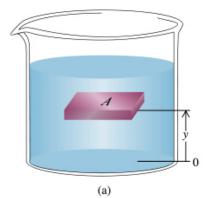
Ch 14. Fluid Mechanics

14-1. Density

Density

$$\rho = m/V$$

 $\rho = m/V$ - kg/m^3

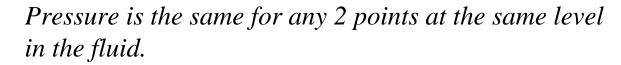

 $1g/cm^3 = 1000 \ kg/m^3$

Intrinsic to a material, independent of size & shape

MATERIAL	DENSITY (kg/m³)*	MATERIAL	DENSITY (kg/m³)*
Air (1 atm, 20° C)	1.20	Iron, steel	7.8×10^{3}
Ethanol	0.81×10^{3}	Brass	8.6×10^{3}
Benzene	0.90×10^{3}	Copper	8.9×10^{3}
Ice	0.92×10^{3}	Silver	10.5×10^{3}
Water	1.00×10^{3}	Lead	11.3×10^{3}
Seawater	1.03×10^{3}	Mercury	13.6×10^{3}
Blood	1.06×10^{3}	Gold	19.3×10^{3}
Glycerin	1.26×10^{3}	Platinum	21.4×10^{3}
Concrete	2×10^{3}	White dwarf star	10 ¹⁰
Aluminum	2.7×10^{3}	Neutron star	10^{18}

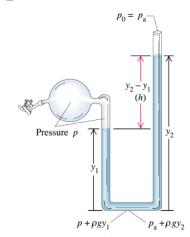
^{*}To obtain the densities in grams per cubic centimeter, simply divide by 10°.

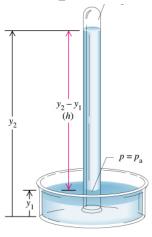
Specific gravity ρ/ρ_{water}

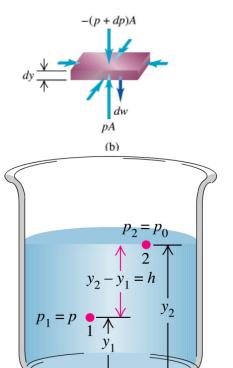


14-2. Pressure in a Fluid

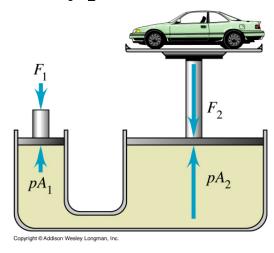
Pressure in a fluid of uniform density (Static Case)

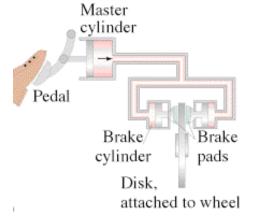

$$p_2 - p_1 = -\rho g(y_2 - y_1)$$


$$p = p_o + \rho g h$$



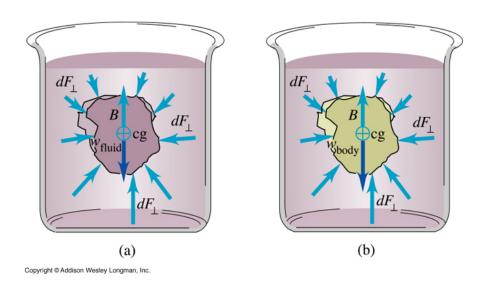
Excess pressure above atmospheric pressure





Pascal's Law

Pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the container.

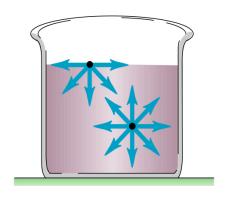


Application in hydraulic lift

$$p = \frac{F_1}{A_1} = \frac{F_2}{A_2}$$

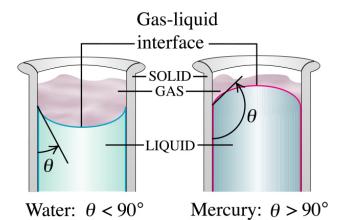
$$F_2 = \frac{A_2}{A_1} F_1$$

14-3. Buoyancy

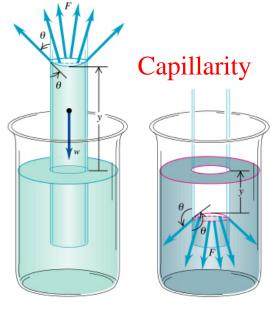


Archimedes' Principle:

When a body is completely or partially immersed in a fluid, the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body.

