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1. Introduction. 
Certain recent work leads to the belief that it is time to consider again the 

Navier-Stokes equations for the steady flow of an incompressible viscous fluid, 
with a hope that a deeper insight into the nature of the solutions may be 
achieved. The investigations are concerned with an understanding of the nature, 
and extensions, of approximations at small and at large Reynolds numbers. 
I shall, however, not attempt a review of the work at small Reynolds numbers; 
at the present time the asymptotic approach at large Reynolds numbers seems 
more important and interesting, and moreover I have nothing in any way new 
to offer about small Reynolds numbers. First, then, some recent developments 
of steady, laminar, boundary-layer theory will be considered. Most modern 
research in fluid dynamics is concerned with turbulence or the high-speed flow 
of gases; after the success of Prandtl's boundary-layer theory interest died 
down, except for special problems and (in particular) three-dimensional effects. 
(See Ref. 1 ). I shall be concerned with a different aspect, considering boundary-
layer theory as a first step towards obtaining asymptotic expansions for large 
Reynolds numbers. The aim at this stage is simply to show what is involved in 
constructing such asymptotic solutions. 

Approximations at large Reynolds numbers will provide flows that are 
unstable, and no guidance is to be expected from experiment. However, the 
necessity for considering such approximations remains, not only for the sake 
of a deeper mathematical-physical understanding (which is also needed for 
considering boundary layers in high-speed gas flow), but also to begin the 
study of asymptotic expansions that will apply at moderate, or even fairly 
small, Reynolds numbers. 

The simplest example is still that of two-dimensional flow past a semi-
infinite flat plate parallel to the stream, and it is with this example that we 
shall be largely concerned. The important point, however, is that the plate is 
semi-infinite—there is no wake. It appears that when a wake is present the limit 
of the steady flow as the Reynolds number tends to infinity is not known with 
sufficient certainty. (Even for a finite flat plate parallel to the stream it is 
known only approximately). 
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The mathematical theory involved is that of singular perturbations: when 
viscosity is neglected, the governing equations are non-linear; the perturbation 
is linear, and contains higher derivatives with a small coefficient. Fluid me
chanics is full of such problems. The Navier-Stokes equations provide one of 
the hardest examples, for although the non-linear part, by itself, is usually 
integrated at once to provide the simple linear Laplace equation when viscosity 
is neglected, the non-linearity makes itself strongly felt as soon as the viscous 
perturbation is considered. Other examples in fluid mechanics may arise from 
problems of heat transfer in moving fluids, from entropy variations (in the 
initial stages) behind a shock wave of varying strength, and from the theory of 
long waves on shallow water. 

When the viscosity tends to zero, one of the most interesting phenomena 
is the appearance of singular surfaces such as vortex sheets and shock waves; 
we want to know more details for large finite Reynolds numbers of the flows 
inside the thin layers which become such singular surfaces for infinite Reynolds 
numbers. In particular, shock-wave phenomena in one-dimensional flows are 
described by nonlinear wave equations perturbed by linear higher-order terms. 
I shall not, however, discuss the shock-wave equations directly, but shall here, 
for mathematical illustration, go over to results that can be proved, by using 
as examples (and generalizing) two equations that have been solved explicitly 
(one of which has some importance in chemical engineering), and which show 
the nature of the phenomena quite clearly. 

2. The Navier-Stokes Equations. The Boundary-Layer Equation, and 
Solution for.Flow along a Flat Plate. 

Non-dimensional velocities and coordinates will be used in writing the 
Navier-Stokes equations for two-dimensional steady motion. If U is a standard 
velocity, v the kinematic viscosity of the fluid, and I a typical length, the 
Reynolds number is defined by 

R = Uljv. (1) 

We shall be concerned with flow past a semi-infinite flat plate parallel to the 
stream, lying on y = 0, x ^ 0, where U is the undisturbed velocity of the 
stream; there is then no obvious length in the problem. We may simply select 
one arbitrarily, and keep it constant as R -> oo; R -> oo means v ->0. 

Then with a usual notation the Navier-Stokes equations are 

u = dipjdy, v = — dipjdx, (2) 

I v v + P - a • (3) 
R d[x,y) K ' 
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For the unperturbed equation, V2ip is a function of ip, and we have the 
classical theorem that with no vorticity in the undisturbed flow at infinity 
upstream, V2^ = 0 in any region occupied by streamlines coming from infinity 
upstream. (This is practically correct for streamlines which have not entered a 
region where the perturbation terms are important). 

According to boundary-layer theory, (cf. Ref. 2), we set 

yx = R%y, % = Rh> (*) 

in (3), and assume that the derivatives that occur are now all 0(1) as R -*• oo, 
so the boundary-layer equation is simply obtaining by putting 1/R = 0 in the 
resulting equation, which is 

d l&x d% d\ dX d\ \ J_f 
ay-i 1 dy\ + dx dy\ dyx dxdyx \ R\ 

diX , h d8x 
..+ dx2dy\ dx dx2dyx 

dA^x\ + ±^x = 0 
(5) 

dy1dxal ' R2dxi 

As yx -»• oo, dzxfòy\ a n ( i <P%fòy\ ~*®> an(^ ^he boundary layer equation is 

dy\ + dx dy\ ' 
h d*x 
dyt dxdy-y 

du 

= P(x) 
d% d2x 

- lim 

= — lim u -
dx 

(6) 

The function P(x), arising from the integration with respect to yv is simply the 
pressure gradient in the main stream outside the boundary layer. 

