
the two-point velocity distribution f (2) and the two-point local velocity distribution f (2)�

constitute the minimum deterministic dynamical system. Thus the present theory, which
is based on the unclosed but exact Lundgren-Monin equations and the exactly valid cross-
independence closure, provide us with a complete formulation of �statistical mechanics of
�uid turbulence�.
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