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Preface

This is a solution manual for Tom Apostol’s Introduction to Analytic Number Theory. Since
graduating, I decided to work out all solutions to keep my mind sharp and act as a refresher.
There are many problems in this book that are challenging and worth doing on your own,
so I recommend referring to this manual as a last resort. The most up to date manual can
be found at gregoryhurst.com. Please report any errors you may find.

Clearly some problems are harder than others so I used the following markers to indicate
exercises I found hard:

(+) denotes problems I found particularly challenging.

(++) denotes what I considered to be the most challenging problem of the chapter.

Furthermore I kept track of the exercises from which I learned the most, which are naturally
the ones I recommend the most:

Exercise 1.24 Exercise 1.30 Exercise 2.8 Exercise 3.12 Exercise 4.24

Exercise 4.25 Exercise 4.26 Exercise 4.27 Exercise 4.28 Exercise 4.29

Exercise 4.30 Exercise 5.13 Exercise 5.18 Exercise 5.19 Exercise 5.20

Exercise 6.18 Exercise 10.8 Exercise 10.9 Exercise 10.13 Exercise 11.15

Exercise 11.16 Exercise 12.12 Exercise 12.19 Exercise 13.10 Exercise 14.5
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Chapter 1
The Fundamental Theorem of
Arithmetic

In there exercises lower case latin letters a, b, c, . . . , x, y, z represent integers.
Prove each of the statements in Exercises 1 through 6.

Exercise 1.1. If (a, b) = 1 and if c | a and d | b, then (c, d) = 1.

Proof. Since a and b are relatively prime, there are integers x and y such that ax+ by = 1.
Also because c | a and d | b, we have a = cn and b = dm for some integers n and m. Thus
c(nx) + d(my) = 1, which implies (c, d) = 1.

Exercise 1.2. If (a, b) = (a, c) = 1, then (a, bc) = 1.

Proof. Since a is relatively prime to both b and c, there are integers x1, x2, y1, y2 such that

ax1 + by1 = 1 and ax2 + cy2 = 1.

Multiplying gives

(ax1 + by1)(ax2 + cy2) = 1 =⇒ a2x1x2 + acx1y2 + abx2y1 + bcy1y2 = 1

=⇒ a(ax1x2 + cx1y2 + bx2y1) + (bc)(y1y2) = 1

=⇒ (a, bc) = 1.

Exercise 1.3. If (a, b) = 1, then (an, bk) = 1 for all n ≥ 1, k ≥ 1.

Proof. Suppose p | an and p | bk for some prime p. Then p | a and p | b, as p is prime. This
implies p | (a, b), a contradiction.

Exercise 1.4. If (a, b) = 1, then (a+ b, a− b) is either 1 or 2.

Proof. Since (a, b) = 1, there are integers x and y such that ax+ by = 1. Then

(a+ b)(x+ y) + (a− b)(x− y) = (ax+ bx+ ay + by) + (ax− bx− ay + by)

= 2ax+ 2by = 2.

Thus (a+ b, a− b) ≤ 2, i.e. (a+ b, a− b) is either 1 or 2.
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2 Chapter 1 Solutions

Exercise 1.5. If (a, b) = 1, then (a+ b, a2 − ab+ b2) is either 1 or 3.

Proof. Let g = (a+b, a2−ab+b2). Since (a+b)2−(a2−ab+b2) = 3ab, we have g | 3ab. This
means each prime factor p of g must divide 3, a, or b. However without loss of generality , if
p | a then p | (a+ b)−a = b. This contradicts (a, b) = 1, and so p - ab. Therefore (g, ab) = 1,
which means g | 3, i.e. g = 1 or g = 3.

Exercise 1.6. If (a, b) = 1 and if d | a+ b, then (a, d) = (b, d) = 1.

Proof. Let g = (a, d), which means g | a and g | d. Additionally, d | a+ b implies b = nd− a
for some integer n, and so g | b. Thus g | (a, b), which forces g = 1. The same argument
shows (b, d) = 1.

Exercise 1.7. A rational number a/b with (a, b) = 1 is called a reduced fraction. If the sum
of two reduced fractions in an integer, say (a/b) + (c/d) = n, prove that |b| = |d|.

Proof. Since n = (ad + bc)/(bd), both b and d divide ad + bc. This means b | ad and d | bc,
but since (a, b) = (c, d) = 1 we must have b | d and d | b. Therefore |b| = |d|.

Exercise 1.8. An integer is called squarefree if it is not divisible by the square of any
prime. Prove that for every n ≥ 1 there exist uniquely determined a > 0 and b > 0 such
that n = a2b, where b is squarefree.

Proof. Suppose n ≥ 1 and n = pα1
1 · · · p

αk
k . Define

a = p
bα1/2c
1 · · · pbαk/2ck and b = pα1 mod 2

1 · · · pαk mod 2
k .

We then have n = a2b since αi = 2 bαi/2c+ (αi mod 2). Moreover, b is square free.
Now suppose n = c2d for c > 0 and d > 0. Then a2b = c2d which means a2 | c2d.

However, d is squarefree so it follows that a2 | c2. Similarly c2 | a2, thus |a2| = |c2|. This
forces a = c as they are both positive. Substituting a = c into a2b = c2d shows b = d. Hence
this decomposition is unique.

Exercise 1.9. For each of the following statements, either give a proof or exhibit a counter
example.
(a) If b2 | n and a2 | n and a2 ≤ b2, then a | b.
(b) If b2 is the largest square divisor of n, then a2 | n implies a | b.

Solution.
(a) False: Let n = 36, a = 2, and b = 3.
(b) If n = pα1

1 · · · p
αk
k and b2 is the largest square divisor of n, then by Exercise 1.8,

b = p
bα1/2c
1 · · · pbαk/2ck .

If a2 | n, then a = pβ11 · · · p
βk
k , where βi ≤ bαi/2c. Thus a | b.

Exercise 1.10. Given x and y, let m = ax+ by, n = cx+ dy, where ad− bc = ±1.
Prove that (m,n) = (x, y).
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Proof. Observe m and n are expressed as linear combinations of x and y. This means
(x, y) | m and (x, y) | n, which implies (x, y) | (m,n).

Treating m = ax+ by and n = cx+ dy as a system of linear equations, solving gives

x =
dm− bn
ad− bc

and y =
an− cm
ad− bc

.

Furthermore, since ad− bc = ±1, then x = ±(dm− bn) and y = ±(an− cm). So applying
the exact argument from above, we conclude (m,n) | (x, y). This can only happen when
|(x, y)| = |(m,n)|, and since gcd’s are positive, (x, y) = (m,n).

Exercise 1.11. Prove that n4 + 4 is composite if n > 1.

Proof. Factoring shows

n4 + 4 = (n4 + 4n2 + 4)− 4n2

= (n2 + 2)2 − (2n)2

= (n2 + 2n+ 2)(n2 − 2n+ 2).

Observe for n > 1, both factors are larger than 1 and so n4 + 4 is composite.

In Exercises 12, 13, and 14, a, b, c, m, n denote positive integers.

Exercise 1.12. For each of the following statements, either give a proof or exhibit a counter
example.
(a) If an | bn then a | b.
(b) If nn | mm then n | m.
(c) If an | 2bn and n > 1, then a | b.

Solution.
(a) True: Suppose a = pα1

1 · · · p
αk
k . Then an | bn implies bn = pnα1

1 · · · pnαkk · qnβ11 · · · qnβll . This

means b = pα1
1 · · · p

αk
k · q

β1
1 · · · q

βl
l , i.e. a | b.

(b) False: Let n = 8 and m = 12.
(c) True: If a is odd then (a, 2) = 1 and an | bn, hence (a) implies a | b.

Now suppose a = 2sd where s > 0 and d is odd. Since an | 2bn,

2bn = 2nsdnm

for some integer m. Thus
bn = 2n(s−1)+(n−1)dnm.

Since n− 1 > 0, 2n(s−1)+(n−1) is not an nth power, which means m must be even. Therefore

bn = 2nsdn(m′)n = an(m′)n,

and so a | b.

Exercise 1.13. If (a, b) = 1 and (a/b)m = n, prove that b = 1.
If n is not the mth power of a positive integer, prove that n1/m is irrational.
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Proof. If (a/b)m = n, then am/bm − n/1 = 0. Thus by Exercise 1.7, |bm| = 1, and so b = 1.

Next suppose n1/m = a/b where (a, b) = 1. Then n = (a/b)m, which we now know implies
b = 1. Therefore n = am, i.e. n is an mth power.

Exercise 1.14. If (a, b) = 1 and ab = cn, prove that a = xn and b = yn for some x and y.
[Hint : Consider d = (a, c).]

Proof. Suppose a = pa11 · · · p
ak
k and b = qb11 · · · q

bl
l where all pi and qj are distinct. Then

cn = pa11 · · · p
ak
k · q

b1
1 · · · q

bl
l ,

and so

c = p
a1/n
1 · · · pak/nk · qb1/n1 · · · qbl/nl .

Since each pi and qj are distinct, n | ai and n | bj. Therefore a and b are nth powers.

Exercise 1.15. Prove that every n ≥ 12 is the sum of two composite numbers.

Proof. If n is even, then n = 4 + (n − 4) and n − 4 > 2 is even. On the other hand, if n is
odd, then n = 9 + (n− 9) and n− 9 > 2 is even.

Exercise 1.16. Prove that if 2n − 1 is prime, then n is prime.

Proof. Suppose n is composite and n = ab for some a > 1 and b > 1. Then

2n − 1 = (2a)b − 1 = (2a − 1)(2a(b−1) + 2a(b−2) + · · ·+ 2a + 1).

Since both factors are greater than one, 2n − 1 must be composite.

Exercise 1.17. Prove that if 2n + 1 is prime, then n is a power of 2.

Proof. Suppose n = 2sd where d is odd and d > 1. Then

2n + 1 = (22s)d + 1 = (22s + 1)(22s(d−1) − 22s(d−2) + · · ·+ 22s·2 − 22s + 1).

Furthermore since d > 1 is odd,

(22s(d−1) − 22s(d−2)) + · · ·+ (22s·2 − 22s) + 1 > 0 + · · ·+ 0 + 1 = 1.

Hence both factors are larger than 1 and so 2n + 1 is composite. Thus if 2n + 1 is prime,
then d = 1, i.e. n is a power of 2.

Exercise 1.18. If m 6= n compute the gcd (a2
m

+ 1, a2
n

+ 1) in terms of a. [Hint : Let
An = a2

n
+ 1 and show that An | (Am − 2) if m > n.]
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Solution. Let g = (Am, An), where m > n and define Ak = a2
k

+ 1. Now

Am − 2 = a2
m − 1

= (a2
n

)2
m−n − 1

= (a2
n

+ 1)(a2
n(2m−n−1) − a2n(2m−n−2) + · · ·+ a2

n − 1)

= An · (a2
n(2m−n−1) − a2n(2m−n−2) + · · ·+ a2

n − 1),

and hence An | (Am − 2). This shows g | Am − 2 and g | Am, thus by linearity g | 2. If a
is even, then Ak is odd and hence g = 1. On the other hand, if a is odd, then Ak is even,
giving g = 2.

Exercise 1.19. The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . is defined by the recur-
sion formula an+1 = an + an−1, with a1 = a2 = 1. Prove that (an, an+1) = 1 for each
n.

Proof. Induct on n. It’s clear (a1, a2) = 1. Let n > 1 and assume (an−1, an) = 1. Then

(an, an+1) = (an, an + an−1) = (an, an−1) = 1.

Exercise 1.20. Let d = (826, 1890). Use the Euclidean algorithm to compute d, then
express d as a linear combination of 826 and 1890.

Solution. Applying the Euclidean algorithm,

1890 = 2 · 826 + 238

826 = 3 · 238 + 112

238 = 2 · 112 + 14

112 = 8 · 14 + 0,

hence d = 14. Through back substitution,

14 = 238− 2 · 112

= (1890− 2 · 826)− 2(826− 3 · 238)

= (1890− 2 · 826)− 2(826− 3 · (1890− 2 · 826))

= 7 · 1890− 16 · 826.

Exercise 1.21. The least common multiple (lcm) of two integers a and b is denoted by [a, b]
or by aMb, and is defined as follows.

[a, b] = |ab|/(a, b) if a 6= 0 and b 6= 0

[a, b] = 0 if a = 0 or b = 0.

Prove that the lcm has the following properties:
(a) If a =

∏∞
i=1 p

ai
i and b =

∏∞
i=1 p

bi
i then [a, b] =

∏∞
i=1 p

ci
i , where ci = max{ai, bi}.

(b) (aDb)Mc = (aMc)D(bMc).
(c) (aMb)Dc = (aDc)M(bDc).
(D and M are distributive with respect to each other.)
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Proof.
(a) If ci = max{ai, bi} and mi = min{ai, bi}, then by definition [a, b] =

∏∞
i=1 p

ai+bi−mi
i . Now

it’s easy to see ai + bi = ci +mi, and hence [a, b] =
∏∞

i=1 p
ci
i .

For the next parts assume a =
∏∞

i=1 p
ai
i , b =

∏∞
i=1 p

bi
i , and c =

∏∞
i=1 p

ci
i .

(b) We have

[(a, b), c] =
[∏

p
min{ai,bi}
i ,

∏
pcii

]
=
∏

p
max{min{ai,bi},ci}
i

and

([a, c], [b, c]) =
(∏

p
max{ai,ci}
i ,

∏
p
max{bi,ci}
i

)
=
∏

p
min{max{ai,ci},max{bi,ci}}
i .

To show these exponents are equal, we will compare the two in a table.

ordering max{min{ai, bi}, ci} min{max{ai, ci},max{bi, ci}}
ai ≥ bi ≥ ci bi bi
ai ≥ ci ≥ bi bi bi
bi ≥ ai ≥ ci bi bi
bi ≥ ci ≥ ai ai ai
ci ≥ ai ≥ bi bi bi
ci ≥ bi ≥ ai ai ai

This shows max{min{ai, bi}, ci} = min{max{ai, ci},max{bi, ci}} and the result follows.
(c) We have

([a, b], c) =
(∏

p
max{ai,bi}
i ,

∏
pcii

)
=
∏

p
min{max{ai,bi},ci}
i

and

[(a, c), (b, c)] =
[∏

p
min{ai,ci}
i ,

∏
p
min{bi,ci}
i

]
=
∏

p
max{min{ai,ci},min{bi,ci}}
i .

To show these exponents are equal, we will compare the two in a table.

ordering min{max{ai, bi}, ci} max{min{ai, ci},min{bi, ci}}
ai ≥ bi ≥ ci ci ci
ai ≥ ci ≥ bi bi bi
bi ≥ ai ≥ ci ci ci
bi ≥ ci ≥ ai bi bi
ci ≥ ai ≥ bi bi bi
ci ≥ bi ≥ ai bi bi

This shows min{max{ai, bi}, ci} = max{min{ai, ci},min{bi, ci}} and the result follows.

Exercise 1.22. Prove that (a, b) = (a+ b, [a, b]).

Lemma 1.22. If (c, d) = 1, then (c+ d, cd) = 1.

Proof of Lemma. Suppose p | c + d and p | cd for some prime p. Then without loss of
generality p | c, and so p | (c+ d)− c = d. This means p | (c, d), a contradiction.
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Proof of Exercise. Note by Theorem 1.4 (c) if c > 0, then (ac, bc) = c(a, b). Now if g = (a, b),
then a = gn and b = gm for some integers n and m. By Lemma 1.22,

(a+ b, [a, b]) = (a+ b, |ab|/g)

= (g(n+m),±gnm)

= g(n+m,nm)

= g.

Exercise 1.23. The sum of two positive integers is 5264 and their least common multiple
is 200 340. Determine the two integers.

Solution. We have a+ b = 5264 and [a, b] = 200 340. So by Exercise 1.22,

200 340 = ab/(5264, 200 340) = ab/28,

and therefore
a+ b = 5264 and ab = 5 609 520.

Assuming a < b, solving the system gives a = 1484 and b = 3780.

Exercise 1.24.(++) Prove the following multiplicative property of the gcd:

(ah, bk) = (a, b)(h, k)

(
a

(a, b)
,

k

(h, k)

)(
b

(a, b)
,

h

(h, k)

)
.

In particular this shows that (ah, bk) = (a, k)(b, h) whenever (a, b) = (h, k) = 1.

Lemma 1.24. If n, m, and g > 0 are integers, then g = (n,m) if and only if (n/g,m/g) = 1.

Proof of Lemma. By Theorem 1.4 (c),

(n,m) = g ⇐⇒ (g(n/g), g(m/g)) = g ⇐⇒ g(n/g,m/g) = g ⇐⇒ (n/g,m/g) = 1.

Proof of Exercise. Let a1 = a/(a, b), b1 = b/(a, b), h1 = h/(h, k), k1 = k/(h, k). Then apply-
ing Lemma 1.24,

(ah, bk) = (a, b)(h, k)

(
a

(a, b)
,

k

(h, k)

)(
b

(a, b)
,

h

(h, k)

)
⇐⇒ (a1h1, b1k1) = (a1, k1)(b1, h1)

⇐⇒
(

a1
(a1, k1)

h1
(b1, h1)

,
b1

(b1, h1)

k1
(a1, k1)

)
= 1.

Now define α = a1
(a1,k1)

, γ = h1
(b1,h1)

, β = b1
(b1,h1)

, δ = k1
(a1,k1)

. Then by Lemma 1.24,

(α, δ) = 1 and (γ, β) = 1.
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Additionally, note

α =
a

d1(a, b)
and β =

b

d2(a, b)

for some d1 and d2, so Lemma 1.24 shows (α, β) = 1 and similarly (γ, δ) = 1. This means
αγ and βδ can share no positive divisors other than 1, that is (αγ, βδ) = 1.

Prove each of the following statements in Exercises 25 through 28. All integers are positive.

Exercise 1.25. If (a, b) = 1 there exist x > 0 and y > 0 such that ax− by = 1.

Proof. If a = 1 then take x = b + 1 and y = 1, so we can assume a > 1 and b > 1. Since
(a, b) = 1, there are x and y such that ax+by = 1. If x > 0 and y < 0, we’re done. Otherwise
we make a few quick observations.

• x 6= 0 and y 6= 0 because a 6= 1 and b 6= 1.

• x and y can’t both be negative since this implies ax+ by < 0.

• x and y can’t both be positive since this implies ax+ by > 1.

So at this stage we must conclude x < 0 and y > 0. Define xn = x+ bn and yn = y− an for
some integer n. Then

axn + byn = ax+ abn+ by − abn = ax+ by = 1,

so choosing n large enough to force xn > 0 and yn < 0 gives the result.

Exercise 1.26. If (a, b) = 1 and xa = yb then x = nb and y = na for some n. [Hint : Use
Exercises 25 and 13.]

Proof. Suppose (a, b) = 1. Then by Exercise 1.25, there are positive c and d such that
ac− bd = 1. We then have

xad = ybd = yac−1.

Raising both sides to the power 1/a, yields xd = yc·y−1/a, or in other words y1/a = yc/xd ∈ Q.

By Exercise 1.13, this implies y is an ath power and so y = na for some positive n. Finally

xa = yb = nab = (nb)a,

hence raising both sides to the power 1/a gives x = nb.

Exercise 1.27.(+)

(a) If (a, b) = 1 then for every n > ab there exist positive x and y such that n = ax+ by.
(b) If (a, b) = 1 there are no positive x and y such that ab = ax+ by.
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Proof.
(a) Let n > ab and consider the sequence

S = {n− ib | 1 ≤ i ≤ a}.

Each member of S will have a different remainder when divided by a, since (a, b) = 1 and
adding n simplify shifts the conjugacy classes. Since |S| = a, we deduce there is a unique
element in S that is divisible by a. That is to say there is n− yb ∈ S such that n− yb = ax.
Since 1 ≤ y ≤ a we have ax = n− yb > 0, which means x > 0.

(b) Suppose ab = ax+ by, where x > 0 and y > 0. Then a(b− x) = by which means a | by,
but since (a, b) = 1 we have a | y. If y = az, dividing through by a gives b = x + bz. Thus
b(1− z) = x, which means 1 > z as x > 0. This is a contradiction since y > 0 implies z > 0.
Thus ab = ax+ by has no solution for x > 0 and y > 0.

Exercise 1.28.(+) If a > 1 then (am − 1, an − 1) = a(m,n) − 1.

Proof. If m = n, the result is immediate. Suppose m > n and m = qn + r with 0 ≤ r < n.
Then

am − 1 = aqn+r − 1

= ar(aqn − 1) + (ar − 1)

= ar(aq−1 + · · ·+ a+ 1)(an − 1) + (ar − 1).

Since 0 ≤ r < n, we have 0 ≤ ar−1 < an−1. By the Euclidean algorithm, if we continue this
process, we’ll arrive at the gcd. But this process is also performing the Euclidean algorithm
on the exponents, starting with m and n. From here we see (am−1, an−1) = a(m,n)−1.

Exercise 1.29. Given n > 0, let S be a set whose elements are positive integers ≤ 2n such
that if a and b are in S and a 6= b then a - b. What is the maximum number of integers that
S can contain? [Hint : S can contain at most one of the integers 1, 2, 22, 23, . . ., at most one
of 3, 3 · 2, 3 · 22, . . ., etc.]

Solution. Define
Sm = {m, 2 ·m, 22 ·m, . . .} for 1 ≤ m ≤ n.

Notice we can only have at most one element from each Sm in S, since if x, y ∈ Sm and
x < y, then x | y. This means |S| ≤ n. Now let

S = {k | n+ 1 ≤ k ≤ 2n}.

Note |S| = n and no element divides another since a nontrivial multiple of any element is
not in S. Thus for any n, the maximum size of S is n.

Exercise 1.30.(+) If n > 1 prove the sum

Hn =
n∑
k=1

1

k

is not an integer.
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Proof. Rewrite Hn as

Hn =
(n!/1) + (n!/2) + · · ·+ (n!/n)

n!
.

Let m be the exponent of the highest power of 2 in {1, 2, . . . , n}. If 2l is the largest power
of 2 that divides n!, then l ≥ m. Thus the highest power of 2 that divides the integer n!/2m

is 2l−m. If n > 1, for any k 6= 2m, the highest power of 2 that divides the integer n!/k is at
least 2l−m+1. So we can factor out 2l−m from the numerator of Hn, leaving the k = 2m term
odd and every other term even. Thus after cancelation, the numerator of Hn is odd, while
the denominator stays even. This means Hn /∈ Z for n > 1.



Chapter 2
Arithmetical Functions and Dirichlet
Multiplication

Exercise 2.1. Find all integers n such that

(a) ϕ(n) = n/2, (b) ϕ(n) = ϕ(2n), (c) ϕ(n) = 12

Solution.
(a) Suppose n = 2sd, where d is odd. If ϕ(n) = n/2, then 2 | n, which forces s > 0. Thus
ϕ(n) = ϕ(2s)ϕ(d) = 2s−1ϕ(d). This means 2s−1ϕ(d) = n/2, which implies ϕ(d) = d. This
can only happen when d = 1, since ϕ(d) ≤ d − 1 for d > 1. Therefore ϕ(n) = n/2 if and
only if n = 2s for some s > 0.

(b) Again suppose n = 2sd, where d is odd. If s = 0, then ϕ(n) = ϕ(d) and ϕ(2n) =
ϕ(2)ϕ(d) = ϕ(d). If s > 0, then ϕ(n) = 2s−1ϕ(d) and ϕ(2n) = 2sϕ(d). So we see
ϕ(n) = ϕ(2n) if and only if n is odd.

(c) Suppose ϕ(n) = 12, then
∏

p|n(pa − pa−1) = 2 · 2 · 3. Note, it could happen that

pa − pa−1 = 1. This can only happen when p = 2 and a = 1. So if we find an odd n that
satisfies our problem, 2n will satisfy it too.

• Solve pa − pa−1 = 12: This can only happen for p = 13 and a = 1. Thus n = 13 and
n = 26 are solutions.

• Solve pa − pa−1 = 3: Then pa−1(p − 1) = 3, and since 3 is prime, either pa−1 = 1 or
p− 1 = 1. From here it’s easy to see there is no solution.

• Solve pa − pa−1 = 2 and qb − qb−1 = 6: By inspection, the solutions are

{p, a} = {2, 2} or {p, a} = {3, 1}

and

{q, b} = {3, 2} or {q, b} = {7, 1} .

Grouping distinct primes above, solutions are n = 36, n = 28, n = 21, and n = 42.

11
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Exercise 2.2. For each of the following statements either give a proof or exhibit a counter
example.
(a) If (m,n) = 1 then (ϕ(m), ϕ(n)) = 1.
(b) If n is composite, then (n, ϕ(n)) > 1.
(c) If the same primes divides m and n, then nϕ(m) = mϕ(n).

Solution.
(a) False: Take m = 3 and n = 5, then (ϕ(m), ϕ(n)) = (2, 4) = 2.
(b) False: Take n = 15, then (n, ϕ(n)) = (15, 8) = 1.
(c) True: Since p | m if and only if p | n,

m

ϕ(m)
=
∏
p|m

(
1− 1

p

)−1
=
∏
p|n

(
1− 1

p

)−1
=

n

ϕ(n)
.

Exercise 2.3. Prove that
n

ϕ(n)
=
∑
d|n

µ2(d)

ϕ(d)
.

Proof. Suppose n = pa11 · · · p
ak
k where ai > 0. Then since µ2

ϕ
∗ u is multiplicative,

∑
d|n

µ2(d)

ϕ(d)
=

k∏
i=1

ai∑
j=0

µ2(pji )

ϕ(pji )

=
k∏
i=1

(
1 +

1

pi − 1

)

=
k∏
i=1

1

1− 1/pi
=

n

ϕ(n)
.

Exercise 2.4. Prove that ϕ(n) > n/6 for all n with at most 8 distinct prime factors.

Proof. Note ϕ(1) = 1 > 1/6. Now suppose n > 1 has at most 8 distinct prime factors, then

ϕ(n)

n
=
∏
p|n

p− 1

p

≥ 2− 1

2
· 3− 1

3
· 5− 1

5
· 7− 1

7
· 11− 1

11
· 13− 1

13
· 17− 1

17
· 19− 1

19

=
55296

323323
>

55296

331776
=

1

6
.

Exercise 2.5.(+) Define ν(1) = 0, and for n > 1 let ν(n) be the number of distinct prime
factors of n. Let f = µ ∗ ν and prove that f(n) is either 0 or 1.
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Proof. Note that f(1) = µ(1)ν(1) = 0. We will now show f(n) = I(k) for n = p1 · · · pk,
k > 0, and pi distinct. Suppose n is the product of k > 0 distinct primes. Then n = pm for
some prime p - m and thus

f(n) =
∑
d|n

µ(d)ν
(n
d

)
=
∑
d|m

µ(d)ν
(n
d

)
+
∑
(pd)|n

µ(pd)ν

(
n

pd

)
=
∑
d|m

µ(d)ν
(
p · m

d

)
+
∑
d|m

µ(pd)ν
(m
d

)
=
∑
d|m

µ(d)
(

1 + ν
(m
d

))
+
∑
d|m

−µ(d)ν
(m
d

)
=
∑
d|m

µ(d) +
∑
d|m

µ(d)ν
(m
d

)
−
∑
d|m

µ(d)ν
(m
d

)
= I(m).

Here we used µ(pd) = µ(p)µ(d) = −µ(d) and ν(px) = 1+ν(x) for (p, d) = (p, x) = 1. Finally
suppose n = pam for some a > 1. Then partitioning the divisors of n by the power of p in
their factorizations,∑

d|n

µ(d)ν
(n
d

)
=

a∑
i=0

∑
pid|n

(p,d)=1

µ(pid)ν
(n
d

)

=
1∑
i=0

∑
d|m

µ(pid)ν
(
pa−i · m

d

)
=
∑
d|m

µ(d)ν
(
pa · m

d

)
+
∑
d|m

µ(pd)ν
(
pa−1 · m

d

)
=
∑
d|m

µ(d)ν
(
pa · m

d

)
+
∑
d|m

−µ(d)ν
(
pa−1 · m

d

)
=
∑
d|m

µ(d)
(

1 + ν
(m
d

))
−
∑
d|m

µ(d)
(

1 + ν
(m
d

))
= 0,

In the final steps we again used µ(pd) = µ(p)µ(d) = −µ(d) for (p, d) = 1 and

ν
(
pa · m

d

)
= 1 + ν

(m
d

)
= ν

(
pa−1 · m

d

)
for (p,m) = 1 and a > 1.

Exercise 2.6. Prove that ∑
d2|n

µ(d) = µ2(n)
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and, more generally, ∑
dk|n

µ(d) =

{
0 if mk | n for some m > 1,

1 otherwise.

The last sum is extended over all positive divisors d of n whose kth power also divide n.

Proof. If all prime factors of n have an exponent is less than k, then
∑

dk|n µ(d) = µ(1) = 1.
Otherwise suppose exactly r prime factors have an exponent greater than or equal to k.
Since µ(d) is zero when d is not squarefree,∑
dk|n

µ(d) =
∑
dk|n

d �-free

µ(d) =

(
r

0

)
+

(
r

1

)
(−1) +

(
r

2

)
(−1)2 + · · ·+

(
r

r

)
(−1)r = (1− 1)r = 0.

Exercise 2.7. Let µ(p, d) denote the value of the Möbius function at the gcd of p and d.
Prove that for every prime p we have

∑
d|n

µ(d)µ(p, d) =


1 if n = 1,

2 if n = pa, a ≥ 1,

0 otherwise.

Lemma 2.7. For p prime, µ(p, ·) is multiplicative.

Proof of Lemma. Let d = pa · qβ11 · · · q
βk
k . If a ≥ 1 then (p, d) = p and thus

µ(p, d) = −1 = −1 · 1 · · · 1 = µ(p, pa)
k∏
i=1

µ(p, qβii ).

If a = 0 then (p, d) = 1 and thus

µ(p, d) = 1 = 1 · · · 1 =
k∏
i=1

µ(p, qβii ).

Therefore µ(p, ·) is multiplicative.

Proof of Exercise. If n = 1,
∑

d|n µ(d)µ(p, d) = µ(1)µ(p, 1) = 1. If n = pa where a ≥ 1, then

∑
d|n

µ(d)µ(p, d) =
a∑
i=0

µ(pi)µ(p, pi) = µ(1)µ(p, 1) + µ(p)µ(p, p) = 2.

Otherwise by the Lemma 2.7, the sum in question is multiplicative, so∑
d|n

µ(d)µ(p, d) = (2 or 1)
k∏
i=1

∑
d|qβii

µ(d) = 0.
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Exercise 2.8.(++) Prove that ∑
d|n

µ(d) logm(d) = 0

if m ≥ 1 and n has more than m distinct prime factors. [Hint : Induction.]

Proof. If m = 0, then n must have at least one prime factor, so as the sum in question equals
I(n), it must be zero. Now assume the claim holds for all natural numbers less than m + 1
and consider the case where n has k > m+ 1 distinct prime factors. Since µ(d) = 0 when d
is not square free, assume n = p1 · · · pk. Then

∑
d|n

µ(d) logm+1(d) =
∑
d|n

[µ(d) logm(d)] log(d)

=
∑
d|n

∑
pi|d

log(pi) [µ(d) logm(d)] .

Here we are summing over all d and pi such that d | n, pi | d, and hence pi | n. Instead, first
sum over pi | n, then over each divisor d where pi | d. This gives

∑
d|n

∑
pi|d

log(pi) [µ(d) logm(d)] =
∑
pi|n

∑
d|n
pi|d

log(pi) [µ(d) logm(d)]

=
∑
pi|n

log(pi)
∑
d|n
pi|d

µ(d) logm(d)

=
∑
pi|n

log(pi)
∑

d|(n/pi)

µ(pid) logm(pid)

= −
∑
pi|n

log(pi)
∑

d|(n/pi)

µ(d)
m∑
j=0

(
m

j

)
logm−j(pi) logj(d)

= −
∑
pi|n

log(pi)
m∑
j=0

(
m

j

)
logm−j(pi)

∑
d|(n/pi)

µ(d) logj(d).

By the induction hypothesis the innermost sum is zero, hence the claim is proven.

Exercise 2.9.(+) If x is real, x ≥ 1, let ϕ(x, n) denote the number of positive integers ≤ x
that are relatively prime to n. [Note that ϕ(n, n) = ϕ(n).] Prove that

ϕ(x, n) =
∑
d|n

µ(d)
[x
d

]
and

∑
d|n

ϕ
(x
d
,
n

d

)
= [x] .
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Proof. We have

∑
d|n

µ(d)
⌊x
d

⌋
=
∑
d|n

bx/dc∑
k=1

µ(d)

=

bxc∑
k=1

∑
d|(n,k)

µ(d) (1)

=

bxc∑
k=1

I ((n, k))

= ϕ(x, n).

The change in order of summation at (1) is justified in the proof of Theorem 2.3.

Now let

Sx = {1, 2, . . . , bxc}, Ax,n(d) = {k ∈ Sx | (k, n) = d}, and fx,n(d) = |Ax,n(d)|.

Then
∑

d|n fx,n(d) = bxc, since {Ax,n(d)} partitions Sx. Moreover

fx,n(d) = #{k | 0 < k ≤ x and (k, n) = d}
= #{k/d | 0 < k/d ≤ x/d and (k/d, n/d) = 1}
= #{q | 0 < q ≤ x/d and (q, n/d) = 1}
= ϕ(x/d, n/d).

Therefore
∑

d|n ϕ
(
x
d
, n
d

)
= bxc.

In Exercises 10, 11, 12, d(n) denotes the number of positive divisors of n.

Exercise 2.10. Prove that
∏

t|n t = nd(n)/2.

Proof. nd(n) =
∏
t|n

n =
∏
t|n

t ·
(n
t

)
=

(∏
t|n

t

)(∏
t|n

n

t

)
=

(∏
t|n

t

)2

.

Exercise 2.11. Prove that d(n) is odd if, and only if, n is a square.

Proof. Count divisors of n in pairs: t and n/t. Each pair will have distinct members unless
t = n/t. Thus d(n) is odd if and only if there is a divisor t such that t = n/t, i.e. n = t2.

Exercise 2.12. Prove that
∑

t|n d(t)3 =
(∑

t|n d(t)
)2

.
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Proof. Letting n = pa11 · · · pass , then since d is multiplicative,

(d3 ∗ u)(n) =
s∏
i=1

(d3 ∗ u)(paii ) =
s∏
i=1

ai∑
k=0

(ki + 1)3

=
s∏
i=1

(
ai∑
k=0

(ki + 1)

)2

=
s∏
i=1

(
(d ∗ u)(paii )

)2
=
(
(d ∗ u)(n)

)2
,

where we used the identity
∑n

i=1 i
3 = (

∑n
i=1 i)

2
.

Exercise 2.13. Product form of the Möbius inversion formula. If f(n) > 0 for all n and if
a(n) is real, a(1) 6= 0, prove that

g(n) =
∏
d|n

f(d)a(n/d) if, and only if, f(n) =
∏
d|n

g(d)b(n/d),

where b = a−1, the Dirichlet inverse of a.

Proof. Suppose g(n) =
∏

d|n f(d)a(n/d). Since f > 0 (and hence g > 0), we can take logs of
both sides. Since log takes products to sums, we have

g(n) =
∏
d|n

f(d)a(n/d) ⇐⇒ log g = (log f) ∗ a.

Now because a(1) 6= 0, there is an inverse b = a−1, which tells us

log g = (log f) ∗ a ⇐⇒ (log g) ∗ b = log f.

Taking the exponential of both sides completes the proof.

Exercise 2.14. Let f(x) be defined for all rational x in 0 ≤ x ≤ 1 and let

F (n) =
n∑
k=1

f

(
k

n

)
and F ∗(n) =

n∑
k=1

(k,n)=1

f

(
k

n

)
.

(a) Prove that F ∗ = µ ∗ F , the Dirichlet product of µ and F .
(b) Use (a) or some other means to prove that µ(n) is the sum of the primitive nth roots of
unity:

µ(n) =
n∑
k=1

(k,n)=1

e2πik/n.

Lemma 2.14. For n ≥ 1, the set

S = {kn/d | d divides n, 1 ≤ k ≤ d, (k, d) = 1},

is equal to {1, . . . , n}.
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Proof of Lemma. If 1 ≤ m ≤ n, let m/n = k/d where (k, d) = 1. Then m = kn/d and thus
{1, . . . , n} ⊆ S.

Next, suppose k1n/d1 ∈ S and k2n/d2 ∈ S where k1n/d1 = k2n/d2. This implies
k1d2 = k2d1, and so since (ki, di) = 1, the d’s must divide each other and the k’s must
divide each other. Therefore d1 = d2 and k1 = k2, so each element of S is unique. Since
1 ≤ kn/d ≤ n, this shows S ⊆ {1, . . . , n}.

Proof of Exercise.
(a) We have

(u ∗ F ∗)(n) =
∑
d|n

F ∗(d) =
∑
d|n

d∑
k=1

(k,d)=1

f

(
k

d

)
=
∑
d|n

d∑
k=1

(k,d)=1

f

(
kn/d

n

)
.

By Lemma 2.14, ∑
d|n

d∑
k=1

(k,d)=1

f

(
kn/d

n

)
=

n∑
k=1

f

(
k

n

)
= F (n).

Through Möbius inversion we find F ∗ = µ ∗ F .
(b) Letting f(x) = e2πix, then F (n) =

∑n
k=1 e

2πik/n = I(n) (a well known identity). Thus

µ(n) = (µ ∗ I)(n) = (µ ∗ F )(n) = F ∗(n).

Remark. An alternate proof is to apply Lemma 3.12 on F ∗(n).

Exercise 2.15. Let ϕk(n) denote the sum of the kth powers of the numbers ≤ n and
relatively prime to n. Note that ϕ0(n) = ϕ(n). Use Exercise 14 or some other means to
prove that ∑

d|n

ϕk(d)

dk
=

1k + · · ·+ nk

nk
.

Proof. Let F (n) =
∑n

m=1

(
m
n

)k
. Then by Exercise 2.14,

F (n) = (u ∗ F ∗)(n) =
∑
d|n

d∑
m=1

(m,d)=1

(m
d

)k

=
∑
d|n

1

dk

d∑
m=1

(m,d)=1

mk =
∑
d|n

ϕk(d)

dk
.

Exercise 2.16. Invert the formula in Exercise 15 to obtain, for n > 1,

ϕ1(n) =
1

2
nϕ(n), and ϕ2(n) =

1

3
n2ϕ(n) +

n

6

∏
p|n

(1− p).

Derive a corresponding formula for ϕ3(n).
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Solution. Letting N1(n) = n(n + 1)/2, then by Exercise 2.15 we have ϕ1 ∗ N = N1, which
implies ϕ1 = N1 ∗N−1 = N1 ∗ (µN). Thus

ϕ1(n) =
1

2

∑
d|n

d(d+ 1)µ
(n
d

)(n
d

)
=

1

2
n
∑
d|n

dµ
(n
d

)
+

1

2
n
∑
d|n

µ
(n
d

)
=

1

2
nϕ(n) +

1

2
nI(n).