For flow past the semi-infinite flat plate, with the equations in cartesian 
coordinates, as here, the boundary conditions are 

X = 0, dx\dyx = 0 on the plate (y1 = 0, x>0), dx\dyx ~> 1 

as yx -> oo or as x -> 0 

and the known solution is 

X = **/(%). where rj0 = y1l(2xi), 

/ ' " + //" = 0, /(0) = /'(0) = 0, /' -* 2 as 77o -> oo 

CO 

(8) 

(9) 

/ = 
M}* 

' + ( a = 1.328), 
21 5! 

and as rj0 -> oo, / oo 2?y0 — /? (/? = 1.72) 

and the error terms in (11) are exponentially small. 

(10) 

(11) 
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Also u = \ /'(%), v = ̂ - j {%/'(%) - /(%)> -»• y 

ß x > (12) 

= — j — 7 as wn -> oo 

If T is the skin-friction, 
_ 4 J R 4 T _ / " ( 0 ) _ « 

and the (non-dimensional) displacement thickness is given by 

<5i=T (i - u)dy = ^ l i m (y - x) = § r (i*) 
so F = dôjdx, as it must from the conservation of mass. 

The singularity in x1 at the leading edge, x = 0, is integrable. But v has a 
singularity all along the line x = 0. To order i?"-i, 7 ^ 0 , and the boundary-
layer flow does not join smoothly on to the potential flow, for which the stream-
function is W = y (or to any potential flow); although terms of order R-1 

only have been neglected in (5), there is an error of order R~%. The streamlines 
outside the boundary-layer are deflected through a distance ôv and to obtain a 
result ccrrect to order R~~* this effect must be taken into account in the external 
potential flow, so as to take into account the velocity V. According to usual 
boundaiy-layer theory, the boundary condition on the potential flow is applied 
at the plate, so the stream-function of the potential flow is taken to be W0 

+ R~% Wlf where W0 = y in this case, and RT^ W± must be equal to — ô± = 
— R~% ßx% at y = 0, x > 0. Then we should calculate P(x) in (6) for this new 
potential flow, and correct % by taking % = XQ + R~* Xi> where Xo is given 
by (8). 

The potential problem is immediately solved by the use of parabolic 
coordinates, £, rj, for which 

X + iy = (f + in)\ (15) 

We take rj ^ 0; rj = 0 on the plate. £ = 0 is the negative real axis, | > 0 on 
the upper half plane, and £ < 0 on the lower half plane. The solution for 
W1 is Ï7! = — jSf, so for the potential flow, to order R~*, 

ßt ' ß /T + *\*-
v-y-Ri-y-m—)' (16) 

(in the upper half plane) where r = (x2 + y2)%. [The solution has a singu
larity at the leading edge.] 

From (16) we find that on the plate P(x) = 0 to order R~i, (Ref. 3, p. 88), 
and so ^ = 0; away from x = 0 the boundary-layer solution is correct in this 
case to order R*; the potential flow only needed correction. 
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Away from a neighbourhood of x = 0, y = 0, the singularity on x = 0 
is purely artificial; near x — 0, y = 0 the difficulty is fundamental. 

Next, however, let us first consider the form taken by the boundary-
layer equation and solution when we use parabolic coordinates throughout. 

Before leaving this section, let us note again that as v -> 0 or R -> oo, 
boundary layers become surfaces of discontinuity; that the approach to the 
limit is non-uniform; and that this is of practical as well as mathematical 
significance. This type of behaviour is of frequent occurrence in engineering 
science, not only in fluid mechanics, and usually for practical purposes it is not 
enough to have the limit; we need quantitative descriptions of the phenomena 
in the transition zones. In fact, if a particular quantity in which an engineer is 
interested changes rapidly from one value to another, and if the transition zone 
becomes narrower and narrower as some parameter is decreased, then often the 
results for the transition zone are simply shown in a graph on a bigger and 
bigger scale, which is practically exactly what we do in boundary-layer theory 
and related theories. 

3. The Boundary-layer Equation and Solution in Parabolic Coordinates. 

Parabolic coordinates have been used by a number of authors. (Refs. 
4, 5, 6, 7. Ref. 7 refers to a paper by N. E. Köchin, which I have not seen). 

The Navier-Stokes equation (3) is transformed to the coordinates (f, rj), 
defined in (15); the substitutions 

Vi = RlV> x = Rh> (17) 
are then made, and 1/R is put equal to zero in the equation corresponding 
with (5). The leading edge is now inside the boundary layer, and the potential 
flow is approached everywhere as r\x -> oo. The boundary conditions are 
satisfied if 

X = 0, dzldfi! = 0 on Vl = 0, and (1/f) ( 9 A ) - * 2 , (l/V) (dX/dC)->2 
as r\^ -> oo. 

It is easily found that 

Z = f/foi) (18) 

is a solution of the resulting boundary-layer equation, where / is the Same 
function as before (eqns. (9), (10), (11)). Moreover, on the plate £ = o&, and 

*-qM a») 
as before (eqn. (13)). But as r\x -> oo, 

ß£ ßrj ß£ 
y co y - - ^ « co 1 - 2Ri{p+v2y » co ^ ^ ^ (20) 
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so in parabolic coordinates the external potential flow is included in the 
boundary-layer solution correctly to order R~*. Away from the neighbourhood 
of the leading edge, the singularity on x = 0 has completely disappeared. In 
the expressions for u and v in the potential flow, rj2 must be retained; we must 
be careful not to put^2 = rjlfR, and then drop this term; TJ is finite and non-zero 
in the potential flow. 