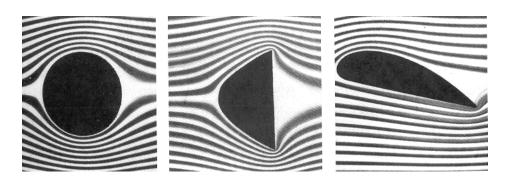

$$B = \rho_{fluid} gV_{displaced fluid}$$

Surface Tension



Liquid alone tends to minimize its surface area

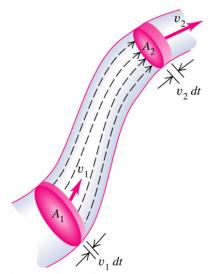
Liquid in contact with solid


Wetting Non-wetting

Wetting Non-wetting

14-4. Fluid Flow

Ideal fluid: incompressible (ρ const.) & no internal friction (viscosity)


Laminar flow:

adjacent layers of fluid slide smoothly & flow steadily

Turbulent flow:

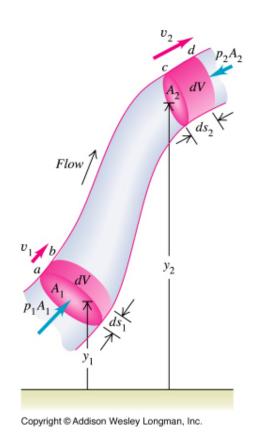
irregular & chaotic flow no steady-state pattern

Denser streamlines, higher speed

Continuity Equation

Incompressible fluid:

$$dm_1 = dm_2$$


$$A_1 v_1 = A_2 v_2$$

$$(\rho A_1 v_1 dt = \rho A_2 v_2 dt)$$

Volume flow rate: dV/dt=Av

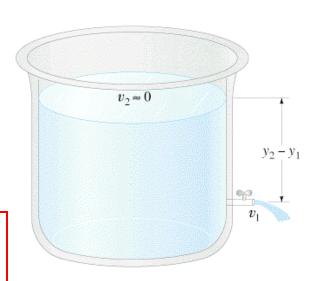
14-5. Bernoulli's Equation

For incompressible, steady flow of a fluid with no viscosity

Links pressure
$$p$$
, height y , flow speed v

$$p_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = p_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$

Special Cases of Bernoulli's Equation

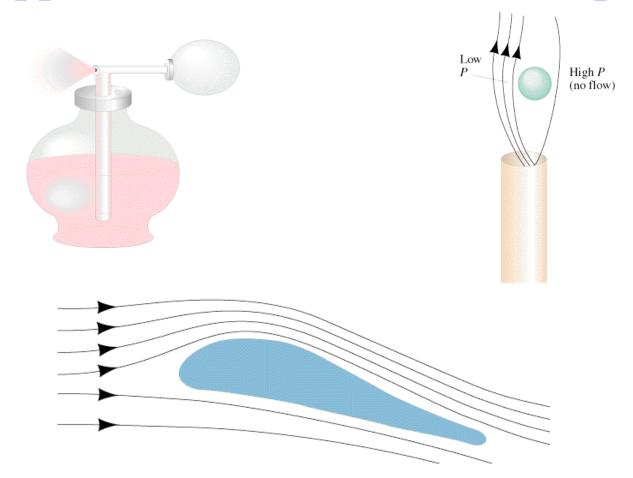

Special case #1:

$$p_1 = p_2$$

$$\rho g y_1 + \frac{1}{2} \rho v_1^2 = \rho g y_2$$

Torricelli's theorem:

$$v_1 = \sqrt{2g(y_2 - y_1)}$$


Special case #2:

Same height:

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$

Where the speed is high, the pressure is low.

Applications of Bernoulli's Principle

Dec. 17, 1903: First flights by Wright brothers.