Since I(n) = 0 for n > 1, the result follows.
Letting N2(n) = n(n+ 1)(2n+ 1)/6, then by Exercise 2.15 we have ϕ2 ∗N2 = N2, which

implies ϕ2 = N2 ∗ (N2)−1 = N2 ∗ (µN2). So

ϕ2(n) =
1

6

∑
d|n

d(d+ 1)(2d+ 1)µ
(n
d

)(n
d

)2
=

1

3
n2
∑
d|n

dµ
(n
d

)
+

1

2
n2
∑
d|n

µ
(n
d

)
+

1

6
n
∑
d|n

(n
d

)
µ
(n
d

)
=

1

3
n2ϕ(n) +

1

2
n2I(n) +

1

6
n
∏
i

(Nµ ∗ u)(paii )

=
1

3
n2ϕ(n) +

1

2
n2I(n) +

1

6
n
∏
p|n

(1− p),

Since I(n) = 0 for n > 1, the result follows.
Letting N3(n) = n2(n+1)2/4, then by Exercise 2.15 we have ϕ3 ∗N3 = N3, which implies

ϕ3 = N3 ∗ (N3)−1 = N3 ∗ (µN3). So

ϕ3(n) =
1

4

∑
d|n

d2(d+ 1)2µ
(n
d

)(n
d

)3
=

1

4
n3
∑
d|n

dµ
(n
d

)
+

1

2
n3
∑
d|n

µ
(n
d

)
+

1

4
n2
∑
d|n

(n
d

)
µ
(n
d

)
=

1

4
n3ϕ(n) +

1

2
n3I(n) +

1

4
n2
∏
i

(Nµ ∗ u)(paii )

=
1

4
n3ϕ(n) +

1

2
n3I(n) +

1

4
n2
∏
p|n

(1− p),

=
1

4
n3ϕ(n) +

1

4
n2
∏
p|n

(1− p), for n > 1.

Exercise 2.17. Jordan’s totient Jk is a generalization of Euler’s totient defined by

Jk(n) = nk
∏
p|n

(1− p−k).
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(a) Prove that

Jk(n) =
∑
d|n

µ(d)
(n
d

)k
and nk =

∑
d|n

Jk(d).

(b) Determine the Bell series for Jk.

Proof.
(a) The claim is trivial for n = 1, so assume n > 1. Since both Jk and µ ∗Nk are multiplica-
tive, we only need to look at prime powers:∑

d|pa
µ(d)

(
pa

d

)k
= µ(1)(pa)k + µ(p)(pa−1)k

= pak − p(a−1)k

= pak(1− p−k)
= Jk(p

a).

The second identity follows directly through Möbius inversion.
(b) Since Jk = µ ∗Nk, (Jk)p(x) = µp(x)Nk

p (x). Using

µp(x) = 1− x and Nk
p (x) =

∞∑
n=0

(
pk
)n
xn =

1

1− pkx
,

we have

(Jk)p(x) =
1− x

1− pkx
.

Exercise 2.18. Prove that every number of the form 2a−1(2a − 1) is perfect if 2a − 1 is
prime.

Proof. Verifying directly, σ(n) =
a−1∑
i=0

2i + (2a − 1)
a−1∑
i=0

2i = 2a
a−1∑
i=0

2i = 2a · 2a − 1

2− 1
= 2n.

Exercise 2.19. Prove that if n is even and perfect then n = 2a−1(2a − 1) for some a ≥ 2.
It is not known if any odd perfect numbers exist. It is known that there are no odd perfect
numbers with less then 7 prime factors.

Proof. Suppose n = 2a−1d for a ≥ 2 and n is perfect, i.e. n is even and σ(n) = 2n. Then

2ad = σ(n) = σ(2a−1)σ(d) = (2a − 1)σ(d).

Since (2a − 1, 2a) = 1, we have 2a − 1 | d and so d = (2a − 1)m. Substituting for d shows

(2a − 1)σ(d) = 2a(2a − 1)m,

which implies σ(d) = 2am. Now since m and d are both divisors of d, 2am = σ(d) ≥ m+ d,
but m+ d = m+ (2a− 1)m = 2am, which forces σ(d) = m+ d. This means d can’t have any
other divisors, and so m = 1. We conclude that d = 2a−1 is prime, and n = 2a−1(2a−1).
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Exercise 2.20. Let P (n) be the product of the positive integers which are≤ n and relatively
prime to n. Prove that

P (n) = nϕ(n)
∏
d|n

(
d!

dd

)µ(n/d)
.

Proof. By Exercise 2.13, since µ−1 = u,

P (n)

nϕ(n)
=
∏
d|n

(
d!

dd

)µ(n/d)
⇐⇒ n!

nn
=
∏
d|n

P (d)

dϕ(d)
.

Now ∏
d|n

P (d)

dϕ(d)
=
∏
d|n

1

dϕ(d)

d∏
k=1

(k,d)=1

k

=
∏
d|n

d∏
k=1

(k,d)=1

k

d

=
∏
d|n

d∏
k=1

(k,d)=1

kn/d

n
.

By Lemma 2.14, kn/d attains the values 1, 2, . . . , n exactly once, and so∏
d|n

P (d)

dϕ(d)
=

n∏
k=1

k

n
=
n!

nn
.

Exercise 2.21. Let f(n) = [
√
n] − [

√
n− 1]. Prove that f is multiplicative but not com-

pletely multiplicative.

Lemma 2.21. f is the square indicator. That is f(n) = 1 if n is a square and f(n) = 0
otherwise.

Proof of Lemma. Suppose n is not a square and m2 is the largest square less than n. Let
n = m2 + k, then

m2 ≤ m2 + k − 1 < m2 + k < (m+ 1)2.

Therefore
m ≤

√
n− 1 <

√
n < m+ 1,

which means m =
⌊√

n− 1
⌋

= b
√
nc, i.e. f(n) = 0.

Now suppose n = m2 is a square, then (m− 1)2 ≤ m2 − 1 < m2. Therefore

m− 1 ≤
√
n− 1 <

√
n = m,

which means
⌊√

n− 1
⌋

= m− 1 and b
√
nc = m, i.e. f(n) = 1.
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Proof of Exercise. Since f is the square indicator, by Theorem 2.19, f = λ ∗ u and hence is
multiplicative. Now f(4) = 1 and f(2)f(2) = 0, so f is multiplicative but not completely
multiplicative.

Exercise 2.22. Prove that
σ1(n) =

∑
d|n

ϕ(d)σ0

(n
d

)
,

and derive a generalization involving σα(n). (More than one generalization is possible.)

Proof. Since σα = u ∗Nα and N = ϕ ∗ u, we have∑
d|n

ϕ(d)σα

(n
d

)
= ϕ ∗ σα = ϕ ∗ (u ∗Nα)

= (ϕ ∗ u) ∗Nα = N ∗Nα

=
∑
d|n

d
(n
d

)α
= nα

∑
d|n

d1−α

= nασ1−α(n).

Letting 1− α 7→ α,

σα(n) = nα−1
∑
d|n

ϕ(d)σ1−α

(n
d

)
.

Taking α = 1 gives us the result.

Exercise 2.23. Prove the following statement or exhibit a counter example. If f is multi-
plicative, then F (n) =

∏
d|n f(d) is multiplicative.

Solution. False: Let f(n) = ϕ(n), then F (6) = 4 and F (2)F (3) = 2.

Exercise 2.24. Let A(x) and B(x) be formal power series. If the product A(x)B(x) is the
zero series, prove that at least one factor is zero. In other words, the ring of formal power
series has no zero divisors.

Proof. Suppose B(x) 6= 0 and let bk be the first non-zero term in the series expansion of B.
Then B(x) = xk

∑∞
i=0 bi+kx

i = xkB̃(x). Since A(x)B(x) ≡ 0 if and only if A(x)B̃(x) ≡ 0,
without loss of generality assume b0 6= 0.

Now A(x)B(x) ≡ 0 tells us each series coefficient is zero, i.e.
∑n

k=0 akbn−k = 0 for all
n ≥ 0. We shall show ai ≡ 0 via strong induction. For n = 0 we have a0b0 = 0, which
implies a0 = 0, as we know b0 6= 0. Now suppose ak = 0 for all 0 < k < n. Then

0 =
n∑
k=0

akbn−k = anb0,

which again since b0 6= 0, tells us an = 0. Therefore A(x) ≡ 0.
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Exercise 2.25. Assume f is multiplicative. Prove that:
(a) f−1(n) = µ(n)f(n) for every squarefree n.
(b) f−1(p2) = f(p)2 − f(p2) for every prime p.

Proof.
(a) Since n is squarefree, then for any divisor d, (d, n/d) = 1. Hence

(f ∗ (µf))(n) =
∑
d|n

µ(d)f(d)f
(n
d

)
=
∑
d|n

µ(d)f(n)

= f(n)I(n)

= I(n).

(b) We will compute f−1(p2) by the method described in Theorem 2.8.

1. Since f is multiplicative, f(1) = 1, which tells us f−1(1) = 1.

2. f−1(p) = −f(p)f−1(1) = −f(p).

3. f−1(p2) = −(f(p2)f−1(1) + f(p)f−1(p)) = f(p)2 − f(p2).

Exercise 2.26. Assume f is multiplicative. Prove that f is completely multiplicative if,
and only if, f−1(pa) = 0 for all primes p and a ≥ 2.

Proof. Suppose f is completely multiplicative. Then f−1(pa) = µ(pa)f(pa) = 0 for a ≥ 2.
Now suppose f−1(pa) = 0 for all primes p and a ≥ 2. Then by Exercise 2.25 (b)

f(p)2 − f(p2) = 0, i.e. f(p2) = f(p)2. Inductively, for a > 2 we have

f−1(pa) = −
∑
d|pa
d<pa

f

(
pa

d

)
f−1(d)

= −
a−1∑
i=0

f(pa−i)f−1(pi)

= −(f(pa)f−1(1) + f(pa−1)f−1(p))

= −(f(pa) + f(p)a−1(−f(p)))

= f(p)a − f(pa).

Therefore f(pa) = f(p)a and hence f is completely multiplicative.

Exercise 2.27.
(a) If f is completely multiplicative, prove that

f · (g ∗ h) = (f · g) ∗ (f · h)

for all arithmetical functions g and h, where f · g denotes the product, (f · g)(n) = f(n)g(n).
(b) If f is multiplicative and if the relation in (a) holds for g = µ and h = µ−1, prove that
f is completely multiplicative.
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Proof.
(a) By the definition of Dirichlet convolution,

((f · g) ∗ (f · h))(n) =
∑
d|n

f(d)g(d)f
(n
d

)
h
(n
d

)
= f(n)

∑
d|n

g(d)h
(n
d

)
= f(n)(g ∗ h)(n).

(b) Supposing
f · (µ ∗ µ−1) = (f · µ) ∗ (f · µ−1),

then fI = (µf) ∗ f . Now since f(1) = 1, (µf) ∗ f = I. This means f−1 = µf , and hence by
Theorem 2.17, f is completely multiplicative.

Exercise 2.28.
(a) If f is completely multiplicative, prove that

(f · g)−1 = f · g−1

for every arithmetical function g with g(1) 6= 0.
(b) If f is multiplicative and the relation in (a) holds for g = µ−1, prove that f is completely
multiplicative.

Proof.
(a) Suppose g(1) 6= 0. Then g−1 exists and

((f · g) ∗ (f · g−1))(n) =
∑
d|n

f(d)g(d)f
(n
d

)
g−1

(n
d

)
= f(n)

∑
d|n

g(d)g−1
(n
d

)
= f(n)(g ∗ g−1)(n)

= f(n)I(n)

= I(n).

Therefore (f · g)−1 = f · g−1.
(b) Supposing (f · u)−1 = f · µ, then (µf) ∗ f = I. Hence by Theorem 2.17, f is completely
multiplicative.

Exercise 2.29. Prove that there is a multiplicative arithmetical function g such that
n∑
k=1

f((k, n)) =
∑
d|n

f(d)g
(n
d

)
for every arithmetical function f . Here (k, n) is the gcd of n and k. Use this identity to
prove that

n∑
k=1

(k, n)µ((k, n)) = µ(n).
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Proof. Using the second part of this problem for intuition, take g = ϕ. Partitioning k via
it’s gcd with n gives

n∑
k=1

f((k, n)) =
∑
d|n

∑
1≤k≤n
(k,n)=d

f((k, n))

=
∑
d|n

f(d)
∑

1≤k≤n
(k,n)=d

1.

The proof of Theorem 2.2 shows ∑
1≤k≤n
(k,n)=d

1 = ϕ
(n
d

)
and hence

n∑
k=1

f((k, n)) =
∑
d|n

f(d)ϕ
(n
d

)
.

Finally, let f(n) = nµ(n) and apply the above identity:

n∑
k=1

(k, n)µ((k, n)) = ((Nµ) ∗ ϕ)(n) = (N−1 ∗ ϕ)(n) = µ(n).

Exercise 2.30. Let f be multiplicative and let g be any arithmetical function. Assume that

f(pn+1) = f(p)f(pn)− g(p)f(pn−1) for all primes p and all n ≥ 1.(a)

Prove that for each prime p the Bell series for f has the form

fp(x) =
1

1− f(p)x+ g(p)x2
.(b)

Conversely, prove that (b) implies (a).

Proof. By the uniqueness theorem of Bell series of multiplicative functions,

f(pn+1) = f(p)f(pn)− g(p)f(pn−1)

⇐⇒ fp(x) = 1 + f(p)x+
∞∑
n=2

(f(p)f(pn−1)− g(p)f(pn−2)xn

⇐⇒ fp(x) = 1 + f(p)x+ f(p)x
∞∑
n=1

f(pn)xn − g(p)x2
∞∑
n=0

f(pn)xn

⇐⇒ fp(x) = 1 + f(p)xfp(x)− g(p)x2fp(x)

⇐⇒ fp(x) =
1

1− f(p)x+ g(p)x2
.
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Exercise 2.31.(+) (Continuation of Exercise 2.30.) If g is completely multiplicative prove
that statement (a) of Exercise 2.30 implies

f(m)f(n) =
∑
d|(m,n)

g(d)f
(mn
d2

)
,

where the sum is extended over the positive divisors of the gcd (m, n). [Hint : Consider first
the case m = pa, n = pb.]

Proof. First, assume m = pa and n = pb for some prime p and a ≥ b. Then (m,n) = pb and
so ∑

d|(m,n)

g(d)f
(mn
d2

)
=

b∑
i=0

g(p)if(pa+b−2i).

To prove the identity in the problem statement, fix a and induct on b. Suppose b = 1, then
by assumption

b∑
i=0

g(p)if(pa+b−2i) = g(1)f(pa+1) + g(p)f(pa−1) = f(pa)f(p).

Assume the identity is true for 1, . . . , b− 1, then

f(pa)f(pb) = f(pa)
[
f(p)f(pb−1)− g(p)f(pb−2)

]
= [f(pa)f(p)] f(pb−1)− g(p)f(pa)f(pb−2)

=
[
f(pa+1) + g(p)f(pa−1)

]
f(pb−1)− g(p)f(pa)f(pb−2)

= f(pa+1)f(pb−1) + g(p)f(pa−1)f(pb−1)− g(p)f(pa)f(pb−2)

=
b−1∑
i=0

g(p)if(pa+b−2i) + g(p)
b−1∑
i=0

g(p)if(pa+b−2i−2)− g(p)
b−2∑
i=0

g(p)if(pa+b−2i−2)

=
b−1∑
i=0

g(p)if(pa+b−2i) + g(p)bf(pa+b−2(b−1)−2)

=
b∑
i=0

g(p)if(pa+b−2i).

So by induction, the identity holds for prime powers. What remains to be shown is that the
right hand side is multiplicative with respect to m and n.
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Let m = pa11 · · · p
ak
k , n = pb11 · · · p

bk
k where ai, bi ≥ 0, and define ci = max{ai, bi}. Then

∑
d|(m,n)

g(d)f
(mn
d2

)
=

c1∑
i1=0

· · ·
ck∑
ik=0

g(pi11 · · · p
ik
k )f(pa1+b1−2i11 · · · pak+bk−2ikk )

=

c1∑
i1=0

· · ·
ck∑
ik=0

g(pi11 ) · · · g(pikk )f(pa1+b1−2i11 ) · · · f(pak+bk−2ikk )

=
k∏
j=1

cj∑
ij=0

g(p
ij
j )f(p

aj+bj−2ij
j )

=
k∏
j=1

∑
d|(p

aj
j ,p

bj
j )

g(d)f(mn/d2),

hence the both sides are multiplicative with respect to m and n and the result follows.

Exercise 2.32. Prove that

σα(m)σα(n) =
∑
d|(m,n)

dασα

(mn
d2

)
.

Proof. Since Nα is completely multiplicative and σα is multiplicative, by Exercise 2.31 it’s
enough to show

σα(pn+1) = σα(p)σα(pn)− pασα(pn−1).

For α = 0,
σ0(p)σ0(p

n)− σ0(pn−1) = 2(n+ 1)− n = n+ 2 = σ0(p
n+1).

Otherwise

σα(p)σα(pn)− pασα(pn−1) =
p2α − 1

pα − 1
· p

(n+1)α − 1

pα − 1
− pα · p

nα − 1

pα − 1

=
(pα + 1)(p(n+1)α − 1)− pα(pnα − 1)

pα − 1

=
p(n+2)α + p(n+1)α − pα − 1− p(n+1)α − pα

pα − 1

=
p(n+2)α − 1

pα − 1

= σα(pn+1).

Exercise 2.33. Prove that Liouville’s function is given by the formula

λ(n) =
∑
d2|n

µ
( n
d2

)
.
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Proof. By Theorem 2.19, f = λ ∗ u, where f is the square indicator function. Thus

λ(n) = (f ∗ µ)(n)

=
∑
d|n

f(d)µ
(n
d

)
=
∑
d2|n

µ
( n
d2

)
.

Exercise 2.34. This exercise describes an alternate proof to Theorem 2.16 which states that
the Dirichlet inverse of a multiplicative function is multiplicative. Assume g is multiplicative
and let f = g−1.
(a) Prove that if p is prime then for k ≥ 1 we have

f(pk) = −
k∑
t=1

g(pt)f(pk−t).

(b) Let h be the uniquely determined multiplicative function which agrees with f at the
prime powers. Show that h ∗ g agrees with the identity function I at the prime powers and
deduce that h ∗ g = I. This shows that f = h so f is multiplicative.

Proof.
(a) Since f = g−1, we have f ∗ g = I. Thus for p prime and k ≥ 1,

∑
d|pk

g(d)f

(
pk

d

)
= 0 =⇒

k∑
t=0

g(pt)f(pk−t) = 0

=⇒ f(pk) +
k∑
t=1

g(pt)f(pk−t) = 0.

(b) Suppose p is prime and k ≥ 1. Then since f = g−1,

0 =
k∑
t=0

g(pt)f(pk−t) =
k∑
t=0

g(pt)h(pk−t) = (h ∗ g)(pk).

Because h and g are multiplicative, (h ∗ g)(1) = 1, and so h ∗ g agrees with the identity
function at prime powers. Since h and g are multiplicative, so is h ∗ g, and hence h ∗ g = I.
Finally since Dirchlet inverses are unique, f = h and is therefore multiplicative.

Exercise 2.35. If f and g are multiplicative and if a and b are positive integers with a ≥ b,
prove that the function h given by

h(n) =
∑
da|n

f
( n
da

)
g
( n
db

)
is also multiplicative. The sum is extended over those divisors d of n for which da divides n.
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Proof. Let (m,n) = 1. For all c | m and d | n, (m/c, n/d) = 1 and thus

h(m)h(n) =

∑
ca|m

f
(m
ca

)
g
(m
cb

)∑
da|n

f
( n
da

)
g
( n
db

)
=
∑
ca|m
da|n

f
(m
ca

)
g
(m
cb

)
f
( n
da

)
g
( n
db

)

=
∑
ca|m
da|n

f

(
mn

(cd)a

)
g

(
mn

(cd)b

)

=
∑
ta|mn

f
(mn
ta

)
g
(mn
tb

)
= h(mn).

In the second to last step we used the one-to-one correspondence between the divisors
(cd)a | mn and ta | mn for (m,n) = 1.

MÖBIUS FUNCTIONS OF ORDER k.
If k ≥ 1 we define µk, as follows:

µk(1) = 1,

µk(n) = 0 if pk+1 | n for some prime p,

µk(n) = (−1)r if n = pk1 · · · pkr
∏
i>r

paii , 0 ≤ ai < k,

µk(n) = 1 otherwise.

In other words, µk(n) vanishes if n is divisible by the (k+1)st power of some prime; otherwise,
µk(n) is 1 unless the prime factorization of n contains the kth powers of exactly r distinct
primes, in which case µk(n) = (−1)r. Note that µ1 = µ, the usual Möbius function.

Prove the properties of the functions µk described in the following exercises.

Exercise 2.36. If k ≥ 1 then µk(n
k) = µ(n).

Proof. We will show µk(n
k) = µk−1(n

k−1) for k > 1, then inductively the result follows.
Assuming k > 1, consider the following cases.

• If n = 1, then µk(1
k) = 1 = µk−1(1

k−1).

• If µk(n
k) = 0, then there is a prime p such that pk+1 | nk, which implies pk | nk−1. This

means µk−1(n
k−1) = 0.

• If µk(n
k) = (−1)r, then nk = pk1 · · · pkr

∏
i>r p

ai
i for 0 ≤ ai < k. Now since nk is a kth

power, we must have ai = 0. Thus nk = pk1 · · · pkr , which means nk−1 = pk−11 · · · pk−1r

and hence µk−1(n
k−1) = (−1)r.
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Exercise 2.37. Each function µk is multiplicative.

Proof. Suppose (m,n) = 1 and m,n > 1, as the claim is trivial for m or n equal to 1. If
pk+1 | m for some prime p, then pk+1 | mn and so µk(mn) = 0 = µk(m)µk(n). Otherwise
suppose

m = pk1 · · · pkr1
∏
i>r1

paii and n = qk1 · · · qkr2
∏
i>r2

qbii

for 0 ≤ ai, bi < k, r1, r2 ≥ 0. Since (m,n) = 1, all kth prime powers are distinct and ai 6= 0
implies bi = 0 and vice versa. Therefore

µk(mn) = (−1)r1+r2 = (−1)r1(−1)r2 = µk(m)µk(n).

Exercise 2.38. If k ≥ 2 we have

µk(n) =
∑
dk|n

µk−1

( n
dk

)
µk−1

(n
d

)
.

Proof. By Exercise 2.37 the left hand side is multiplicative and by Exercise 2.35 the right
hand side is multiplicative, so it suffices to prove this for prime powers. Denote the right
hand side by rhs, and consider the three cases.

• Suppose n = pa for 0 ≤ a < k. Then since 1 is the only kth power to divide pa,
µk(p

a) = 1 and rhs = µk−1(p
a)2 = (±1)2 = 1.

• Since 1 and pk are the only kth powers to divide pk, observe µk(p
k) = −1 and

rhs = µk−1(p
k)2 + µk−1(1)µk−1(p

k−1) = 0 + 1(−1) = −1.

• Suppose n = pa for a > k. Then µk(p
a) = 0 and

rhs =

ba/kc∑
i=0

µk−1(p
a−ki)µk−1(p

a−i).

Now

a− i ≥ a− ba/kc ≥ a− a/k

=
a(k − 1)

k
> k − 1,

hence a− i ≥ k. Therefore µk−1(p
a−i) = 0, which forces rhs = 0.
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Exercise 2.39. If k ≥ 1 we have

|µk(n)| =
∑
dk+1|n

µ(d).

Proof. Since mk | n for some m > 1 if and only if pk | n for some prime p, by Exercise 2.6

∑
dk+1|n

µ(d) =

{
0 if pk+1 | n for some prime p,

1 otherwise.

By definition it’s clear this is exactly |µk(n)|.

Exercise 2.40. For each prime p the Bell series for µk is given by

(µk)p(x) =
1− 2xk + xk+1

1− x
.

Proof. Evaluating µk at prime powers, we see

(µk)p(x) =
k−1∑
n=0

xn − xk =
xk − 1

x− 1
− xk =

1− 2xk + xk+1

1− x
.



Chapter 3
Averages of Arithmetical Functions

Exercise 3.1. Use Euler’s summation formula to deduce the following for x ≥ 2.

(a)
∑
n≤x

log n

n
=

1

2
log2 x+ A+O

(
log x

x

)
, where A is a constant.

(b)
∑
n≤x

1

n log n
= log(log x) +B +O

(
1

x log x

)
, where B is a constant.

Proof.
(a) Given d

dt
( log t

t
) = 1−log t

t2
, then by Euler summation∑

n≤x

log n

n
=

∫ x

1

log t

t
dt+

∫ x

1

(t− btc)1− log t

t2
dt+ (x− bxc) log x

x

=
1

2
log2 x+

(∫ ∞
1

−
∫ ∞
x

)
(t− btc)1− log t

t2
dt+O

(
log x

x

)
.

Now ∣∣∣∣∫ ∞
x

(t− btc)1− log t

t2
dt

∣∣∣∣ ≤ 2

∫ ∞
x

log t

t2
dt

= 2 · log x+ 1

x

= O

(
log x

x

)
,

hence the result follows.

(b) Given d
dt

( 1
t log t

) = − log t−1
t2 log2 t

, then by Euler summation

∑
n≤x

1

n log n
=

∫ x

1

1

t log t
dt−

∫ x

1

(t− btc) log t+ 1

t2 log2 t
dt+ (x− bxc) 1

x log x

= log(log x)−
(∫ ∞

1

−
∫ ∞
x

)
(t− btc) log t+ 1

t2 log2 t
dt+O

(
1

x log x

)
.
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Now ∣∣∣∣∫ ∞
x

(t− btc) log t+ 1

t2 log2 t
dt

∣∣∣∣ ≤ ∫ ∞
x

log t+ 1

t2 log2 t
dt

=
1

x log x

= O

(
1

x log x

)
,

hence the result follows.

Exercise 3.2. If x ≥ 2 prove that

∑
n≤x

d(n)

n
=

1

2
log2 x+ 2C log x+O(1), where C is Euler’s constant.

Proof. Changing order of summation as in Theorem 3.3 and using Exercise 3.1 (a),

∑
n≤x

d(n)

n
=
∑
d≤x

1

d

∑
q≤x/d

1

q

=
∑
d≤x

1

d

(
log
(x
d

)
+ C +O

(
d

x

))
=
∑
d≤x

(
log x+ C

d
− log d

d
+O

(
1

x

))
= (log x+ C)

∑
d≤x

1

d
−
∑
d≤x

log d

d
+O(1)

= (log x+ C)

(
log x+ C +O

(
1

x

))
−
(

1

2
log2 x+O(1)

)
+O(1)

= log2 x+ C log x+O

(
log x

x

)
+ C log x+ C2 +O

(
1

x

)
− 1

2
log2 x+O(1)

=
1

2
log2 x+ 2C log x+O(1).

Exercise 3.3. If x ≥ 2 and α > 0, α 6= 1, prove that

∑
n≤x

d(n)

nα
=
x1−α log x

1− α
+ ζ(α)2 +O(x1−α).
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Proof. Changing order of summation as in Theorem 3.3 and using Theorem 3.2 (b),

∑
n≤x

d(n)

nα
=
∑
d≤x

1

dα

∑
q≤x/d

1

qα

=
∑
d≤x

1

dα

(
(x/d)1−α

1− α
+ ζ(α) +O

(
1

(x/d)α

))
=

x1−α

1− α
∑
d≤x

1

d
+ ζ(α)

∑
d≤x

1

dα
+O(x1−α)

=
x1−α

1− α

(
log x+ C +O

(
1

x

))
+ ζ(α)

(
x1−α

1− α
+ ζ(α) +O(x−α)

)
+O(x1−α)

=
x1−α log x

1− α
+ C · x

1−α

1− α
+O(x−α) + ζ(α) · x

1−α

1− α
+ ζ(α)2 +O(x−α) +O(x1−α)

=
x1−α log x

1− α
+ ζ(α)2 +O(x1−α).

Exercise 3.4. If x ≥ 2 prove that:

(a)
∑
n≤x

µ(n)
⌊x
n

⌋2
=

x2

ζ(2)
+O(x log x).

(b)
∑
n≤x

µ(n)

n

⌊x
n

⌋
=

x

ζ(2)
+O(log x).

Proof.
(a) Using Theorem 3.2 (a)(c),

∑
n≤x

µ(n)
⌊x
n

⌋2
=
∑
n≤x

µ(n)
(x
n

)2
− 2

∑
n≤x

µ(n)
(x
n

){x
n

}
+
∑
n≤x

µ(n)
{x
n

}2

= x2
∞∑
n=1

µ(n)

n2
− x2

∑
n>x

µ(n)

n2
+O

(
x
∑
n≤x

1

n

)
+O

(∑
n≤x

1

)

= x2
∞∑
n=1

µ(n)

n2
− x2 ·O

(∑
n>x

1

n2

)
+O(x log x)

=
x2

ζ(2)
+ x2 ·O

(
1

x

)
+O(x log x)

=
x2

ζ(2)
+O(x log x).
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(b) Again, using Theorem 3.2 (a)(c),

∑
n≤x

µ(n)

n

⌊x
n

⌋
= x

∑
n≤x

µ(n)

n2
−
∑
n≤x

µ(n)

n

{x
n

}
= x

∞∑
n=1

µ(n)

n2
− x

∑
n>x

µ(n)

n2
+O

(∑
n≤x

1

n

)

=
x

ζ(2)
+ x ·O

(
1

x

)
+O(log x)

=
x

ζ(2)
+O(log x).

Exercise 3.5. If x ≥ 1 prove that:

(a)
∑
n≤x

ϕ(n) =
1

2

∑
n≤x

µ(n)
⌊x
n

⌋2
+

1

2
.

(b)
∑
n≤x

ϕ(n)

n
=
∑
n≤x

µ(n)

n

⌊x
n

⌋
.

These formulas, together with those in Exercise 4, show that, for x ≥ 2,

∑
n≤x

ϕ(n) =
1

2

x2

ζ(2)
+O(x log x) and

∑
n≤x

ϕ(n)

n
=

x

ζ(2)
+O(log x).

Proof.
(a) Changing order of summation as in Theorem 3.3,∑

n≤x

ϕ(n) =
∑
n≤x

∑
d|n

µ(d)
n

d

=
∑
q,d

q,d≤x

µ(d)q

=
∑
d≤x

µ(d)
∑
q≤x/d

q

=
∑
d≤x

µ(d) · bx/dc (bx/dc+ 1)

2

=
1

2

∑
d≤x

µ(d)
⌊x
d

⌋2
+

1

2

∑
d≤x

µ(d)
⌊x
d

⌋
=

1

2

∑
n≤x

µ(n)
⌊x
n

⌋2
+

1

2
.
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(b) Changing order of summation as in Theorem 3.3,∑
n≤x

ϕ(n)

n
=
∑
n≤x

∑
d|n

µ(d)

d

=
∑
q,d

q,d≤x

µ(d)

d

=
∑
d≤x

µ(d)

d

∑
q≤x/d

1

=
∑
d≤x

µ(d)

d

⌊x
d

⌋
.

Exercise 3.6. If x ≥ 2 prove that∑
n≤x

ϕ(n)

n2
=

1

ζ(2)
log x+

C

ζ(2)
− A+O

(
log x

x

)
,

where C is Euler’s constant and

A =
∞∑
n=1

µ(n) log n

n2
.

Proof. Changing order of summation as in Theorem 3.3 and using Theorem 3.2 (c),∑
n≤x

ϕ(n)

n2
=
∑
n≤x

1

n2

∑
d|n

µ(d)
n

d
=
∑
q,d
qd≤x

µ(d)

qd2

=
∑
d≤x

µ(d)

d2

∑
q≤x/d

1

q

=
∑
d≤x

µ(d)

d2

(
log x− log d+ C +O

(
1

x

))
= (log x+ C)

∑
d≤x

µ(d)

d2
−
∑
d≤x

µ(d) log d

d2
+O

(
1

x

)

=
log x+ C

ζ(2)
−
∞∑
d=1

µ(d) log d

d2
− (log x+ C)

∑
d>x

µ(d)

d2
+
∑
d>x

µ(d) log d

d2
+O

(
1

x

)

=
log x+ C

ζ(2)
− A+O

(
log x+ C

x

)
+O

(∑
d>x

1

d3/2

)

=
log x+ C

ζ(2)
− A+O

(
log x+ C

x

)
+O

(
1√
x

)
.

Since log(x)/x is the main error term, we are done.
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Exercise 3.7. In a later chapter we will prove that
∑∞

n=1 µ(n)n−α = 1/ζ(α) if α > 1.
Assuming this, prove that for x ≥ 2 and α > 1, α 6= 2, we have∑

n≤x

ϕ(n)

nα
=

x2−α

2− α
1

ζ(2)
+
ζ(α− 1)

ζ(α)
+O(x1−α log x).

Proof. Changing order of summation as in Theorem 3.3 and using Theorem 3.2 (b),∑
n≤x

ϕ(n)

nα
=
∑
n≤x

1

nα

∑
d|n

µ(d)
n

d
=
∑
q,d
qd≤x

µ(d)

dαqα−1

=
∑
d≤x

µ(d)

dα

∑
q≤x/d

1

qα−1

=
∑
d≤x

µ(d)

dα

(
(x/d)2−α

2− α
+ ζ(α− 1) +O

(
(x/d)1−α

))

=
x2−α

2− α
∑
d≤x

µ(d)

d2
+ ζ(α− 1)

∑
d≤x

µ(d)

dα
+O

(
x1−α

∑
d≤x

µ(d)

d

)

=
x2−α

2− α
1

ζ(2)
+

x2−α

2− α
∑
d>x

µ(d)

d2
+
ζ(α− 1)

ζ(α)
+ ζ(α− 1)

∑
d>x

µ(d)

dα
+O

(
x1−α log x

)
=

x2−α

2− α
1

ζ(2)
+O

(
x1−α

)
+
ζ(α− 1)

ζ(α)
+ ζ(α− 1)O(1) +O

(
x1−α log x

)
.

Exercise 3.8. If α ≤ 1 and x ≥ 2 prove that∑
n≤x

ϕ(n)

nα
=

x2−α

2− α
1

ζ(2)
+O(x1−α log x).

Proof. Starting off just as in the proof of Exercise 3.7 and using Theorem 3.2 (c)(d),∑
n≤x

ϕ(n)

nα
=
∑
d≤x

µ(d)

dα

∑
q≤x/d

1

qα−1

=
∑
d≤x

µ(d)

dα

(
(x/d)2−α

2− α
+O

(
(x/d)1−α

))

=
x2−α

2− α
∑
d≤x

µ(d)

d2
+O

(
x1−α

∑
d≤x

µ(d)

d

)

=
x2−α

2− α
1

ζ(2)
− x2−α

2− α
∑
d>x

µ(d)

d2
+O

(
x1−α log x

)
=

x2−α

2− α
1

ζ(2)
+O

(
x1−α

)
+O

(
x1−α log x

)
.



38 Chapter 3 Solutions

Exercise 3.9. In a later chapter we will prove that the infiite product
∏

p(1−p−2), extended

over all primes, converges to the value 1/ζ(2) = 6/π2. Assuming this result, prove that

(a)
σ(n)

n
<

n

ϕ(n)
<
π2

6

σ(n)

n
if n ≥ 2.

[Hint: Use the formula ϕ(n) = n
∏

p|n(1− p−1) and the relation

. 1 + x+ x2 + · · · = 1

1− x
=

1 + x

1− x2
with x =

1

p
.
]

(b) If x ≥ 2 prove that ∑
n≤x

n

ϕ(n)
= O(x).

Proof.
(a) Let n = pα1

1 · · · p
αk
k for k > 0, then

n

ϕ(n)
=
∏
p|n

1

1− 1/p
=
∏
p|n

1 + 1/p

1− 1/p2

<
∏
p

(
1− 1/p2

)−1∏
p|n

(1 + 1/p)

=
π2

6

∏
p|n

(1 + 1/p) =
π2

6
· 1

n

∏
pi|n

(
pαi + pαi−1

)
≤ π2

6
· 1

n

∏
pi|n

(
pαii + pαi−1 + · · ·+ 1

)
≤ π2

6
· 1

n

∏
pi|n

pαii − 1

pi − 1
=
π2

6

σ(n)

n
.

Also

n

ϕ(n)
=
∏
p|n

1

1− 1/p
=
∏
p|n

(
1 +

1

p
+

1

p2
+ · · ·

)
>
∏
pi|n

(
1 + p−1i + · · · p−αii

)
=

1

n

∏
pi|n

(pαii + · · · pi + 1) =
σ(n)

n
.
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(b) Using the above upper bound and changing order of summation as in Theorem 3.3,

6

π2

∑
n≤x

n

ϕ(n)
<
∑
n≤x

σ(n)

n
=
∑
q,d
qd≤x

d

qd

=
∑
d≤x

∑
q≤x/d

1

q

=
∑
d≤x

(
log x− log d+ C +O

(
d

x

))

= (log x+ C) bxc −
∑
d≤x

log d+O

(∑
d≤x

d

x

)
.

Applying Theorem 3.15 gives

6

π2

∑
n≤x

n

ϕ(n)
< (log x+ C) bxc − x log x+O(x)

= −{x} log x+ C bxc+O(x)

= O(x) .

Exercise 3.10. If x ≥ 2 prove that∑
n≤x

1

ϕ(n)
= O(log x).

Proof. Using the same approach in the proof of Exercise 3.9 (b) and Theorem 3.2 (a)(b),

6

π2

∑
n≤x

1

ϕ(n)
<
∑
n≤x

σ(n)

n2
=
∑
d≤x

1

d

∑
q≤x/d

1

q2

=
∑
d≤x

1

d

(
(x/d)−1

−1
+ ζ(2) +O

((
d/x
)2))

=
∑
d≤x

(
−1

x
+
ζ(2)

d
+
O(d)

x2

)
= O(1) +O(log x) +O(1)

= O(log x) .

Exercise 3.11. Let ϕ1(n) = n
∑

d|n |µ(d)|/d.

(a) Prove that ϕ1 is multiplicative and that ϕ1(n) = n
∏

p|n(1 + p−1).

(b) Prove that

ϕ1(n) =
∑
d2|n

µ(d)σ
( n
d2

)
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where the sum is over those divisors of n for which d2 | n.
(c) Prove that ∑

n≤x

ϕ1(n) =
∑
d≤
√
x

µ(d)S
( x
d2

)
, where S(x) =

∑
k≤x

σ(k),

then use Theorem 3.4 to deduce that, for x ≥ 2,

∑
n≤x

ϕ1(n) =
ζ(2)

2ζ(4)
x2 +O(x log x).

As in Exercise 7, you may assume the result
∑∞

n=1 µ(n)n−α = 1/ζ(α) for α > 1.

Proof. Let n = pα1
1 · · · p

αk
k .

(a) Notice ϕ1 = |µ|∗N , and since both |µ| and N are multiplicative, so is ϕ1. Therefore since

ϕ1(p
α) = pα(1 + p−1),

we have ϕ1(n) = n
∏

p|n(1 + p−1).

(b) Since ϕ1 is multiplicative, if we can show the right hand side is multiplicative then it
suffices to show the claim holds for prime powers.

So suppose (m,n) = 1. If q | m and d | n then (q, d) = 1 and so∑
q2|m

µ(q)σ

(
m

q2

)∑
d2|n

µ(d)σ
( n
d2

) =
∑
q2|m

∑
d2|n

µ(qd)σ

(
mn

q2d2

)
. (2)

Next, observe (d,m) = 1 and (q, n) = 1, hence q2 | m and d2 | n if and only if (qd)2 | nm.
Additionally since (qd)2 spans over all square divisors of mn, (2) is equal to∑

t2|mn

µ(t)σ
(mn
t2

)
,

which shows the sum is multiplicative.

Now let F (n) be the right hand side of the claim. Then

ϕ1(1) = 1 = F (1) and ϕ1(p) = p+ 1 = σ(p) = F (p)

for any prime p. For α > 1, ϕ1(p) = pα + pα−1 and

F (pα) = µ(1)σ(pα) + µ(p)σ(pα−2) = pα + pα−1,

since µ is zero for any higher prime power. Thus both sides agree on prime powers.
(c) From (b) we have ∑

n≤x

ϕ1(n) =
∑
n≤x

∑
d2|n

µ(d)σ
( n
d2

)
.
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Since d2 | n implies n = qd2, we can extend the sum over all pairs q, d with qd2 ≤ x. Thus∑
n≤x

ϕ1(n) =
∑
q,d

qd2≤x

µ(d)σ(q)

=
∑
d2≤x

µ(d)
∑
q≤x/d2

σ(q)

=
∑
d2≤x

µ(d)S
( x
d2

)
=
∑
d≤
√
x

µ(d)S
( x
d2

)
.