The results are a particular case of a theorem lately proved by Kaplun 
(Ref. 7), for any flow without a wake, on the same assumptions that we have 
used — the usual assumptions of boundary-layer theory. Kaplun shows (i) that 
there are always coordinates for which the external potential flow is included 
in the boundary-layer solution correctly to order i?"»; these coordinates (not 
necessarily or usually orthogonal) are, in our notation, of the form F1(^P1)I 

W0 F2(W1)
m, (ii) that if x = F(x> Ji) is a boundary-layer solution in any 

coordinates (x, yt), and x and y1 are expressed in terms of any other coordinates 
£ and rjlt then the boundary-layer solution in the coordinates | and r}x is 
X = F[x(£, 0), rj1(dy1/drj1)v = 0 ] ; (iii) that the skinfriction r is unaltered. In our 
case, W0 = y = 2ijrj, W1 = — j8f; for F^W-j) we may take £, and for F2, 
1/(2|). The coordinates become £ and rj, as above. Also x (£, 0) == | 2 , dy1/drj1=2^ 
and x = **/[yi/(2 **)] becomes x = £f&&lil [%£)! = £f(Vi), as above. 

Note that near y\x = 0, x — \ ^Vv V = 2 OLR"^^^ Thus for small r\x 

(where the motion is slow) ip is a biharmonic function and a solution of Stokes's 
equation for creeping flow. This term is the first term of an expansion near the 
leading edge obtained by Carrier and Lin (Ref. 5). We return to this point later. 

The error of the solution given by (18) (away from the neighbourhood of 
the leading edge, which we shall discuss later) is 0(R~1). But for other bound
aries there will usually be an error of order R~~%, arising from the curvature of 
the boundary. 

4. The Boundary-layer Solution to order R_1, and the Potential Flow to 
order R~ /a. 

To consider the next approximation to a solution for x, we may start from 
the equation in parabolic coordinates analogous to (5), and seek to satisfy it to 
order R-1. This has been done for the flow in the boundary layer away from the 
leading edge by Alden (Ref. 4). In our notation, he sets 

x = etfrh)+-^ft{ih) + --- (2i) 

where f2 satisfies the linear non-homogeneous equation 

ft" + tf2" + 3/7;' + r% - ru = 2W w - /) (22) 

282 



a n d
 / a = a C | Ì -^ | l+ . . . = C(rhf-f)+Aft (23) 

a and ß are the constants of equations (10) and (11). Two of the constants of 
integration have been determined from the boundary conditions at ^ = 0, 
and one from a condition as r\x -> oo, as Alden determined them, but the fourth 
constant C has been left for the present. Af2 is independent of C. As rjx -> oo, 

b [ 2 
h(ril)c*ßC-a + - 1 + (24) 

(a = 3.34, b — 1.66). Because of the factor 1/f, the solution cannot be valid 
near the leading edge, nor in the potential flow near f = 0. 

For xx, Alden's result is 
a OLC 

x* Rx/a 

i jSf /SC - a 1 
and as ^ -* oo, y> = R *% ~ y - ^ + ^s / a y (26) 

The first two terms give the same potential flow as before, but the third 
term is not harmonic, and Alden takes ßC — a = 0, C = 1.99. The skin-
friction would then have a non-integrable singularity at the leading edge, but 
in any case the solution is not valid there. Without some such condition as 
ßC — a — 0, we should be one boundary condition short. 

As regards the improvement we shall attempt, almost everything is 
achieved by replacing f2(Vi)l^ by f/2(*7i)/(!a + *?2)i but the argument may be 
made more convincing by attempting the use of a technique due to Lighthill 
(Ref. 8) for finding uniformly valid approximations. The method has mostly 
been used for hyperbolic equations (with a singular characteristic, for example), 
but Lighthill (Ref. 9) has used it for an elliptic equation, and Kuo (Ref. 3) 
has applied it to the boundary layer equation, for a flat plate in cartesian 
coordinates, changing the %-coordinate only, and has thereby obtained results 
near the leading edge and in the potential flow that agree with the results from 
the use of parabolic coordinates. We shall use the method starting from 
parabolic coordinates. The straightforward application of the method does not, 
in this case, give an approximate solution of the Navier-Stokes equation 
uniformly valid in the whole field; we return to this point later. 

We introduce new coordinates given implicitly in terms of the old; if we 
are, to begin with, content to change the ^-coordinate only, it is not difficult to 
see that to order R-1 we should write 

l = z + ^lr^ ' ? ? = y ' , ? i = = y i = ^ y - (27) 
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We still want to include the potential flow, so to write Y2 = Y\jR and to 
drop this term in the denominator would be wrong. We then write 

X = Xo.+ R~1Xi> 
where #0, Xx a r e functions of X and Yt, and seek to satisfy to order R~l the 
equation into which (3) or (5) is transformed, and to choose g(Y"i) so as to 
annul Xi completely. We find that this can be done, and we find a solution 

% = Xf(Yx), (28) 

where / is the same function as before (eqns. (9), (10), (11)). The correction of 
order R-1 is entirely in the change of coordinates. 