Applying Theorem 3.4 and Theorem 3.2 (c), we have∑
n≤x

ϕ1(n) =
∑
d≤
√
x

µ(d)S
( x
d2

)
=
∑
d≤
√
x

µ(d)

(
ζ(2)

2

x2

d4
+O

( x
d2

log
( x
d2

)))

=
ζ(2)x2

2

∑
d≤
√
x

µ(d)

d4
+O

x log x
∑
d≤
√
x

µ(d)

d2

+O

x ∑
d≤
√
x

µ(d) log d

d2


=
ζ(2)x2

2ζ(4)
+
ζ(2)x2

2

∑
d>
√
x

µ(d)

d4
+O(x log x) +O(x)

=
ζ(2)x2

2ζ(4)
+O

x2 ∑
d>
√
x

1

d4

+O(x log x)

=
ζ(2)x2

2ζ(4)
+O

(
x2 · x−3/2

)
+O(x log x)

=
ζ(2)x2

2ζ(4)
+O(x log x) .

Exercise 3.12.(+) For real s > 0 and integer k ≥ 1 find an asymptotic formula for the
partial sums ∑

n≤x
(n,k)=1

1

ns

with an error term that tends to 0 as x→∞. Be sure to include the case s = 1.

Lemma 3.12. If f is an arithmetical function, then∑
n≤x

(n,k)=1

f(n) =
∑
d|k

µ(d)
∑
q≤x/d

f(qd).
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Proof of Lemma. We have ∑
n≤x

(n,k)=1

f(n) =
∑
n≤x

I((n, k))f(n)

=
∑
n≤x

∑
d|(n,k)

µ(d)f(n)

=
∑
n≤x

∑
d|n
d|k

µ(d)f(n).

For a fixed divisor d of k we must sum over all those n in the range 1 ≤ n ≤ x which are
multiples of d. If we write n = qd, it’s equivalent to sum over all q where 1 ≤ q ≤ x/d.
Therefore ∑

n≤x

∑
d|n
d|k

µ(d)f(n) =
∑
d|k

∑
q≤x/d

µ(d)f(qd).

Proof of Exercise. By Lemma 3.12∑
n≤x

(n,k)=1

1

ns
=
∑
d|k

µ(d)

ds

∑
n≤x/d

1

ns
.

If s = 1 then by Theorem 3.2 (a),∑
n≤x

(n,k)=1

1

n
=
∑
d|k

µ(d)

d

(
log x− log d+ C +O

(
d

x

))

= (log x+ C)
∑
d|k

µ(d)

d
−
∑
d|k

µ(d) log d

d
+O

(
1

x

)

=
ϕ(k)

k
(log x+ C) +Mk,1 +O

(
1

x

)
,

where Mk,1 is a constant dependent on k.
If s 6= 1 then by Theorem 3.2 (b),∑

n≤x
(n,k)=1

1

ns
=
∑
d|k

µ(d)

ds

(
(x/d)1−s

1− s
+ ζ(s) +O

(
ds

xs

))

=
x1−s

1− s
∑
d|k

µ(d)

d
+ ζ(s)

∑
d|k

µ(d)

ds
+O

(
x−s
)

=
ϕ(k)

k

x1−s

1− s
+ ζ(s)Mk,s +O

(
x−s
)
,

where Mk,s is a constant dependent on k and s.
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PROPERTIES OF THE GREATEST-INTEGER FUNCTION

For each real x the symbol [x] denotes the greatest integer ≤ x. Exercises 13 through 26
describe some properties of the greatest-integer function. In these exercises x and y denote
real numbers, n denotes an integer.

Exercise 3.13. Prove each of the following statements:
(a) If x = k + y where k is an integer and 0 ≤ y < 1, then k = [x].
(b) [x+ n] = [x] + n.

(c) [−x] =

{
− [x] if x = [x] ,

− [x]− 1 if x 6= [x] .

(d) [x/n] = [[x] /n] if n ≥ 1.

Proof.
(a) Since 0 ≤ y < 1, it’s clear k ≤ x < k+1. Thus k is the greatest integer ≤ x, i.e. k = bxc.
(b) Let k = bxc, y = x− k, and z = x+ n = (k + n) + y. By (a) bzc = k + n, and so

bx+ nc = bzc = k + n = bxc+ n.

(c) Suppose x = bxc, then since bxc is an integer, so is x and hence so is −x. From here it’s
easy to see

b−xc = −x = −bxc .
Now suppose x 6= bxc. Let k = bxc and y = x−k, where 0 < y < 1. Then since 0 < 1−y < 1,
by (a) we have

b−xc = b−k − yc = b(−k − 1) + (1− y)c = −k − 1 = −bxc − 1.

(d) Letting bxc = qn+r for an integer 0 ≤ r < n implies x = qn+(r+y) for some 0 ≤ y < 1.
Since 0 ≤ (r + y)/n < 1, by (a)

bx/nc = bq + (r + y)/nc = q.

Also since 0 ≤ r/n < 1, again by (a)

bbxc /nc = bq + r/nc = q.

Exercise 3.14. If 0 < y < 1, what are the possible values of [x]− [x− y]?

Solution. Let {x} = x− bxc and {x− y} = (x− y)− bx− yc, where 0 ≤ {x} , {x− y} < 1.
Then bxc − bx− yc = y + {x− y} − {x}. Adding the inequalities

0 < y < 1, 0 ≤ {x− y} < 1, −1 < −{x} ≤ 0

we see −1 < bxc − bx− yc < 2 and thus 0 ≤ bxc − bx− yc ≤ 1.
If x = 3/4, y = 1/2 then bxc − bx− yc = 0. If x = 1, y = 1/2 then bxc − bx− yc = 1.

Thus all possible values of bxc − bx− yc are 0 or 1.
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Exercise 3.15. The number {x} = x− [x] is called the fractional part of x. It satisfies the
inequalities 0 ≤ {x} < 1, with {x} = 0 if, and only if, x is an integer. What are the possible
values of {x}+ {−x}?

Solution. Assume the result from Exercise 3.13 (c). If x = bxc, then

{x}+ {−x} = x− [x] + (−x)− [−x]

= x− [x]− x+ [x] = 0.

If x 6= bxc, then

{x}+ {−x} = x− [x] + (−x)− [−x]

= x− [x]− x+ [x] + 1 = 1.

Exercise 3.16.
(a) Prove that [2x]− 2 [x] is either 0 or 1.
(b) Prove that [2x] + [2y] ≥ [x] + [y] + [x+ y].

Proof.
(a) We have

[2x]− 2[x] = 2x− {2x} − 2(x− {x}) = 2 {x} − {2x} .
Adding 0 ≤ 2 {x} < 2 and −1 < −{2x} ≤ 0 gives −1 < [2x]− 2[x] < 2. Thus

0 ≤ [2x]− 2[x] ≤ 1.

(b) Suppose x = m+ a and y = n+ b where 0 ≤ a, b < 1. By symmetry we have four cases
to consider:

1. a, b < 1/2

2. a < 1/2, b ≥ 1/2, and a+ b < 1

3. a < 1/2, b ≥ 1/2, and a+ b ≥ 1

4. a, b ≥ 1/2

1. b2xc+ b2yc = 2m+ 2n = m+ n+ (m+ n) = bxc+ byc+ bx+ yc

2. b2xc+ b2yc = 2m+ (2n+ 1) > m+ n+ (m+ n) = bxc+ byc+ bx+ yc

3. b2xc+ b2yc = 2m+ (2n+ 1) = m+ n+ (m+ n+ 1) = bxc+ byc+ bx+ yc

4. b2xc+ b2yc = (2m+ 1) + (2n+ 1) > m+ n+ (m+ n+ 1) = bxc+ byc+ bx+ yc

Exercise 3.17. Prove that [x] +
[
x+ 1

2

]
= [2x] and, more generally,

n−1∑
k=0

[
x+

k

n

]
= [nx] .
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Proof. Let i be the largest integer such that {x}+ i
n
< 1. Then 0 ≤ i < n and

n−1∑
k=0

⌊
x+

k

n

⌋
=

i∑
k=0

⌊
x+

k

n

⌋
+

n−1∑
k=i+1

⌊
x+

k

n

⌋

=
i∑

k=0

⌊
bxc+

(
{x}+

k

n

)⌋
+

n−1∑
k=i+1

⌊
(bxc+ 1) +

(
{x}+

k

n
− 1

)⌋
= (i+ 1) bxc+ (n− i− 1)(bxc+ 1)

= n bxc+ n− i− 1

= nx− n {x}+ n− i− 1

= bnxc+ {nx} − n {x}+ n− i− 1.

Since {x} + i
n
< 1 ≤ {x} + i+1

n
, then −1 < −n {x} + n − i − 1 ≤ 0. Adding this to

0 ≤ {nx} < 1, we have
−1 < {nx} − n {x}+ n− i− 1 < 1.

However it is evident from the above chain of equalities that {nx} − n {x}+ n− i− 1 is an
integer, and so it must equal 0. The result then follows.

Exercise 3.18. Let f(x) = x− [x]− 1
2
. Prove that

n−1∑
k=0

f

(
x+

k

n

)
= f(nx)

and deduce that ∣∣∣∣∣
m∑
n=1

f

(
2nx+

1

2

)∣∣∣∣∣ ≤ 1 for all m ≥ 1 and all real x.

Proof. Using Exercise 3.17 we have

n−1∑
k=0

f

(
x+

k

n

)
=

n−1∑
k=0

(
x+

k

n

)
−

n−1∑
k=0

⌊
x+

k

n

⌋
−

n−1∑
k=0

1

2

= nx+
n− 1

2
− bnxc − n

2

= nx− bnxc − 1

2
= f(nx).

This means f (2nx) + f
(
2nx+ 1

2

)
= f (2(2nx)) and so

m∑
n=1

f

(
2nx+

1

2

)
=

m∑
n=1

(
f
(
2n+1x

)
− f (2nx)

)
= f

(
2m+1x

)
− f (2x)

= 2m+1x−
⌊
2m+1x

⌋
− 1

2
− 2x+ b2xc+

1

2
=
{

2m+1x
}
− {2x} .
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Adding the inequalities 0 ≤ {2m+1x} < 1 and −1 < −{2x} ≤ 0 we obtain∣∣∣∣∣
m∑
n=1

f

(
2nx+

1

2

)∣∣∣∣∣ ≤ 1.

Exercise 3.19.(++) Given positive odd integers h and k, (h, k) = 1, let a = (k − 1)/2, b =
(h− 1)/2.
(a) Prove that

∑a
r=1 [hr/k] +

∑b
r=1 [kr/h] = ab. [Hint : Lattice points.]

(b) Obtain a corresponding result if (h, k) = d.

Proof.
(a) Consider the line segment s in R2 with endpoints (0, 0) and (h, k). Since (h, k) = 1, by
Theorem 3.8, s does not intersect any lattice points other then its endpoints.

Define the rectangle R to be the rectangle with corners at (1, 1) and (h, k). Counting,
we see the number of lattice points with even entries inside R is ab. Now the first sum in
question counts the number of lattice points with even entries in R on or above s, whereas
the second sum counts the number of lattice points with even entries on or below the line.
Since there are no lattice points on s, these sums add to ab.

(b) Define s and R as in (a) and let d = (h, k). Looking at the proof of Theorem 3.8, we
see s will cross a lattice point inside R precisely d times. Of these, (d− 1)/2 will have even
entries and so the technique in (a) would count these twice. Thus

a∑
r=1

⌊
hr

k

⌋
+

b∑
r=1

⌊
kr

h

⌋
= ab+

d− 1

2
.

Exercise 3.20. If n is a positive integer prove that
[√
n+
√
n+ 1

]
=
[√

4n+ 2
]
.

Proof. Note (√
n+
√
n+ 1

)2
= 2n+ 2

√
n2 + n+ 1,

so since (n+ 1/2)2 < n2 + n ≤ (n+ 1)2 we have

4n+ 2 <
(√

n+
√
n+ 1

)2
≤ 4n+ 3.

Moreover
√

4n+ 3−
√

4n+ 2 < 1, which implies⌊√
4n+ 2

⌋
<
√
n+
√
n+ 1 <

⌊√
4n+ 2

⌋
+ 1.

We conclude
⌊√

n+
√
n+ 1

⌋
=
⌊√

4n+ 2
⌋
.

Exercise 3.21. Determine all positive integers n such that [
√
n ] divides n.
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Solution. Let k2 be the greatest square ≤ n and a = n− k2. Then k2 ≤ n < (k+ 1)2 and so
0 ≤ a < 2k + 1 and k ≤

√
n < k + 1, which means k = b

√
nc. Now⌊√

n
⌋
| n ⇐⇒ k | n
⇐⇒ k | (n− k2)
⇐⇒ k | a
⇐⇒ a = 0 or k or 2k.

Thus b
√
nc divides n if and only if n = k2, n = k2 + k, or n = k2 + 2k. Solving for k, then

b
√
nc divides n if and only if one of n, 4n+ 1, or 4n+ 4 is a square.

Exercise 3.22. If n is a positive integer, prove that[
8n+ 13

25

]
−

[
n− 12−

[
n−17
25

]
3

]

is independent of n.

Proof. Let f(n) be the expression in question. We can see f(n) has period ≤ 25 by applying
Exercise 3.13 (b):

f(n+ 25) =

⌊
8(n+ 25) + 13

25

⌋
−

(n+ 25)− 12−
⌊
(n+25)−17

25

⌋
3


=

⌊
8n+ 13

25
+ 8

⌋
−

⌊
n+ 25− 12−

⌊
n−17
25

+ 1
⌋

3

⌋

=

⌊
8n+ 13

25
+ 8

⌋
−

⌊
n+ 25− 12−

⌊
n−17
25

⌋
− 1

3

⌋

=

⌊
8n+ 13

25
+ 8

⌋
−

⌊
n− 12−

⌊
n−17
25

⌋
3

+ 8

⌋

=

⌊
8n+ 13

25

⌋
+ 8−

⌊
n− 12−

⌊
n−17
25

⌋
3

⌋
− 8

= f(n).

Testing n = 1, 2, . . . , 25 in Mathematica, we see f(n) is constant over the integers.

In[1]:= f[n_] := Floor[(8n+13)/25]-Floor[(n-12-Floor[(n-17)/25])/3]

In[2]:= SameQ @@ f[Range[25]]
Out[2]= True



48 Chapter 3 Solutions

Exercise 3.23. Prove that ∑
n≤x

λ(n)
[x
n

]
=
[√
x
]
.

Proof. Let s(n) be the square indicator function, then by Theorem 2.19 s(n) =
∑

d|n λ(d).
We then have ⌊√

x
⌋

= # of squares ≤ x

=
∑
n≤x

s(n)

=
∑
n≤x

∑
d|n

λ(d).

Applying Theorem 3.11 shows ∑
n≤x

∑
d|n

λ(d) =
∑
n≤x

λ(n)
⌊x
n

⌋
.

Exercise 3.24. Prove that ∑
n≤x

[√
x

n

]
=
∑
n≤
√
x

[ x
n2

]
.

Proof. Let s(n) be the square indicator function and S(x) =
∑

n≤x s(n). Then⌊√
x
⌋

= # of squares ≤ x = S(x).

By Theorem 3.11, ∑
n≤x

⌊√
x

n

⌋
=
∑
n≤x

S
(x
n

)
=
∑
n≤x

s(n)
⌊x
n

⌋
.

Now s(n) = 1 if n = m2 and is 0 otherwise, thus∑
n≤x

s(n)
⌊x
n

⌋
=
∑
m2≤x
m>0

⌊ x
m2

⌋
=
∑
m≤
√
x

⌊ x
m2

⌋
.

Exercise 3.25. Prove that
n∑
k=1

[
k

2

]
=

[
n2

4

]
and that

n∑
k=1

[
k

3

]
=

[
n(n− 1)

6

]
.
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Proof. For the first sum, apply Exercise 3.26 with a = 2. Also by Exercise 3.26

n∑
k=1

⌊
k

3

⌋
=

⌊
n(n− 1)

6
+

1

24

⌋
,

but the fractional part of n(n− 1)/6 is either 0 or 1/3 and so 1/24 can be ignored.

Exercise 3.26.(+) If a = 1, 2, . . . , 7 prove that there exists and integer b (depending on a)
such that

n∑
k=1

[
k

a

]
=

[
(2n+ b)2

8a

]
.

Proof. Let n = qa + r where 0 ≤ r < a. Then for any 0 < k < qa, we have k = ma + r′ for
some m < q and 0 ≤ r′ < a. Thus⌊

k

a

⌋
=

⌊
m+

r′

a

⌋
= m.

Also if qa ≤ k ≤ qa+ r, then
⌊
k
a

⌋
= q. So summing over all quotients and remainders,

n∑
k=1

⌊
k

a

⌋
=

q−1∑
m=0

a−1∑
i=0

⌊
ma+ i

a

⌋
+

r∑
i=0

⌊
qa+ i

a

⌋

=

q−1∑
m=0

a−1∑
i=0

m+
r∑
i=0

q

=
a(q − 1)q

2
+ q(r + 1)

=
aq2 − aq + 2qr + 2q

2

=
4a2q2 − 4a2q + 8aqr + 8aq

8a
. (3)

We now look for values of b such that (2n + b)2 minus the numerator of (3) is positive for
any q and r. To do this we see when this difference factored into a square in Mathematica.

In[3]:= squarePolyQ[poly_] :=
MatchQ[FactorList[poly], {({_?Positive, _} | {_, _?EvenQ})..}]

In[4]:= Column@Reap[Do[
If[squarePolyQ[(2q a+2r+b)ˆ2-(4aˆ2qˆ2-4aˆ2q+8a q r+8a q)],
Sow[Row[{"a = ", a, ", b = ", b}]]

],
{a, 1, 7}, {b, -10, 10}

]][[-1,1]]
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Out[4]= a = 1, b = 1
a = 2, b = 0
a = 3, b = -1
a = 4, b = -2
a = 5, b = -3
a = 6, b = -4
a = 7, b = -5

So choosing b = 2− a is our candidate. Mathematica already found

0 ≤ 4a2q2 − 4a2q + 8aqr + 8aq − (2n+ b)2,

but we need to show this difference is smaller than 8a. In doing so,

0 ≤ (2n+ b)2

8a
− 4a2q2 − 4a2q + 8aqr + 8aq

8a
< 1,

or rearranging terms,

4a2q2 − 4a2q + 8aqr + 8aq

8a
≤ (2n+ b)2

8a
<

4a2q2 − 4a2q + 8aqr + 8aq

8a
+ 1,

forcing (2n+ b)2/(8a) to have the desired floor.
Since (a− 2r − 2)2 is maximized at r = a− 1 for 0 ≤ r < a− 1,

(2n+ 2− a)2 − (4a2q2 − 4a2q + 8aqr + 8aq) = (a− 2r − 2)2

≤ (a− 2(a− 1)− 2)2

= a2

= a · a < 8a.

So since their difference is small enough, we see choosing b = 2− a gives us the result.



Chapter 4
Some Elementary Theorems on the
Distribution of Prime Numbers

Exercise 4.1. Let S = {1, 5, 9, 13, 17, . . .} denote the set of all positive integers of the form
4n+ 1. An element p of S is called an S-prime if p > 1 and if the only positive divisors of p,
among the elements of S, are 1 and p. (For example, 49 is an S-prime.) An element n > 1
in S which is not an S-prime is called an S-composite.
(a) Prove that every S-composite is a product of S-primes.
(b) Find the smallest S-composite that can be expressed in more than one way as a product
of S-primes.
This example shows that unique factorization does not hold in S.

Proof.
(a) By definition, if n is S-composite then there is a d ∈ S such that 1 < d < n and d | n.
Let n = kd and since n ≡ d ≡ 1 mod 4, we see k ≡ 1 mod 4, i.e. k ∈ S. Applying this
process on k, d, and so on, it will eventually terminate since there are only finitely many
numbers between 1 and n. This shows n can be written as a product of S-primes.

(b) If x ≡ y ≡ 3 mod 4 then xy ≡ 1 mod 4. So the idea is to find the three smallest primes
congruent to 3 mod 4 and taking their products. These primes are 3 and 7. To ensure this
number is in S we need an even number of factors congruent to 3 mod 4, so we take 32 = 9
instead of 3 and 72 = 49 instead of 7. Hence the smallest S-composite that can be expressed
in more than one way as a product of S-primes is

441 = 9 · 49 = 21 · 21.

Exercise 4.2. Consider the following finite set of integers:

T = {1, 7, 11, 13, 17, 19, 23, 29}.

(a) For each prime p in the interval 30 < p < 100 determine a pair of integers m, n, where
m ≥ 0 and n ∈ T , such that p = 30m+ n.
(b) Prove the following statement or exhibit a counter example:
Every prime p > 5 can be expressed in the form 30m+ n, where m ≥ 0 and n ∈ T .

51
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Proof.
(a) We show this in Mathematica.

In[1]:= With[{primes = Prime[Range[PrimePi[31], PrimePi[100]]]},
apostolCh4Num2Format[QuotientRemainder[#, 30]& /@ primes]

]

Out[1]=
31=30*1+1 37=30*1+7 41=30*1+11 43=30*1+13 47=30*1+17
53=30*1+23 59=30*1+29 61=30*2+1 67=30*2+7 71=30*2+11
73=30*2+13 79=30*2+19 83=30*2+23 89=30*2+29 97=30*3+7

(b) Suppose 6 < p < 30, then observe p ∈ T and p = 30 · 0 + p. Now assume p > 30 and let
p = 30n+ r where n > 0 and 0 ≤ r < 30. Since p is prime and n > 0, we require (30, r) = 1.
Observing T = {m | 0 ≤ m < 30, (30,m) = 1}, we must have r ∈ T , and so the claim holds
for all p > 5.

Exercise 4.3. Let f(x) = x2 + x + 41. Find the smallest integer x ≥ 0 for which f(x) is
composite.

Proof. We show x = 40 using Mathematica.

In[2]:= f[x_] := xˆ2 + x + 41

In[3]:= VectorQ[f[Range[0, 39]], PrimeQ] && !PrimeQ[f[40]]
Out[3]= True

Exercise 4.4. Let f(x) = a0 + a1x + · · · + anx
n be a polynomial with integer coefficients,

where an > 0 and n ≥ 1. Prove that f(x) is composite for infinitely many integers x.

Proof. Consider three cases:

• Suppose a0 = 0. Then f(x) = x(a1 + · · ·+ anx
n−1) and so x | f(x) which means f(x)

is composite whenever x is composite.

• Suppose |a0| 6= 1. Then for any integer m,

f(ma0) = a0 · (1 +ma1 + · · ·+man(ma0)
n−1),

where the right factor is larger than 1 in absolute value for large enough m. From here
we see f(x) is composite infinitely often.

• Suppose |a0| = 1. Pick an integer k such that |f(k)| 6= 1 and let g(y) = f(y + k).
Expanding gives a polynomial in terms of y with constant coefficient

a0 + a1k + · · ·+ ank
n = f(k).

Applying one of the above cases on g shows it is composite infinitely often, and since
f is g shifted k units horizontally, it must also be composite infinitely often.
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Exercise 4.5. Prove that for every n > 1 there exist n consecutive composite numbers.

Proof. Define Cn = {(n + 1)! + k | 2 ≤ k ≤ n + 1}. Notice |Cn| = n and each element is
composite since k | (n+ 1)! + k.

Exercise 4.6. Prove that there do not exist polynomials P and Q such that

π(x) =
P (x)

Q(x)
for x = 1, 2, 3, . . .

Proof. Suppose deg(P ) = m and deg(Q) = n, then P (x)
Q(x)

= θ(xm−n). Theorem 4.6 implies

π(x) cannot be asymptotic to P (x)
Q(x)

as

π(x) = θ

(
x

log x

)
6= θ(xm−n).

Exercise 4.7.(+) Let a1 < a2 < · · · < an ≤ x be a set of positive integers such that no ai
divides the product of the others. Prove that n ≤ π(x).

Proof. Fix x and denote the hypothesis of the problem by Hx. Suppose k = π(x) and

a1 = pα11
1 · pα12

2 · · · pα1k
k

a2 = pα21
1 · pα22

2 · · · pα2k
k

...

an = pαn11 · pαn22 · · · pαnkk .

Observe for each ai that there must be a j such that αij >
∑

l 6=j αil, otherwise ai |
∏

l 6=i al.
without loss of generality assume αnk >

∑
l 6=k αnl. If a′i = ai/p

αik
k , then by this observation,

{a′i}n−1i=1 still satisfies Hx. Each time we apply this process, the new sequence will still satisfy
Hx.

Assuming n > k then applying the above process k − 1 times would yield a sequence of
of the form {pai}n−k+1

i=1 for some prime p. This clearly does not satisfy Hx since n−k+ 1 > 1
so we conclude n ≤ k.

Exercise 4.8. Calculate the highest power of 10 that divides 1000!.

Proof. Note we can reduce this to finding the highest power of 5 that divides 1000! since 2
appears more in factorial than 5. From Theorem 3.14 we have log 1000! =

∑
p≤1000 α(p) log p,

where α(p) is the highest power of p to divide 1000! and is given by

α(p) =

b log 1000
log p c∑
m=1

⌊
1000

pm

⌋
.
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So

α(5) =
4∑

m=1

⌊
1000

5m

⌋
=

⌊
1000

5

⌋
+

⌊
1000

25

⌋
+

⌊
1000

125

⌋
+

⌊
1000

625

⌋
= 200 + 40 + 8 + 1

= 249.

Exercise 4.9. Given an arithmetic progression of integers

h, h+ k, h+ 2k, . . . , h+ nk, . . . ,

where 0 < k < 2000. If h+ nk is prime for n = t, t+ 1, . . . , t+ r prove that r ≤ 9. In other
words, at most 10 consecutive terms of this progression can be primes.

Proof. If h+ tk ≤ 11, direct verification shows the claim so assume h+ tk > 11 and r ≥ 10.
Then for each prime p ≤ 11 we have p - h+ nk for n = t, t+ 1, . . . , t+ r. Now suppose p - k
for some p ≤ 11, which means l := k−1 mod p exists. Choosing i = −(h + tk)l mod p gives
0 ≤ i ≤ 10 and

h+ (t+ i)k ≡ (h+ tk)− (h+ tk)lk ≡ (h+ tk)− (h+ tk) ≡ 0 mod p,

a contradiction. Thus p | k for all p ≤ 11, which implies k ≥ 2 · 3 · 5 · 7 · 11 = 2310, another
contradiction, and so r ≤ 9 since this only forces primes ≤ 10 to divide k.

Exercise 4.10. Let sn denote the nth partial sum of the series

∞∑
r=1

1

r(r + 1)
.

Prove that for every integer k > 1 there exist integers m and n such that sm − sn = 1/k.

Proof. Notice 1
r(r+1)

= 1
r
− 1

r+1
and so sn = 1− 1

n+1
. If k > 1 then k2− k− 1 > 0, k− 2 ≥ 0,

and

sk2−k−1 − sk−2 =
1

k − 1
− 1

k2 − k
=

1

k
.

Exercise 4.11.(+) Let sn denote the sum of the first n primes. Prove that for each n there
exists an integer whose square lies between sn and sn+1.

Lemma 4.11. If n > 3, then

sn <

(
pn+1 − 1

2

)2

.
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Proof of Lemma. Since sn is a sum of primes, we can bound it by summing over 2, 3, and
all odd numbers ≤ pn not divisible by 3:

sn ≤ 2 + 3 +

b(pn+1+1)/6c∑
k=1

(6k − 1) +

b(pn+1+1)/6c∑
k=1

(6k + 1)

= 5 + 6

⌊
pn+1 + 1

6

⌋
+ 6

⌊
pn+1 + 1

6

⌋2
≤ 5 + pn+1 + 1 + 6

(
pn+1 + 1

6

)2

=
p2n+1 + 8pn+1 + 37

6
.

Now for any x ≥ 25, (x2 + 8x+ 37)/6 < (x− 1)2/4 and so verifying by hand for n = 4, . . . , 9
proves the claim.

Proof of Exercise. Assume n > 3 and let k =
⌊√

sn
⌋
. The goal is to show 2k + 1 ≤ pn+1,

which would place (k + 1)2 between sn and sn+1. Now isolating pn+1 in the proof of Lemma
4.11, we have 2

√
sn + 1 ≤ pn+1, and so

2k + 1 ≤ 2
√
sn + 1 < pn+1.

Inductively (with base cases n = 1, 2, 3), assume there is a square between sn and sn+1.
The above inequality then gives us the result. Verifying the base cases, sn = 2, 5, 10, 17 and
the squares in between are 4, 9, 16. Thus there is always a square between sn and sn+1.

Remark. One should note that for any m > 0, eventually m squares will always lie between
sn and sn+1. This is done by showing

sn <

(
pn+1 −m

2m

)2

eventually holds, which can be proven through partial summation on sn or a applying a
tighter sieve (dependent on m) as in Lemma 4.11. The advantage to the sieve is it gives
information as to when the inequality becomes starts to hold.

Prove each of the statements in Exercises 12 through 16. In this group of exercises you may
use the prime number theorem.

Exercise 4.12. If a > 0 and b > 0, then π(ax)/π(bx) ∼ a/b as x→∞.

Proof. Assuming the prime number theorem we have

π(ax)

π(bx)
∼ ax log(bx)

bx log(ax)
∼ a

b
.



56 Chapter 4 Solutions

Exercise 4.13. If 0 < a < b, there exists an x0 such that π(ax) < π(bx) if x ≥ x0.

Proof. Notice for any c > 0 that

lim
x→∞

log x

log cx
= 1

and so
1

log cx
=

1

log x
+ o(1) .

So assuming the prime number theorem we have

π(bx)− π(ax) = (b− a)
x

log x
+ o

(
x

log x

)
= (b− a+ o(1))

x

log x
.

Now, choose x0 such that for all x ≥ x0, the o(1) term is less than b − a in absolute value.
This gives π(ax) < π(bx) for all x ≥ x0.

Exercise 4.14. If 0 < a < b, there exists an x0 such that for x ≥ x0 there is at least one
prime between ax and bx.

Proof. Given 0 < a < b, by Exercise 4.13 there is an x0 such that π(ax) < π(bx) for all
x ≥ x0. Since π is an integer valued function, then π(bx) − π(ax) ≥ 1 for all x ≥ x0,
implying there is at least one prime between ax and bx.

Exercise 4.15. Every interval [a, b] with 0 < a < b, contains a rational number of the form
p/q, where p and q are primes.

Proof. Assume the result from Exercise 4.13 and pick x0 such that π(ax) < π(bx) for all
x ≥ x0. Let q be any prime larger than x0. Choose a prime p to lie in the interval [aq, bq],
which gives p/q ∈ [a, b].

Exercise 4.16.
(a) Given a positive integer n there exists a positive integer k and a prime p such that
10kn < p < 10k(n+ 1).
(b) Given m integers a1, . . . , am such that 0 ≤ ai ≤ 9 for i = 1, 2, . . . ,m, there exists a prime
p whose decimal expansion has a1, . . . , am for its first m digits.

Proof.
(a) By Exercise 4.13 there is an x0 such that π(nx) < π((n + 1)x) for all x ≥ x0. Let
k = dlog10 x0e, then 10k ≥ x0 and so there is a prime p such that 10kn < p < 10k(n+ 1).
(b) Let n =

∑m
i=1 ai10m−i and choose k and p as in (a). Then p will have the desired first m

digits.

Exercise 4.17. Given an integer n > 1 with two factorizations n =
∏r

i=1 pi and n =
∏t

i=1 qi,
where the pi are primes (not necessarily distinct) and the qi are arbitrary integers > 1. Let
α be a nonnegative real number.
(a) If α ≥ 1 prove that

r∑
i=1

pαi ≤
t∑
i=1

qαi .

(b) Obtain a corresponding inequality relating these sums if 0 ≤ α < 1.
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Proof.
(a) Suppose qi = pi1 · · · pij . It suffices to show

j∑
k=1

pαik ≤ qi =

j∏
k=1

pαik .

Inducting on j, for j = 2 suppose without loss of generality pi1 ≥ pi2 . Then

pαi1 + pαi2 ≤ pαi1p
α
i2

if and only if 1 ≤ pαi2 −
(
pi2
pi1

)α
.

Since pi1 ≥ pi2 and pi2 > 1, it’s clear the right hand side is larger than 1 and thus the claim
holds for j = 2.

Now assume the claim holds for all j ≤ n. Then

n+1∑
k=1

pαik =
n∑
k=1

pαik + pαin+1

≤

(
n∏
k=1

pik

)α

+ pαin+1

≤

(
n∏
k=1

pik

)α

· pαin+1

=
n+1∏
k=1

pαik ,

where we inductively assumed the claim held true for j = n and j = 2.

(b) Assume r > t, as the problem is trivial otherwise. Fix n and each qi and define

f(α) =
r∑
i=1

pαi −
t∑
i=1

qαi ,

and note f(α) is monotonic. The assumption r > t gives f(0) > 0 and (a) gives f(1) < 0,
hence f is a monotonically decreasing function. This means there is a unique α0 (dependent
on n and qi) where the inequality in (a) flips.

Unfortunately, finding α0 is very tough and perhaps is impossible to do as we demonstrate
in Mathematica.

(* n = 840, q1 = 14, q2 = 60 *)
In[5]:= Reduce[2ˆ + 2ˆ + 2ˆ + 3ˆ + 5ˆ + 7ˆ == 14ˆ + 60ˆ , ]

During evaluation of In[5]:= Reduce::nsmet: This system cannot be
solved with the methods available to Reduce. >>

Out[5]= Reduce[3*2ˆ + 3ˆ + 5ˆ + 7ˆ == 14ˆ + 60ˆ , ]



58 Chapter 4 Solutions

For this reason, we will explore some computational results instead. The code below will
find α0 for a given n by randomly choosing qi.

(* returns {{qi}, 0} *)
In[6]:= Apostol417[n_] := Module[{fac, rand},

rand = fac = Flatten[ConstantArray @@@ FactorInteger[n]];
While[Length[fac] == Length[rand],
rand = Times @@@ RandomPartition[RandomSample[fac]]

];
{rand, /. FindRoot[Total[facˆ ] == Total[randˆ ], { , .4},

WorkingPrecision -> 10]}
]
RandomPartition[l_List] := SplitBy[l, RandomInteger[]&]

For n = 840 and {q1, q2, q3} = {2, 5, 84}, the inequality flips at α0 ≈ 0.42466:

In[7]:= Apostol417[840]
Out[7]= {{2, 5, 84}, 0.4246600508}

We can test many instances by plotting t versus α0 for a fixed n, where a point (t, α0) below
represents a value of α0 given t many random qi.

Figure 1: n = 840

2 3 4 5
!"qi#$

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Α0

min: 0.3216421714, max: 1.000000000
line of best fit: y ! 0.15395325 " 0.172134985 t

Avoiding prime numbers, we now hold n to be even. Plotting the smallest possible α0

for a fixed n shows there’s a nice downward trend as n increases, but is quite erratic as this
is inherent to prime factorization.
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Figure 2: Plot of the smallest possible α0 for a fixed n.

Exercise 4.18. Prove that the following two relations are equivalent:

π(x) =
x

log x
+O

(
x

log2 x

)
.(a)

ϑ(x) = x+O

(
x

log x

)
.(b)

Proof. Assuming either relation implies the prime number theorem and so Theorem 4.4
yields π(x) ∼ ϑ(x)/ log x. The result follows directly from this assertion.

Exercise 4.19. If x ≥ 2, let

Li(x) =

∫ x

2

dt

log t
(the logarithmic integral of x).

(a) Prove that

Li(x) =
x

log x
+

∫ x

2

dt

log2 t
− 2

log 2
,

and that, more generally,

Li(x) =
x

log x

(
1 +

n−1∑
k=1

k!

logk x

)
+ n!

∫ x

2

dt

logn+1 t
+ Cn,

where Cn is independent of x.
(b) If x ≥ 2 prove that ∫ x

2

dt

logn t
= O

(
x

logn x

)
.
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Proof.
(a) Integrating by parts with u = 1

log t
and dv = dt gives

Li(x) =
x

log x
+

∫ x

2

dt

log2 t
− 2

log 2
.

Now inductively assume

Li(x) = x
n−1∑
k=0

k!

logk+1 x
+ n!

∫ x

2

dt

logn+1 t
+ Cn,

with base case n = 1. Evaluating
∫ x
2

dt
logn+1 t

by parts with u = 1
logn+1 t

and dv = dt gives∫ x

2

dt

logn+1 t
=

x

logn+1 x
− 2

logn+1 2
+ (n+ 1)

∫ x

2

dt

logn+2 t
.

Thus

Li(x) = x
n−1∑
k=0

k!

logk+1 x
+ n!

∫ x

2

dt

logn+2 t
+ Cn

= x
n−1∑
k=0

k!

logk+1 x
+ n!

(
x

logn+1 x
− 2

logn+1 2
+ (n+ 1)

∫ x

2

dt

logn+2 t

)
+ Cn

= x
n−1∑
k=0

k!

logk+1 x
+ x

n!

logn+1 x
+ (n+ 1)!

∫ x

2

dt

logn+2 t
+ Cn −

2n!

logn+1 2

= x
n∑
k=0

k!

logk+1 x
+ (n+ 1)!

∫ x

2

dt

logn+2 t
+ Cn+1.

(b) Applying L’Hôpital’s rule we have

lim
x→∞

∫ x
2
dt/ logn t

x/ logn x
= lim

x→∞

1/ logn x

1/ logn x− n/ logn+1 x

= lim
x→∞

1

1− n/ log x

= 1.

Hence ∫ x

2

dt

logn t
∼ x

logn x
.

Exercise 4.20. Let f be an arithmetical function such that∑
p≤x

f(p) log p = (ax+ b) log x+ cx+O(1) for x ≥ 2.
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Prove that there is a constant A (depending of f) such that, if x ≥ 2,∑
p≤x

f(p) = ax+ (a+ c)

(
x

log x
+

∫ x

2

dt

log2 t

)
+ b log(log x) + A+O

(
1

log x

)
.

Proof. Let h(x) = 1/ log x and g(n) = f(n) log n if n is prime and 0 otherwise. Define

G(x) =
∑
n≤x

g(n) = (ax+ b) log x+ cx+R(x), where R(x) = O(1) .

Then by Abel’s summation formula,∑
p≤x

f(p) =
∑
n≤x

g(n)h(n) =
G(x)

log x
+

∫ x

2

G(t)

t log2 t
dt.

Looking at both parts separately,

G(x)

log x
=

(ax+ b) log x+ cx+O(1)

log x
= ax+ b+

cx

log x
+O

(
1

log x

)
and ∫ x

2

G(t)

t log2 t
dt =

∫ x

2

(at+ b) log t+ ct+R(t)

t log2 t
dt

= a

∫ x

2

dt

log t
+ b

∫ x

2

dt

t log t
+ c

∫ x

2

dt

log2 t
+

∫ x

2

R(t)

t log2 t
dt.

By Exercise 4.19, the first integral evaluates to

ax

log x
+ a

∫ x

2

dt

log2 t
− 2a

log 2

and the second integral evaluates to b log(log x) − b log(log 2). The integral with the error
term R(t) can be rewritten as∫ x

2

R(t)

t log2 t
dt =

∫ ∞
2

R(t)

t log2 t
dt+

∫ ∞
x

R(t)

t log2 t
dt

= C +O

(
1

log x

)
.

Combining all constants into A, we see∑
p≤x

f(p) = ax+ (a+ c)

(
x

log x
+

∫ x

2

dt

log2 t

)
+ b log(log x) + A+O

(
1

log x

)
= ax+ (a+ c)Li(x) + b log(log x) + A+O

(
1

log x

)
.
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Exercise 4.21. Given two real-valued functions S(x) and T (x) such that

T (x) =
∑
n≤x

S
(x
n

)
for all x ≥ 1.

If S(x) = O(x) and if c is a positive constant, prove that the relation

S(x) ∼ cx as x→∞

implies
T (x) ∼ cx log x as x→∞.