If, in the boundary layer away from the leading edge, we carry out a 
formal expansion in powers of R-1, we should (except for a possible change in 
the constant C) obtain Alden's solution. For such a formal expansion 

X = f(Vi) = f/fai) - -^ — i — > (29) 

so we expect that we shall have 

firn) giri = - /.(%). (30) 
and this can be checked and agrees. So g need not be computed independently. 

Also we find that 

^(ïL' t3i) 

and if we assume for the present that this expression is valid at the leading edge 
(we return to this point later), we see that xx still has a non-integrable sin
gularity (though of a lower order than in (25)) unless X vanishes with £ on 
Yx = 0. This requires g(0) = 0, which in turn requires C == O.in (23), so if this 
is correct, /2 in (30) must be replaced by Af2. With C = 0, for the external 
flow we find that as Yt -> oo 

w = R-K coy - ^ a (32) 

to order RT '2. [If C ^ 0, the coefficient in the last term is changed from — a 
to ßC — a.] The right-hand side of (32) is harmonic, and gives a potential flow 
which becomes the given uniform stream as rj -> oo. It seems reasonable that 
there should be i correction of order R~*!* in the potential flow (associated with 
a correction to the displacement thickness), so we accept (32). Then with C = 0, 

Ti = - ^ (33) 
x* 
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and is unaltered. There is no correction to TX of order R-1. Further consideration 
shows that this result is connected mathematically with the fact that there are 
no negative powers in the asymptotic expansion of / (see eqn. (11)), the error 
terms in (11) being exponentially small. There are negative powers in the 
asymptotic expansion of /2 (eqn. (24) ) or of Af2, and there may be a change in xx 

of order R~2. 

5. The Neighbourhood of the Leading Edge. 

Near the leading edge of a flat plate the assumptions of boundary-layer 
theory are not valid. With parabolic coordinates, the f- coordinate should 
also be transformed by the substitution fx = R*£', in fact with cartesian 
coordinates the correct way to consider the neighbourhood of the leading edge 
is to substitute 

x1 = Rx, y± = Ry, y)x = Rip. (34) 

When this is done all the terms in the Navier-Stokes equations are of the same 
order of magnitude. 

Similar .remarks are true near the front stagnation point of any semi-
infinite cylinder. In considering the non-uniformity of approximations to 
solutions for large Reynolds numbers there are three regions to be considered. 
In the potential flow the coordinates are left unaltered; in the boundary-layer 
(in more general cases, in any similar vortex-layer of high vorticity) the non-
dimensional length coordinate across the layer should be magnified R* times, 
and the coordinate along the layer left unaltered (cf. eqns. (4) and (17)); in a 
circle whose centre is at the stagnation point and whose radius is of order R-1, 
the non-dimensional length coordinates should all be magnified R times, as 
in (34). 

Now in § 4, to complete the solution, we applied the condition that r 
should have an integrable singularity at the leading edge. Generally, when it 
becomes possible to discuss more fully the integration of the Navier-Stokes 
equation, it is to be expected that it will not be necessary to use such a bound
ary condition. Meanwhile, for the problem considered in § 4, and for the method 
used there, no other satisfactory boundary condition presents itself; and it is 
to be expected that this condition will lead to the correct answer, provided that 
it may be applied. 

Further consideration shows that there is a small sector of the circle about 
the leading edge in which (18) and (28) are in a certain sense valid approxima
tions. This sector is symmetrical about the radius lying along thé plate 
(y = 0, x > 0). It has been mentioned that very near the leading edge, 
X — ia|?7x, i-e. yx = Jaf^x, and that this is the first term of an expansion near 
the leading edge obtained by Carrier and Lin. From a consideration of the next 
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term in the expansion, and its general form, it appears that this single term is a 
good approximation to the full solution of the Navier-Stokes equation, not only 
sufficiently near to the leading edge (xx and yx sufficiently small), but also in a 
sector of the form mentioned (#x > 0, |yx|/#x sufficiently small). This error 
cannot be estimated exactly, but if we are content to estimate it from the 
second term in the expansion, we find that whereas x itself is 0 (R~* 62) in the 
sector, the error in x is 0(R~^ 03), where 0 is the angle of the sector, and 
ri = {%i + yift n a s k e e n taken as 0(1). The error in x in (28) may be expressed 
as the sum of three parts, of which this is the first; the second is the difference 
of ^OL^TJI from the result in (18), and the third the difference between the 
results given in (18) and (28). The second is 0 ( i H 05) and the third is 0 (Ä~* 03). 
Hence, within the limits we have set ourselves — terms of order R-1 in % 
andr x — the fractional error in % (or ^x) is 0(0); and (33) should give, to 
order R-1, the correct limiting result for TX as the leading edge is approached 
along the plate; without the condition C = 0, (31) would give this result more 
generally. This is what we require. 

The difficulty near the leading edge is connected with the fact that the 
substitution (27) is not unique, for in addition to substituting for f by a formula 
of the type shown, we may also change the ^-coordinate by writing 

1 G(Y1)Y1 

Then (30) becomes 
k + Vif'G = - /,. (36) 

The solution is no longer everywhere unique. But to order R-1 the solution 
turns out to be unique, and to be the same solution as before, everywhere 
outside the region consisting of the small circle of radius of order R-1 with its 
centre at the leading edge and with a small sector removed about the radius 
along the plate; in other words, to order R-1 the method provides a unique 
answer in the region in which it is correct to start from a boundary layer 
solution as an approximation at large Reynolds numbers. The formula for TX 

is unaltered. 