Proof. We have S(x) = cx+ o(x) and so

T (x) =
∑
n≤x

(cx
n

+ o
(x
n

))
= cx

∑
n≤x

1

n
+ o

(
x
∑
n≤x

1

n

)
= cx log x+ o(x log x) .

Thus T (x) ∼ cx log x.

Exercise 4.22. Prove that Selberg’s formula, as expressed in Theorem 4.18, is equivalent
to each of the following relations:

ψ(x) log x+
∑
p≤x

ψ

(
x

p

)
log p = 2x log x+O(x) .(a)

ϑ(x) log x+
∑
p≤x

ϑ

(
x

p

)
log p = 2x log x+O(x) .(b)

Proof. Let (c) denote the left hand sides of Selberg’s formula. Using Theorem 4.9, which
says ψ(x) = O(x), we will show both (c) − (a) = O(x) and (c) − (b) = O(x). The first
difference gives

(c)− (a) =
∑
p≤x

log2 x∑
m=2

ψ

(
x

pm

)
log p

=
∑
p≤x

log p

log2 x∑
m=2

ψ

(
x

pm

)

=
∑
p≤x

log p ·O

(
∞∑
m=2

x

pm

)

= O

(
x
∑
p≤x

log p

p(p− 1)

)
= O(x) .
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Moving on to the second difference,

(c)− (b) = (ψ(x)− ϑ(x)) log x+
∑
p≤x

log2 x∑
m=2

ϑ

(
x

pm

)
log p.

Applying Theorem 4.1, ψ(x)−ϑ(x) = O
(√

x log2 x
)
, to the first part and applying the same

technique as above to the second part, we have

(c)− (b) = O
(√

x log2 x
)

+O(x) = O(x) .

Exercise 4.23. Let M(x) =
∑

n≤x µ(n). Prove that

M(x) log x+
∑
n≤x

M
(x
n

)
Λ(n) = O(x) .

and that

M(x) log x+
∑
p≤x

M

(
x

p

)
log p = O(x) .

[Hint : Theorem 4.17.]

Proof. By Theorems 3.11 and 3.12,∑
n≤x

M
(x
n

)
=
∑
n≤x

µ(n)
⌊x
n

⌋
= 1.

Coupling this with Theorem 4.17, to prove the first claim it’s enough to show∑
d≤x

µ(d) log
(x
d

)
= O(x) .

This is evident through Stirling’s approximation:

∑
d≤x

µ(d) log
(x
d

)
= O

(∑
d≤x

log
(x
d

))

= O

(
bxc log x−

∑
d≤x

log d

)
= O(x log x+O(log x)− x log x+ x+O(log x))

= O(x) .

Next, to prove the second claim notice∑
n≤x

M
(x
n

)
Λ(n) =

∑
p≤x

M

(
x

p

)
log(p) +

∑
pm≤x
m>1

M

(
x

pm

)
log(p).
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So it’s enough to show ∑
pm≤x
m>1

M

(
x

pm

)
log(p) = O(x) .

Applying similar technique as in the proof of Exercise 4.22 we have

∑
pm≤x
m>1

M

(
x

pm

)
log(p) =

∑
p≤x

log p

log2 x∑
m=2

M

(
x

pm

)

=
∑
p≤x

log p ·O

(
∞∑
m=2

x

pm

)

= O

(
x
∑
p≤x

log p

p(p− 1)

)
= O(x) .

Exercise 4.24.(+) Let A(x) be defined for all x > 0 and assume that

T (x) =
∑
n≤x

A
(x
n

)
= ax log x+ bx+ o

(
x

log x

)
as x→∞,

where a and b are constants. Prove that

A(x) log x+
∑
n≤x

A
(x
n

)
Λ(n) = 2ax log x+ o(x log x) as x→∞.

Verify that Selberg’s formula of Theorem 4.18 is a special case.

Lemma 4.24. For x ≥ 1,

2
∑
n≤x

1

n
log
(x
n

)
= log2 x+ 2C log x+ A+ o(1) ,

for some constants A and C.

Proof of Lemma. Applying Exercise 3.1 to estimate
∑

log(n)/n, we have

2
∑
n≤x

1

n
log
(x
n

)
= 2 log x

∑
n≤x

1

n
− 2

∑
n≤x

log n

n

= 2 log x

(
log x+ C +O

(
1

x

))
− 2

(
1

2
log2 x+ A+ o(1)

)
= log2 x+ 2C log x+ A+ o(1) .
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Proof of Exercise. By Theorem 4.17, it’s enough to show∑
d≤x

µ(d) log
(x
d

)
T
(x
d

)
= 2ax log x+ o(x log x) .

Expanding the left hand side we obtain

ax
∑
d≤x

µ(d)

d
log2

(x
d

)
+ bx

∑
d≤x

µ(d)

d
log
(x
d

)
+
∑
d≤x

µ(d) log
(x
d

)
o

(
x/d

log(x/d)

)
, (4)

which will be analyzed in reverse order. Quickly looking at the error term, distributing gives
a bound of

o

(
x
∑
d≤x

1

d

)
= o(x log x) .

Shifting focus to the second term, we will show
∑

d≤x
µ(d)
d

log
(
x
d

)
= O(1) through a general-

ized Möbius inversion. Theorem 2.23 states for a completely multiplicative function a(n),

G(x) =
∑
n≤x

a(n)F
(x
n

)
if and only if F (x) =

∑
n≤x

µ(n)a(n)G
(x
n

)
.

Applying this with a(n) = 1/n and F (x) = 1 we have

∑
n≤x

1

n
= log x+ C + o(1) if and only if

∑
n≤x

µ(n)

n

(
log
(x
n

)
+ C + o(1)

)
= 1.

Thus ∑
n≤x

µ(n)

n
log
(x
n

)
= 1− (C + o(1))

∑
n≤x

µ(n)

n
= O(1) ,

where we used Theorem 3.13 which states
∑
µ(n)/n is bounded.

We will now show
∑

d≤x
µ(d)
d

log2
(
x
d

)
= 2 log x + O(1) through this generalized Möbius

inversion. By Lemma 4.24,

2
∑
n≤x

1

n
log
(x
n

)
= log2 x+ 2C log x+ A+ o(1) ,

so through this generalized Möbius inversion we have∑
n≤x

µ(n)

n
log2

(x
n

)
= 2 log x−

∑
n≤x

µ(n)

n

(
2C log

(x
n

)
+ A+ o(1)

)
= 2 log x− 2C

∑
n≤x

µ(n)

n
log
(x
n

)
+ (A+ o(1))

∑
n≤x

µ(n)

n

= 2 log x+O(1) +O(1) .
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From here we see∑
d≤x

µ(d) log
(x
d

)
T
(x
d

)
= ax(2 log x+O(1)) + bxO(1) + o(x log x)

= 2ax log x+ o(x log x) .

Finally, from Theorem 4.11, ψ satisfies the hypothesis of the problem with a = 1 and b = −1.
So substituting A = ψ and a = 1 derives Selberg’s formula.

Exercise 4.25. Prove that the prime number theorem in the form ψ(x) ∼ x implies Sel-
berg’s asymptotic formula in Theorem 4.18 with an error term o(x log x) as x→∞.

Proof. Assuming the prime number theorem, ψ(x) = x+ o(x), then

ψ(x) log x+
∑
n≤x

ψ
(x
n

)
Λ(n) = (x+ o(x)) log x+

∑
n≤x

(x
n

+ o
(x
n

))
Λ(n)

= x log x+ o(x log x) + x
∑
n≤x

Λ(n)

n
+ o

(
x
∑
n≤x

Λ(n)

n

)
= x log x+ x(log x+O(1)) + o(x log x)

= 2x log x+ o(x log x) .

Remark. The prime number theorem implies a statement weaker than Selberg’s formula,
which is quite telling.

Exercise 4.26. In 1851 Chebyshev proved that if ψ(x)/x tends to a limit as x → ∞ then
this limit equals 1. This exercise outlines a simple proof of this result based on the formula∑

n≤x

ψ
(x
n

)
= x log x+O(x) (5)

which follows from Theorem 4.11.
(a) Let δ = lim sup

x→∞
(ψ(x)/x). Given ε > 0 choose N = N(ε) so that x ≥ N implies

ψ(x) ≤ (δ + ε)x. Split the sum in (5) into two parts, one with n ≤ x/N , the other with
n > x/N , and estimate each part to obtain the inequality∑

n≤x

ψ
(x
n

)
≤ (δ + ε)x log x+ xψ(N).

Comparing this with (5), deduce that δ ≥ 1.
(b) Let γ = lim inf

x→∞
(ψ(x)/x) and use an argument similar to that in (a) to deduce that γ ≤ 1.

Therefore, if ψ(x)/x has a limit as x→∞ then γ = δ = 1.
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Proof. By Theorem 4.9, there are positive constants c1, c2 such that c2x ≤ ψ(x) ≤ c1x
eventually holds for all x. Thus both the liminf and limsup of ψ(x)/x exist.

(a) Let δ = lim supψ(x)/x and ε > 0. By definition of limsup, there exists N = Nε such
that for all x ≥ N , ψ(x) ≤ (δ + ε)x. Then∑

n≤x

ψ
(x
n

)
=
∑
n≤x/N

ψ
(x
n

)
+

∑
x/N<n≤x

ψ
(x
n

)
≤
∑
n≤x/N

(δ + ε)
x

n
+

∑
x/N<n≤x

ψ

(
x

x/N

)
= (δ + ε)x

∑
n≤x/N

1

n
+
∑
n≤x

ψ(N)

= (δ + ε)x

(
log

x

N
+ C +O

(
1

x

))
+ xψ(N)

= (δ + ε)x log x+ xψ(N)− (δ + ε)x (logN − C + o(1))

≤ (δ + ε)x log x+ xψ(N).

Applying Theorem 4.11 we have x log x + O(x) ≤ (δ + ε)x log x + xψ(N) for a fixed ε > 0.

Dividing by x log x gives 1 ≤ δ + ε + O
(

1
log x

)
, and letting x→∞ gives 1 ≤ δ + ε. Finally,

since ε can be as small as we like, δ ≥ 1.

(b) Let γ = lim inf ψ(x)/x and ε > 0. By definition of liminf, there exists N = Nε such that
for all x ≥ N , ψ(x) ≥ (γ − ε)x. Then∑

n≤x

ψ
(x
n

)
=
∑
n≤x/N

ψ
(x
n

)
+

∑
x/N<n≤x

ψ
(x
n

)
≥
∑
n≤x/N

(γ − ε)x
n

= (γ − ε)x
∑
n≤x/N

1

n

= (γ − ε)x
(

log
x

N
+ C +O

(
1

x

))
= (γ − ε)x log x− (γ − ε)x (logN − C + o(1)) .

Applying Theorem 4.11 we have x log x + O(x) ≥ (γ − ε)x log x + O(x) for a fixed ε > 0.

Dividing by x log x gives 1 ≥ γ − ε+O
(

1
log x

)
, and letting x→∞ gives 1 ≥ γ − ε. Finally,

since ε can be as small as we like, γ ≤ 1.

In Exercises 27 through 30, let A(x) =
∑

n≤x a(n), where a(n) satisfies

a(n) ≥ 0 for all n ≥ 1, (6)
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and ∑
n≤x

A
(x
n

)
=
∑
n≤x

a(n)
[x
n

]
= ax log x+ bx+ o

(
x

log x

)
as x→∞. (7)

When a(n) = Λ(n) these relations hold with a = 1 and b = −1. The following exercises show
that (6) and (7), together with the prime number theorem, ψ(x) ∼ x, impliy A(x) ∼ ax, a
result due to Basil Gordon. This should be compared with Theorem 4.8 (Shapiro’s Tauberian
theorem) which assumes only (6) and the weaker condition

∑
n≤xA(x/n) = ax log x+O(x)

and concludes that Cx ≤ A(x) ≤ Bx for some positive constants C and B.

Exercise 4.27. Prove that

(a)
∑
n≤x

A
(x
n

)
Λ(n) =

∑
n≤
√
x

A
(x
n

)
Λ(n) +

∑
n≤
√
x

ψ
(x
n

)
a(n) +O(x)

and use this to deduce the relation

(b)
A(x)

x
+

1

x log x

∑
n≤
√
x

A
(x
n

)
Λ(n) +

1

x log x

∑
n≤
√
x

ψ
(x
n

)
a(n) = 2a+ o(1) .

Proof.
(a) The left hand side can be rewritten as follows:∑

n≤x

Λ(n)A
(x
n

)
=
∑
d≤x

Λ(d)
∑
q≤x/d

a(q) =
∑
qd≤x

Λ(d)a(q).

Applying the hyperbola method described in Theorem 3.17 with a = b =
√
x, then∑

qd≤x

Λ(d)a(q) =
∑
n≤
√
x

A
(x
n

)
Λ(n) +

∑
n≤
√
x

ψ
(x
n

)
a(n)− ψ(

√
x )A(

√
x ).

Looking at ψ(
√
x)A(

√
x), assuming the prime number theorem then ψ(

√
x) ∼

√
x. Also by

Theorem 4.8, A(
√
x) = O(

√
x ). This gives an error term that is O(x).

(b) By Exercise 4.24,

A(x) log x+
∑
n≤x

A
(x
n

)
Λ(n) = 2ax log x+ o(x log x) .

Substituting the result of (a) and dividing both sides by x log x proves the claim.

Exercise 4.28. Let α = lim inf
x→∞

(A(x)/x) and let β = lim sup
x→∞

(A(x)/x).

(a) Choose any ε > 0 and use the fact that

A
(x
t

)
< (β + ε)

x

t
and ψ

(x
t

)
< (1 + ε)

x

t
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for all sufficiently large x/t to deduce, from Exercise 27(b), that

α +
β

2
+
a

2
+
ε

2
+
aε

2
> 2a.

Since ε is arbitrary this implies

α +
β

2
+
a

2
≥ 2a.

[Hint : Let x→∞ in such a way that A(x)/x→ α.]
(b) By a similar argument, prove that

β +
α

2
+
a

2
≤ 2a

and deduce that α = β = a. In other words, A(x) ∼ ax as x→∞.

Proof. By Theorem 4.8, there are positive constants b, c such that cx ≤ A(x) ≤ bx eventu-
ally holds for all x. Thus both the liminf and limsup of A(x)/x exist.

(a) Let ε > 0 then there is an N such that for all x ≥ N2, A(x) < (β+ε)x and ψ(x) < (1+ε)x.
Let {xk}∞k=1 be a sequence such that A(xk)/xk → α as k →∞, which means

A(xk)

xk
= α + o(1) .

Now, for xk ≥ N2 and any n ≤
√
xk, then xk/n ≥

√
xk ≥ N and thus

1

xk log xk

∑
n≤
√
xk

A
(xk
n

)
Λ(n) <

1

xk log xk

∑
n≤
√
xk

(β + ε)
(xk
n

)
Λ(n)

=
β + ε

log xk

∑
n≤
√
xk

Λ(n)

n

=
β + ε

log xk
(log
√
xk +O(1))

= (β + ε)

(
1

2
+ o(1)

)
.

Similarly, applying Theorem 4.8,

1

xk log xk

∑
n≤
√
xk

ψ
(xk
n

)
a(n) <

1

xk log xk

∑
n≤
√
xk

(1 + ε)
(xk
n

)
a(n)

=
1 + ε

log xk

∑
n≤
√
xk

a(n)

n

=
1 + ε

log xk
(a log

√
xk +O(1))

= (1 + ε)
(a

2
+ o(1)

)
.
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Hence α + β
2

+ a
2

+ ε
2

+ aε
2

+ o(1) > 2a + o(1). Letting x → ∞ (but keeping ε fixed), then
letting ε→ 0 gives us the result.
(b) Similar to (a), let ε > 0 and choose N such that for all x ≥ N2, A(x) > (α − ε)x
and ψ(x) > (1 − ε)x. Let {xk}∞k=1 be a sequence such that A(xk)/xk → β as k → ∞.
Applying the same bounds as in (a) we get α+ β

2
+ a

2
− ε

2
− aε

2
< 2a. Letting ε→ 0 gives us

α + β
2

+ a
2
≤ 2a. From here we have

β +
α

2
+
a

2
≤ 2a ≤ α +

β

2
+
a

2
.

Rearranging terms and multiplying by 2 gives β ≤ 3a−α−β ≤ α. However by construction
α ≤ β, and so β = 3a− α− β = α. This implies α = β = a and hence A(x) ∼ ax.

Exercise 4.29. Take a(n) = 1 + µ(n) and verify that (7) is satisfied with a = 1 and
b = 2C − 1, where C is Euler’s constant. Show that the result of Exercise 28 implies

lim
x→∞

1

x

∑
n≤x

µ(n) = 0.

This gives an alternate proof of Theorem 4.14.

Proof. Let M(x) =
∑

n≤x µ(n). We first derive bounds on three sums.

1. Just as in the proof of Theorem 3.3, by the hyperbola method,∑
n≤x

⌊x
n

⌋
=
∑
n≤x

∑
d≤x/n

1 =
∑
m≤x

d(m) = x log x+ (2C − 1)x+O
(√

x
)
.

2. By Theorem 3.12, ∑
n≤x

µ(n)
⌊x
n

⌋
= 1.

3. By Theorem 3.11, ∑
n≤x

M
(x
n

)
=
∑
n≤x

µ(n)
⌊x
n

⌋
= 1.

These give ∑
n≤x

A
(x
n

)
=
∑
n≤x

⌊x
n

⌋
+
∑
n≤x

M
(x
n

)
= x log x+ (2C − 1)x+O

(√
x
)

and ∑
n≤x

a(n)
⌊x
n

⌋
=
∑
n≤x

⌊x
n

⌋
+
∑
n≤x

µ(n)
⌊x
n

⌋
= x log x+ (2C − 1)x+O

(√
x
)
.

Therefore (7) is satisfied with a = 1 and b = 2C−1 and so by Exercise 4.28, A(x) ∼ x. This
means bxc+M(x) = x+ o(x) and thus M(x) = o(x).
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Exercise 4.30.(++) Suppose that in Exercise 4.28, we do not assume the prime number
theorem. Instead, let

γ = lim inf
x→∞

ψ(x)

x
, δ = lim sup

x→∞

ψ(x)

x
.

(a) Show that the argument suggested in Exercise 4.28 leads to the inequalities

α +
β

2
+
aδ

2
≥ 2a, β +

α

2
+
aγ

2
≤ 2a.

(b) From the inequalities in part (a) show that β − α ≤ aδ − aγ and deduce that

aγ ≤ α ≤ β ≤ aδ.

This shows that among all numbers a(n) satisfying (2) and (3) with a fixed a, the most
widely separated limits of indetermination,

lim inf
x→∞

A(x)

x
and lim sup

x→∞

A(x)

x
,

occur when a(n) = aΛ(n). Hence to deduce A(x) ∼ ax from (2) and (3) it suffices to treat
only the special case a(n) = aΛ(n).

Lemma 4.30. Selberg’s formula implies γ + δ = 2.

Proof of Lemma. Choose x to tend to infinity so that ψ(x)/x → γ. Fix ε > 0 and choose
N = Nε such that for all x ≥ N , ψ(x) < (δ + ε)x. Using a variation of Selberg’s formula
from Exercise 4.22 and the same idea in Exercise 4.26 we have

2x log x+ o(x log x) = ψ(x) log x+
∑
p≤x

ψ

(
x

p

)
log p

= ψ(x) log x+
∑
p≤x/N

ψ

(
x

p

)
log p+

∑
x/N<p≤x

ψ

(
x

p

)
log p

< γx log x+ o(x log x) +
∑
p≤x/N

(δ + ε)x

p
log p+

∑
x/N<p≤x

ψ

(
x

x/N

)
log p

≤ γx log x+ o(x log x) + (δ + ε)x
(

log
x

N
+O(1)

)
+ ψ(N)ϑ(x)

= (γ + δ + ε)x log x+ o(x log x) .

Here we used Theorem 4.10, which says
∑

p≤x log(p)/p = log x + O(1). Dividing by x log x
gives γ + δ + ε+ o(1) > 2 + o(1), and letting x→∞ then ε→ 0 then shows γ + δ ≥ 2.

On the other hand we can choose x to tend to infinity so that ψ(x)/x→ δ and N = Nε

such that for all x ≥ N , ψ(x) > (γ − ε)x. Then mirroring the above argument,

(δ + γ − ε)x log x+ o(x log x) < 2x log x+ o(x log x) ,

which leads to γ + δ ≤ 2. We conclude

γ + δ = 2.
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Proof of Exercise.
(a) Replacing 1 + ε with δ+ ε and 1− ε with γ− ε in the proof of Exercise 4.28 immediately
implies these inequalities.
(b) Adding the inequalities from (a) we have

2a+ β +
α

2
+
aγ

2
≤ 2a+ α +

β

2
+
aδ

2
.

Rearranging terms and multiplying by 2 gives β − α ≤ aδ − aγ.
Now using Lemma 4.30, substituting δ = 2− γ into α + β

2
+ aδ

2
≥ 2a shows

2α + β + a(2− γ) ≥ 4a.

Adding this to β + α
2

+ aγ
2
≤ 2a gives

4a+ β +
α

2
+
aγ

2
≤ 2a+ 2α + β + a(2− γ),

and solving for α, we have aγ ≤ α.
Substituting γ = 2− δ into β + α

2
+ aγ

2
≤ 2a shows

2β + α + a(2− δ) ≤ 4a.

Adding this to α + β
2

+ aδ
2
≥ 2a gives

4a+ α +
β

2
+
aδ

2
≥ 2a+ 2β + α + a(2− δ),

and solving for β, we have β ≤ aδ. By construction α ≤ β, and so aγ ≤ α ≤ β ≤ aδ.



Chapter 5
Congruences

Exercise 5.1. Let S be a set of n integers (not necessarily distinct). Prove that some
nonempty subset of S has a sum which is divisible by n.

Proof. Let S = {s1, s2, . . . , sn} and define ai = s1 + s2 + · · · + si for 1 ≤ i ≤ n. If ak is
divisible by n for some k, we are done. Otherwise, by the pigeonhole principle there exists
i and j such that i > j and ai ≡ aj mod n. Thus ai − aj ≡ 0 mod n, or in other words
si+1 + · · ·+ sj ≡ 0 mod n.

Exercise 5.2. Prove that 5n3 + 7n5 ≡ 0 mod 12 for all integers n.

Proof. By Theorem 5.2 (d), it’s enough to show this holds for n = 1, 2, . . . , 11. We show this
in Mathematica.

In[1]:= f[n_] := 5nˆ3 + 7nˆ5

In[2]:= Mod[f[Range[12]], 12]
Out[2]= {0,0,0,0,0,0,0,0,0,0,0,0}

Exercise 5.3.
(a) Find all positive integers n for which n13 ≡ n mod 1365.
(b) Find all positive integers n for which n17 ≡ n mod 4080.

Solution.
(a) Since 1365 = 3 · 5 · 7 · 13, it’s equivalent to solve n13 ≡ n mod 3, 5, 7, 13.

• Since n13 = (n2)6 · n ≡ n mod 3, all n are solutions mod 3.

• Since n13 = (n4)3 · n ≡ n mod 5, all n are solutions mod 5.

• Since n13 = (n6)2 · n ≡ n mod 7, all n are solutions mod 7.

• By Fermat’s little theorem, n13 ≡ n mod 13, thus all n are solutions mod 13.

Therefore all integers n satisfy n13 ≡ n mod 1365.
(b) Since 4080 = 24 · 3 · 5 · 17, it’s equivalent to solve n17 ≡ n mod 3, 5, 16, 17.
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• Since n17 = (n2)8 · n ≡ n mod 3, all n are solutions mod 3.

• Since n17 = (n4)4 · n ≡ n mod 5, all n are solutions mod 5.

• By Fermat’s little theorem, n17 ≡ n mod 17, thus all n are solutions mod 17.

Therefore it’s equivalent to solve n17 ≡ n mod 16. By inspection, all solutions are multiples
of 16 and odd integers.

Exercise 5.4.
(a) Prove that ϕ(n) ≡ 2 mod 4 when n = 4 and when n = pa, where p is a prime,
p ≡ 3 mod 4.
(b) Find all n for which ϕ(n) ≡ 2 mod 4.

Proof.
(a) If n = 4 then ϕ(n) = 2. Instead suppose n = pa, where p is a prime, p ≡ 3 mod 4. Then
ϕ(n) = pa−1(p − 1). Since pa−1 ≡ 1, 3 mod 4, then ϕ(n) is either 1 · 2 or 3 · 2 mod 4. But
6 ≡ 2 mod 4 and so ϕ(n) ≡ 2 mod 4.

(b) Consider the four cases.

• Suppose n = pam, where p ≡ 1 mod 4 and p is relatively prime to m. Then

ϕ(n) = pa−1(p− 1)ϕ(m) ≡ pa−1 · 0 · ϕ(m) ≡ 0 mod 4.

Thus if n is divisible by a prime congruent to 1 mod 4 then ϕ(n) 6≡ 2 mod 4.

• Suppose n = paqbm for primes p, q ≡ 3 mod 4 which are relatively prime to m. Then

ϕ(n) = ϕ(pa)ϕ(qb)ϕ(m) ≡ 2 · 2 · ϕ(m) ≡ 0 mod 4.

So if n is divisible by more than one prime congruent to 3 mod 4 then ϕ(n) 6≡ 2 mod 4.

• Suppose n = 2spa, where s > 0, a > 0, and p is a prime, p ≡ 3 mod 4. Then

ϕ(n) = 2s−1ϕ(pa) ≡ 2s−1 · 2 ≡ 2s mod 4.

Thus for ϕ(n) ≡ 2 mod 4 to hold we require s = 1.

• Suppose n = 2s, where s > 0. Then ϕ(n) = 2s−1 and thus for ϕ(n) ≡ 2 mod 4 to hold
we require n = 4.

Hence ϕ(n) ≡ 2 mod 4 if and only if n = 4, n = pa, or n = 2pa for a > 0 and some prime
p ≡ 3 mod 4.

Exercise 5.5. A yardstick divided into inches is again divided into 70 equal parts. Prove
that among the four shortest divisions two have left endpoints corresponding to 1 and 19
inches. What are the right endpoints of the other two?
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Solution. Take a yardstick marked at every inch. Next make a mark at every 36
70

th of an
inch. The yardstick has now been non-uniformly partitioned. We are asked to find where
the four shortest divisions lie.

0 1 2 3 4 5 6

Figure 3: The first six inches of the marked yardstick.

Let x and y be integers such that x and 36
70
y are endpoints of a division. Then (36, 70) = 2

implies ∣∣∣∣x− 36

70
y

∣∣∣∣ ≥ 2

70
=

1

35
.

So the smallest possible division length is 1/35. The goal now is to solve |70x − 36y| = 2.
Note that |70x− 36y| = 2 can be rewritten as

70x− 36y = 2 or 70x− 36y = −2.

First, look at 70x− 36y = 2. By inspection, 70(−1)− 36(−2) = 2 and thus x = −1 and
y = −2 is a solution. Next, to find all solutions, we solve 70(−1 +m)− 36(−2 + n) = 2 for
integers n and m. This gives n = 35

18
m and thus m = 18k and n = 35k for some integer k.

Hence the solutions are of the form

x = 18k − 1, y = 35k − 2, for some k ∈ Z.

Similarly, the solutions to 70x− 36y = −2 are of the form

x = 1 + 18k, x = 2 + 35k, for some k ∈ Z.

Since x and 36
70
y both lie on the yardstick, it must be that 0 < x < 36 and 0 < y < 70. Thus

the only valid solutions are

(x, y) = (17, 33), (35, 68), (1, 2), (19, 37).

These correspond to the divisions[
594

35
, 17

]
,

[
1224

35
, 35

]
,

[
1,

36

35

]
,

[
19,

666

35

]
respectively.
Remark. This problem can also be solved using Mathematica

In[3]:= Block[{marklocs, divs},
marklocs = Union[Join[Range[0, 36], Range[0, 36, 36/70]]];
divs = Partition[marklocs, 2, 1];
divs[[Ordering[divs, 4, Subtract @@ #1 > Subtract @@ #2&]]]

]
Out[3]= {{1224/35, 35}, {19, 666/35}, {594/35, 17}, {1, 36/35}}



76 Chapter 5 Solutions

Exercise 5.6. Find all x which simultaneously satisfy the system of congruences

x ≡ 1 mod 3, x ≡ 2 mod 4, x ≡ 3 mod 5.

Solution. By the Chinese remainder theorem there is a unique solution mod 60. Following
the method described in the proof of Theorem 5.26, we define the following.

Let M1 = 20, M2 = 15, and M3 = 12. This gives M ′
1 = 2, M ′

2 = 3, and M ′
3 = 3. The

solution mod 60 is thus

x = 1 · 20 · 2 + 2 · 15 · 3 + 3 · 12 · 3 ≡ 58 mod 60.

So all solutions are x = 60k + 58 for all integers k.

Exercise 5.7. Prove the converse of Wilson’s theorem: If (n − 1)! + 1 ≡ 0 mod n, then n
is prime if n > 1.

Lemma 5.7. If n is composite and n 6= 4 then n | (n− 1)!.

Proof of Lemma. Suppose n = ab for 1 < a < b < n. Then

(n− 1)! = (ab)(1)(2) · · · (a− 1)(a+ 1) · · · (b− 1)(b+ 1) · · · (n− 1),

hence n | (n− 1)!. Otherwise n = p2 for some prime p > 2. This means p2 − 1 > 2p and so

(p2 − 1)! = (p2)(1)(2) · · · (p− 1)(p+ 1) · · · (2p− 1)(2)(2p+ 1) · · · (p2 − 1).

Therefore n | (n− 1)!.

Proof of Exercise. Let n be composite. For n = 4, (4 − 1)! + 1 ≡ 3 mod 4. Otherwise, by
Lemma 5.7, (n − 1)! + 1 ≡ 1 mod n. Thus if n is composite then (n − 1)! + 1 6≡ 0 mod n.

Exercise 5.8. Find all positive integers n for which (n− 1)! + 1 is a power of n.

Proof. By Exercise 5.7, n | (n− 1)! + 1 if and only if n is prime. Thus we may assume n = p
for some prime p. Suppose (p− 1)! + 1 = pk for some prime p > 5. Then

(p− 2)! = pk−1 + · · ·+ p+ 1

= (pk−1 − 1) + · · ·+ (p− 1) + (1− 1) + k.

By Lemma 5.7, p − 1 | (p − 2)! and thus p − 1 | k. We conclude k ≥ p − 1, a contradiction
since (p− 1)! + 1 < pp−1.

Testing p = 2, 3, 5 then (p− 1)! + 1 is 2, 3, 25, respectively. Thus (n− 1)! + 1 is a power
of n if and only if n = 2, 3, 5.

Exercise 5.9. If p is an odd prime, let q = (p− 1)/2. Prove that

(q!)2 + (−1)q ≡ 0 mod p.

This gives q! as an explicit solution to the congruence x2 + 1 ≡ 0 mod p when p ≡ 1 mod 4,
and it shows q! ≡ ±1 mod p if p ≡ 3 mod 4. No simple general rule is known for determining
the sign.
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Proof. Suppose p = 4n+ 1, then q = (2n)!. By Wilson’s theorem,

−1 ≡ (p− 1)!

≡ (1 · 2 · · · 2n)((2n+ 1) · · · 4n)

≡ (1 · 2 · · · 2n)((p− 2n) · · · (p− 1))

≡ (1 · 2 · · · 2n)((−2n) · · · (−1))

≡ ((2n)!)2(−1)2n

≡ q2 mod p.

On the other hand, if p = 4n+ 3 then q = (2n+ 1)!. Thus

−1 ≡ (p− 1)!

≡ (1 · 2 · · · 2n · (2n+ 1))((2n+ 2) · · · (4n+ 2))

≡ (1 · 2 · · · 2n · (2n+ 1))((p− 2n− 1) · · · (p− 1))

≡ (1 · 2 · · · 2n · (2n+ 1))((−2n− 1) · · · (−1))

≡ ((2n+ 1)!)2(−1)2n+1

≡ −q2 mod p.

Hence (q!)2 + (−1)q ≡ 0 mod p.

Exercise 5.10. If p is odd, p > 1, prove that

123252 · · · (p− 2)2 ≡ (−1)(p+1)/2 mod p

and
224262 · · · (p− 1)2 ≡ (−1)(p+1)/2 mod p.

Proof. Suppose p = 4n+ 1, then by Wilson’s theorem,

−1 ≡ (p− 1)!

≡ (1 · 3 · · · (4n− 1))(2 · 4 · · · 4n)

≡ (1 · 3 · · · (4n− 1))((p− 4n+ 1) · (p− 4n− 3) · · · (p− 1))

≡ (1 · 3 · · · (4n− 1))((−4n+ 1) · (−4n− 3) · · · (−1))

≡ 123252 · · · (p− 2)2(−1)2n (8)

≡ 123252 · · · (p− 2)2 mod p.

Instead, substituting 2k+1 = p−2k establishes 224262 · · · (p−1)2 ≡ −1 mod p for p = 4n+1.
Now if p = 4n+ 3, then the same exact methodology applies here, except there are now

an odd number of even terms and an odd number of odd terms. Thus we have (−1)2n+1 in
(8) instead of (−1)2n. The result then follows.

Exercise 5.11. Let p be a prime, p ≥ 5, and write

1 +
1

2
+

1

3
+ · · ·+ 1

p
=

r

ps
.

Prove that p3 | (r − s).
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Proof. Let Hn be the nth harmonic number. By Theorem 5.25, p!Hp−1 ≡ 0 mod p3. Adding
(p− 1)! to both sides gives p!Hp ≡ (p− 1)! mod p3, i.e. there is an integer k such that

p!Hp = (p− 1)! + kp3.

Thus

1 +
1

2
+

1

3
+ · · ·+ 1

p
=

(p− 1)! + kp3

p(p− 1)!
.

Let g = gcd
(
(p− 1)! + kp3, (p− 1)!

)
. Now g | (p− 1)!, which means g - p. Thus since g | kp3

we have g | k. Defining q = (p− 1)!/g and m = k/g gives

1 +
1

2
+

1

3
+ · · ·+ 1

p
=
q +mp3

pq
=

r

ps
,

where the right hand side is in lowest terms. Hence r − s = mp3 ≡ 0 mod p3.

Exercise 5.12. If p is a prime, prove that(
n

p

)
≡
[
n

p

]
mod p.

Also if pα | [n/p] prove that

pα
∣∣∣∣(np

)
.

Lemma 5.12. Suppose b | a and (b, n) = 1. If bc ≡ 1 mod n then a/b ≡ ac mod n.

Proof of Lemma. Let a = bd. Then a/b = d and ac = d(bc) ≡ d mod n.

Proof of Exercise. Suppose n = pq + r where 0 ≤ r < p. Then bn/pc = q and(
n

p

)
=

(pq + r)!

p!(pq + r − p)!

=
1

p!

p−1∏
i=0

(pq + r − i)

=
pq

p!

∏
0≤i<p
i 6=r

(pq + r − i)

=
q

(p− 1)!

∏
0≤i<p
i 6=r

(pq + r − i). (9)

Notice {pq + r − i | 0 ≤ i < p and i 6= r} forms a reduced residue system mod p and so∏
0≤i<p
i6=r

(pq + r − i) ≡ (p− 1)! mod p.
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Thus by Wilson’s theorem and Lemma 5.12,(
n

p

)
≡ q(−1)(−1) = q mod p.

Next suppose q = pαd, then by (9)

(
n

p

)
= pα

 d

(p− 1)!

∏
0≤i<p
i 6=r

(pq + r − i)

 .

Since pα is relatively prime to (p − 1)!, the quantity on the right is an integer and hence
pα |

(
n
p

)
.

Exercise 5.13.(+) Let a, b, n be positive integers such that n divides an− bn. Prove that n
also divides (an − bn)/(a− b).

Proof. Let n = pαm where p - m and (a− b, n) = pβg where p - g. It’s enough to show

pα+β | an − bn.

Assume β > 0, as it is trivial otherwise. Since pβ | a − b, then a = b + kpβ for some k.
Consequently

an − bn =
n∑
j=1

(
n

j

)
kjpβjbn−j

=
n∑
j=1

n(n− 1) · · · (n− j + 1)

j!
kjpβjbn−j

=
n∑
j=1

Cj
npβj

j!
.

Let M be the highest power of p dividing an − bn, then

M ≥ min
1≤j≤n

{
α + βj −

⌊
logp j

⌋}
.

Since β > 0,

M ≥ α + β min
1≤j≤n

{
j −

⌊
logp j

⌋}
≥ α + β min

1≤j≤n
{j − log2 j} .

Now j − log2 j is minimized over the positive integers at j = 1 and j = 2 with value 1. This
means M ≥ α + β, and hence pα+β | an − bn. Therefore n | (an − bn)/(a− b).
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Exercise 5.14. Let a, b, and x0 be positive integers and define

xn = axn−1 + b for n = 1, 2, . . .

Prove that not all xn can be primes.

Proof. If x1 is not prime, we are done. Otherwise suppose p = ax0 + b is prime. We have
p - a and thus ap−1 ≡ 1 mod p. Then

xp(p−1)+1 = ap(p−1)+1x0 + ap(p−1)b+ · · ·+ a2b+ ab+ b

= ap(p−1)+1x0 + ap(p−1)b+

p−1∑
i=0

(
ai(p−1)+p−2 + · · ·+ ai(p−1)+1 + ai(p−1)

)
b

≡ ax0 + b+ p(ap−2 + · · ·+ a2 + a+ 1)b

≡ ax0 + b ≡ 0 mod p,

and since xn is a monotonically increasing sequence, xp(p−1)+1 must be composite.

Exercise 5.15. Let n, r, a denote positive integers. The congruence n2 ≡ n mod 10a

implies nr ≡ n mod 10a for all r. Find the values of r such that nr ≡ n mod 10a implies
n2 ≡ n mod 10a.

Solution. Consider the three possible cases on r.

• Let r be odd and choose n to satisfy n ≡ −1 mod 10a. Then nr ≡ n mod 10a, but
n2 6≡ n mod 10a.

• Let r = 10k + 6, a = 2, and n = 16. Inducting on k, note nr−1 ≡ 1 mod 10a. Hence
nr ≡ n mod 10a, but observe n2 6≡ n mod 10a.

• Let r = 10k +m, where m ∈ {0, 2, 4, 8}. If nr−1 ≡ 1 mod 10a, then |n| | 10k +m− 1.
However |n| | ϕ(10a) = 4 · 10a−1, hence for m ∈ {0, 2, 4, 8} it must be that |n| = 1.
Therefore in this case, the only solutions to nr ≡ n mod 10a are n = 0 or n = 1.

We conclude nr ≡ n mod 10a implies n2 ≡ n mod 10a if and only if r is even and not
congruent to 1 mod 5.

Exercise 5.16. Let n, a, d be given integers with (a, d) = 1. Prove that there exists an
integer m such that m ≡ a mod d and (m,n) = 1.

Proof. Define S = {a+ td | t = 1, 2, . . . , (nd)/d}. Since (a, d) = 1, by Theorem 5.32 there is
an m ∈ S such that (m,nd) = 1. This implies (m,n) = 1.

Exercise 5.17. Let f be an integer-valued arithmetical function such that

f(m+ n) ≡ f(n) mod m

for allm ≥ 1, n ≥ 1. Let g(n) be the number of values (including repetitions) of f(1), f(2), . . . , f(n)
divisible by n, and let h(n) be the number of these values relatively prime to n. Prove that

h(n) = n
∑
d|n

µ(d)
g(d)

d
.
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Proof. Let n = pα1
1 · · · p

αk
k and define g(k, n) to be the number of values (including repeti-

tions) of f(1), f(2), . . . , f(n) divisible by k. Through the principle of cross-classification,

h(n) = n−
∑
1≤i≤k

g(pi, n) +
∑

1≤i<j≤k

g(pipj, n)− . . .+ (−1)kg(p1 · · · pk, n).