6. Flows with Wakes and Separation. 

If we consider the limit as v -> 0, R -> oo, of the steady viscous flow past a 
finite flat plate (y = 0, 0 < x < 1), we obtain u = 1 everywhere except on 
y = 0, x ^ 0. Vortex sheets are present on both sides of the plate, through 
which u drops from 1 to 0. But there is also a singular surface on y = 0, x > 1, 
along which u increases from 0 to 1 as x increases from 1 to oo. This singular 
surface may be regarded as the confluence of two vortex sheets. According to a 
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calculation of the flow in the wake on boundary-layer theory (Ref. 10, § 248), 
the limiting value of u when v ->0 is given by 

« = 1 ^-r + . . . (37) 

along this line for large x, and by 

u = 1.23 (x - l)1'* - 1.18 (x - I)4'* + . . . (38) 

for x — 1 small. (The singularity at x = 1 may well be an artificial result of the 
use of cartesian coordinates). Numerical values are available to a certain extent. 

Thus even for this simple case, "classical" potential flow (even with 
vortex sheets at the solid surface) does not give the correct limit as v -»-0. 

A similar singular surface will arise in the limiting flow past any cusped, 
streamlined cylinder (aerofoil) for which separation of the boundary layer does 
not take place. 

Thus even for this simple case any attempt at a construction of an accurate 
asymptotic expansion for large R is difficult. Kuo (Ref. 3) has made an ap
proximate calculation of the correction of order R~i due to the influence of the 
wake on the pressure, and on P(x) in eqn. (6). He uses cartesian coordinates 
and simply takes <5X constant, V zero, for x > 1 on y = 0 in calculating Wv 

He compares the calculated drag with experiment, and obtains fairly good 
agreement down to R = Iß. If this is not accidental, it would provide a little 
evidence that terms of order R-1 are absent. 

To obtain the limit as v -> 0, R -> oo of steady, two-dimensional flows 
past cylinders with boundary-layer separation is, of course, even more difficult. 
Classical theory is incorrect, but it sometimes held that the "free-streamline" 
theory (Ref. 10, § 10) may give the correct limit. (In general, a "free-stream
line" solution is not unique, but the correct solution must satisfy the condition 
that the position of boundary-layer separation (calculated on boundary-layer 
theory and independent of R, with the external flow according to free-stream
line theory) coincides with the position of separation assumed for each free 
streamline, and there seems little doubt that the correct solution is that for 
which the free streamlines have finite curvature everywhere (Refs. 11, 12, 13); 
so that, for example, the solution obtained long ago by Brodetsky (Ref. 14) for 
the flow past a circular cylinder is the correct one to choose). But there are 
considerable difficulties in accepting the free-streamline result as the correct 
limit. (The question here is purely a theoretical one at this stage, and is not that 
of adjusting the theory to fit more closely to experiment, which is concerned 
with turbulent, not steady, motion). If we start from this limit for infinite R, 
and seek the correction for a large finite R (small but non-zero v), we know that 
the vortex sheets which are the free streamlines will diffuse, but nevertheless 
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(as Dr. Batchelor and Professor Lagerstrom have also pointed out) we shall 
not return to the undisturbed flow at infinity downstream, and this contradicts 
the usual theory of laminar wakes (Ref. 10, § 249); one or the other or both 
must be wrong. 

Now if we consider a motion started from rest in a viscous fluid, it is 
known that lim Hm and hm hm are quite different. Because of the 

known action of viscosity in diffusing the vorticity, although vortex sheets may 
occur in the former, diffused vorticity may not; but restricted regions of 
diffused vorticity may occur in the second. A very simple example is the flow 
between two parallel planes, when one is held stationary and the other started 
moving with uniform velocity in its own plane. The first limit gives zero 
velocity everywhere between the planes, and a vortex sheet at the moving 
plane; the second gives constant vorticity between the planes. (In a limiting 
two-dimensional steady floW, in any finite region, the diffused vorticity 
must be constant in the region, or in each of two or more parts of it, as 
Dr. Batchelor has proved.) It is suggested that in flow past a cavity in a solid 
body, for example (as for the usual static-pressure hole) although in the 
limiting steady flow there will be a vortex sheet across the mouth of the cavity, 
the fluid in the cavity may well be in motion with a vorticity which, for two-
dimensional motion, is constant, and not at rest. Now what we require is the 
second limit; it appears likely that what free streamline theory gives is, in 
fact, the first limit. 

Dr. Batchelor, in an unpublished paper, has gone much further. He 
suggests that the correct limiting steady flow in two-dimensional motion in the 
wake behind a cylinder with separation consists of two finite regions of con
stant, and opposite, vorticity, bounded by two free streamlines which come 
together at a cusp at a finite distance downstream, and separated by a singular 
surface from the cusp to the rear of the cylinder. There will also be a singular 
surface downstream from the cusp. In this picture, the drag of the cylinder in 
steady flow would -> 0 as v -> 0. (Batchelor considers further physical details, 
refinements of this general picture, and flow symmetrical about an axis). The 
cusp would appear only in the limit. 

Certain plausible physical arguments from the development of vorticity, 
and of circulation in any circuit, in a fluid of small viscosity may be used to 
support Batchelor's theory, but it is difficult to decide the question with 
certainty. Experiment provides no guide. It appears also that the largest 
Reynolds number for which a numerical solution of the Navier-Stokes equation 
is available is R = 40 for flow past a circular cylinder (Ref. 15). Such numerical 
calculations show a vortex pair behind the cylinder with a closed streamline, 
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but it is not known if the region enclosed by this streamline becomes infinite 
as R -> oo or not. 