Suppose k | n. By assumption we can partition {f(1), f(2), . . . , f(n)} into n/k subsets which
are congruent mod k. This implies

g(k, n) =
n

k
g(k),

hence

h(n) = n−
∑
1≤i≤k

n

pi
g(pi) +

∑
1≤i<j≤k

n

pipj
g(pipj)− . . .+ (−1)k

n

p1 · · · pk
g(p1 · · · pk).

Since µ is zero for all other factors of n, we have

h(n) = n
∑
d|n

µ(d)
g(d)

d
.

Exercise 5.18.(+) Given an odd integer n > 3, let k and t be the smallest positive integers
such that both kn+ 1 and tn are squares. Prove that n is prime if, and only if, both k and
t are greater than n/4.

Proof. If n is prime, then n2 | tn which implies n | t. Thus t ≥ n > n/4. Also, by Theorem
5.21, x2 ≡ 1 mod n has exactly the two solutions ±1 mod n. So if kn+ 1 = a2, then a ≡ ±1
mod n. Thus a ≥ n − 1, which implies kn + 1 ≥ (n − 1)2. Isolating k, we see k ≥ n − 2.
Finally since n > 3, then n− 2 > n/4 and therfore k > n/4.

If n is composite, consider the three cases.

• Suppose n = p2a for a prime p. Taking t = 1 gives the smallest integer such that tn is
a square and t < n/4, as n > 4.

• Suppose n = p2a+1 for a prime p. Taking t = p gives the smallest integer such that tn
is a square. Since p > 2 then t = p < p · (p2/4) = p3/4 ≤ n/4.

• Suppose n = pam for m > 2 and p - m. By the Chinese remainder theorem, there is a
unique y such that

y ≡ 1 mod pa, y ≡ −1 mod m, |y| < n

2
.

This gives y2 ≡ 1 mod n. Now if y = 1 then y ≡ 1 mod m, which is impossible since
m > 2. Therefore y 6= 1 and similarly y 6= −1, so taking k = (y2−1)/n gives a positive
integer such that kn+ 1 is a square. Additionally, under the assumption |y| < n/2, we
have k < y2/n < n/4.



82 Chapter 5 Solutions

Thus if n is composite then at least one of k, t is less than n/4.

Exercise 5.19.(++) Prove that each member of the set of n− 1 consecutive integers

n! + 2, n! + 3, . . . , n! + n

is divisible by a prime which does not divide any other member of the set.

Proof. For each 2 ≤ k ≤ n, consider the three cases.

• Suppose k is prime and k > n/2. Then k | n! + k and k - n! + j for j 6= k since
n! + 2k > n! + j. In this case we are done.

• Suppose k is prime and k ≤ n/2. Then since 2k ≤ n, for any prime p ≤ n, p | n!/k
and hence p - n!/k + 1. It follows that n!/k + 1 has a prime factor larger than n. This
implies n! + k does as well.

• Suppose k is composite. Similar to the above case, for any prime p ≤ n, p | n!/k. Thus
p - n!/k + 1 and so n! + k has a prime factor larger than n.

Now suppose k is not a prime larger than n/2. Let pk > n be a prime dividing n! + k. Since
|(n! + j)− (n! + k)| < n we have

n! + j 6≡ n! + k mod pk for j 6= k.

Therefore pk | n! + k and pk - n! + j for j 6= k.

Exercise 5.20.(+) Prove that for any positive integers n and k, there exists a set of n
consecutive integers such that each member of this set is divisible by k distinct prime factors
no one of which divides any other member of the set.

Proof. Fix n and induct on k, where the base case k = 1 is proven in Exercise 5.19. Suppose

Sk = {s1, s2, . . . , sn}

satisfies the claim for k with corresponding primes pi,j for 1 ≤ i ≤ n and 1 ≤ j ≤ k. Define

Sk+1 = {t1, t2, . . . , tn}, where ti = sn! + si,

a set of consecutive integers. It’s clear each pi,j divides ti and pi,j does not divide tl for l 6= i.
Applying the exact process in Exercise 5.19, since si is composite, there is a prime Pi > sn
that divides ti. Furthermore, since |ti − tl| < n we have

ti 6≡ tl mod Pi for l 6= i.

Thus each member of Sk+1 is divisible by k+1 distinct prime factors no one of which divides
any other member Sk+1.

Remark. The last two exercises both prove there are infinitely many primes.
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Exercise 5.21. Let n be a positive integer which is not a square. Prove that for every
integer a relatively prime to n there exist integers x and y satisfying

ax ≡ y mod n with 0 < x <
√
n and 0 < |y| <

√
n.

Proof. Consider ax − y for 0 ≤ x, y ≤ b
√
nc, which gives (b

√
nc + 1)2 possible values for

(x, y). Since
√
n < b

√
nc+ 1, then n < (b

√
nc+ 1)2.

Now, there are at most n values ax− y can attain mod n, so by the pigeonhole principle
there must be at least two distinct expressions ax − y that are congruent mod n. Suppose
ax1 − y1 ≡ ax2 − y2 mod n for {x1, y1} 6= {x2, y2}. This gives

a(x1 − x2) ≡ y1 − y2 mod n,

and so take x = |x1− x2| and y = ±|y1− y2|. Observe 0 ≤ x ≤
√
n and 0 ≤ |y| ≤

√
n, so all

that remains is to show the inequalities are strict.

• Supposing x = 0, then x1 = x2 and y1 − y2 ≡ 0 mod n. So y1 = kn + y2 for some
integer k. However since 0 ≤ y1, y2 ≤ b

√
nc, we must have k = 0 and thus y1 = y2.

This contradicts {x1, y1} 6= {x2, y2}.

• Supposing y = 0, then y1 = y2 and a(x1 − x2) ≡ 0 mod n. Now since (a, n) = 1 we
must have x1 − x2 ≡ 0 mod n. We conclude x1 = x2, another contradiction.

• Since n is not a square and both x and y are integers, we have x 6=
√
n and |y| 6=

√
n.

Therefore 0 < x <
√
n and 0 < |y| <

√
n.

Exercise 5.22. Let p be a prime, p ≡ 1 mod 4, let q = (p− 1)/2, and let a = q!.
(a) Prove that there exist positive integers x and y satisfying 0 < x <

√
p and 0 < y <

√
p

such that
a2x2 − y2 ≡ 0 mod p.

(b) For the x and y in part (a), prove that p = x2 + y2. This shows that every prime p ≡ 1
mod 4 is the sum of two squares.
(c) Prove that no prime p ≡ 3 mod 4 is the sum of two squares.

Proof.
(a) Since q! and p are relatively prime then by Exercise 5.21 there are integers x and y
satisfying 0 < x <

√
p and 0 < |y| < √p such that ax ≡ y mod p. Hence p divides ax − y,

which divides a2x2 − y2 and so a2x2 − y2 ≡ 0 mod p.
(b) By Exercise 5.9, a2 ≡ −1 mod p and so −x2 − y2 ≡ 0 mod p. This implies p | x2 + y2.
However, since 0 < x <

√
p and 0 < y <

√
p then 0 < x2 + y2 < 2p, forcing p = x2 + y2.

(c) Given any integers a and b then

a2, b2 ≡ 0, 1 mod 4.

Thus
a2 + b2 ≡ 0, 1, 2 6≡ 3 mod 4.

That is if p ≡ 3 mod 4 then p cannot be expressed as the sum of two sqaures.



Chapter 6
Finite Abelian Groups and Their
Characters

Exercise 6.1. Let G be a set of nth roots of a nonzero complex number. If G is a group
under multiplication, prove that G is the group of nth roots of unity.

Proof. For x 6= 0 define Gx = {z ∈ C | zn = x} and assume Gx is a group. If z, w ∈ Gx,
then by closure znwn = x. Since zn = x = wn we also have znwn = x2. Thus x2 = x, and
hence x = 1. Direct verification shows G1 is a group.

Exercise 6.2. Let G be a finite group of order n with identity element e. If a1, . . . , an
are n elements of G, not necessarily distinct, prove that there are integers p and q with
1 ≤ p ≤ q ≤ n such that apap+1 · · · aq = e.

Proof. Let A = {a1, a2, . . . , an} and define bi = a1a2 · · · ai for 1 ≤ i ≤ n. If bk = e for some
k, we are done. Otherwise, by the pigeonhole principle there exists q and p such that p < q
and bq = bp. Thus bqb

−1
p = e, or in other words ap+1 · · · aq = e.

Remark. Taking G = (Z/nZ,+) proves Exercise 5.1.

Exercise 6.3. Let G be the set of all 2× 2 matrices

(
a b
c d

)
, where a, b, c, d are integers

with ad − bc = 1. Prove that G is a group under matrix multiplcation. This group is
sometimes called the modular group.

Proof. The condition ad − bc = 1 is equivalent to having determinant 1. We now show G
satisfies the group axioms.

• Closure: If A,B ∈ G then det(A) = det(B) = 1. Since the determinant is multiplica-
tive, det(AB) = det(A) det(B) = 1 and so AB ∈ G.

• Associativity: Matrix multiplication is associative, which can be verified directly.

• Existence of identity: Since det(I2) = 1, I2 ∈ G.

• Existence of inverses: If A =

(
a b
c d

)
∈ G, let B =

(
d −b
−c a

)
. We have det(B) =

ad− bc = 1 and thus B ∈ G. Observe AB = I2, which means B = A−1 ∈ G.

84
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Exercise 6.4. Let G = 〈a〉 be a cyclic group generated by a. Prove that every subgroup of
G is cyclic. (It is not assumed G is finite.)

Proof. Let 1 < H ≤ G and m be the smallest positive integer such that am ∈ H. If b ∈ H
then b = an for some n ∈ Z, as b ∈ G.

If n = qm + r, where 0 ≤ r < m, then an = (am)qar. This implies ar = (am)−qan ∈ H.
By the minimality of m, we must have r = 0 and so an = (am)q. Therefore H = 〈am〉.

Exercise 6.5. Let G be a finite group of order n and let G′ be a subgroup of order m.
Prove m | n (Lagrange’s theorem). Deduce that the order of every element of G divides n.

Lemma 6.5. For G′ ≤ G, the set P = {xG′ | x ∈ G} partitions G.

Proof of Lemma. Pick x, y ∈ G such that xG′ ∩ yG′ 6= ∅. This means there are g1, g2 ∈ G′
such that xg1 = yg2. Multiplying both sides by g−11 gives

x = g−11 yg2 = yg3, where g3 ∈ G′.

Now for any element g ∈ G′, xg = y(g3g) ∈ yG′, thus xG′ ⊆ yG′. Similarly yG′ ⊆ xG′ and
hence xG′ = yG′. This means either xG′ = yG′ or xG′ ∩ yG′ = ∅.

Proof of Exercise. For any x ∈ G, since x is invertible, the set xG′ has order |G′|. By
Lemma 6.5 {xG′ | x ∈ G} partitions G, and thus |G| = k|G′| for some integer k.

Now choose x ∈ G and let n = |x| = |〈x〉|. By Lagrange’s theorem, |〈x〉| divides |G|.

Exercise 6.6. Let G be a finite group of order 6 with identity element e. Prove that either
G is cyclic, or else there are two elements a and b in G such that

G = {a, a2, a3, b, ab, a2b},

with a3 = b2 = e. Which of these elements is ba?

Proof. By Exercise 6.8 (Cauchy’s theorem) there exists a, b ∈ G such that |a| = 3 and |b| = 2.
We have b 6∈ 〈a〉 since 2 - |〈a〉|. Furthermore, b ∈ 〈a〉b and so by Lemma 6.5 〈a〉 ∩ 〈a〉b = ∅.
This means G = 〈a〉 ∪ 〈a〉b = {e, a, a2, b, ab, a2b}, whether G is cyclic or not.

Assuming G is not cyclic we now rule out cases to conclude ba = a2b.

• Supposing ba = e, then multiplying both sides by b yields a = b, a contradiction.

• Supposing ba = a, then multiplying both sides by a2 yields b = e, a contradiction.

• Supposing ba = a2, then multiplying both sides by a2 yields b = a, a contradiction.

• Supposing ba = b, then multiplying both sides by b yields a = e, a contradiction.

• If ba = ab, then G is abelian. This would mean (ab)2 = a2b2 = a2 and (ab)3 = a3b3 = b,
which implies |ab| = 6. This is a contradiction since G 6= 〈ab〉.
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Exercise 6.7. A group table for a finite group G = {a1, . . . , an} of order n is an n × n
matrix whose ij-entry is aiaj. If aiaj = e prove that ajai = e. In other words, the identity
element is symmetrically located in the group table. Deduce that if n is even the equation
x2 = e has an even number of solutions.

Proof. Suppose aiaj = e. Then

ai(ajai) = (aiaj)ai = ai,

and multiplying both sides by a−1i shows ajai = e.
Now given ai ∈ G, there is a unique aj ∈ G such that aiaj = e, hence the number of times

e appears in the group table is n. By symmetry, the number e’s above the main diagonal is
the same as the number of e’s below the main diagonal. Adding these thus produces an even
number. Since n is even, the number of e’s on the main diagonal must be even too. That is
to say the number of solutions to x2 = e is even.

Exercise 6.8. Generalizing Exercise 6.7, let f(p) denote the number of solutions of the
equation xp = e, where p is a prime divisor of n, the order of G. Prove that p | f(p)
(Cauchy’s theorem). [Hint : Consider the set S of ordered p-tuples (a1, . . . , ap) such that
ai ∈ G and a1 · · · ap = e. There are np−1 p-tuples in S. Call two such p-tuples equivalent if
one is a cyclic permutation of the other. Show that f(p) equivalence classes contain exactly
one member and that each of the others contains exactly p members. Count the number of
members of S in two ways and deduce p | f(p).]

Proof. Following the hint, let (a1, . . . , ap) ∈ S. Since every element of G is invertible, we can
choose a1, . . . , ap−1 freely, which forces ap = (a1 · · · ap−1)−1. This implies |S| = np−1, since
there are n choices for each freely chosen ai.

Define φ : S → S such that φ
(
(a1, . . . , ap)

)
= (a2, . . . , ap, a1). For A,B ∈ S, we say

A ∼ B if B = φm(A) for some m. Let [A] = {B ∈ S | A ∼ B}.
Suppose for A = (a1, . . . , ap), φ

m(A) = A for some 0 < m < p. By Exercise 1.25, there
exists x > 0 and y > 0 such that mx− py = 1. Since φ−yp = id,

φ(A) = φmx−py(A) = φmx(φ−py(A)) = φmx(A) = A.

Therefore

a1 = a2, a2 = a3, . . . , ap = a1.

This means A = (x, x, . . . , x) for some x ∈ G, and so |[A]| = 1. Furthermore there are f(p)
many [A] such that |[A]| = 1.

Now suppose φm(A) 6= A for all 0 < m < p. If 1 ≤ k ≤ j < p and φj(A) = φk(A), then
φj−k(A) = A. This means j − k = 0 and so each φi(A) is unique. This shows |[A]| = p.

Thus partitioning S by ∼ implies

np−1 = ps+ f(p).

Since p | n, we see p | f(p).
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Exercise 6.9. Let G be a finite group of order n. Prove that n is odd if, and only if, each
element of G is square. That is, for each a in G there is an element b in G such that a = b2.

Proof. Let n = 2m+ 1, x ∈ G and y = x−1. Then by Exercise 6.5 (Lagrange’s theorem), |y|
divides 2m+ 1 and so

x = xy2m+1 = (ym)2 .

Conversely, suppose every element in G is a square. This means the map φ : G→ G defined
by φ(g) = g2 is surjective. Therefore the only solution to x2 = e is x = e. Hence G does not
contain an element of order 2, so by Exercise 6.8 (Cauchy’s theorem) n is odd.

Exercise 6.10. State and prove a generalization of Exercise 6.9 in which the condition “n
is odd” is replaced by “n is relatively prime to k” for some k ≥ 2.

Statement: Let G be a finite group of order n. Prove that n is relatively prime to k if and
only if each element of G is a kth power.

Proof. Suppose (n, k) = 1 and n = km+ r for 0 < r < k. Let x ∈ G and y = x−1. Then by
Exercise 6.5 (Lagrange’s theorem), |y| divides km+ r and so

xr = xrykm+r = (ym)k .

There are a and b such that ar + bk = 1 and so

x = xar+bk = (yam)k(xb)k = (yamxb)k = (xb−am)k.

Conversely, suppose every element in G is a kth power. This means the map φ : G → G
defined by φ(g) = gk is surjective. Therefore the only solution to xk = e is x = e. This
implies for any prime divisor p of k, the only solution to xp = e is x = e. Hence G does not
contain an element of order p, so by Exercise 6.8 (Cauchy’s theorem), p - n. We conclude
(n, k) = 1.

Exercise 6.11. Let G be a finite group of order n, and let S be a subset containing more
than n/2 elements of G. Prove that for each g in G there exist elements a and b in S such
that ab = g.

Proof. Suppose for some g ∈ G that ab 6= g for all a, b ∈ S. We have

G = {g1, . . . , gj, h1, . . . , hk}, where g2i = g and h2i 6= g.

By the hypothesis we have gi 6∈ S and so S ⊆ {hi}. Now for each hi there is a unique hj 6= hi
such that hihj = g. Therefore if hi ∈ S, then hj 6∈ S. Thus pairing the hi accordingly gives
|S| ≤ |{hi}|/2 ≤ n/2.

Exercise 6.12. Let G be a group and let S be a subset of n distinct elements of G with
the property that a ∈ S implies a−1 6∈ S. Consider the n2 product (not necessarily distinct)
of the form ab, where a ∈ S and b ∈ S. Prove that at most n(n − 1)/2 of these products
belong to S.
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Proof. Consider the n2 − n pairs a, c ∈ S such that a 6= c. If there exists b ∈ S such that
ab = c, then cb−1 = a, where b−1 6∈ S. That is to say if ab = c for a, b, c ∈ S, then there is
no element x ∈ S such that cx = a. This means at most half of these pairs have b ∈ S such
that ab = c. Additionally note if a = c, then there is no b ∈ S such that ab = c.

Exercise 6.13. Let f1, . . . , fm be the characters of a finite group G of order m, and let
a be an element of G of order n. Theorem 6.7 shows that each number fr(a) is an nth
root of unity. Prove that every nth root of unity occurs equally often among the numbers
f1(a), f2(a), . . . , fm(a). [Hint : Evaluate the sum

m∑
r=1

n∑
k=1

fr(a
k)e−2πik/n

in two ways to determine the number of times e2πi/n occurs.]

Proof. Define e(x) = e2πix and let S be the sum from the hint. Changing order of summation
we have

S =
n∑
k=1

e(−k/n)
m∑
r=1

fr(a
k).

By Theorem 6.13, since |a| = n, the inner sum is 0 if k < n and m if k = n. Hence

S = me(n/n) = m.

On the other hand if fr(a) = e(jr/n), we have

S =
m∑
r=1

n∑
k=1

e

(
jr − 1

n

)k
.

The inner sum is geometric and evaluates to n if jr = 1 and 0 otherwise. Coupling this with
S = m tells us e(1/n) occurs exactly m/n times within f1(a), f2(a), . . . , fm(a).

Next, replace e(−k/n) in S with e(−kx/n) for 1 ≤ x ≤ n. Applying the same technique
shows e(x/n) occurs exactly m/n times within f1(a), f2(a), . . . , fm(a).

Remark. This exercise provides an alternate proof that the order of any element of a finite
group divides the order of the group.

Exercise 6.14. Construct tables showing the values of all the Dirichlet characters mod k
for k = 8, 9, and 10.

Solution. We construct the tables in Mathematica.

apostolCh6Num14Format[Table[
DirichletCharacter[#, j, Range[#]], {j, 1, EulerPhi[#]}

]& /@ {8, 9, 10}]
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Χ!n"mod 8
1 0 1 0 1 0 1 0

1 0 "1 0 "1 0 1 0

1 0 "1 0 1 0 "1 0

1 0 1 0 "1 0 "1 0

Χ!n"mod 9
1 1 0 1 1 0 1 1 0

1 #
$ Π

3 0 #
2 $ Π

3 #"
$ Π

3 0 #"
2 $ Π

3 "1 0

1 #
2 $ Π

3 0 #"
2 $ Π

3 #"
2 $ Π

3 0 #
2 $ Π

3 1 0

1 "1 0 1 "1 0 1 "1 0

1 #"
2 $ Π

3 0 #
2 $ Π

3 #
2 $ Π

3 0 #"
2 $ Π

3 1 0

1 #"
$ Π

3 0 #"
2 $ Π

3 #
$ Π

3 0 #
2 $ Π

3 "1 0

Χ!n"mod 10
1 0 1 0 0 0 1 0 1 0

1 0 "$ 0 0 0 $ 0 "1 0

1 0 "1 0 0 0 "1 0 1 0

1 0 $ 0 0 0 "$ 0 "1 0

Exercise 6.15. Let χ be any nonprincipal character mod k. Prove that for all integers
a < b we have ∣∣∣∣∣

b∑
n=a

χ(n)

∣∣∣∣∣ ≤ 1

2
ϕ(k).

Proof. For this exercise assume 1 ≤ a, b ≤ k, since the sum has period k. Suppose there are
at most ϕ(k)/2 numbers relatively prime to k inclusively between a and b. Then∣∣∣∣∣

b∑
n=a

χ(n)

∣∣∣∣∣ ≤
b∑

n=a

|χ(n)|

=
∑
a≤n≤b
(n,k)=1

1

≤ ϕ(k)/2.

Suppose there are more than ϕ(k)/2 numbers relatively prime to k inclusively between a and
b. This means there are less than ϕ(k)/2 numbers n relatively prime to k where 1 ≤ n < a
or b < n ≤ k. Since χ is nonprincipal we have

∑k
n=1 χ(n) = 0, thus∣∣∣∣∣

b∑
n=a

χ(n)

∣∣∣∣∣ =

∣∣∣∣∣−
a−1∑
n=1

χ(n)−
k∑

n=b+1

χ(n)

∣∣∣∣∣
≤

a−1∑
n=1

|χ(n)|+
k∑

n=b+1

|χ(n)|

=
∑

1≤n<a
(n,k)=1

1 +
∑
b<n≤k
(n,k)=1

1

< ϕ(k)/2.
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Exercise 6.16. If χ is a real-valued character mod k then χ(n) = ±1 or 0 for each n, so
the sum

S =
k∑

n=1

nχ(n)

is an integer. This exercise shows that 12S ≡ 0 mod k.
(a) If (a, k) = 1 prove that aχ(a)S ≡ S mod k.
(b) Write k = 2αq where q is odd. Show that there is an integer a with (a, k) = 1 such that
a ≡ 3 mod 2α and a ≡ 2 mod q. Then use (a) to deduce that 12S ≡ 0 mod k.

Proof.
(a) Given (a, k) = 1, for each 1 ≤ m ≤ k there is a unique n such that am ≡ n mod k and
1 ≤ n ≤ k. Moreover, since χ has period k, χ(am) = χ(n). Thus summing over all am for
1 ≤ m ≤ k gives

k∑
m=1

amχ(am) ≡
k∑

n=1

nχ(n) mod k.

Using the fact that χ is completely multiplicative implies aχ(a)S ≡ S mod k.
(b) By the Chinese remainder theorem, there is an a such that a ≡ 3 mod 2α and a ≡ 2
mod q. Additionally since a is relatively prime to 2α and q, it must be relatively prime to
k = 2αq.

By (a) we know (aχ(a) − 1)S ≡ 0 mod k. We will use this to show 2α and q both
divide 12S. If α < 3, it’s clear 2α | 12S. Otherwise, we know α ≥ 3. Then since a ≡ 3
mod 2α,

(aχ(a)− 1)S ≡

{
2S mod 2α if χ(a) = 1

−4S mod 2α if χ(a) = −1.

Since 2α | (aχ(a)− 1)S, we must have 2α−2 | S. This implies 2α | 12S.
From (a) we have q | (aχ(a)− 1)S. Since a ≡ 2 mod q,

(aχ(a)− 1)S ≡

{
S mod q if χ(a) = 1

−3S mod q if χ(a) = −1.

Thus if 3 | q we must have (q/3) | S and if 3 - q we have q | S. Both cases imply q | 12S.
By Theorem 5.9, 12S ≡ 0 mod 2α and 12S ≡ 0 mod q imply 12S ≡ 0 mod k.

Exercise 6.17. An arithmetical function f is called periodic mod k if k > 0 and f(m) =
f(n) whenever m ≡ n mod k. The integer k is called a period of f .
(a) If f is periodic mod k, prove that f has a smallest positive period k0 and that k0 | k.
(b) Let f be a periodic and completely multiplicative, and let k be the smallest positive
period of f . Prove that f(n) = 0 if (n, k) > 1. This shows that f is a Dirichlet character
mod k.

Proof.
(a) If f is periodic, by the well ordering principal there is a smallest positive period k0. Let
g = (k, k0). Since g can be expressed as a linear combination of k and k0, f has a period of
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g. The minimality of k0, thus forces g = k0. Hence k0 | k.
(b) Suppose there is a prime p that divides both n and k. Then for any integer m,

f(p)f(m) = f(pm) = f(pm+ k) = f(p)f(m+ k/p).

This implies f(p) = 0 since otherwise f would have a smaller period k/p. Thus since p | n
and f is completely multiplicative, f(n) = 0.

Exercise 6.18.(++)

(a) Let f be a Dirichlet character mod k. If k is squarefree, prove that k is the smallest
positive period of f .
(b) Give an example of a Dirichlet character mod k for which k is not the smallest positive
period of f .

Lemma 6.18. Let χ(n; k) denote χ(n) mod k. If k = pα1
1 · · · pαrr then there are characters

χj mod p
αj
j such that

χ(n; k) =
r∏
j=1

χj(n; p
αj
j ) for all n.

Proof of Lemma. For each j, by the Chinese remainder theorem there is a unique nj mod k
satisfying

nj ≡ n mod p
αj
j and nj ≡ 1 mod pαii for i 6= j.

Given a character χ(n; k), define χj(n) = χ(nj; k). It is clear χj is completely multiplicative.
Furthermore since solving the simultaneous congruences

x ≡ n+ p
αj
j mod p

αj
j and nj ≡ 1 mod pαii

gives x ≡ nj mod k, we have χj(n+p
αj
j ) = χj(n). Thus by Exercise 6.17 (b) χj is a Dirichlet

character whose smallest period is at most p
αj
j . We then have

r∏
j=1

χj(n; p
αj
j ) =

r∏
j=1

χ(nj; k) = χ

(
r∏
j=1

nj; k

)
.

By construction
∏r

j=1 nj ≡ n mod p
αj
j for each j and so by Theorem 5.9

∏r
j=1 nj ≡ n mod k,

which proves the lemma.

Proof of Exercise.
(a) Let k = p1 · · · pr be squarefree and choose a charachter χ mod k. By Lemma 6.18 there
are characters χj mod pj such that

χ(n; k) =
r∏
j=1

χj(n; pj).

Let q be a proper divisor of k. Applying the Chinese remainder theorem, pick a such that
a ≡ 1 mod pj if pj | q and a ≡ 0 mod pj otherwise. This gives (a, k) > 1 and so χ(a) = 0.
However if (pj, q) = 1 then (a+ q, pj) = 1, i.e. χj(a+ q; pj) 6= 0. Additionally if pj | q then

χj(a+ q; pj) = χj(a; pj) = 1.

This implies χ(a+ q; k) 6= 0, so we conclude the smallest period of χ is k.
(b) It can be seen in Exercise 6.14 that χ3 mod 8 has period 4.



Chapter 7
Dirichlet’s Theorem on Primes in
Arithmetic Progressions

In Exercises 1 through 8, h and k are given positive integers, (h, k) = 1, and A(h, k) is the
arithmetic progession A(h, k) = {h + kx | x = 0, 1, 2, . . .}. Exercises 1 through 4 are to be
solved without Dirichlet’s theorem.

Exercise 7.1. Prove that, for every integer n ≥ 1, A(h, k) contains infinitely many numbers
relatively prime to n.

Proof. Let p denote a prime and define

A = {p : p | n, p | k (⇒ p - h)},
B = {p : p | n, p | h (⇒ p - k)},
C = {p : p | n, p - kh}.

Notice A, B, and C partition the prime divisors of n. For a set S, define PS =
∏

p∈S p, then
by the Chinese remainder theorem there are infinitely many x simultaneously satisfying

x ≡ 1 mod PA

x ≡ 1 mod PB

x ≡ 0 mod PC .

We then have

kx+ h ≡


h mod p if p ∈ A
k mod p if p ∈ B
h mod p if p ∈ C.

This means if p | n then p - kx+ h, which implies (kx+ h, n) = 1.

Exercise 7.2. Prove that A(h, k) contains an infinite subset {a1, a2, . . .} such that
(ai, aj) = 1 if i 6= j.

Proof. Construct this infinite subset S as follows. Let a1 = h. Next suppose we have
constructed {a1, a2, · · · an} ⊂ S. By Exercise 7.1 there is a number an+1 ∈ A(h, k) such that(

an+1,

n∏
i=1

ai

)
= 1.

92
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This implies (an+1, ai) = (ai, an+1) = 1 for any i ≤ n. We let an+1 be a member of S and
continue this process indefinitely.

Exercise 7.3. Prove that A(h, k) contains an infinite subset which forms a geometric pro-
gression (a set of numbers of the form arn, n = 0, 1, 2, . . .). This implies A(h, k) contains
infinitely many numbers having the same prime factors.

Proof. Since h(k + 1)n ≡ h mod k, we see h(k + 1)n ∈ A(h, k) for all n ≥ 0.

Exercise 7.4. Let S be any infinite subset of A(h, k). Prove that for every positive integer
n there is a number in A(h, k) which can be expressed as a product of more than n different
elements of S.

Proof. Let S = {s1, s2, . . .} ⊆ A(h, k). We have for any m ∈ N that

Sm :=

mϕ(k)+1∏
i=1

si ≡
mϕ(k)+1∏
i=1

h ≡ h mod k.

Hence Sm ∈ A(h, k) and taking any m > (n− 1)/ϕ(k) gives mϕ(k) + 1 > n.

Exercise 7.5. Dirichlet’s theorem implies the following statement: If h and k > 0 are any
two integers with (h, k) = 1, then there exists at least one prime number of the form kn+h.
Prove that this statement also implies Dirichlet’s theorem.

Proof. Assume the hypothesis of the exercise and suppose Dirichlet’s theorem is false. Then
there are integers h, k, and p such that (h, k) = 1 and p is the largest prime in A(h, k).
Defining h′ = k + p and k′ = pk, it’s clear (h′, p) = (h′, k) = 1 and so (h′, k′) = 1. Moreover
observe A(h′, k′) ⊂ A(h, k). Therefore since the smallest element in A(h′, k′) is k + p > p,
every element in A(h′, k′) must be composite. This is a contradiction, which means Dirichlet’s
theorem must be true.

Exercise 7.6. If (h, k) = 1, k > 0, prove that there is a constant A (depending on h and
on k) such that, if x ≥ 2,

∑
p≤x

p≡h mod k

1

p
=

1

ϕ(k)
log log x+ A+O

(
1

log x

)
.

Proof. Let f(x) = 1/ log x and a(n) = log(n)/n if n ≡ h mod k is prime and 0 otherwise.
By Dirichlet’s Theorem,∑

n≤x

a(n) =
1

ϕ(k)
log x+R(x), where R(x) = O(1) .
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Applying Abel’s summation formula,∑
p≤x

p≡h mod k

1

p
=
∑

1<n≤x

a(n)f(n)

=
1

log x

(
1

ϕ(k)
log x+O(1)

)
+

∫ x

2

1

t log2 t

(
1

ϕ(k)
log t+R(t)

)
dt

=
1

ϕ(k)
+O

(
1

log x

)
+

1

ϕ(k)

∫ x

2

dt

t log t
+

∫ ∞
2

R(t)

t log2 t
dt+

∫ ∞
x

R(t)

t log2 t
dt

=
1

ϕ(k)
+O

(
1

log x

)
+

log log x− log log 2

ϕ(k)
+ C +O

(∫ ∞
x

dt

t log2 t

)
=

1

ϕ(k)
log log x+ A+O

(
1

log x

)
.

Exercise 7.7. Construct an infinite set S of primes with the following property: If p ∈ S
and q ∈ S then (1

2
(p− 1), 1

2
(q − 1)) = (p, q − 1) = (p− 1, q) = 1.

Solution. Let S = {q1, q2, . . .} where 2 < q1 < q2 < · · · and

qn+1 = 2tn
∏
p≤qn
p prime

p − 1,

where tn is chosen so that qn+1 is prime.
We now show S satisfies the required properties. Let n > m.

• Since 2 < qm and qm | qn + 1, by linearity qm - qn − 1, i.e. (qn − 1, qm) = 1.

• Since qm − 1 < qn, qn - qm − 1, i.e. (qm − 1, qn) = 1.

• Let r be a prime divisor of 1
2
(qn − 1). Then by linearity r can’t divide any prime less

than or equal to qn−1, and so r > qn−1. This means r - 1
2
(qm − 1) since

1

2
(qm − 1) < qm ≤ qn−1.

Therefore (1
2
(qn − 1), 1

2
(qm − 1)) = 1.

Remark. Unfortunately, this is a very impractical solution. In a straightforward implemen-
tation, choosing q1 = 7 means q3 is a 170 digit integer! We show this in Mathematica.

In[1]:= q[1] = 7;
Do[
k = 2*Product[Prime[i], {i, 3, PrimePi[q[n - 1]]}];
t = 1; While[!PrimeQ[k*t - 1], t++];
q[n] = k*t - 1,
{n, 2, 3}

];
q /@ Range[3]

Out[1]= {7, 419, 419376750413657087<<134>>178028407044929539}
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Exercise 7.8. Let f be an integer-coefficient polynomial of degree n ≥ 1 with the following
property: For each prime p there exists a prime q and an integer m such that f(p) = qm.
Prove that q = p, m = n and f(x) = xn for all x. [Hint : If q 6= p then qm+1 divides
f(p+ tqm+1)− f(p) for each t = 1, 2, . . ..]

Proof. Suppose f(p) = qm for p 6= q and m > 0 (we can find m > 0 since f can only equal 1
finitely many times). Applying binomial expansion,

qm+1 | f(p+ tqm+1)− f(p) for t = 1, 2, . . . (10)

By Dirichlet’s theorem, since (p, q) = 1, there are infinitely many primes of the form p+tqm+1.
Suppose p+ tqm+1 is prime, then f(p+ tqm+1) = rs for some prime r.

By (10), rs = qm(aq+1) for some integer a. This means q | rs, and so q = r. Furthermore,
for both sides to have the same prime factorization, we require a = 0 which implies s = m.
Thus f(p+ tqm+1) = qm for infinitely many t. This means f ≡ qm, which contradicts n ≥ 1.
We conclude p = q, that is for any prime p, f(p) = pm for some m dependent on p.

Next, note

lim
k→∞

f(pk)

pnk
= C for some C > 0,

and so for large enough p, f(p) = pn. This implies f(x) = xn, since a polynomial is
determined by finitely many points.



Chapter 8
Periodic Arithmetic Functions and
Gauss Sums

Exercise 8.1. Let x = e2πi/n and prove that

n−1∑
k=1

kxk =
n

x− 1
.

Lemma 8.1. If x 6= 1 then

n−1∑
k=1

kxk =
n(xn+1 − xn)− xn+1 + x

(x− 1)2
.

Proof of Lemma. Given xn − 1 = (x− 1)(xn−1 + · · ·+ x+ 1), then

n−1∑
k=0

xk =
xn − 1

x− 1
.

Differentiating both sides with respect to x then multiplying both sides by x gives the result.

Proof of Exercise. If x = e2πi/n then xn = 1 and xn+1 = x. Thus by Lemma 8.1

n−1∑
k=1

kxk =
n(xn+1 − xn)− xn+1 + x

(x− 1)2

=
n(x− 1)− x+ x

(x− 1)2

=
n

x− 1
.

Exercise 8.2. Let ((x)) = x− [x]− 1
2

if x is not an integer, and let ((x)) = 0 otherwise. Note
that ((x)) is a periodic function of x with period 1. If k and n are integers, with n > 0, prove
that ((

k

n

))
= − 1

2n

n−1∑
m=1

cot
πm

n
sin

2πkm

n
. (11)

96
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Lemma 8.2. If k > 0 then

sin(2k + 1)x = sinx+ 2 sinx
k∑
j=1

cos 2jx.

Proof of Lemma. Applying a product to sum identity we have

2 sinx
k∑
j=1

cos 2jx =
k∑
j=1

(sin(2j + 1)x− sin(2j − 1)x) = sin(2k + 1)x− sinx,

where the intermediate sum telescopes.

Proof of Exercise. If n | k then both sides in (11) are 0, so we can assume n - k. Now by
Exercise 3.13 (c) ((k/n)) = −((−k/n)), and since sin is also odd, we can reduce the problem
to the case where k > 0.

Let x = πm
n

and assume n - k and k > 0. Applying a product to sum identity gives

cotx sin 2kx =
cosx sin 2kx

sinx

=
sin(2k + 1)x+ sin(2k − 1)x

2 sinx

= 1− cos 2kx+ 2
k∑
j=1

cos 2jx,

where Lemma 8.2 was applied. Furthermore, since cos 2πx = Re (e2πix) we have

n−1∑
m=1

cos
2πjm

n
=

{
n− 1 if n | j
−1 otherwise.

Therefore

n−1∑
m=1

cot
πm

n
sin

2πkm

n
=

n−1∑
m=1

(
1− cos

2πkm

n
+ 2

k∑
j=1

cos
2πjm

n

)

= (n− 1)− (−1) + 2
k∑
j=1

n−1∑
m=1

cos
2πjm

n

= n+ 2

(
(n− 1)

⌊
k

n

⌋
+ (−1)

(
k −

⌊
k

n

⌋))
= n+ 2n

⌊
k

n

⌋
− 2k.

Dividing both sides by −2n proves (11).
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Exercise 8.3. Let ck(n) denote Ramanujan’s sum and let M(x) =
∑

n≤x µ(n), the partial
sums of the Möbius function.
(a) Prove that

n∑
k=1

ck(m) =
∑
d|m

dM
(n
d

)
.

In particular, when n = m, we have

m∑
k=1

ck(m) =
∑
d|m

dM
(m
d

)
.

(b) Use (a) to deduce that

M(m) = m
∑
d|m

µ(m/d)

d

d∑
k=1

ck(d).

(c) Prove that
n∑

m=1

ck(m) =
∑
d|k

dµ

(
k

d

)[n
d

]
.

Proof.
(a) By Theorem 8.6, ck(m) =

∑
d|(m,k) dµ

(
k
d

)
. Thus

n∑
k=1

ck(m) =
n∑
k=1

∑
d|(m,k)

dµ

(
k

d

)
=

n∑
k=1

∑
d|m
d|k

dµ

(
k

d

)
.

For a fixed divisor d of m we must sum over all those k in the range 1 ≤ k ≤ n which are
multiples of d. If we write k = qd, it’s equivalent to sum over all q where 1 ≤ q ≤ n/d.
Therefore

n∑
k=1

∑
d|m
d|k

dµ

(
k

d

)
=
∑
d|m

∑
q≤n/d

dµ(q) =
∑
d|m

dM
(n
d

)
.

(b) By (a)

1

m

m∑
k=1

ck(m) =
∑
d|m

1

m/d
M
(m
d

)
.

Applying Möbius inversion gives

1

m
M(m) =

∑
d|m

µ(m/d)

d

d∑
k=1

ck(d).

(c) Just as in (a)
n∑

m=1

ck(m) =
n∑

m=1

∑
d|m
d|k

dµ

(
k

d

)
.



99

This time fixing a divisor d of k, we must sum over all those m in the range 1 ≤ m ≤ n which
are multiples of d. If we write m = qd, it’s equivalent to sum over all q where 1 ≤ q ≤ n/d.
Therefore

n∑
m=1

∑
d|m
d|k

dµ

(
k

d

)
=
∑
d|k

∑
q≤n/d

dµ

(
k

d

)
=
∑
d|k

dµ

(
k

d

)⌊n
d

⌋
.

Exercise 8.4. Let n, a, d be given integers with (a, d) = 1. Let m = a+ qd where q is the
product (possibly empty) of all primes which divide n but not a. Prove that

m ≡ a mod d and (m,n) = 1.

Proof. Since m = a + qd, by defnition m ≡ a mod d. Now suppose p | n for some prime p.
If p | a, then by definition p - qd and so by linearity p - m. If p - a then again by definition
p | qd and so by linearity p - m. Therefore (m,n) = 1.

Exercise 8.5. Prove there exists no real primitive character χ mod k if k = 2m, where m
is odd.

Proof. We show each character mod k is not primitive. Let χ be a character mod k and pick
a and b such that (a, k) = (b, k) = 1 and a ≡ b mod m. This implies a and b are odd. Hence
if a = b + rm for some r, then r must be even. This means k | rm, and so a ≡ b mod k.
From here χ(a) = χ(b), which by Theorem 8.16 means m is an induced modulus of χ.

Exercise 8.6. Let χ be a character mod k. If k1 and k2 are induced moduli for χ prove
that so too is (k1, k2), their gcd.

Lemma 8.6. Let a be an integer such that (a, k) = 1 and a ≡ 1 mod (k1, k2). Then there
are integers x and y such that a = 1 + xk1 + yk2 and (1 + xk1, k) = 1.

Proof of Lemma. Let g = (k1, k2) and k = d1d2, where d2 is the product of all primes dividing
k2 and (d1k1, k2) = g. There are integers t, u, and v such that a = 1+tg and g = ud1k1+vk2.
Letting x = tud1 and y = tv gives

a = 1 + xk1 + yk2.

Now by linearity (1 + xk1, d1) = 1. Additionally, using 1 + xk1 = a− yk2, linearity shows

(1 + xk1, k2) = (a− yk2, k2) = (a, k2) = 1.

This means (1 + xk1, d2) = 1, since k2 and d2 share prime divisors and it follows that
(1 + xk1, d1d2) = 1.

Proof of Exercise. Let g = (k1, k2) and choose a such that (a, k) = 1 and a ≡ 1 mod g. Then
by Lemma 8.6, there are integers x and y such that a = 1 + xk1 + yk2 and (1 + xk1, k) = 1.
Since k1 and k2 are both induced moduli, we then have

χ(1 + xk1 + yk2) = χ(1 + xk1) = χ(1) = 1.

Therefore by definition g is an induced modulus.
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Exercise 8.7. Prove that the conductor of χ divides every induced modulus for χ.

Proof. Let k1 be the conductor of χ and k2 be an induced modulus for χ. By Exercise
8.6, (k1, k2) is also an induced modulus. Since (k1, k2) ≤ k1, the minimality of k1 forces
k1 = (k1, k2). Therefore k1 | k2.

In Exercises 8 through 12, assume that k = k1k2 · · · kr, where the positive integers ki are
relatively prime in pairs: (ki, kj) = 1 if i 6= j.

Exercise 8.8.
(a) Given any integer a, prove that there is an integer ai such that

ai ≡ a mod ki and ai ≡ 1 mod kj for all j 6= i.

(b) Let χ be a character mod k. Define χi by the equation

χi(a) = χ(ai),

where ai is the integer of part (a). Prove that χi is a character mod ki.

Proof. Replace pαii with ki in Lemma 6.18.

Exercise 8.9. Prove that every character χ mod k can be factored uniquely as a product
of the form χ = χ1χ2 · · ·χr, where χi is a character mod ki.

Proof. Replace pαii with ki in Lemma 6.18.

Exercise 8.10.(+) Let f(χ) denote the conductor of χ. If χ has the factorization in Exercise
8.9, prove that f(χ) = f(χ1) · · · f(χr).

Proof. Choose a such that (a, k) = 1 and a ≡ 1 mod f(χ1) · · · f(χr). This implies a ≡ 1
mod f(χi), thus χi(a) = 1. This means

χ(a) = χ1(a) · · ·χr(a) = 1.

Hence f(χ1) · · · f(χr) is an induced modulus for χ and therefore f(χ) | f(χ1) · · · f(χr).
Now define e(x) = e2πix and choose a such that (a, k) = 1 and a ≡ 1 mod f(χ). Since

f(χ) is an induced modulus for χ and χi is a kith root of unity, there are ci such that

1 = χ(a) = χ1(a) · · ·χr(a)

= e

(
c1
k1

)
· · · e

(
cr
kr

)
= e

(
1

k1 · · · kr

r∑
m=1

cm
∏
j 6=m

kj

)
.

This implies ki |
∑r

m=1 cm
∏

j 6=m kj, and by linearity ki | ci
∏

j 6=i kj. Since (ki, kj) = 1 for
j 6= i we have ki | ci, and so

1 = e(ci/ki) = χi(a).

Therefore f(χ) is an induced modulus for χi, hence f(χi) | f(χ). Moreover (f(χi), f(χj)) = 1
for j 6= i implies f(χ1) · · · f(χr) | f(χ). We conclude f(χ) = f(χ1) · · · f(χr).
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Exercise 8.11.(+) If χ has the factorization in Exercise 8.9, prove that for every integer a
we have

G(a, χ) =
r∏
i=1

χi

(
k

ki

)
G(ai, χi),

where ai is the integer of Exercise 8.8.

Lemma 8.11. If k = k1k2 · · · kr, where ki are pairwise relatively prime, then the set{∑
i=1

mik

ki

∣∣∣∣∣ 1 ≤ mi ≤ ki

}
runs through a complete system of residues mod k.

Proof of Lemma. If
∑

i=1mik/ki ≡
∑

i=1 nik/ki mod k, then k |
∑

i=1(mi − ni)k/ki. By
linearity ki | mi − ni. Since 1 ≤ mi, ni ≤ ki, we must have mi = ni. Thus for 1 ≤ mi ≤ ki,
all k numbers

∑
i=1mik/ki are incongruent and form a complete set of residues mod k.

Proof of Exercise. Let e(x) = e2πix. By Lemma 8.11 we have

G(a, χ) =
k∑

m=1

χ(m)e
(am
k

)
=

k1∑
m1=1

· · ·
kr∑

mr=1

χ

(∑
j=1

mjk

kj

)
e

(
a

k

∑
j=1

mjk

kj

)

=

k1∑
m1=1

· · ·
kr∑

mr=1

r∏
i=1

χi

(∑
j=1

mjk

kj

)
e

(
ami

ki

)

=

k1∑
m1=1

· · ·
kr∑

mr=1

r∏
i=1

χi

(
mik

ki

)
e

(
ami

ki

)

=
r∏
i=1

χi

(
k

ki

) k1∑
m1=1

· · ·
kr∑

mr=1

r∏
i=1

χi(mi)e

(
ami

ki

)
.

Since the last sum is separable,

G(a, χ) =
r∏
i=1

χi

(
k

ki

) ki∑
mi=1

χi(mi)e

(
ami

ki

)
.

Finally, observe ai ≡ a mod ki implies e(ami/ki) = e(aimi/ki). Hence

G(a, χ) =
r∏
i=1

χi

(
k

ki

) ki∑
mi=1

χi(mi)e

(
aimi

ki

)

=
r∏
i=1

χi

(
k

ki

)
G(ai, χi).
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Exercise 8.12. If χ has the factorization in Exercise 8.9, prove that χ is primitive mod k
if, and only if, each χi is primitive mod ki. [Hint : Theorem 8.19 or Exercise 8.10.]

Proof. By Exercise 8.10, f(χ) = f(χ1) · · · f(χr), and so

k = f(χ1) · · · f(χr) ⇐⇒
r∏
i=1

ki
f(χi)

= 1.

Now by Exercise 8.7, f(χi) | ki. Therefore

r∏
i=1

ki
f(χi)

= 1 ⇐⇒ ki
f(χi)

= 1 for all i

⇐⇒ ki = f(χi) for all i.

Exercise 8.13. Let χ be a primitive character mod k. Prove that if N < M we have∣∣∣∣∣
M∑

m=N+1

χ(m)

m

∣∣∣∣∣ < 2

N + 1

√
k log k.

Proof. Since χ is primitive, by Theorem 8.21
∣∣∑

m≤x χ(m)
∣∣ < √k log k. Therefore∣∣∣∣∣

M∑
m=N+1

χ(m)

m

∣∣∣∣∣ ≤ 1

N + 1

∣∣∣∣∣
M∑

m=N+1

χ(m)

∣∣∣∣∣
≤ 1

N + 1

(∣∣∣∣∣
M∑
m=1

χ(m)

∣∣∣∣∣+

∣∣∣∣∣
N∑
m=1

χ(m)

∣∣∣∣∣
)

<
2

N + 1

√
k log k.

Exercise 8.14. This exercise outlines a slight improvement in Pólya’s inequality. Refer to
the proof of Theorem 8.21. After inequality (26) write

∑
n≤k/2

|f(n)| ≤
∑
n≤k/2

1

sin πn
k

<
1

sin π
k

+

∫ k/2

1

dt

sin πt
k

.

Show that the integral is less than −(k/π) log(sin(π/(2k))) and deduce that∣∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣∣ < √k +
2

π

√
k log k.

This improves Pólya’s inequality by a factor of 2/π in the principal term.
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Proof. Since 1/ sinx is monotonically decreasing when 0 < x < π/2,∑
n≤k/2

1

sin πn
k

=
1

sin π
k

+
∑

2≤n≤k/2

1

sin πn
k

<
1

sin π
k

+
∑

2≤n≤k/2

∫ n

n−1

dt

sin πt
k

≤ 1

sin π
k

+

∫ k/2

1

dt

sin πt
k

.

Now ∫ k/2

1

dt

sin πt
k

=
k

π
log

(
tan

(
πt

2k

))]k/2
t=1

= −k
π

log
(

tan
( π

2k

))
,

and so

1

sin π
k

+

∫ k/2

1

dt

sin πt
k

=
1

sin π
k

− k

π
log
(

sin
( π

2k

))
+
k

π
log
(

cos
( π

2k

))
<

1

sin π
k

− k

π
log
(

sin
( π

2k

))
.

Furthermore, just as in Theorem 8.21, the bound sin t ≥ 2t/π for 0 < t < π/2 gives∑
n≤k/2

|f(n)| < 1

sin π
k

− k

π
log
(

sin
( π

2k

))
<
k

2
+
k

π
log k.

Using this estimate in the proof of Theorem 8.21 then gives∣∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣∣ < 2√
k

∑
n<k/2

|f(n)|+ |f(k/2)|√
k

(12)

≤ 2√
k

∑
n≤k/2

|f(n)|

<
√
k +

2

π

√
k log k.

Note, just as in Theorem 8.21, f(k/2) only appears in (12) if k is even.

Exercise 8.15.(++) The Kloosterman sum K(m,n; k) is defined as follows:

K(m,n; k) =
∑
h mod k
(h,k)=1

e2πi(mh+nh
′)/k

where h′ is the reciprocal of h mod k. When k | n this reduces to Ramanujan’s sum ck(m).
Derive the following properties of Kloosterman sums:
(a) K(m,n; k) = K(n,m; k).
(b) K(m,n; k) = K(1,mn; k) whenever (m, k) = 1.
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(c) Given integers n, k1, k2 such that (k1, k2) = 1, show that there exists integers n1 and n2

such that
n ≡ n1k

2
2 + n2k

2
1 mod k1k2,

and that for those integers we have

K(m,n; k1k2) = K(m,n1; k1)K(m,n2; k2).

This reduces the study of Kloosterman sums to the special case K(m,n; pα), where p is
prime.

Lemma 8.15. If (k1, k2) = 1, then the set

S = {hk1 + gk2 | 1 ≤ g ≤ k1, 1 ≤ h ≤ k2, (g, k1) = (h, k2) = 1}

runs through a complete system of residues relatively prime to k1k2.

Proof of Lemma. By Lemma 8.11 the set

{hk1 + gk2 | 1 ≤ g ≤ k1, 1 ≤ h ≤ k2}

runs through a complete system of residues mod k1k2. Next let (g, k1) = (h, k2) = 1. Since
(hk1+gk2, k1) = (hk1+gk2, k2) = 1, we have (hk1+gk2, k1k2) = 1. This means every element
of S is relatively prime to k1k2. Since |S| = ϕ(k1)ϕ(k2) = ϕ(k1k2) and each elements are
pairwise incongruent mod k1k2, the lemma follows.

Proof of Exercise.
(a) Since (h′, k) = 1, we see (h′)2h mod k runs through a complete system of residues
relatively prime to k. Therefore

K(m,n; k) =
∑
h mod k
(h,k)=1

e2πi(m(h′)2h+nh2h′)/k =
∑
h mod k
(h,k)=1

e2πi(mh
′+nh)/k = K(n,m; k).

(b) Since (m, k) = 1 and (h, k) = 1, we see m′h mod k runs through a complete system of
residues relatively prime to k. Therefore

K(m,n; k) =
∑
h mod k
(h,k)=1

e2πi(mm
′h+nmh′)/k =

∑
h mod k
(h,k)=1

e2πi(h+mnh
′)/k = K(1,mn; k).

(c) Since (k21, k
2
2) = 1, there are integers x, y such that xk21 + yk22 = 1. Define n1 = ny,

n2 = nx, and e(x) = e2πix. We then have

K(m,n1; k1)K(m,n2; k2) =
∑

g mod k1
(g,k1)=1

∑
h mod k2
(h,k2)=1

e

(
mg + n1g

′

k1
+
mh+ n2h

′

k2

)

=
∑

g mod k1
(g,k1)=1

∑
h mod k2
(h,k2)=1

e

(
m(gk2 + hk1)

k1k2
+
n1g

′k2 + n2h
′k1

k1k2

)

=
∑

g mod k1
(g,k1)=1

∑
h mod k2
(h,k2)=1

e

(
mA+B

k1k2

)
,
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where A = gk2 + hk1 and B = n1g
′k2 + n2h

′k1.
By Lemma 8.15 A runs through a complete system of residues relatively prime to k1k2.

Hence, if we can show B ≡ CA′ mod k1k2, then

K(m,n1; k1)K(m,n2; k2) =
∑

A mod k1k2
(A,k1k2)=1

e

(
mA+ CA′

k1k2

)
= K(m,C, k1k2).

Since (gk2 + hk1)A
′ ≡ 1 mod k1k2, we have gk2A

′ ≡ 1 mod k1 and so k2 ≡ g′A mod k1.
From here we see

k22 ≡ k2g
′A mod k1k2 and similarly k21 ≡ k1h

′A mod k1k2.

From this we deduce

C := n2k
2
1 + n1k

2
2 ≡ (n1g

′k2 + n2h
′k1)A ≡ BA mod k1k2,

and the proof follows.

Exercise 8.16. If n and k are integers n > 0, the sum

G(k;n) =
n∑
r=1

e2πikr
2/n

is called a quadratic Gauss sum. Derive the following properties of quadratic Gauss sums:
(a) G(k;mn) = G(km;n)G(kn;m) whenever (m,n) = 1. This reduces the study of Gauss
sums to the special case G(k; pα), where p is prime.
(b) Let p be an odd prime, p - k, α ≥ 2. Prove that G(k; pα) = pG(k; pα−2) and deduce that

G(k; pα) =

{
pα/2 if α is even,

p(α−1)/2G(k; p) if α is odd.

Further properties of the Gauss sum G(k; p) are developed in the next chapter where it is
shown that G(k; p) is the same as the Gauss sum G(k, χ) with a certain Dirichlet character
χ mod p. (See Exercise 9.9.)

Proof.
(a) By Lemma 8.11, the set {sm+tn | 1 ≤ s ≤ n and 1 ≤ t ≤ m} runs through the complete
system of residues mod mn. Therefore

G(k;mn) =
mn∑
r=1

e2πikr
2/(mn)

=
n∑
s=1

m∑
t=1

e2πik(s
2m2+2mnst+t2n2)2/(mn)

=
n∑
s=1

e2πikms
2/n

m∑
t=1

e2πiknt
2/m

= G(km;n)G(kn;m).
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(b) Let 1 + pα−1 ≤ r ≤ pα + pα−1 and r = pα−1s + t where 1 ≤ s ≤ p and 1 ≤ t ≤ pα−1.
Through the division algorithm s and t are uniquely determined. Thus letting r run through
a complete system of residues mod pα is the same as letting s and t run through complete
systems of residues mod p and mod pα−1, respectively. Then r2 = p2α−2s2 + 2pα−1st+ t2 and

G(k; pα) =

pα∑
r=1

e2πikr
2/pα =

pα+pα−1∑
r=1+pα−1

e2πikr
2/pα

=

pα−1∑
t=1

p∑
s=1

e2πik(p
2α−2s2+2pα−1st+t2)/pα

=

pα−1∑
t=1

e2πikt
2/pα

p∑
s=1

e4πikst/p.

If p | t then e4πikst/p = 1, which implies the inner sum is p. On the other hand, if p - t then
letting s vary allows 2kst to run through all residue classes mod p. Thus the inner sum is
the sum of the pth roots of unity and hence equals 0. This means we only need to sum over
the t where p | t. Summing over t = px for 1 ≤ x ≤ pα−2 gives

G(k; pα) = p

pα−2∑
x=1

e2πik(px)
2/pα = p

pα−2∑
x=1

e2πikx
2/pα−2

= pG(k; pα−2).

Now observe

G(k; pα) = pG(k; pα−2) = p2G(k; pα−4) = · · · = pbα/2cG(k; pα−2bα/2c).

Therefore if α is even, then bα/2c = α/2 and so

G(k; pα) = pα/2G(k; 1) = pα/2.

If α is odd, then bα/2c = (α− 1)/2 and so

G(k; pα) = p(α−1)/2G(k; p).



Chapter 9
Quadratic Residues and the
Quadratic Reciprocity Law

Exercise 9.1. Determine those odd primes p for which (−3| p) = 1 and those for which
(−3| p) = −1.

Solution. Let p be an odd prime. By quadratic reciprocity we have

(−3| p) = (−1| p) (3| p)
= (−1)(p−1)/2(−1)(p−1)/2 (p| 3)

= (p| 3) .

Therefore

(−3| p) =


1 if p ≡ 1 mod 3

−1 if p ≡ 2 mod 3

0 if p ≡ 3 mod 3.

Exercise 9.2. Prove that 5 is a quadratic residue of an odd prime p if p ≡ ±1 mod 10, and
that 5 is a nonresidue if p ≡ ±3 mod 10.

Solution. Let p be an odd prime. By quadratic reciprocity we have (5| p) = −(−1)(p−1)/2 (p| 5).
The exponent of −1 means we need to consider p mod 2, and (p| 5) means we need to con-
sider p mod 5. Hence it is enough to consider p mod 10. Checking all values mod 10 gives
the result.

Exercise 9.3. Let p be an odd prime. Assume that the set G = {1, 2, . . . , p − 1} can be
expressed as the union of two nonempty subsets S and T , S 6= T , such that the product
(mod p) of any two elements in the same subset lies in S, whereas the product (mod p) of
any element in S with any element in T lies in T . Prove that S consists of the quadratic
residues and T consists of the nonresiudes mod p.

Proof. Since the Legendre symbol is completely multiplicative, it’s clear the quadratic residues
and nonresidues mod p satisfy the stipulations of S and T , respectively. This shows existence
of such S and T , so all we need to show is S and T are uniquely defined.
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Let g ∈ G. Since g is either an element of S or T , by definition we must have g2 ∈ S.
This means S contains all quadratic residues mod p. Now suppose there exists x ∈ S such
that (x| p) = −1. Since T is nonempty there is a y ∈ T and we must have (y| p) = −1.
By definition of T we have xy ∈ T , but (xy| p) = 1, a contradiction. This means S cannot
contain any quadratic nonresidues mod p. We conclude S must be the group of quadratic
residues mod p and hence T is the set of quadratic nonresidues mod p.

Exercise 9.4. Let f(x) be a polynomial which takes integer values when x is an integer.
(a) If a and b are integers, prove that∑

x mod p

(f(ax+ b)| p) =
∑

x mod p

(f(x)| p) if (a, p) = 1

and that ∑
x mod p

(af(x)| p) = (a| p)
∑

x mod p

(f(x)| p) for all a.

(b) Prove that ∑
x mod p

(ax+ b| p) = 0 if (a, p) = 1.

(c) Let f(x) = x(ax+ b), where (a, p) = (b, p) = 1. Prove that

p−1∑
x=1

(f(x)| p) =

p−1∑
x=1

(a+ bx| p) = − (a| p) .

[Hint : As x runs through a reduced residue system mod p, so does x′, the reciprocal of x
mod p.]

Proof.
(a) Since (a, p) = 1, letting x run through a complete residue system mod p means ax + b
does too. Furthermore, by Theorem 5.2, if ax+ b ≡ y mod p, then f(ax+ b) ≡ f(y) mod p.
These two observations give∑

x mod p

(f(ax+ b)| p) =
∑

x mod p

(f(x)| p) .

Next, since the Legendre symbol is completely multiplicative,∑
x mod p

(af(x)| p) = (a| p)
∑

x mod p

(f(x)| p) for all a.

(b) Let f(x) = x and (a, p) = 1. By (a) we have∑
x mod p

(ax+ b| p) =
∑

x mod p

(x| p) = 0.
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(c) Using the hint of the problem and the fact that (x| p) = (x′| p),

p−1∑
x=1

(x(ax+ b)| p) =

p−1∑
x=1

(x′(ax′ + b)| p) =

p−1∑
x=1

(x′| p) (ax′ + b| p)

=

p−1∑
x=1

(x| p) (ax′ + b| p) =

p−1∑
x=1

(x(ax′ + b)| p)

=

p−1∑
x=1

(a+ bx| p) = − (a| p) +

p−1∑
x=0

(a+ bx| p)

= − (a| p) +

p−1∑
x=0

(x| p) = − (a| p) .

Exercise 9.5. Let α and β be integers whose possible values are ±1. Let N(α, β) denote
the number of integers x among 1, 2, . . . , p− 2 such that

(x| p) = α and (x+ 1| p) = β,

where p is an odd prime. Prove that

4N(α, β) =

p−2∑
x=1

{1 + α (x| p)}{1 + β (x+ 1| p)},

and use Exercise 4 to deduce that

4N(α, β) = p− 2− β − αβ − α (−1| p) .

In particular this gives

N(1, 1) =
p− 4− (−1| p)

4
,

N(−1,−1) = N(−1, 1) =
p− 2 + (−1| p)

4
N(1,−1) = 1 +N(1, 1).

Proof. Let 0 < x < p− 1. Notice α = (x| p) implies 1 + α (x| p) = 2 and α 6= (x| p) implies
1 + α (x| p) = 0. Since the same scenario occurs for 1 + β (x+ 1| p), we have

{1 + α (x| p)}{1 + β (x+ 1| p)} =

{
4 if α = (x| p) and β = (x+ 1| p)
0 otherwise.

(13)

Since the upper case of (13) occurs exactly N(α, β) times when 0 < x < p− 1,

4N(α, β) =

p−2∑
x=1

{1 + α (x| p)}{1 + β (x+ 1| p)}.
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Expanding the summand of the right hand side gives

4N(α, β) =

p−2∑
x=1

1 + α

p−2∑
x=1

(x| p) + β

p−2∑
x=1

(x+ 1| p) + αβ

p−2∑
x=1

(x(x+ 1)| p)

= p− 2− α (−1| p)− β + αβ

p−1∑
x=1

(x(x+ 1)| p) .

Applying Exercise 9.4 (c) with a = b = 1 gives the result.

Remark. Since N(1, 1) in an integer, this is a round about proof that (−1| p) = (−1)(p−1)/2.

Exercise 9.6. Use Exercise 9.5 to show that for every prime p there exists integers x and
y such that x2 + y2 + 1 ≡ 0 mod p.

Proof. If p ≡ 1 mod 4, there exists x and y such that x2 ≡ 0 mod p and y2 ≡ −1 mod p.
This gives x2 + y2 ≡ −1 mod p.

If p ≡ 3 mod 4, then by Exercise 9.5 there is a z such that (z| p) = 1 and (z + 1| p) = −1.
Since (−1| p) = −1, we have (−z − 1| p) = 1. Choosing x and y such that x2 ≡ z mod p
and y2 ≡ −z − 1 mod p gives x2 + y2 ≡ −1 mod p.

Exercise 9.7. Let p be an odd prime. Prove each of the following statements.

(a)

p−1∑
r=1

r (r| p) = 0 if p ≡ 1 mod 4.

(b)

p−1∑
r=1

( r|p)=1

r =
p(p− 1)

4
if p ≡ 1 mod 4.

(c)

p−1∑
r=1

r2 (r| p) = p

p−1∑
r=1

r (r| p) if p ≡ 3 mod 4.

(d)

p−1∑
r=1

r3 (r| p) =
3

2

p−1∑
r=1

r2 (r| p) if p ≡ 1 mod 4.

(e)

p−1∑
r=1

r4 (r| p) = 2p

p−1∑
r=1

r3 (r| p)− p2
p−1∑
r=1

r2 (r| p) if p ≡ 3 mod 4.

[Hint : p− r runs through the numbers 1, 2, . . . , p− 1 with r.]
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Proof. For each part we will use the hint and (r| p) = (−1)(p−1)/2 (p− r| p).
(a) For p ≡ 1 mod p, we have

p−1∑
r=1

r (r| p) =

p−1∑
r=1

(p− r) (p− r| p)

=

p−1∑
r=1

(p− r) (r| p)

= p

p−1∑
r=1

(r| p)−
p−1∑
r=1

r (r| p)

= −
p−1∑
r=1

r (r| p) .

This means
∑p−1

r=1 r (r| p) = 0.
(b) For p ≡ 1 mod p, we have

p−1∑
r=1

( r|p)=1

r =

p−1∑
r=1

( r|p)=1

(p− r) = p

p−1∑
r=1

( r|p)=1

1−
p−1∑
r=1

( r|p)=1

r.

Since there are (p− 1)/2 quadratic residues mod p, the result follows.
(c) For p ≡ 3 mod p, we have

p−1∑
r=1

r2 (r| p) =

p−1∑
r=1

(p− r)2 (p− r| p)

= −
p−1∑
r=1

(p− r)2 (r| p)

= −p2
p−1∑
r=1

(r| p) + 2p

p−1∑
r=1

r (r| p)−
p−1∑
r=1

r2 (r| p)

= 2p

p−1∑
r=1

r (r| p)−
p−1∑
r=1

r2 (r| p) .

Solving for
∑p−1

r=1 r
2 (r| p) gives the result.
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(d) For p ≡ 1 mod p, we have

p−1∑
r=1

r3 (r| p) =

p−1∑
r=1

(p− r)3 (p− r| p)

=

p−1∑
r=1

(p− r)3 (r| p)

= p3
p−1∑
r=1

(r| p)− 3p2
p−1∑
r=1

r (r| p) + 3p

p−1∑
r=1

r2 (r| p)−
p−1∑
r=1

r3 (r| p)

= −3p2
p−1∑
r=1

r (r| p) + 3p

p−1∑
r=1

r2 (r| p)−
p−1∑
r=1

r3 (r| p) .

Applying (a) we know
p−1∑
r=1

r (r| p) = 0,

hence solving for
∑p−1

r=1 r
3 (r| p) gives the result.

(e) For p ≡ 3 mod p, we have

p−1∑
r=1

r4 (r| p) =

p−1∑
r=1

(p− r)4 (p− r| p)

= −
p−1∑
r=1

(p− r)4 (r| p)

=
4∑
j=0

(−1)j+1

(
4

j

)
p4−j

p−1∑
r=1

rj (r| p)

=
4∑
j=1

(−1)j+1

(
4

j

)
p4−j

p−1∑
r=1

rj (r| p) .

Applying (c) we know

p

p−1∑
r=1

r (r| p) =

p−1∑
r=1

r2 (r| p) .

Substituting this and solving for
∑p−1

r=1 r
4 (r| p) gives the result.

Exercise 9.8. Let p be an odd prime, p ≡ 3 mod 4, and let q = (p− 1)/2.
(a) Prove that

{1− 2 (2| p)}
q∑
r=1

r (r| p) = p
1− (2| p)

2

q∑
r=1

(r| p) .

[Hint : As r runs through the numbers 1, 2, . . . , q then r and p− r together run through the
numbers 1, 2, . . . , p− 1, as do 2r and p− 2r.]
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(b) Prove that

{(2| p)− 2}
p−1∑
r=1

r (r| p) = p

q∑
r=1

(r| p) .

Proof.
(a) Let p be a prime such that p ≡ 3 mod 4. This means (p− r| p) = − (r| p) and hence

q∑
r=1

(p− r) (p− r| p) =

q∑
r=1

r (r| p)− p
q∑
r=1

(r| p) .

Therefore applying the first part of the hint gives
p−1∑
r=1

r (r| p) =

q∑
r=1

r (r| p) +

q∑
r=1

(p− r) (p− r| p)

= 2

q∑
r=1

r (r| p)− p
q∑
r=1

(r| p) .

On the other hand, applying the last part of the hint yields
p−1∑
r=1

r (r| p) =

q∑
r=1

2r (2r| p) +

q∑
r=1

(p− 2r) (p− 2r| p)

= 2 (2| p)
q∑
r=1

r (r| p)− p (2| p)
q∑
r=1

(r| p) + 2 (2| p)
q∑
r=1

r (r| p)

= 4 (2| p)
q∑
r=1

r (r| p) + p (2| p)
q∑
r=1

(r| p) . (14)

Equating both identities implies

2

q∑
r=1

r (r| p)− p
q∑
r=1

(r| p) = 4 (2| p)
q∑
r=1

r (r| p) + p (2| p)
q∑
r=1

(r| p) ,

which is an equivalent result.
(b) By (14) we have

p−1∑
r=1

r (r| p) = 4 (2| p)
q∑
r=1

r (r| p) + p (2| p)
q∑
r=1

(r| p) .

Substituting (a) gives

p−1∑
r=1

r (r| p) = 4 (2| p)

(
p

2

1− (2| p)
1− 2 (2| p)

q∑
r=1

(r| p)

)
+ p (2| p)

q∑
r=1

(r| p)

=
p (2| p)

1− 2 (2| p)

q∑
r=1

(r| p)

=
p

(2| p)− 2

q∑
r=1

(r| p) ,

where in the last step we multiplied numerator and denominator by (2| p).
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Exercise 9.9. If p is an odd prime, let χ(n) = (n| p). Prove that the Gauss sum G(n, χ)
associated with χ is the same as the quadratic Gauss sum G(n; p) introduced in Exercise
8.16 if (n, p) = 1. In other words, if p - n we have

G(n, χ) =
∑

m mod p

χ(m)e2πimn/p =

p∑
r=1

e2πinr
2/p = G(n; p).

Proof. Let (n, p) = 1 and e(x) = e2πix. We have

G(n, χ) =

p−1∑
m=1

(m| p) e(mn/p) =

p−1∑
m=1

(m|p)=1

e(mn/p)−
p−1∑
m=1

(m|p)=−1

e(mn/p).

Since
∑p−1

m=0 e(mn/p) = 0, G(n, χ) can be rewritten as

G(n, χ) = 1 + 2

p−1∑
m=1

(m|p)=1

e(mn/p).

Next let q = (p−1)/2. Since both {12, 22, . . . , q2} and {(q+1)2, (q+2)2, . . . , (p−1)2} consist
of all quadratic residues mod p,

G(n; p) =

p∑
r=1

e(nr2/p) = 1 + 2

q∑
r=1

e(nr2/p)

= 1 + 2

p−1∑
m=1

(m|p)=1

e(nm/p) = G(n, χ).

Exercise 9.10. Evaluate the quadratic Gauss sum G(2; p) using one of the reciprocity laws.
Compare the result with the formula G(2; p) = (2| p)G(1; p) and deduce that (2| p) =
(−1)(p

2−1)/8 if p is an odd prime.

Proof. Section 9.11 tells us

G(2; p) = (2| p)G(1; p) = (−1)(p−1)
2/8√p (2| p) .

Evaluating G(2; p) another way, by Theorem 9.16,

G(2; p) = S(4, p) =

√
p

2

(
1 + i√

2

)
S(p, 4),

where

S(a,m) =
m−1∑
r=0

eπiar
2/m.
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Observe for a fixed m, S(a,m) has period 2m, so in our case it’s enough to consider p mod 8.
Evaluating each case directly we obtain

S(p, 4) =


(1 + i)

√
2 if p ≡ 1 mod p

(i− 1)
√

2 if p ≡ 3 mod p

(−1− i)
√

2 if p ≡ 5 mod p

(1− i)
√

2 if p ≡ 7 mod p,

which implies

G(2; p) =


√
p if p ≡ 1 mod p

−i√p if p ≡ 3 mod p

−√p if p ≡ 5 mod p

i
√
p if p ≡ 7 mod p.

A more compact formula is G(2; p) = (−1)p(p−1)/4
√
p. Equating both formulas for G(2; p),

(−1)(p−1)
2/8√p (2| p) = (−1)p(p−1)/4

√
p,

or in other words
(2| p) = (−1)(p

2−1)/8.



Chapter 10
Primitive Roots

Exercise 10.1. Prove that m is prime if and only if expm(a) = m− 1 for some a.

Proof. If m is prime, then there is a primitive root a. By the definition of primitive root

expm(a) = ϕ(m) = m− 1.

Conversely, suppose expm(a) = m− 1. Then

m− 1 = expm(a) ≤ ϕ(m) ≤ m− 1,

so in particular ϕ(m) = m− 1. This can only happen if m is prime.

Exercise 10.2. If (a,m) = (b,m) = 1 and if (expm(a), expm(b)) = 1, prove

expm(ab) = expm(a) expm(b).

Proof. Let x = expm(a), y = expm(b), and k = expm(ab). Note

(ab)xy = (ax)y (by)x ≡ 1 mod m,

so k | xy. Now
aky ≡ (ab)ky ≡ 1 mod m,

which means x | ky. Since (x, y) = 1 we have x | k, and similarly we can deduce y | k. Since
(x, y) = 1, we have xy | k. We conclude k = xy.

Exercise 10.3. Let g be a primitive root of an odd prime p. Prove that −g is also a
primitive root of p if p ≡ 1 mod 4, but that expp(−g) = (p− 1)/2 if p ≡ 3 mod 4.

Proof. Let d be a divisor of p− 1. Since g is a primitive root and

gp−1 ≡ 1 mod p and g(p−1)/2 ≡ −1 mod p,

then |gd| ≡ ±1 mod p implies d = p− 1 or d = (p− 1)/2. This means we only need to test
these exponents to find expp(−g).

If p ≡ 1 mod 4, then

(−g)(p−1)/2 = g(p−1)/2 ≡ −1 mod p.

This means expp(−g) = p− 1, i.e. −g is a primitive root. If p ≡ 3 mod 4, then

(−g)(p−1)/2 = −g(p−1)/2 ≡ 1 mod p.

This means expp(−g) = (p− 1)/2.

116
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Exercise 10.4.
(a) Prove that 3 is a primitive root mod p if p is a prime of the form 2n + 1, n > 1.
(b) Prove that 2 is a primitive root mod p if p is a prime of the form 4q + 1, where q is an
odd prime.

Proof.
(a) If p is prime, by Exercise 1.17 p is of the form 22k + 1 for some k > 0. Then Exercise
10.10 tells us it’s enough to show 3 is a quadratic nonresidue mod p. Since

22k + 1 ≡ (−1)2
k

+ 1 ≡ 2 mod 3,

by quadratic reciprocity (3| p) = (p| 3) = (2| 3) = −1.
(b) The proper divisors of ϕ(p) are 1, 2, 4, 2q. Thus to show 2 is a primitive root, we need
to show 2 raised to each of these powers are not congruent to 1. Now it’s easy to see 21 and
22 are not congruent to 1 mod p. Also since the only prime of this form less than 16 is 13,
it’s easy to see 24 6≡ 1 mod p. Finally, by Euler’s criterion 22q ≡ (2| p) mod p and

(2| p) = (−1)(p
2−1)/8 = (−1)2q

2+q = −1.

Exercise 10.5. Let m > 2 be an integer having a primitive root, and let (a,m) = 1. We
write aRm is there exists an x such that a ≡ x2 mod m. Prove that:
(a) aRm if, and only if, aϕ(m)/2 ≡ 1 mod m.
(b) If aRm the congruence x2 ≡ a mod m has exactly two solutions.
(c) There are exactly ϕ(m)/2 integers a, incongruent mod m, such that (a,m) = 1 and aRm.

Proof. Let g be a primitive root mod m.
(a) If aRm, then a ≡ x2 mod m for some x. This implies aϕ(m)/2 ≡ xϕ(m) ≡ 1 mod m. Now
suppose aϕ(m)/2 ≡ 1 mod m and a ≡ gk mod m. Substituting gives

gkϕ(m)/2 ≡ 1 mod m,

and by Theorem 10.1, kϕ(m)/2 ≡ 0 mod ϕ(m). Thus kϕ(m) = 2nϕ(m) for some n, which
means k = 2n. We conclude aRm, since a ≡ (gn)2 mod m.

(b) Suppose a ≡ g2n = (gn)2 mod m and suppose further that a ≡
(
gk
)2

mod m. This

means g2(k−n) ≡ 1 mod m. By Theorem 10.1, 2(k − n) ≡ 0 mod ϕ(m), which implies
k = n+ c ϕ(m)/2 for some c. Therefore there is exactly one solution where 1 ≤ k ≤ ϕ(m)/2
and exactly one solution where ϕ(m)/2 < k ≤ ϕ(m).
(c) It’s clear g2nRm for all n, so there are at least ϕ(m)/2 of the desired incongruent integers.
Now suppose g2k+1 ≡ x2 mod m. If x ≡ gj mod m, then 2k+1 ≡ 2j mod ϕ(m). This would
imply ϕ(m) divides an odd number, which can’t happen. We conclude g2k+1NRm, and so
there are exactly ϕ(m)/2 integers a, incongruent mod m, such that (a,m) = 1 and aRm.

Exercise 10.6. Assume m > 2, (a,m) = 1, aRm. Prove that the congruence x2 ≡ a
mod m has exactly two solutions if, and only if, m has a primitive root.
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Proof. If m has a primitive root, then Exercise 10.5 (b) shows the congruence x2 ≡ a mod m
has exactly two solutions. Now suppose the congruence x2 ≡ a mod m does not have exactly
two solutions. Since the solutions come in pairs ±x, the congruence x2 ≡ a mod m has at
least 4 solutions, so there are at most ϕ(m)/2− 1 integers a, incongruent mod m, such that
(a,m) = 1 and aRm. This is the contrapositive of the statement in Exercise 10.5 (c), so we
conclude that m does not have a primitive root.

Exercise 10.7. Let Sn(p) =
∑p−1

k=1 k
n, where p is an odd prime and n > 1. Prove that

Sn(p) =

{
0 mod p if n 6≡ 0 mod p− 1,

−1 mod p if n ≡ 0 mod p− 1.

Proof. If n ≡ 0 mod p− 1, then for (k, n) = 1, kn ≡ 1 mod p− 1. This means

Sn(p) ≡
p−1∑
k=1

1 ≡ −1 mod p.

Now suppose n 6≡ 0 mod p− 1 and let g be a primitive root. We then have

Sn(p) ≡
p−1∑
k=1

gkn =
gpn − gn

gn − 1
mod p.

Since n 6≡ 0 mod p− 1 we know gn 6≡ 1 mod p. Therefore by applying Lemma 5.12,

gpn − gn

gn − 1
≡ (gpn − gn)(gn − 1)−1 ≡ (gn − gn)(gn − 1)−1 ≡ 0 mod p.

Exercise 10.8. Prove that the sum of the primitive roots mod p is congruent to µ(p − 1)
mod p.

Proof. Let g be a primitive root mod p and S be the sum in question, that is

S =

p−1∑
k=1

(k,ϕ(p))=1

gk.