Any satisfactory asymptotic expansions for large R for separating flows 
with wakes appear, therefore, to be some way away. 

7. Vortex Motion without Boundaries. 

In this section we are concerned with motion that is three-dimensional. 
If an assumed, three-dimensional, initial distribution of vorticity is allowed to 
develop according to the equations of motion of an incompressible, viscous 
fluid, then the statistical effect of the change of length of the vortex lines is to 
produce an increase in the mean square vorticity, co2; the effect of viscosity is to 
decrease co2, which in general first increases to a maximum and then decreases. 
When co2 is at or near its maximum, regions of high vorticity appear in the 
fluid, the vorticity being small elsewhere. When this is the case, in a region of 
high vorticity the convection terms in the equations of motion (which give 
rise to the effect of the stretching of the vortex lines) must be of the same 
order of magnitude as the viscous terms when v is small, so that these 
regions Will be layers whose thickness is 0 (v%) as v -> 0, rather like boundary 
layers, though now no solid boundaries are assumed to be present. But in 
such motions as those here considered, which are more usually studied in 
connection with turbulent motion, the rate of dissipation of energy must 
remain finite and non-zero as v -» 0; in layers like boundary layers the rate 
of dissipation for unit area of the layer is 0(v*). [In regions of rapid 
transition of the shock-wave type, lying across the direction of the stream, 
in compressible fluids, the thickness is 0(v~x) and the rate of dissipation per 
unit area is 0(1).] After a conversation with Professors Burgers and Timman, it 
appeared that the only way in which the convection terms and viscous terms 
could be of the same order, with a rate of dissipation of 0(1), was that there 
should be layers of intense vorticity of thickness of 0 (v%), but of area of 0(v~%), 
so their volume in any finite volume of the fluid is 0(1); when v ->0 these 
layers become surfaces, but the surfaces still occupy a finite, non-zero fraction 
of the volume of the fluid. For a triply periodic distribution of the initial 
velocity components — i.e. with u, v, and w each given by a single term of a 
triple Fourier series — Taylor and Green (Ref. 16) computed by series in the 
time t, and showed that co2 would rise to a maximum before falling. The 
computation could be carried out only at fairly low Reynolds numbers, and a 
solution in powers of the Reynolds number (Ref. 17) includes the solution in 
powers of t and converges slightly better; but neither gives any information at 
high Reynolds numbers, and all attempts at finding an asymptotic solution for 
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large Reynolds numbers have been unsuccessful. In view of the nature of the 
singularity as R -> oo proposed above, this is not surprising. 

Recently (Ref. 18) Proudman and Reid have shown that for an infinite 
field of homogeneous isotropic turbulence in an inviscid fluid, with the assump
tion that certain fourth-order correlations of the velocity components at three 
points of the fluid are related to second-order correlations in the same way as 
for a Gaussian probability distribution, then with the initial conditions co2 = 
co2., dco^/dt = 0 at t = 0, m2 oo 6/(t — t0)

2 near t = t0, where t0 oc (co2)%. 
[(col)hQ = 5.9 approximately]. This result has not yet been extended to a fluid 
of small but finite viscosity. 

8. Viscous Gases. 

When the equations of motion for a viscous compressible fluid are con
sidered, the situation is, naturally, one of considerably greater difficulty. I shall 
only mention briefly, two matters closely connected with subjects referred to 
elsewhere in this lecture. 

Boundary layers have been considered by many authors, with some 
considerable success for the first approximation; in particular, the boundary 
layer along a semi-infinite flat plate along the stream has been computed. 
Kuo (Ref. 19) has recently made an interesting attempt to extend his work on 
the interaction of the boundary layer and the external stream to calculate the 
flow past a plate at high Mach numbers, using a similar technique of coordinate 
straining in LighthilTs manner. The effects now are not small, for it is imperative 
to take the interaction into account; there is a shock wave of finite strength 
before the plate, inclined at a small inclination to the plate and curved, with 
rotational flow behind. 

The number of known exact solutions of the full equations is very small. 
The simplest is the steady flow between two infinite horizontal planes in 
relative motion parallel to themselves (shearing motion) which has been 
calculated by IUingworth (Ref. 20) under quite general conditions. The 
difference from the incompressible case is due to the variation of the viscosity 
with temperature and to dissipation of energy and heat conduction. If the 
viscosity [jb is independent of the temperature T, u = y as for an incompressible 
fluid. The next simplest case is when both plates are at the same temperature 
Tx, [JLCCT, and the gas is a perfect gas with constant specific heats cv, cjy, and a 
constant Prandil number a = jbtcjk, where k is the heat conductivity. Let C/x 

be the velocity of the moving plate, ax the velocity of sound at the temperature 
Tlt Mx the Mach number TJx\ax, and 

b = o(y- l)M\. ' (39) 
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Then u + \ bu2 - \bu* = (1 + ^b)y (40) 

and T/Tx = 1 + \bu - \bu2. (41) 

Unless the distance h between the plates is very large, so that gh\a\ is not 
small, the pressure P between the plates is almost constali!:, since if P 0 is the 
pressure at the lower plate 

Because the plates are at the same temperature, the temperature, and 
therefore the viscosity, are greatest in the middle; fi du/dy is constant, so 
du/dy is least in the middle. The distribution is still anti-symmetrical about 

y = i 
The unsteady problem, when the moving plate is started impulsively, is 

one of considerable difficulty, and has not been much studied. Without a 
stationary plate, when the motion is produced by a single infinite flat plate 
started moving impulsively in its own plane with uniform velocity in an infinite 
gas, the problem has been considered by a number of authors (Refs. 21 to 25). 
Fürther study is-justified, perhaps by a variation of mathematical methods 
mentioned elsewhere in this lecture. The motion is a difficult example of mixed 
diffusion and wave motion; the wave from the plate must culminate in a shock 
wave. 

9. Singular Perturbations of the Non-Linear Wave Equation. 

I pass now to my final subject, suggested by the influence of viscosity on 
the formation of shock waves. 

Two equations have been solved explicitly which exhibit certain typical 
features of shock-wave theory, and I shall discuss these rather than the 
approximate methods used for the actual equations (similar but harder) for the 
motions of gases. 

As a preliminary, consider the non-linear wave equation (with x as a 
time-like coordinate) 

du du 
-+G(u) — = 0. (43) 
ox dy 

The nature of the continuous solution is'well known. Let u0(y) = f(y) be the 
initial distribution of u when x = 0. For illustrative purposes, it is sufficient 
here to assume that G(u) and f(y) are monotonie. Then if there is a continuous 
solution it is 

u = f(y — G(u)x), (44) 
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i.e. if y = f±(u) initially, then 

y = U(u) + xG(u). (45) 

Multiple values of u for the same y will occur if G(u) is increasing and 
f(y) decreasing, or if G(u) is decreasing and f(y) increasing. It is assumed that 
the solution then becomes discontinuous. When a discontinuity occurs, as y 
increases through the discontinuity at a given x, u decreases discontinuously if 
G(u) is increasing, and u increases discontinuously if G(u) is decreasing. There 
must be a discontinuity as soon as x exceeds the least possible value of 
— fi(u)jG'(u). We cannot prove that there is no discontinuity for smaller x 
without considering the limit of a perturbed equation, but if this is assumed 
the resulting course of the discontinuity can be traced. Let 

G(u) = g'(u), (46) 

and write (43) in the form 

du dv 
— + — = 0, v = g(u). (47) 
ox oy 

The discontinuity will be propagated along some curve in the (x, y) plane, 
and from the first of (47) and an application of Stokes's theorem it follows that 
along this curve 

[u]dy — [v]dx = 0, (48) 
where [u] and [v] are the discontinuities in u and v, i.e., if u jumps from ux to u2 

across the discontinuity 
2G(u)du 

ày_ = g(u2) - g(%) = ^ 

dx u2 — u^ u2 — wx 

Also at the discontinuity 

y = f±(Ul) + xG(u±) = fx(u2) + xG(u2), (50) 

and these equations suffice to determine the position and strength of the dis
continuity at any time. [They can be applied to determine the position and 
strength of a shock wave in a gas only in so far as the variations of entropy 
arising from the growth of the shock wave can be neglected]. 

The two equations which have been solved explicitly both represent 
singular perturbations of an equation of the type of (43) or (47). The first is 
Burgers's equation (Refs. 26): 

du du d2u 

dx dy dy2 ' 
with v constant. 
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Given an initial distribution u0 of u the non-linear term tends (if u0 is a 
decreasing function of y) to steepen the distribution, and in the absence of the 
viscous term of higher order, discontinuities would result. The higher-order 
viscous term prevents the formation of discontinuities, causes diffusion of the 
momentum, and a dissipation of energy which is independent of the viscosity. 
According to Cole (Ref. 27) the equation was first mentioned by H. Bateman 
in the Monthly Weather Review in 1915, and Lagerstrom, Cole and Trilling 
(Ref. 21) used the equation as an approximation for a weak shock wave near 
the steady state with dissipation neglected; the explicit solution was given by 
Hopf (Ref. 28) and Cole (Ref. 27); but there is no doubt that the equation is 
correctly named Burgers's equation. 

The explicit solution is 

u = - 2vFy/F (52) 

(the subscript denotes a partial derivative), where F is a solution of the heat-
conduction equation: 

dF d2F 
(53) 

The second set of equations 

V dv 

k dy 

du 

dx 

- u -

dx dy2 

is 

dv 

dy 

- rv + (r — l)uv. 

(54) 

These equations arise in a number of exchange problems when a fluid 
flows through the voids along a column containing matter in the solid state 
— for example, ion exchange between a salt or acid solution and a suitable 
resin, with the resin particles in a fixed column through which the liquid is 
flowing; the exchange is of two ions A and B (sodium and hydrogen, for 
example) of the same valence. If c is the concentration of ion A in the fluid, 
measured, say, in milliequivalents per unit volume of the fluid, q the con
centration of ion A in the solid (in milliequivalents per unit volume of solid), 
cQ the total concentration of ions A and B entering the column, Q the total 
concentration capacity of the solid phase, the equations (54) are based on the 
conservation equation and an assumed bilinear exchange equation 

^- = k[c{Q-q)-^q(c0-c)l (66) 

with 1 c q 
r = —, u = —, v = —. (56) 

K c0 Q 
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K and k are taken as constants. V is the total rate of volume flux of the 
fluid, equal to QLRS, where R is the linear rate of flow of the fluid, 1 — a the 
fraction of the volume of the column filled by the solid, and S the cross-section
al area of the column (all assumed constant). If X is the distance along the 
column from the entry, and t the time from the initial entry, then x is the 
total ion concentration (of both ions) on the resin in the length X from the 
entry, and y the total ion concentration in the fluid which has passed the 
cross-section X when the time t is reached, so x is proportional to X, and 
y to Rt — X. 