Then by Lemma 3.12,

S =
∑
d|p−1

µ(d)
∑

k≤(p−1)/d

gkd

=
∑
d|p−1

µ(d)
gd(gp−1 − 1)

gd − 1

= µ(p− 1)gp−1 +
∑
d|p−1
d<p−1

µ(d)
gd(gp−1 − 1)

gd − 1
. (15)
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Now since g is a primitive root, gd 6≡ 1 mod p for all positive d < p − 1. This means
(gd − 1, p) = 1 and so we can apply Lemma 5.12 to see

gp−1 − 1

gd − 1
≡ (gp−1 − 1)(gd − 1)−1 ≡ 0 mod p.

Hence it follows from (15) that S ≡ µ(p− 1) mod p.

Exercise 10.9. If p is an odd prime > 3 prove that the product of the primitive roots mod
p is congruent to 1 mod p.

Proof. Let P be the product in question and g be a primitive root mod p. We then have

P ≡
p−1∏
k=1

(k,ϕ(p))=1

gk mod p,

that is P is a power of g with exponent

e =

p−1∑
k=1

(k,ϕ(p))=1

k.

By Lemma 3.12,

e =
∑
d|p−1

µ(d)
∑

k≤(p−1)/d

kd

=
1

2
(p− 1)

∑
d|p−1

µ(d)
p− 1 + d

d

=
1

2
(p− 1)

∑
d|p−1

µ(d)
p− 1

d
+

1

2
(p− 1)

∑
d|p−1

µ(d)

=
1

2
(p− 1)ϕ(p− 1),

and so P ≡ gϕ(p−1)(p−1)/2 mod p. If p > 3, then ϕ(p− 1) is even and therefore

P =
(
gp−1

)ϕ(p−1)/2 ≡ 1 mod p.

Exercise 10.10. Let p be an odd prime of the form 22k + 1. Prove that the set of primitive
roots mod p is equal to the set of quadratic nonresidues mod p. Use this result to prove that
7 is a primitive root of every such prime.

Remark. The last part of this exercise is only true for k > 0.

Lemma 10.10. If n is an integer, then 2n ≡ 1, 2, 4 mod 7.
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Proof of Lemma. Let n = 3q + r, where 0 ≤ r ≤ 2. Then since ϕ(7) = 3,

2n ≡ 2r ≡ 1, 2, 4 mod 7.

Proof of Exercise. If g is a primitive root, then g(p−1)/2 6≡ 1 mod p. Thus by Euler’s criterion
(g| p) = −1. On the other hand, if (g| p) = −1, again by Euler’s criterion g(p−1)/2 6≡ 1 mod p.
Now observe every proper divisor d of ϕ(p) is a power of 2 and hence d divides (p−1)/2. Thus
gd ≡ 1 mod p would imply g(p−1)/2 ≡ 1 mod p, a contradiction. This means expp(g) = ϕ(p),
i.e. g is a primitive root.

Next, by quadratic reciprocity

(7| p) = (−1)3(p−1)/2 (p| 7) =

{
− (p| 7) if p = 3

(p| 7) if p > 3.

Furthermore, 22k 6≡ 1 mod 7, since 2k 6≡ 0 mod ϕ(7). Thus Lemma 10.10 implies

p = 22k + 1 ≡ 3, 5 mod 7.

Since 3 and 5 are both quadratic nonresidues mod 7, we have

(7| p) =

{
1 if p = 3

−1 if p > 3.

This means 7 is a primitive root of the prime 22k + 1 if and only if k > 0.

Exercise 10.11. Assume d | ϕ(m). If d = expm(a) we say that a is a primitive root of the
congruence

xd ≡ 1 mod m.

Prove that if the congruence
xϕ(m) ≡ 1 mod m

has a primitive root then it has ϕ(ϕ(m)) primitive roots, incongruent mod m.

Proof. This follows directly from Theorem 10.9.

Exercise 10.12. Prove the properties of indices described in Theorem 10.10. Let g be a
primitive root mod m. If (a,m) = (b,m) = 1 show
(a) indg (ab) ≡ indg (a) + indg (b) mod ϕ(m).
(b) indg (an) ≡ n indg (a) mod ϕ(m).
(c) indg (1) = 0 and indg (g) = 1.
(d) indg (−1) = ϕ(m)/2 if m > 2.
(e) If g′ is also a primitive root mod m then

indg (a) ≡ indg′ (a) · indg (g′) mod ϕ(m).
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Proof.
(a) By definition we have

gindg(ab) ≡ ab ≡ gindg(a)gindg(b) ≡ gindg(a)+indg(b) mod m.

Since g is a primitive root, Theorem 10.1 implies indg (ab) ≡ indg (a) + indg (b) mod ϕ(m).
(b) We have

gindg(a
n) ≡ an ≡

(
gindg(a)

)n
= gn indg(a) mod m.

Again we use Theorem 10.10 to obtain indg (an) ≡ n indg (a) mod ϕ(m).
(c) This part is clear, as g0 = 1 and g1 = g.
(d) Let s = indg (−1). Then gs ≡ −1 mod m and squaring both sides gives g2s ≡ 1 mod m.
Theorem 10.1 implies

2s ≡ 0 mod ϕ(m). (16)

Since m > 2, ϕ(m) is even, thus choosing s = ϕ(m)/2 gives the smallest positive s that
satisfies (16).
(e) We have

gindg(a) ≡ a ≡ (g′)
indg′ (a)

≡
(
gindg(g

′)
)indg′ (a)

≡ gindg′ (a)·indg(g
′) mod m.

By Theorem 10.1, indg (a) ≡ indg′ (a) · indg (g′) mod ϕ(m).

Exercise 10.13.(++) Let p be an odd prime. If (h, p) = 1 let

S(h) = {hn | 1 ≤ n ≤ p− 1, (n, p− 1) = 1}.

If h is a primitive root of p the numbers in the set S(h) are distinct mod p (they are, in fact,
the primitive roots of p). Prove that there is an integer h, not a primitive root of p, such
that the numbers in S(h) are distinct mod p if, and only if, p ≡ 3 mod 4.

Proof. Suppose p ≡ 3 mod 4 and g is a primitive root. By Exercise 10.3 expp(−g) = (p−1)/2,
therefore −g is not a primitive root. We will show all numbers in S(−g) are distinct mod p.
Now suppose

(−g)n ≡ (−g)m mod p, where 1 ≤ n ≤ m ≤ p− 1.

Since expp(−g) = (p− 1)/2, by Theorem 10.1,

n ≡ m mod
p− 1

2
.

Recalling 1 ≤ n ≤ m ≤ p− 1, we have m = n+ (p− 1)/2.
If (n, p − 1) = 1, then n must be odd. Since (p − 1)/2 is also odd, we have m is even,

hence (m, p − 1) 6= 1. In a similar fashion, assuming (m, p − 1) = 1 shows (n, p − 1) 6= 1.
This means at most one of (−g)n and (−g)m is a member of S(−g).
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Suppose p ≡ 1 mod p and expp(h) = d < p− 1. For hn ∈ S(h) we have by the lemma of
Theorem 10.3

expp(h
n) =

expp(h)

(n, p− 1)
= d.

Theorem 10.4 thus implies that S(h) contains at most ϕ(d) different elements mod p. How-
ever, by construction S(h) contains ϕ(p− 1) elements. By the pigeonhole principal if we can
show ϕ(d) < ϕ(p− 1), we are done.

Write p − 1 = 4pα1
1 · · · pαrr and d = 2βpβ11 · · · pβrr , where pi are distinct odd primes and

αi > 0. Note d < p− 1 implies 2 > β or there is an i such that αi > βi. We have

ϕ(d) = ϕ(2β)
r∏
i=1
βi 6=0

pβi−1i (pi − 1)

< 2
r∏
i=1

pαi−1i (pi − 1)

= ϕ(p− 1),

where the inequality is strict since ϕ(2β) = 1 for 2 > β and ϕ(pβii ) < ϕ(pαii ) for αi > βi.

Exercise 10.14. If m > 1 let p1, . . . , pk be the distinct prime divisors of ϕ(m). If (g,m) = 1
prove that g is a primitive root of m if, and only if, g does not satisfy any of the congruences
gϕ(m)/pi ≡ 1 mod m for i = 1, 2, . . . , k.

Proof. If g is a primitive root, it’s clear gϕ(m)/pi 6≡ 1 mod m for all i = 1, 2, . . . , k. For the
other direction, suppose g has order d, where d | ϕ(m) and d 6= ϕ(m). If pi | ϕ(m)/d, then
observe d | ϕ(m)/pi. Since gd ≡ 1 mod m, this implies gϕ(m)/pi ≡ 1 mod m.

Exercise 10.15. The prime p = 71 has 7 as a primitive root. Find all primitive roots of 71
and also find a primitive root for p2 and for 2p2.

Solution. There are ϕ(ϕ(71)) = 24 primitive roots mod 71 and we find them in Mathematica.

In[1]:= Sort[PowerMod[7, #, 71]& /@ Select[Range[70], CoprimeQ[#,70]&]]
Out[1]= {7, 11, 13, 21, 22, 28, 31, 33, 35, 42, 44, 47, 52, 53, 55, 56,

59, 61, 62, 63, 65, 67, 68, 69}

Now since 7p−1 ≡ 49 mod p2, by Theorem 10.6, 7 is a primitive root mod p2. By Theorem
10.7, this implies 7 is also a primitive root mod 2p2.

Exercise 10.16. Solve each of the following congruences:
(a) 8x ≡ 7 mod 43.
(b) x8 ≡ 17 mod 43.
(c) 8x ≡ 3 mod 43.
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Solution. Through Table 10.1 we are given 3 is a primitive root mod 43.
(a) The corresponding index relation is

ind3 (x) ≡ ind3 (7)− ind3 (8) mod 42.

From Table 10.2 we find ind3 (7) = 35 and ind3 (8) = 39, so

ind3 (x) ≡ 35− 39 ≡ 38 mod 42.

Again from Table 10.2 we find x ≡ 17 mod 43.
(b) The corresponding index relation is

8 ind3 (x) ≡ ind3 (17) ≡ 38 mod 42.

Applying Theorem 5.4, dividing both sides 2 gives 4 ind3 (x) ≡ 19 mod 21. Multiplying both
sides by 16 shows ind3 (x) ≡ 10 mod 21. This gives possible index values 10 and 31. From
Table 10.2 we find x ≡ 10, 33 mod 43 are the only solutions.
(c) We have ind3 (8) = 39 and ind3 (3) = 1. The corresponding index relation is thus

39x ≡ 1 mod 42.

Since (39, 42) = 3, 39 is not invertible mod 42, hence no solution exists.

Exercise 10.17. Let q be an odd prime and suppose that p = 4q + 1 is also prime.
(a) Prove that the congruence x2 ≡ −1 mod p has exactly two solutions, each of which is a
quadratic nonresidue of p.
(b) Prove that every quadratic nonresidue of p is a primitive root of p, with the exception
of the two nonresidues in (a).
(c) Find all the primitive roots of 29.

Proof.
(a) Since p ≡ 1 mod 4, (−1| p) = 1. By Theorem 5.21 (Lagrange’s Theorem), there are
at most two solutions. Since x, −x both satisfy the congruence, there are exactly two
solutions. Now if g is a primitive root, then we can take x = g(p−1)/4 = gq as a solution.
Since indg (x) = q is odd, x is a quadratic nonresidue mod p. Finally −x is also a quadratic
nonresidue mod p since (−x| p) = (−1| p) (x| p) = −1.
(b) Let g be a primitive root. All primitive roots are of the form gk, where (k, 4q) = 1. This
means k needs to be odd and relatively prime to q. Each quadratic nonresidue mod p whose
exponent is relatively prime to q are the only numbers to satisfy this stipulation. Finally,
the quadratic nonresidues that aren’t primitive roots are hence gq, g3q and both satisfy the
congruence in (a).
(c) Since 29 = 4 · 7 + 1, we can apply (b). Using Mathematica we will find all quadratic
nonresidues whose square is not −1 mod 29.
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In[2]:= Module[{G = Range[28]},
(* remove the quadratic residues *)
G = Complement[G, Mod[Gˆ2, 29]];

(* remove elements whose square is -1 *)
Select[G, Mod[#ˆ2, 29] != 28 &]

]
Out[2]= {2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27}

Exercise 10.18. (Extension of Exercise 10.17.) Let q be an odd prime and suppose that
p = 2nq+ 1 is prime. Prove that every quadratic nonresidue a of p is a primitive root of p if
a2

n 6≡ 1 mod p.

Proof. Let a be a quadratic nonresidue mod p such that a2
n 6≡ 1 mod p. Since ϕ(p) = 2nq,

applying Exercise 10.14 to show a is a primitive root, it’s enough to establish

aϕ(p)/2 6≡ 1 mod p and aϕ(p)/q 6≡ 1 mod p.

Now because a is a quadratic nonresidue, aϕ(p)/2 = a(p−1)/2 ≡ −1 mod p. Additionally since
ϕ(p)/q = 2n, we have aϕ(p)/q 6≡ 1 mod p. This means a is a primitive root.

Exercise 10.19. Prove that there are only two real primitive characters mod 8 and make
a table showing their values.

Proof. Theorem 10.13 tells us there are four real characters mod 8. Since there are exactly
ϕ(8) = 4 characters mod 8, every character must be real. Consequently, it is enough to find
the numbers of primitive characters mod 8.

Now by Theorem 10.15, a character χa,c mod 8 is primitive if and only if c is odd. Since
the possible values of a and c are both 1 and 2, we conclude there are exactly two primitive
characters mod 8, which occur when c = 1.

These characters correspond to the rows 2 and 4 of χ mod 8 in Exercise 6.14.

Exercise 10.20. Let χ be a real primitive character mod m. If m is not a power of 2 prove
that m has the form

2αp1 · · · pr
where the pi are distinct odd primes and α = 0, 2, or 3. If α = 0 show that

χ(−1) =
∏
p|m

(−1)(p−1)/2

and find a corresponding formula for χ(−1) when α = 2.

Lemma 10.20. Let p be an odd prime, α > 0, and χ be a character mod pα. Then χ is
real and primitive if and only if α = 1 and χ(n) = (n| p) for all n.
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Proof of Lemma. For the converse direction, it is clear (n| p) is real. Furthermore since (n| p)
is nonprincipal and p is prime, by Theorem 8.14 it must be primitive. Looking at the forward
direction, let χh be a real primitive character mod pα, where χh is defined in Chapter 10.
Since χh is real, by Theorem 10.12 we find h = 0 or h = ϕ(pα)/2. Additionally since χh is
primitive, by Theorem 10.14 we have p - h. This forces h = ϕ(pα)/2. However

ϕ(pα)/2 = pα−1 · p− 1

2
,

so to satisfy p - h we require α = 1. Since there is a unique real nonprincipal character
mod p (Theorem 10.12) and (n| p) is real, we must have χ(n) = (n| p) for all n.

Proof of Exercise. Let m = 2αpα1
1 · · · pαrr , where pi is an odd prime and write

χ = ψ · χ1 · · ·χr,

where ψ is a character mod 2α and χi is a character mod pαii . By Exercise 8.12 χ is primitive
mod m if and only if ψ is primitive mod 2α and χi is primitive mod pαii for all i.

By Lemma 10.20 χi is real and primitive if and only if αi = 1 and χi(n) = (n| pi).
Turning out attention to ψ, we can write ψ = ψa,c, where this is defined in Chapter 10. If
α = 0 or α = 2, then by inspection ψ must be real and primitive, whereas if α = 1, then
ψ is not primitive. If α ≥ 3, by Theorem 10.13, ψa,c is real if and only if c = ϕ(2α)/2 or
c = ϕ(2α)/4. Moreover by Theorem 10.15, ψa,c is primitive if and only if c is odd. Now for
α ≥ 3, ϕ(2α)/2 is never odd and ϕ(2α)/4 is odd if and only if α = 3. Thus for ψa,c to be real
and primitive, it must be that α = 3.

Now
χ(−1) = ψ(−1)

∏
p|m

(−1| p) = ψ(−1)
∏
p|m

(−1)(p−1)/2.

By inspection if α = 0, then ψ(−1) = 1 and if α = 2, then ψ(−1) = −1.



Chapter 11
Dirichlet Series and Euler Products

Exercise 11.1. Derive the following identities, valid for σ > 1.

(a) ζ(s) = s

∫ ∞
1

[x]

xs+1
dx.

(b)
∑
p

1

ps
= s

∫ ∞
1

π(x)

xs+1
dx, where the sum is extended over all primes.

(c)
1

ζ(s)
= s

∫ ∞
1

M(x)

xs+1
dx, where M(x) =

∑
n≤x µ(n).

(d) −ζ
′(s)

ζ(s)
= s

∫ ∞
1

ψ(x)

xs+1
dx, where ψ(x) =

∑
n≤x Λ(n).

(e) L(s, χ) = s

∫ ∞
1

A(x)

xs+1
dx, where A(x) =

∑
n≤x χ(n).

Show that (e) is also valid for σ > 0 if χ is a non principal character. [Hint : Theorem 4.2.]

Lemma 11.1. Let A(x) =
∑

n≤x an = O(x log x) and F (s) =
∑∞

n=1 ann
−s. If A(x) = O(1)

let c = 0, otherwise let c = 1. Then for σ > c,

F (s) = s

∫ ∞
1

A(x)

xs+1
dx.

Proof of Lemma. By Abel’s summation formula,

N∑
n=1

ann
−s = A(N)N−s + s

∫ N

1

A(x)

xs+1
dx.

Suppose A(x) = O(1). We have A(N)N−s → 0 as N →∞ for σ > 0. Also∫ N

1

A(x)

xs+1
dx = O

(∫ N

1

1

xs+1
dx

)
,

and thus converges for σ > 0 as N →∞. Hence letting N →∞ gives the result.
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We’re given A(x) = O(x log x) so for σ > 1, A(N)N−s → 0 as N →∞. Also∫ N

1

A(x)

xs+1
dx = O

(∫ N

1

log x

xs
dx

)
,

and thus converges for σ > 1 as N →∞. Hence letting N →∞ gives the result.

Proof of Exercise.
(a) This follows directly from Lemma 11.1 with an = 1.
(b) This follows directly from Lemma 11.1 with an indicating whether n is prime.
(c) This follows directly from Lemma 11.1 with an = µ(n).
(d) This follows directly from Lemma 11.1 with an = Λ(n).
(e) Let an = χ(n). If χ is a nonprincipal character mod k, then |A(x)| ≤ ϕ(k) = O(1). If χ
is principal, then A(x) = ϕ(k) bx/kc+O(1). The result then follows from Lemma 11.1.

Exercise 11.2. Assume that the
∑∞

n=1 f(n) converges with sumA, and letA(x) =
∑

n≤x f(n).
(a) Prove that the Dirichlet series F (s) =

∑∞
n=1 f(n)n−s converges for each s with σ > 0

and that
∞∑
n=1

f(n)

ns
= A− s

∫ ∞
1

R(x)

xs+1
dx,

where R(x) = A− A(x). [Hint : Theorem 4.2.]
(b) Deduce that F (σ)→ A as σ → 0+.
(c) If σ > 0 and N ≥ 1 is an integer, prove that

F (s) =
N∑
n=1

f(n)

ns
− A(N)

N s
+ s

∫ ∞
N

A(y)

ys+1
dy.

(d) Write s = σ + it, take N = 1 + [ |t| ] in (c) and show that

|F (σ + it)| = O
(
|t|1−σ

)
if 0 < σ < 1.

Proof.
(a) For σ > 0 and N ≥ 1, by Abel’s summation formula

∑
n≤N

f(n)

ns
=
A(N)

N s
+ s

∫ N

1

A(x)

xs+1
dx

= [A− A] +
A(N)

N s
+ s

∫ N

1

A(x)

xs+1
dx

= A− As
∫ ∞
1

dx

xs+1
+
A(N)

N s
+ s

∫ N

1

A(x)

xs+1
dx

= A+
A(N)

N s
− s

∫ N

1

A− A(x)

xs+1
dx− As

∫ ∞
N

A(x)

xs+1
dx.



128 Chapter 11 Solutions

For σ > 0, A(N)N−s → 0 and
∫∞
N
A(x)x−s−1dx→ 0 as N →∞. This gives

∞∑
n=1

f(n)

ns
= A− s

∫ ∞
1

A− A(x)

xs+1
dx.

(b) Let ε > 0 be arbitrary. Fix N so that for all x ≥ N , |R(x)| < ε. We then have for σ > 0∣∣∣∣σ ∫ ∞
1

R(x)

xσ+1
dx

∣∣∣∣ < σ

∫ N

1

|R(x)|
xσ+1

dx+ σε

∫ ∞
N

dx

xσ+1

= σ

∫ N

1

|R(x)|
xσ+1

dx+
ε

Nσ
.

Since this holds for σ > 0, letting σ → 0+ on both sides of the inequality gives

lim
σ→0+

∣∣∣∣σ ∫ ∞
1

R(x)

xσ+1
dx

∣∣∣∣ ≤ ε.

Since ε was chosen arbitrarily it can be as small as we like, hence the limit must be 0. The
result then follows directly form (a).
(c) For σ > 0 and 1 ≤ N < M , by Abel’s summation formula

M∑
n=1

f(n)

ns
=

N∑
n=1

f(n)

ns
+

M∑
n=N+1

f(n)

ns

=
N∑
n=1

f(n)

ns
− A(N)

N s
+
A(M)

M s
+ s

∫ M

N

A(y)

yσ+1
dy.

Noting σ > 0 and A(x) = O(1), let M → ∞. As a consequence A(M)M−s → 0 and the
integral converges, which finishes the proof.
(d) Since

∑∞
n=1 f(n) converges, we have f(n)→ 0 as n→∞ and thus

M = max
n≥1
|f(n)| <∞.

So by (c) and Theorem 3.2 (b), for σ > 0 and σ 6= 1,

|F (σ + it)| ≤
N∑
n=1

|f(n)|
nσ

+
|A(N)|
Nσ

+ |s|
∫ ∞
N

|A(y)|
yσ+1

dy

≤M
N∑
n=1

1

nσ
+O(1) +O(|t|)O

(∫ ∞
N

dy

yσ+1

)
= O

(
N1−σ)+O(1) +O(|t|)O

(
N−σ

)
.

Now N ∼ |t| as t→∞, so it follows that |F (σ + it)| = O(|t|1−σ).

Exercise 11.3.
(a) Prove that the series

∑
n−1−it has bounded partial sums if t 6= 0. When t = 0 the partial

sums are unbounded.
(b) Prove that the series

∑
n−1−it diverges for all real t. In other words, the Dirichlet series

for ζ(s) diverges everywhere on the line σ = 1.
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Proof.
(a) Fix t 6= 0. By Abel’s summation formula with a(n) = 1 and f(x) = x−1−it we have

N∑
n=1

n−1−it = N ·N−1−it + (1 + it)

∫ N

1

bxcx−2−itdx

= N−it + (1 + it)

∫ N

1

x−1−itdx− (1 + it)

∫ N

1

{x}x−2−itdx

= N−it − 1 + it

it
N−it +

1 + it

it
− (1 + it)

(∫ ∞
1

−
∫ ∞
N

)
{x}x−2−itdx

= (i/t)N−it + C + o(1)

= O(1) .

Therefore the partial sums are bounded.
(b) From above,

N∑
n=1

n−1−it = (i/t)N−it + C + o(1)

= (i/t)(cos(t logN)− i sin(t logN)) + C + o(1) .

Thus as N → ∞ both real and imaginary parts of the partial sums will oscillate without
approaching a single value, that is

∑∞
n=1 n

−1−it diverges.

Exercise 11.4. Let F (s) =
∑∞

n=1 f(n)n−s where f(n) is completely multiplicative and the
series converges absolutely for σ > σa. Prove that if σ > σa we have

F ′(s)

F (s)
= −

∞∑
n=1

f(n)Λ(n)

ns
.

Proof. Example 2 following Theorem 11.14 shows for σ > σa, F (s) = eG(s), where

G(s) =
∞∑
n=2

f(n)Λ(n)

log n
n−s.

Thus
F ′(s) = eG(s)G′(s) = F (s)G′(s),

or in other words
F ′(s)

F (s)
= −

∞∑
n=1

f(n)Λ(n)

ns
.

In the following exercises, λ(n) is Liouville’s function, d(n) is the number of divisors of
n, ν(n) and κ(n) are defined as follows: ν(1) = 0, κ(1) = 1; if n = pa11 · · · p

ak
k then ν(n) = k

and κ(n) = a1a2 · · · ak.
Prove that the identities in Exercises 5 through 10 are valid for σ > 1.
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Exercise 11.5.
∞∑
n=1

d(n2)

ns
=
ζ3(s)

ζ(2s)
.

Lemma 11.5. For all x with |x| < 1,

∞∑
n=0

nxn =
x

(x− 1)2
.

Proof of Lemma. Differentiating the geometric series term by term,

∞∑
n=1

nxn−1 =
1

(x− 1)2
.

Multiplying both sides by x gives the result.

Proof of Exercise. Since (m,n) = 1 implies (m2, n2) = 1, it’s clear d(n2) is multiplicative.
Also note

d(n2) < n2,

so
∑∞

n=1 d(n2)n−s converges for σ > 3. Hence for σ > 3, by Theorem 11.7,

∞∑
n=1

d(n2)

ns
=
∏
p

∞∑
m=0

d(p2m)

pms

=
∏
p

∞∑
m=0

2m+ 1

pms

=
∏
p

ps(ps + 1)

(ps − 1)2
,

where Lemma 11.5 was applied in the last step. Multiplying numerator and denominator by
p−2s(1− p−s), ∏

p

ps(ps + 1)

(ps − 1)2
=
∏
p

1− p−2s

(1− p−s)3

=

(∏
p

(1− p−s)−3
)(∏

p

(1− p−2s)

)

=
ζ3(s)

ζ(2s)
.

Since the right hand side is a Dirichlet series that converges for σ > 1, by the uniqueness of
Dirichlet series the left hand side must converge for σ > 1. This means the identity holds
for all s with σ > 1.

Exercise 11.6.
∞∑
n=1

ν(n)

ns
= ζ(s)

∑
p

1

ps
.
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Proof. Let an indicate whether n is prime. For σ > 1,

ζ(s)
∑
p

1

ps
=

(
∞∑
n=1

1

ns

)(
∞∑
n=1

an
ns

)

=
∞∑
n=1

1

ns

∑
d|n

an

=
∞∑
n=1

1

ns

∑
p|n

1

=
∞∑
n=1

ν(n)

ns
.

Exercise 11.7.
∞∑
n=1

2ν(n)

ns
=
ζ2(s)

ζ(2s)
.

Lemma 11.7.1. Given an integer b, the function bν(n) is multiplicative.

Proof of Lemma. Let m and n be relatively prime positive integers. Since m and n share no
common prime divisors and ν counts distinct prime divisors, it’s evident that

ν(mn) = ν(m) + ν(n).

Therefore

bν(mn) = bν(m)+ν(n) = bν(m)bν(n).

Lemma 11.7.2. For n ≥ 1,

2ν(n) =
∑
d|n

|µ(d)|.

Proof of Lemma. By Lemma 11.7.1, 2ν(n) is multiplicative. Since |µ|∗u is also multiplicative
it’s enough to prove the identity for prime powers. Now if n = pm for some prime p,∑

d|pm
|µ(d)| = 1 + 1 = 2 = 2ν(p

m).

Remark. This can also by proved by comparing Bell series, which is shown in Example 3
following Theorem 2.25.
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Proof of Exercise. By Lemma 11.7.1 2ν(n) is multiplicative, and additionally by Lemma
11.7.2

2ν(n) =
∑
d|n

|µ(n)| ≤ d(n) ≤ d(n2).

Thus by comparison, Exercise 11.5 implies
∑∞

n=1 2ν(n)n−s converges for σ > 1. Hence for
σ > 1, by Theorem 11.7,

∞∑
n=1

2ν(n)

ns
=
∏
p

∞∑
m=0

2ν(p
m)

pms

=
∏
p

(
1 +

∞∑
m=1

2

pms

)

=
∏
p

(
1 +

2

ps − 1

)
=
∏
p

ps + 1

ps − 1
.

Multiplying numerator and denominator by p−2s(ps − 1),∏
p

ps + 1

ps − 1
=
∏
p

1− p−2s

(1− p−s)2

=

(∏
p

(1− p−s)−2
)(∏

p

(1− p−2s)

)

=
ζ2(s)

ζ(2s)
.

Exercise 11.8.
∞∑
n=1

2ν(n)λ(n)

ns
=
ζ(2s)

ζ2(s)
.

Proof. We can deduce
∑∞

n=1 2ν(n)λ(n)n−s converges absolutely for σ > 1 and that 2ν(n)λ(n)
is multiplicative through Exercise 11.7. Hence for σ > 1, by Theorem 11.7,

∞∑
n=1

2ν(n)λ(n)

ns
=
∏
p

∞∑
m=0

2ν(p
m)λ(pm)

pms

=
∏
p

(
1 +

∞∑
m=1

2(−1)m

pms

)

=
∏
p

(
1− 2

ps + 1

)
=
∏
p

ps − 1

ps + 1
.
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Multiplying numerator and denominator by p−2s(1− p−s),∏
p

ps − 1

ps + 1
=
∏
p

(1− p−s)2

1− p−2s

=

(∏
p

(1− p−2s)−1
)(∏

p

(1− p−s)2
)

=
ζ(2s)

ζ2(s)
.

Exercise 11.9.
∞∑
n=1

κ(n)

ns
=
ζ(s)ζ(2s)ζ(3s)

ζ(6s)
.

Proof. It’s clear κ(n) is multiplicative. Furthermore if n = pa11 · · · p
ak
k ,

κ(n) = a1a2 · · · ak < (a1 + 1)(a2 + 1) · · · (ak + 1) = d(n) ≤ d(n2).

Thus by comparison, Exercise 11.5 implies
∑∞

n=1 κ(n)n−s converges for σ > 1. Hence for
σ > 1, by Theorem 11.7,

∞∑
n=1

κ(n)

ns
=
∏
p

∞∑
m=0

κ(pm)

pms

=
∏
p

(
1 +

∞∑
m=1

m

pms

)
.

By Lemma 11.5,

∏
p

(
1 +

∞∑
m=1

m

pms

)
=
∏
p

(
1 +

ps

(ps − 1)2

)
=
∏
p

p2s − ps + 1

(ps − 1)2
.

Multiplying numerator and denominator by p−6s(p3s − 1)(ps + 1),∏
p

p2s − ps + 1

(ps − 1)2
=
∏
p

1− p−6s

(1− p−s)(1− p−2s)(1− p−3s)

=
ζ(s)ζ(2s)ζ(3s)

ζ(6s)
.

Exercise 11.10.
∞∑
n=1

3ν(n)κ(n)

ns
=
ζ3(s)

ζ(3s)
.
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Proof. We can deduce 3ν(n)κ(n) is multiplicative through Lemma 11.7. Now note using the
beginning of the proofs of Exercise 11.7 and Exercise 11.9,

3ν(n)κ(n) ≤
(
2ν(n)

)2
κ(n) < d(n)3 < n3.

Thus
∑∞

n=1 3ν(n)κ(n)n−s converges for σ > 4. Hence for σ > 4, by Theorem 11.7,

∞∑
n=1

3ν(n)κ(n)

ns
=
∏
p

∞∑
m=0

3ν(p
m)κ(pm)

pms

=
∏
p

(
1 +

∞∑
m=1

3m

pms

)
.

By Lemma 11.5, ∏
p

(
1 +

∞∑
m=1

3m

pms

)
=
∏
p

(
1 +

3ps

(ps − 1)2

)
=
∏
p

p2s + ps + 1

(ps − 1)2
.

Multiplying numerator and denominator by p−3s(1 + ps),∏
p

p2s + ps + 1

(ps − 1)2
=
∏
p

1− p−3s

(1− p−s)3

=

(∏
p

(1− p−s)−3
)(∏

p

(1− p−3s)

)

=
ζ3(s)

ζ(3s)
.

Since the right hand side is a Dirichlet series that converges for σ > 1, by the uniqueness of
Dirichlet series the left hand side must converge for σ > 1. This means the identity holds
for all s with σ > 1.

Exercise 11.11. Express the sum of the series
∑∞

n=1 3ν(n)κ(n)λ(n)n−s in terms of the Rie-
mann zeta function.

Solution. We can deduce
∑∞

n=1 3ν(n)κ(n)λ(n)n−s converges absolutely for σ > 1 and that
3ν(n)κ(n)λ(n) is multiplicative through Exercise 11.10. Hence for σ > 1, by Theorem 11.7,

∞∑
n=1

3ν(n)κ(n)λ(n)

ns
=
∏
p

∞∑
m=0

3ν(p
m)κ(pm)λ(pm)

pms

=
∏
p

(
1 +

∞∑
m=1

3m(−1)m

pms

)

=
∏
p

(
1 +

∞∑
m=1

3m

(
−1

ps

)m)
.
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By Lemma 11.5, ∏
p

(
1 +

∞∑
m=1

3m

(
−1

ps

)m)
=
∏
p

(
1− 3ps

(ps + 1)2

)
=
∏
p

p2s − ps + 1

(ps + 1)2
.

Multiplying numerator and denominator by p−9s(ps − 1)3(ps + 1)(p3s − 1),∏
p

p2s − ps + 1

(ps + 1)2
=
∏
p

(1− p−6s)(1− p−s)3

(1− p−3s)(1− p−2s)3

=
ζ(3s)ζ3(2s)

ζ(6s)ζ3(s)
.

Exercise 11.12. Let f be a completely multiplicative function such that f(p) = f(p)2 for
each prime p. If the series

∑
f(n)n−s converges absolutely for σ > σa and has sum F (s),

prove that F (s) 6= 0 and that

∞∑
n=1

f(n)λ(n)

ns
=
F (2s)

F (s)
if σ > σa.

Proof. Since f is completely multiplicative, for σ > σa we have(
∞∑
n=1

f(n)

ns

)(
∞∑
n=1

f(n)µ(n)

ns

)
=
∞∑
n=1

1

ns

∑
d|n

f(n)µ(n)f
(n
d

)
=
∞∑
n=1

f(n)I(n)

ns
= f(1) = 1.

This means F (s) 6= 0.
Now observe f(n)λ(n) is completely multiplicative. Hence for σ > σa, by Theorem 11.7,

∞∑
n=1

f(n)λ(n)

ns
=
∏
p

1

1− f(p)λ(p)p−s
=
∏
p

1

1 + f(p)p−s

=
∏
p

1

1 + f(p)p−s
· F (s)

F (s)
=
∏
p

1− f(p)p−s

1− f(p)2p−2s

=
∏
p

1− f(p)p−s

1− f(p)p−2s
=
F (2s)

F (s)
.

Exercise 11.13. Let f be a multiplicative function such that f(p) = f(p)2 for each prime
p. If the series

∑
µ(n)f(n)n−s converges absolutely for σ > σa and has sum F (s), prove

that whenever F (s) 6= 0 we have

∞∑
n=1

f(n)|µ(n)|
ns

=
F (2s)

F (s)
if σ > σa.
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Proof. Since f(n)µ(n) is multiplicative, applying Theorem 11.7 when σ > σa,

F (s) =
∏
p

∞∑
m=0

f(pm)µ(pm)

pms
=
∏
p

(1− f(p)p−s).

Similarly, the Euler product of
∑∞

n=1 f(n)|µ(n)|n−s is given by

∞∑
n=1

f(n)|µ(n)|
ns

=
∏
p

(1 + f(p)p−s) if σ > σa.

So assuming F (s) 6= 0, for σ > σa,

∞∑
n=1

f(n)|µ(n)|
ns

=
∏
p

(1 + f(p)p−s)(1− f(p)p−s)

1− f(p)p−s

=
∏
p

1− f(p)2p−2s

1− f(p)p−s

=
∏
p

1− f(p)p−2s

1− f(p)p−s

=
F (2s)

F (s)
.

Exercise 11.14. Let f be a multiplicative function such that
∑
f(n)n−s converges abso-

lutely for σ > σa. If p is prime and σ > σa prove that

(1 + f(p)p−s)
∞∑
n=1

f(n)µ(n)

ns
= (1− f(p)p−s)

∞∑
n=1

f(n)µ(n)µ(p, n)

ns
,

where µ(p, n) is the Möbius function evaluated at the gcd of p and n. [Hint : Euler products.]

Proof. By Lemma 2.7, µ(p, n) is multiplicative in n. So for σ > σa, by Theorem 11.7,

∞∑
n=1

f(n)µ(n)µ(p, n)

ns
=
∏
q

∞∑
m=0

f(q)µ(q)µ(p, q)

qms

= (1 + f(p)p−s)
∏
q 6=p

(1− f(q)q−s) (17)

and
∞∑
n=1

f(n)µ(n)

ns
=
∏
q

∞∑
m=0

f(q)µ(q)

qms

=
∏
q

(1− f(q)q−s). (18)

Multiplying both sides of (17) by 1− f(p)p−s and both sides of (18) by 1 + f(p)p−s gives the
result.
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Exercise 11.15.(++) Prove that

∞∑
m=1

∞∑
n=1

(m,n)=1

1

m2n2
=
ζ2(2)

ζ(4)
.

More generally, if each si has real part σi > 1, express the multiple sum

∞∑
m1=1

· · ·
∞∑

mr=1

(m1,...,mr)=1

m−s11 · · ·m−srr

in terms of the Riemann zeta function.

Proof. For brevity denote the summation symbols by
∑

mi
and let g = (m1, . . . ,mr). For

σi > 1 we have ∑
mi
g=1

m−s11 · · ·m−srr =
∑
mi

I(g)m−s11 · · ·m−srr

=
∑
mi

∑
d|g

µ(d)m−s11 · · ·m−srr .

Now d | g if and only if d | mi for all i. Thus for a fixed divisor d of g we must sum over all
mi of the form dqi. Hence

∑
mi

∑
d|g

µ(d)m−s11 · · ·m−srr =
∞∑
d=1

∑
qi

µ(d)(dq1)
−s1 · · · (dqr)−sr

= ζ(s1) · · · ζ(sr)
∞∑
d=1

µ(d)d−(s1+s2+···+sr)

=
ζ(s1) · · · ζ(sr)

ζ(s1 + · · ·+ sr)
.

In particular this shows
∞∑
m=1

∞∑
n=1

(m,n)=1

1

m2n2
=
ζ2(2)

ζ(4)
.

Remark. This exercise reminds me of a short proof that ζ(4) = π4/90, due to Eugenio
Calabi. It is interesting enough to reproduce here.

Theorem. If k > 1, then

ζ(2k) =
2

2k + 1

k−1∑
j=1

ζ(2j)ζ(2k − 2j).
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Proof. We will prove the result for k = 2 and sketch the proof of the general result. The
proof resembles Exercise 11.15 since ζ2(2) and ζ(4) appear below. Define

f(m,n) =
1

mn3
+

1

2m2n2
+

1

m3n

and observe

f(m,n)− f(m+ n, n)− f(m,m+ n) =
1

m2n2
.

This gives

ζ2(2) =
∑
m,n>0

1

m2n2

=
∑
m,n>0

f(m,n)−
∑
m,n>0

f(m+ n, n)−
∑
m,n>0

f(m,m+ n)

=
∑
m,n>0

f(m,n)−
∑

m>n>0

f(m,n)−
∑

n>m>0

f(m,n)

=
∑
n>0

f(n, n) =
5

2
ζ(4).

So in particular assuming ζ(2) = π2/6 shows ζ(4) = π4/90.
Now in general for k > 1, define

f(m,n) =
1

mn2k−1 +
1

2

2k−2∑
r=2

1

mrn2k−r +
1

m2k−1n
.

It can be seen that

f(m,n)− f(m+ n, n)− f(m,m+ n) =
k−1∑
j=1

1

m2jn2k−2j ,

which leads to
k−1∑
j=1

ζ(2j)ζ(2k − 2j) =
2k + 1

2
ζ(2k).