[x = SQ(1 - OL)X, y = oi Sc0(Rt - X).] 

The same equations apply to other cases with different meanings of the 
symbols — e.g. fixed-bed adsorption, or (with r = 1) heat exchange between a 
flowing fluid and a crushed solid. When r = 1 the equations are linear, and the 
solution is the limit as r -> 1 of the solution for r =fi 1, so the case r = 1 will 
riot be further considered. (See the references in Ref. 29). 

We may write (54) in the form 

u = ipy, v = — ipx (57) 
and 

V 
— y«* +iPv + rVx + (1 — r) ipœtpy = 0; (58) 

k 

the equation for ip is reduced to a linear form by the substitution 

V 1 

Then 

— Fxy + Fy + rFœ = 0. '(60) 
fi 

The boundary conditions are usually such that ip, and therefore F, are 
known on the positive halves of both axes, and the solution is required for all 
positive x and positive y. The logarithmic substitution was used by Thomas 
(Ref. 30). (A shghtly different substitution is a little more convenient for the 
usual boundary conditions, but that is irrelevant here). 

If we' put v = 0 in (51), or Vjk = 0 in (54), each equation reduces to an 
equation of the type (47), with 

g(u) = \u2 in (51) 

u 

~Tn r in (54) 

r + (1 — r)u 
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du dv 
— + — = 0, v = \u2 -dx dy 

du 
_ v dy 

so each equation represents a singular perturbation of a first-order non-linear 
wave equation. 

Also, (51) may be expressed in a form similar to (57) and (58), since it may 
be written 

n/ii Hi\ nnj. 

(62) 

Hence u and v may be expressed as in (57), where 

V>* + KV*)2 = vWw (63) 
and the solution is 

ip = - 2v log F (64) 

where F satisfies' (53). Thus both equations which have been explicitly solved 
(by reduction to linear equations) have been solved by the same substitution. 
The result may be generalized. If a is a constant, 

a { L f c + MVuy + Nyyy} + Pfx + Qy>v+R+LyPm+MVmVll+Nifi = 0 (65) 

and 
y) = a log F, (66) 

then F satisfies the linear equation 

a{IFœœ + MFm + NFVV} + PFa+QFy + — F= 0. (67) 

(68) 

If F satisfies (67), then 

u = OLFJF, v = — OLFJF 

is a solution of 
du dv 

dx dy 

\ dv du 
Lv2 ~ Muv + Nu2 - Pv + Qu + R = OL\ L—-M— -

[ ox ox 

du 

dy 

(69) 

Both the two equations above, the one parabolic and the other hyperbolic, 
are examples of this substitution. In every case in which the equations have 
been solved explicitly, and the limits found as a -> 0, the limit is the solution 
of the unperturbed equation for u, found as previously described. Near a 
discontinuity the limit is non-uniform, and does not give sufficient information, 
particularly for (54), which is of some practical importance in a branch of 
chemical engineering. Since u is given by a quotient, the process of finding the 
required formulae for small a is far from trivial; asymptotic values must be 
carefully dealt with. An example, of some practical importance, from the 
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solution of (54) may be cited. With r > 1, so that G(u) = g'(u) is an increasing 
function, let u0 be zero for y < 0 and for y > Y, and uQ = 1 for 0 < y < Y. 
The discontinuities are then introduced in the initial values. With the term in 
Vjk omitted (on the "equilibrium" theory), the discontinuity at y = Y is,- to 
begin with, propagated unaltered, and for positive x is at y = Y + x. The 
discontinuity at y — 0 becomes diffuse and takes the form 

r — (rx/y)% 
u = for xjr t^y ^ r%- (70) 

r — 1 
But when rx = Y + x, the head of the diffuse trailing boundary catches up the 
discontinuity and, for larger values of x, it eats into it, so that the strength of 
the discontinuity diminishes. By the methods explained (for Vjk = 0) it may 
be shown that for x ^ Yj(r — 1), u = 0 for y fg xjr and for y > y*, and 
is given by the same formula as in (70) for xjr 5̂  y 5g y*t where 

(ry*)i = xi + [(r - 1)Y]4. (71) 

The largest value of u is 

(72) 
r-l+[(r- 1)*/Y]*" 

All this comes out as the limit of the exact solution. For the next approximation 
near y*, u is given by the expression in (70) with an additional term in the 
denominator which, for fixed y and y*, is exponentially large for y > y* and 
exponentially small for y < y* as Vjk -> 0, but which is 0(1) when y — y* = 
0(V/k). 

There are, of course, other ways of interpreting and ways of generalizing 
the result in (65), (66), and (67). We may increase the number of independent 
variables. We may, if we .make a correct choice of the coefficients, consider ip 
as a potential instead of a stream function. We may consider non-singular 
perturbation problems with a large, or general problems with a neither large 
nor small. There is some interest in other parabolic and hyperbolic equations 
we can discuss in this way, but the second-order non-linear elliptic equations 
do not seem to be of any general interest. An example is 

VV + — [(grad ^) 2 + c] = 0, (73) 
a 

which corresponds with 

ip = öL log F, (V2 + c/a2) F = 0. (74) 
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