Exercise 11.16. Integrals of the form

f(s) =

∫ ∞
1

A(x)

xs
dx,(19)

where A(x) is Riemann-integrable on every compact interval [1, a], have some properties
analogous to those of Dirichlet series. For example, they possess a half-plane of absolute
convergence σ > σa and a half-plane of convergence σ > σc in which f(s) is analytic. This
exercise describes an analogue of Theorem 11.13 (Landau’s theorem).

Let F (s) be represented in the half-plane σ > σc by (19), where σc is finite, and assume
that A(x) is real-valued and does not change sign for x ≥ x0. Prove that f(s) has a singularity
on the real axis at the point s = σc.
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Proof. without loss of generality assume A(x) > 0 for x ≥ x0. We shall mirror the argument
made in the proof of Theorem 11.13. That is we will prove the following:

Let F (s) be represented in the half-plane σ > c by the integral

F (s) =

∫ ∞
1

A(x)

xs
dx,

where c is finite, and assume that A(x) ≥ 0 for all x ≥ x0. If F (s) is analytic in some
disk about the point s = c, then the integral converges in the half-plane σ > c − ε for
some ε > 0. Consequently, if the integral has a finite abscissa of convergence σc, then
F (s) has a singularity on the real axis at the point s = σc.

Let a = 1 + c. Since F is analytic at a it can be represented by an absolutely convergent
power series expansion about a,

F (s) =
∞∑
k=0

F (k)(a)

k!
(s− a)k, (20)

and the radius of convergence of this power series exceeds 1 since F is analytic for σ > c and
also in some disk centered at s = c. (See Figure 4.) Since the integral converges absolutely,
when taking derivatives we can differentiate under the integral sign. Hence taking repeated
derivatives gives

F (k)(a) = (−1)k
∫ ∞
1

A(x)(log x)kx−sdx,

so (20) can be rewritten as

F (s) =
∞∑
k=0

∫ ∞
1

(a− s)k

k!
A(x)(log x)kx−sdx. (21)

Since the radius of convergence exceeds 1, this formula is valid for some real s = c− ε where
ε > 0 (see Figure 4.) Then a−s = 1+ε for this s and the summation in (21) has nonnegative
terms for x ≥ x0. Therefore we can interchange the sum and integral to obtain

F (c− ε) =

∫ ∞
1

A(x)

xs

∞∑
k=0

{(1 + ε) log x}k

k!
dx =

∫ ∞
1

A(x)

xs
e(1+ε) log xdx =

∫ ∞
1

A(x)

xc−ε
dx.

In other words, the integral
∫∞
1
A(x)x−sdx converges for s = c − ε, hence it also converges

in the half-plane σ > c− ε.
Now suppose the integral has a finite abscissa of convergence σc. Taking the contrapos-

itive of what was just proven shows F (s) is not analytic at s = σc. This means the radius
of convergence of the power series of F centered at s = 1 + σc cannot be greater than 1. In
fact since F (s) is analytic for all σ > σc, we see the radius of convergence of the power series
must be 1. Since the radius of convergence is equal to the shortest distance to a singularity,
we conclude F (s) has a singularity at the point s = σc.
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c       a! 1 ! c
known analyticity of F

Figure 4: The radius of convergence exceeds 1.

Exercise 11.17. Let λa(n) =
∑

d|n d
aλ(d) where λ(n) is Liouville’s function. Prove that if

σ > max{1,Re(a) + 1}, we have
∞∑
n=1

λa(n)

ns
=
ζ(s)ζ(2s− 2a)

ζ(s− a)

and
∞∑
n=1

λ(n)λa(n)

ns
=
ζ(2s)ζ(s− a)

ζ(s)
.

Proof. Since λa = u ∗Naλ, for σ > max{1,Re(a) + 1}, by Theorem 11.5,

∞∑
n=1

λa(n)

ns
=

(
∞∑
n=1

1

ns

)(
∞∑
n=1

naλ(n)

ns

)
= ζ(s)

∞∑
n=1

λ(n)

ns−a
.

Applying Exercise 11.12 then shows
∞∑
n=1

λa(n)

ns
=
ζ(s)ζ(2s− 2a)

ζ(s− a)
.

Looking at the second sum, observe λ is completely multiplicative and λ(d2) = 1 for all d.
Hence if d | n,

λ
(n
d

)
= λ

(n
d

)
λ(d2) = λ(nd).

From here we find

λ(n)λa(n) =
∑
d|n

daλ(nd) =
∑
d|n

daλ
(n
d

)
= (Na ∗ λ)(n).

Thus for σ > max{1,Re(a) + 1}, by Theorem 11.5,

∞∑
n=1

λ(n)λa(n)

ns
=

(
∞∑
n=1

na

ns

)(
∞∑
n=1

λ(n)

ns

)
=
ζ(2s)ζ(s− a)

ζ(s)
.



Chapter 12
The Functions ζ(s) and L(s, χ)

Exercise 12.1. Let f(n) be an arithmetical function which is period modulo k.
(a) Prove that the Dirichlet series

∑
f(n)n−s converges absolutely for σ > 1 and that

∞∑
n=1

f(n)

ns
= k−s

k∑
r=1

f(r)ζ
(
s,
r

k

)
if σ > 1.

(b) If
∑k

r=1 f(r) = 0 prove that the Dirichlet series
∑
f(n)n−s converges for σ > 0 and that

there is an entire function F (s) such that F (s) =
∑
f(n)n−s for σ > 0.

Proof.
(a) Since f(n) is periodic, there is an M such that |f(n)| ≤M for all n. Thus

∞∑
n=1

|f(n)|
ns

≤Mζ(s)

and it follows that the sum converges absolutely for σ > 1. This means we can rearrange
the sum in this region with out altering it. Through the division algorithm we thus have

∞∑
n=1

f(n)

ns
=

k∑
r=1

∞∑
q=0

f(qk + r)

(qk + r)s

=
k∑
r=1

f(r)
∞∑
q=0

1

(qk + r)s

= k−s
k∑
r=1

f(r)
∞∑
q=0

1

(q + r/k)s

= k−s
k∑
r=1

f(r)ζ
(
s,
r

k

)
.

(b) The convergence for σ > 0 follows directly from Lemma 11.1. Since this sum can be
expressed as a finite linear combination of Hurwitz zeta functions, Theorem 12.4 implies it
must be analytic for all s 6= 1. However since Dirichlet series are analytic in their half-plane
of convergence, we know this sum is analytic at s = 1 and hence can be extended to an
entire function.

141



142 Chapter 12 Solutions

Exercise 12.2. If x is real σ > 1, let F (x, s) denote the periodic zeta function,

F (x, s) =
∞∑
n=1

e2πinx

ns
.

If 0 < a < 1 and σ > 1 prove that Hurwitz’s formula implies

F (a, s) =
Γ(1− s)
(2π)1−s

{
eπi(1−s)/2ζ(1− s, a) + eπi(s−1)/2ζ(1− s, 1− a)

}
.

Proof. By Theorem 12.6 for 0 < a ≤ 1 and σ > 1,

ζ(1− s, a) =
Γ(s)

(2π)1−s
{
e−πis/2F (a, s) + eπis/2F (−a, s)

}
.

Since 0 < a < 1, the same type of formula can be used on ζ(1 − s, 1 − a). The plan
is to substitute this formula into the right hand side of the proposed equality to show it
equals F (a, s). We will do this in Mathematica.

In[1]:= pz = [1 - s]/(2 )ˆ(1 - s) (Exp[ I (1 - s)/2] [1 - s, a] +
Exp[ I (s - 1)/2] [1 - s, 1 - a]);

In[2]:= thm126 = [1 - s, b_] :> [s]/(2 )ˆs (Exp[- I s/2] F[b, s] +
Exp[ I s/2] F[-b, s]);

Now we will apply thm126 on pz and simplify. The simplifications used are standard
algebraic ones and Γ(s)Γ(1− s) = π/ sin(πs).

In[3]:= pz = FullSimplify[pz /. thm126]
Out[3]= (Eˆ(2 I s) F[a - 1, s] + Eˆ(I s) (F[1 - a, s] - F[-a, s]) -

F[a, s])/(Eˆ(2 I s) - 1)

Next we will use that F (x, s) has period 1 in x. After this and cancelation we get the result.

In[4]:= pz = Cancel[pz /. F[b_ + _Integer, s] :> F[b, s]]
Out[4]= F[a, s]

Exercise 12.3. The formula in Exercise 12.2 can be used to extend the definition of F (a, s)
over the entire s-plane if 0 < a < 1. Prove that F (a, s), so extended, is an entire function of s.

Proof. For 0 < a < 1,
N∑
n=1

e2πina =
e2iπa

(
e2iπaN − 1

)
e2iπa − 1

= O(1) .

Using this when applying Abel’s summation formula shows∑
n≤x

e2πina

ns
= O

(
x−s
)
.
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This means F (s) is a convergent Dirichlet series for σ > 0, and hence is analytic there. Thus
we only need to show the extended definition of F (a, s) is analytic for σ ≤ 0. Now in this
region, Γ(1 − s) is analytic everywhere and ζ(1 − s, ·) is analytic for s 6= 0. This shows we
only need to show F (a, s) is analytic at s = 0 in order to show F (a, s) is entire.

By Theorem 12.4, ζ(s, a) has a simple pole at s = 1 with residue 1. Therefore there are
entire functions R1(s, a) and R2(s, a) such that

ζ(1− s, a) = −1

s
+R1(s, a) and ζ(1− s, 1− a) = −1

s
+R2(s, a).

Substituting shows there is an entire function R3(s, a) such that

F (a, s) =
Γ(1− s)
(2π)1−s

{
−e

πi(1−s)/2 + eπi(s−1)/2

s
+R3(s, a)

}
=

Γ(1− s)
(2π)1−s

{
−2 sin(πs/2)

s
+R3(s, a)

}
.

We see F (a, s) has a removable singularity at s = 0, hence by Riemann’s theorem on remov-
able singularities F (a, s) can be extended to an analytic function at s = 0.

Exercise 12.4. If 0 < a < 1 and 0 < b < 1 let

Φ(a, b, s) =
Γ(s)

(2π)s
{ζ(s, a)F (b, 1 + s) + ζ(s, 1− a)F (1− b, 1 + s)} ,

where F is the function in Exercise 12.2. Prove that

Φ(a, b, s)

Γ(s)Γ(−s)
= eπis/2 {ζ(s, a)ζ(−s, 1− b) + ζ(s, 1− a)ζ(−s, b)}

+ e−πis/2{ζ(−s, 1− b)ζ(a, 1− a) + ζ(−s, b)ζ(s, a)},

and deduce that Φ(a, b, s) = Φ(1− b, a,−s). This functional equation is useful in the theory
of elliptic modular functions.

Proof. To demonstrate the identity we will first substitute the formula derived in Exercise
12.2 into Φ(a, b, s), then manipulate. This is shown in Mathematica.

In[5]:= pzR = F[a_, s_] :> [1 - s]/(2 )ˆ(1 - s) (Exp[ I (1 - s)/2]*
[1 - s, a] + Exp[ I (s - 1)/2] [1 - s, 1 - a]);

In[6]:= Phi = [s]/(2 )ˆs ( [s, a] F[b, 1 + s] +
[s, 1 - a] F[1 - b, 1 + s]);

(* substitute *)
In[7]:= Phi = Phi /. pzR;

(* distribute Gammas and collect in terms of Exp *)
In[8]:= PhiG = Collect[Expand[Phi/( [s] [-s])], Power[E, _]]
Out[8]= Eˆ(I s/2) ( [-s, b] [s, 1 - a] + [-s, 1 - b] [s, a]) +

Eˆ(-I s/2) ( [-s, 1 - b] [s, 1 - a] + [-s, b] [s, a])
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Now observe the mapping a 7→ 1 − b, b 7→ a, s 7→ −s permutes the ζ terms that share the
same power of e amongst each other. Again Mathematica is used to demonstrate.

In[9]:= SameQ[PhiG, PhiG /. {a -> 1 - b, b -> a, s -> -s}]
Out[9]= True

Since Γ(s)Γ(−s) is also invariant under this transformation, we conclude

Φ(a, b, s) = Φ(1− b, a,−s).

In Exercises 5, 6 and 7, ξ(s) denotes the entire function introduced in Section 12.8,

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s).

Exercise 12.5. Prove that ξ(s) is real on the lines t = 0 and σ = 1/2, and that ξ(0) =
ξ(1) = 1/2.

Lemma 12.5. If f(s) is entire and real valued on the real line, then

f(s) = f(s) for all s ∈ C.

Proof of Lemma. Since f(s) is entire, we can use the Cauchy-Riemann equations to show
f(s) is entire too. Moreover since f(s) is real valued on the real line, f(s) − f(s) = 0
everywhere on the real line. Since non-zero entire functions have isolated zeros, we conclude

f(s) = f(s) for all s ∈ C.

Proof. Since ξ(s) = ξ(1− s), to show ξ(s) is real on the line t = 0, it’s enough to take σ > 0.
Now clearly (s/2)π−s/2 is real valued when t = 0. Noting for σ > 0 that

Γ(s) =

∫ ∞
0

xs−1e−sdx and (s− 1)ζ(s) =
s− 1

21−s − 1

∞∑
n=1

(−1)n

ns
,

it’s also clear (s− 1)Γ(s/2)ζ(s) is real valued for t = 0 (s− 1 cancels the pole of ζ(s)).
Now since ξ(s) is entire and real valued on the real line, by Lemma 12.5 we have

ξ(s) = ξ(s) for all s ∈ C.

Applying this and the functional equation of ξ(s) we see

ξ(1/2 + it) = ξ(1− (1/2 + it))

= ξ(1/2− it)

= ξ(1/2− it)
= ξ(1/2 + it).

This means ξ(1/2 + it) must be real.
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To calculate ξ(0), use the recurrence relation Γ(s+ 1) = sΓ(s) to see

ξ(s) = (s− 1)π−s/2Γ
(s

2
+ 1
)
ζ(s).

Thus since ζ(0) = −1/2,

ξ(1) = ξ(0) =
1

2
.

Exercise 12.6. Prove that the zeros of ξ(s) (if any exist) are all situated in the strip
0 < σ < 1 and lie symmetrically about the lines t = 0 and σ = 1/2.

Proof. Using the functional equation ξ(s) = ξ(1 − s), if ξ(s) = 0, then ξ(1 − s) = 0. This
means the zeros are symmetric about the line σ = 1/2.

Now in the proof of Exercise 12.5 it was shown

ξ(s) = ξ(s) for all s ∈ C.

Thus ξ(s) = 0 implies ξ(s) = 0, i.e. the zeros of ξ(s) are symmetric about the real line.

Exercise 12.7. Show that the zeros of ζ(s) in the critical strip 0 < σ < 1 (if any exist) are
identical in position and order of multiplicity with those of ξ(s).

Proof. Observe s(s− 1)π−s/2/2 is entire and has no zeros in the critical strip. Furthermore
Γ(s/2) is meromorphic with poles at −n/2 for all nonnegative integers n and is non-zero
everywhere. Thus the only possible zeros of ξ(s) in the critical strip can come from ζ(s) and
the multiplicity is preserved since s(s−1)π−s/2Γ(s/2)/2 is non-zero analytic in this strip.

Exercise 12.8. Let χ be a primitive character mod k. Define

a = a(χ) =

{
0 if χ(−1) = 1,

1 if χ(−1) = −1.

(a) Show that the functional equation for L(s, χ) has the form

L(1− s, χ) = ε(χ)2(2π)−sks−
1
2 cos

(
π(s− a)

2

)
Γ(s)L(s, χ), where |ε(χ)| = 1.

(b) Let

ξ(s, χ) =

(
k

π

)(s+a)/2

Γ

(
s+ a

2

)
L(s, χ).

Show that ξ(1− s, χ) = ε(χ)ξ(s, χ).
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Proof.
(a) By Theorem 12.11

L(1− s, χ) =
ks−1Γ(s)

(2π)s
{
e−πis/2 + χ(−1)eπis/2

}
G(1, χ)L(s, χ).

Now observe

e−πis/2 + χ(−1)eπis/2 =

{
2 cos(πs/2) if a = 0

2 cos(π(s− 1)/2) if a = 1,

which leads to

L(1− s, χ) =

(
G(1, χ)√

k

)
2(2π)−sks−

1
2 cos

(
π(s− a)

2

)
Γ(s)L(s, χ).

By Theorem 8.11, |G(1, χ)| =
√
k, which shows we can take ε(χ) = G(1, χ)/

√
k.

(b) From above we have

ξ(1− s, χ) =

(
k

π

)(s+a)/2

Γ

(
s+ a

2

)
ε(χ)2(2π)−sks−

1
2 cos

(
π(s− a)

2

)
Γ(s)L(s, χ)

= ε(χ)ξ(s, χ)

{
21−s
√
π

cos

(
π(s− a)

2

)
Γ((1− s+ a)/2)Γ(s)

Γ((s+ a)/2)

}
. (22)

Next, we consider the two cases for a separately to show the expression in the brackets is 1.

• Suppose a = 0. Applying the duplication formula and the functional equation,

Γ

(
1− s

2

)
Γ(s)

Γ(s/2)
=

2s−1√
π

Γ

(
1− s

2

)
Γ

(
s+ 1

2

)
=

2s−1√
π

π

sin (π(s− 1)/2)

=
2s−1
√
π

cos (πs/2)
.

Substituting this inside the brackets of (22) gives the result.

• Suppose a = 1. Applying the duplication formula and the functional equation,

Γ(1− s/2)Γ(s)

Γ((s+ a)/2)
=
(

Γ
(

1− s

2

)
Γ
(s

2

)) Γ(s)

Γ(s/2)Γ((s+ 1)/2)

=
π

sin (πs/2)

Γ(s)

21−s√πΓ(s)

=
2s−1
√
π

cos (π(s− 1)/2)
.

Substituting this inside the brackets of (22) gives the result.
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Exercise 12.9. Refer to Exercise 12.8.
(a) Prove that ξ(s, χ) 6= 0 if σ > 1 or σ < 0.
(b) Describe the location of the zeros of L(s, χ) in the half-plane σ < 0.

Proof.
(a) Since characters are completely multiplicative, for σ > 1,

1

L(s, χ)
=
∞∑
n=1

µ(n)χ(n)

ns
.

Since this series converges for σ > 1 and hence is analytic, it must be that L(s, χ) is nonzero
for σ > 1. Combining this with the fact that (k/π)(s+a)/2Γ((s + a)/2) is never zero shows
ξ(s, χ) is nonzero for σ > 1. Furthermore for σ > 1,

ξ(1− s, χ) = ε(χ)ξ(s, χ) 6= 0,

i.e. ξ(s, χ) is not zero for σ < 0.
(b) By definition it’s easy to see ξ(s, χ) is analytic for σ > 1 and by its functional equation,
ξ(s, χ) must be analytic for σ < 0. However Γ((s + a)/2) has poles at s = a − 2n for all
n ≥ −a/2. This means L(s, χ) must cancel these poles by having zeros at these locations.
Moreover since ξ(s, χ) is nonzero, L(s, χ) can’t be zero anywhere else. Hence for σ < 0,

L(s, χ) = 0 if and only if s = a− 2n for some n > −a/2.

Exercise 12.10. Let χ be a non primitive character modulo k. Describe the location of the
zeros of L(s, χ) in the half-plane σ < 0.

Proof. Write χ(n) = ψ(n)χ1(n) where ψ is primitive and χ1 is principal mod k. Then by
Theorem 12.9

L(s, χ) = L(s, ψ)
∏
p|k

(
1− ψ(p)

ps

)
and so L(s, χ) = 0 if and only if L(s, ψ) = 0. Hence for σ < 0, noting a(ψ) = a(χ) and
applying by Exercise 12.9 (b),

L(s, χ) = 0 if and only if s = a− 2n for some n > −a/2.

Exercise 12.11. Prove the Bernoulli polynomials satisfy the relations

Bn(1− x) = (−1)nBn(x) and B2n+1( 1
2
) = 0 for every n ≥ 0.
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Proof. By definition we have

∞∑
n=0

Bn(1− x)
tn

n!
=
te(1−x)t

et − 1
=

(−t)e−xt

e−t − 1

=
∞∑
n=0

Bn(x)
(−t)n

n!

=
∞∑
n=0

(−1)nBn(x)
tn

n!
.

Equating coefficients shows
Bn(1− x) = (−1)nBn(x).

Applying this result for an odd index 2n+ 1 gives

B2n+1(1/2) = (−1)2n+1B2n+1(1/2) = −B2n+1(1/2),

which means B2n+1(1/2) = 0.

Exercise 12.12. Let Bn denote the nth Bernoulli number. Note that

B2 = 1
6

= 1− 1
2
− 1

3
, B4 = −1

30
= 1− 1

2
− 1

3
− 1

5
,

B6 = 1
42

= 1− 1
2
− 1

3
− 1

7
.

These formulas illustrate a theorem discovered in 1840 by von Staudt and Clausen (inde-
pendently). If n ≥ 1 we have

B2n = In −
∑
p−1|2n

1

p
,

where In is an integer and the sum is over all primes p such that p − 1 divides 2n. This
exercise outlines a proof due to Lucas.
(a) Prove that

Bn =
n∑
k=0

1

k + 1

k∑
r=0

(−1)r
(
k

r

)
rn.

[Hint : Write x = log{1 + (ex − 1)} and use the power series for x/(ex − 1).]
(b) Prove that

Bn =
n∑
k=0

k!

k + 1
c(n, k),

where c(n, k) is an integer.
(c) If a, b are integers with a ≥ 2, b ≥ 2 and ab > 4, prove that ab | (ab − 1)!. This shows
that in the sum of (b), every term with k + 1 composite, k > 3, is an integer.
(d) If p is prime, prove that

p−1∑
r=0

(−1)r
(
p− 1

r

)
rn ≡

{
−1 mod p if p− 1 | n, n > 0,

0 mod p if p− 1 - n.

(e) Use the above results or some other method to prove the von Staudt-Clausen theorem.
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Lemma 12.12.1. The Stirling numbers of the second kind, S(n, k), are defined as the
number of ways to partition n elements into k nonempty sets. A well known formula is

S(n, k) =
1

k!

k∑
r=0

(−1)k−r
(
k

r

)
rn.

Proof of Lemma. The number of ordered partitions of n into k nonempty sets is k!S(n, k).
To derive the formula, we will count another way using the inclusion-exclusion principal.

Now note finding an ordered partition of n into k nonempty sets is equivalent to finding
an onto function from n into k. To derive the formula, we will start out with all kn functions
and apply the inclusion-exclusion principal to narrow down the onto functions. For each
1 ≤ j ≤ k, there are (k − 1)n functions that do not include j in it’s image. Thus we will
subtract off

(
k
1

)
(k − 1)n total functions we’ve counted so far. Continuing in this fashion we

will add and subtract
(
k
i

)
(k − i)n functions for 1 ≤ i ≤ k − 1. This leads to

k!S(n, k) =
k∑
r=0

(−1)k−r
(
k

r

)
rn.

Lemma 12.12.2. For n ≥ 0 and m > 0,

n+m∑
r=0

(−1)r
(
n+m

r

)
rn = 0.

Proof of Lemma. Fix m and induct on n. Since m > 0, when n = 0,

m∑
r=0

(−1)r
(
m

r

)
= (1− 1)m = 0.

Assuming the result is true for n, then

(n+1)+m∑
r=0

(−1)r
(

(n+ 1) +m

r

)
rn+1 = r

n+(m+1)∑
r=0

(−1)r
(
n+ (m+ 1)

r

)
rn = 0.

Remark. An alternate proof is to notice the proof of Lemma 12.12.1 did not require k ≤ n.

Proof of Exercise.
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(a) Following the hint we have

∞∑
n=0

Bn
tn

n!
=

log{1 + (et − 1)}
et − 1

=
∞∑
k=0

(1− et)k

k + 1

=
∞∑
k=0

1

k + 1

k∑
r=0

(−1)r
(
k

r

)
ert

=
∞∑
n=0

∞∑
k=0

1

k + 1

k∑
r=0

(−1)r
(
k

r

)
rntn

n!

=
∞∑
n=0

n∑
k=0

1

k + 1

k∑
r=0

(−1)r
(
k

r

)
rntn

n!
,

where Lemma 12.12.2 was used in the last step. Equating coefficients gives the result.
(b) Observe c(n, k) = (−1)kS(n, k). Hence by Lemma 12.12.1, c(n, k) is an integer.
(c) See Lemma 5.7.
(d) If p− 1 | n, then rn ≡ 1 mod p for 0 < r ≤ p− 1. Thus

p−1∑
r=0

(−1)r
(
p− 1

r

)
rn ≡ −1 +

p−1∑
r=0

(−1)r
(
p− 1

r

)
= −1 + (1− 1)p−1 = −1 mod p.

If p− 1 - n, then

p−1∑
r=0

(−1)r
(
p− 1

r

)
rn ≡

p−1∑
r=0

(−1)r
(
p− 1

r

)
rn−q(p−1) mod p,

where q = bn/(p− 1)c and 0 < n− q(p− 1) < p− 1. Thus by Lemma 12.12.2,

p−1∑
r=0

(−1)r
(
p− 1

r

)
rn−q(p−1) = 0,

which finishes the proof.
(e) Let S = {0 ≤ k ≤ 2n | k + 1 is composite and k + 1 6= 4}. Then from (a) - (d),

B2n =
2n∑
k=0

1

k + 1

k∑
r=0

(−1)r
(
k

r

)
r2n

=
∑
k∈S

k!

k + 1
c(2n, k) +

∑
p−1≤2n
p is prime

1

p

p−1∑
r=0

(−1)r
(
p− 1

r

)
r2n +

1

4

3∑
r=0

(−1)r
(

3

r

)
r2n

= I ′n −
∑
p−1|2n

1

p
+

1

4

3∑
r=0

(−1)r
(

3

r

)
r2n, (23)
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where I ′n is an integer. Now

3∑
r=0

(−1)r
(

3

r

)
r2n ≡ −3− 32n ≡ 0 mod 4,

which means the last sum in (23) is an integer.

Exercise 12.13. Prove that the derivative of the Bernoulli polynomial B′n(x) is nBn−1(x)
if n ≥ 2.

Proof. By definition we have

∞∑
n=0

B′n(x)
tn

n!
=

∂

∂x

(
text

et − 1

)
=

t2ext

et − 1

= t
∞∑
n=0

Bn(x)
tn

n!

=
∞∑
n=1

Bn−1(x)
tn

(n− 1)!

=
∞∑
n=1

nBn−1(x)
tn

n!
.

Equating coefficients for n ≥ 1 gives the result.

Exercise 12.14. Prove that the Bernoulli polynomials satisfy the addition formula

Bn(x+ y) =
n∑
k=0

(
n

k

)
Bk(x)yn−k.

Proof. By definition we have

∞∑
n=0

Bn(x+ y)
tn

n!
=
text+yt

et − 1
=
text+yt

et − 1
eyt

=

(
∞∑
n=0

Bn(x)
tn

n!

)(
∞∑
n=0

yn
tn

n!

)

=
∞∑
n=0

(
n∑
k=0

(
n

k

)
Bk(x)yn−k

)
tn

n!
.

Equating coefficients gives the result.

Exercise 12.15. Prove that the Bernoulli polynomials satisfy the multiplication formula

Bp(mx) = mp−1
m−1∑
k=0

Bp

(
x+

k

m

)
.
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Proof. By definition we have

∞∑
n=0

mp−1
m−1∑
k=0

Bp

(
x+

k

m

)
tn

n!
= mp−1

m−1∑
k=0

te(x+k/m)t

et − 1

= mp−1 text

et − 1

m−1∑
k=0

(et/m)k

= mp−1 text

et − 1

et − 1

et/m − 1

= mp (t/m)emx(t/m)

et/m − 1

=
∞∑
n=0

mpBn(mx)
(t/m)n

n!
.

Equating coefficients of tp gives

Bp(mx) = mp−1
m−1∑
k=0

Bp

(
x+

k

m

)
.

Exercise 12.16. Prove that if r ≥ 1 the Bernoulli numbers satisfy the relation

r∑
k=0

22kB2k

(2k)!(2r + 1− 2k)!
=

1

(2r)!
.

Proof. Note B1 = −1/2 and B2k+1 = 0 for all k > 0. Thus we can include odd k in the sum
on the left hand side to get

r∑
k=0

22kB2k

(2k)!(2r + 1− 2k)!
=

1

(2r)!
+

2r+1∑
k=0

2kBk

k!(2r + 1− k)!

=
1

(2r)!
+

1

(2r + 1)!

2r+1∑
k=0

(
2r + 1

k

)
2kBk

=
1

(2r)!
+

22r+1

(2r + 1)!

2r+1∑
k=0

(
2r + 1

k

)
Bk ·

(
1

2

)2r+1−k

=
1

(2r)!
+

22r+1

(2r + 1)!
B2r+1(1/2).

By Exercise 12.11, B2r+1(1/2) = 0 which completes the proof.

Remark. Applying Theorem 12.17 gives the recurrence relation

2(−1)r+1π−2rζ(2r) =
1

(2r)!
−

r−1∑
k=0

2(−1)k+1π−2kζ(2k)

(2r + 1− 2k)!
.
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Exercise 12.17. Calculate the integral
∫ 1

0
xBp(x)dx in two ways and deduce the formula

p∑
r=0

(
p

r

)
Br

p+ 2− r
=
Bp+1

p+ 1
.

Proof. The result can be verified directly for p < 2. By Exercise 12.13, B′p(x) = pBp−1(x),
which implies an antiderivative of Bp(x)dx is Bp+1(x)/(p + 1). Additionally by Theorem
12.14, Bp(0) = Bp(1) for p ≥ 2. Hence integrating by parts we see∫ 1

0

xBp(x)dx = x
Bp+1(x)

p+ 1

]1
0

−
∫ 1

0

Bp(x)dx

=
Bp+1

p+ 1
−
[
Bp+1(x)

p+ 1

]1
0

=
Bp+1

p+ 1
.

On the other hand, we can apply Theorem 12.12 before integrating to find∫ 1

0

xBp(x)dx =

∫ 1

0

x

p∑
r=0

(
p

r

)
Brx

p−rdx

=

p∑
r=0

(
p

r

)
Br

∫ 1

0

xp+1−rdx

=

p∑
r=0

(
p

r

)
Br

p+ 2− r
.

Exercise 12.18.
(a) Verify the identity

uv

(eu − 1)(ev − 1)

eu+v − 1

u+ v
=

uv

u+ v

(
1 +

1

eu − 1
+

1

ev − 1

)
= 1 +

∞∑
n=2

uv

n!

(
un−1 + vn−1

u+ v

)
Bn.

(b) Let J =
∫ 1

0
Bp(x)Bq(x)dx. Show that J is the coefficient of p!q!upvq in the expansion of (a).

Use this to deduce that

∫ 1

0

Bp(x)Bq(x)dx =


(−1)p+1 p!q!

(p+q)!
Bp+q if p ≥ 1, q ≥ 1,

1 if p = q = 0,

0 if p ≥ 1, q = 0; or p = 0, q ≥ 1.
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Proof.
(a) The first equality is verified with standard algebraic techniques, so we will focus on the
other equality. Now by the definition of Bernoulli numbers,

uv

u+ v

(
1 +

1

eu − 1
+

1

ev − 1

)
=

uv

u+ v

(
1 +

∞∑
n=0

Bn
un

n!
+
∞∑
n=0

Bn
vn

n!

)

=
uv

u+ v

(
1 +

∞∑
n=0

(un−1 + vn−1)
Bn

n!

)

= 1 +
∞∑
n=2

uv

n!

(
un−1 + vn−1

u+ v

)
Bn.

(b) We have by (a) that

∞∑
p=0

∞∑
q=0

∫ 1

0

Bp(x)Bq(x)dx
upvq

p!q!
=

∫ 1

0

uexu

eu − 1

vexv

ev − 1
dx

=
uv

(eu − 1)(ev − 1)

eu+v − 1

u+ v

= 1 +
∞∑
n=2

uv

n!

(
un−1 + vn−1

u+ v

)
Bn. (24)

Since B2k+1 = 0 for k > 0 we can include or ignore the odd indices in subsequent transfor-
mations of (24). This gives

1 +
∞∑
n=2

uv

n!

(
un−1 + vn−1

u+ v

)
Bn = 1 +

∞∑
n=2

uv

(2n)!

(
u2n−1 + v2n−1

u+ v

)
B2n

= 1 +
∞∑
n=2

uv

(2n)!

n−1∑
m=1

(−1)m+1um−1vn−m−1B2n

= 1 +
∞∑
n=2

n−1∑
m=1

(−1)m+1umvn−m
Bn

n!
.

Making the substitution (m,n) = (p, p+ q) shows the sum is equal to

1 +
∞∑
p=1

∞∑
q=1

(−1)p+1Bp+q
upvq

(p+ q)!
,

because solving the system

2 ≤ p+ q and 1 ≤ p ≤ p+ q − 1

gives p ≥ 1 and q ≥ 1. Equating coefficients gives the result.
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Exercise 12.19.
(a) Use a method similar to that in Exercise 12.18 to derive the identity

(u+ v)
∞∑
m=0

∞∑
n=0

Bm(x)Bn(x)
umvn

m!n!
=

∞∑
m=0

∞∑
n=0

Bm+n(x)
umvn

m!n!

∞∑
r=0

B2r

(2r)!
(u2rv + uv2r).

(b) Compare coefficients in (a) and integrate the result to obtain the formula

Bm(x)Bn(x) =
∑
r

{(
m

2r

)
n+

(
n

2r

)
m

}
B2rBm+n−2r(x)

m+ n− 2r
+ (−1)m+1 m!n!

(m+ n)!
Bm+n

for m ≥ 1, n ≥ 1. Indicate the range of the index r.

Proof.
(a) Looking at the right hand side, since B1 = −1/2 and B2r+1 = 0 for r > 0,

∞∑
r=0

B2r

(2r)!
(u2rv + uv2r) =

∞∑
r=0

Br

r!
(urv + uvr) + uv

=
uv

eu − 1
+

uv

ev − 1
+ uv =

uv (eu+v − 1)

(eu − 1) (ev − 1)
.

For the remainder of the right hand side, we can collect the sum in terms of Bk(x) to get

∞∑
m=0

∞∑
n=0

Bm+n(x)
umvn

m!n!
=
∞∑
k=0

Bk(x)
k∑
j=0

ujvk−j

j!(k − j)!

=
∞∑
k=0

Bk(x)

k!

k∑
j=0

(
k

j

)
ujvk−j

=
∞∑
k=0

Bk(x)
(u+ v)k

k!
=

(u+ v)ex(u+v)

eu+v − 1
.

Multiplying shows

∞∑
m=0

∞∑
n=0

Bm+n(x)
umvn

m!n!

∞∑
r=0

B2r

(2r)!
(u2rv + uv2r) =

(u+ v)ex(u+v)

eu+v − 1

uv (eu+v − 1)

(eu − 1) (ev − 1)

= (u+ v)
uexu

eu − 1

vexv

ev − 1

= (u+ v)
∞∑
m=0

∞∑
n=0

Bm(x)Bn(x)
umvn

m!n!
.

(b) The right hand side of (a) is equal to

∞∑
m=0

∞∑
n=0

∞∑
r=0

B2r

(2r)!
Bm+n(x)

um+2rvn+1

m!n!
+
∞∑
m=0

∞∑
n=0

∞∑
r=0

B2r

(2r)!
Bm+n(x)

um+1vn+2r

m!n!
.
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To collect both sums in terms of upvq we will substitute (p, q) = (m+ 2r, n+ 1) in the first
sum and (p, q) = (m + 1, n + 2r) in the second sum. Hence in the first sum r will range
from 0 to bp/2c and in the second sum r will range from 0 to bq/2c. This means the sums
equal

∞∑
p=0

∞∑
q=1

bp/2c∑
r=0

B2r

(2r)!

Bp+q−2r−1(x)upvq

(p− 2r)!(q − 1)!
+
∞∑
p=1

∞∑
q=0

bq/2c∑
r=0

B2r

(2r)!

Bp+q−2r−1(x)upvq

(p− 1)!(q − 2r)!

=
∞∑
p=0

∞∑
q=0

bp/2c∑
r=0

(
p

2r

)
q
B2rBp+q−2r−1(x)upvq

p!q!
+
∞∑
p=0

∞∑
q=0

bq/2c∑
r=0

(
q

2r

)
p
B2rBp+q−2r−1(x)upvq

p!q!

=
∞∑
p=0

∞∑
q=0

Mp,q∑
r=0

{(
p

2r

)
q +

(
q

2r

)
p

}
B2rBp+q−2r−1(x)

upvq

p!q!
, (25)

where Mp,q = max{bp/2c , bq/2c}.
Now the left hand side of (a) is equal to

(u+ v)
uexu

eu − 1

vexv

ev − 1
=

(
uexu

eu − 1

vexv

ev − 1

)′
=

∞∑
m=0

∞∑
n=0

(Bm(x)Bn(x))′
umvn

m!n!
.

Thus equating coefficients of this with the coefficients of (25) shows

(Bm(x)Bn(x))′ =

Mm,n∑
r=0

{(
n

2r

)
m+

(
n

2r

)
m

}
B2rBm+n−2r−1(x).

Since Exercise 12.13 shows an antiderivative of Bk(x) is Bk+1(x)/(k + 1), integrating both
sides gives

Bm(x)Bn(x) =

Mm,n∑
r=0

{(
m

2r

)
n+

(
n

2r

)
m

}
B2rBm+n−2r(x)

m+ n− 2r
+ C

where C is some constant with respect to x. Finally, Exercise 12.18 shows∫ 1

0

Bm(x)Bn(x)dx = (−1)m+1 m!n!

(m+ n)!
Bm+n and

∫ 1

0

Bk(x) = 0,

so it must be that C = (−1)m+1 m!n!
(m+n)!

Bm+n.

Exercise 12.20. Show that if m ≥ 1, n ≥ 1 and p ≥ 1, we have∫ 1

0

Bm(x)Bn(x)Bp(x)dx

= (−1)p+1p!
∑
r

{(
m

2r

)
n+

(
n

2r

)
m

}
(m+ n− 2r − 1)!

(m+ n+ p− 2r)!
B2rBm+n+p−2r.

In particular, compute
∫ 1

0
B3

2(x)dx from this formula.
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Proof. Note in Exercise 12.18 it was shown that
∫ 1

0
Bp(x)dx = 0. Combining this with the

rest of the results of Exercise 12.18 and Exercise 12.19 shows

∫ 1

0

Bm(x)Bn(x)Bp(x)dx

=

∫ 1

0

∑
r

{(
m

2r

)
n+

(
n

2r

)
m

}
B2rBm+n−2r(x)

m+ n− 2r
Bp(x)dx

=
∑
r

{(
m

2r

)
n+

(
n

2r

)
m

}
B2r

m+ n− 2r

∫ 1

0

Bm+n−2r(x)Bp(x)dx

=
∑
r

{(
m

2r

)
n+

(
n

2r

)
m

}
B2r

m+ n− 2r
(−1)p+1 (m+ n− 2r)!p!

(m+ n+ p− 2r)!
Bm+n+p−2r

= (−1)p+1p!
∑
r

{(
m

2r

)
n+

(
n

2r

)
m

}
(m+ n− 2r − 1)!

(m+ n+ p− 2r)!
B2rBm+n+p−2r.

In particular ∫ 1

0

B3
2(x)dx = −8

1∑
r=0

(
2

2r

)
(3− 2r)!

(6− 2r)!
B2rB6−2r =

1

3780
.

Exercise 12.21. Let f(n) be an arithmetical function which is periodic mod k, and let

g(n) =
1

k

∑
m mod k

f(m)e−2πimn/k

denote the finite Fourier coefficients of f . If

F (s) = k−s
k∑
r=1

f(r)ζ
(
s,
r

k

)
,

prove that

F (1− s) =
Γ(s)

(2π)s

{
eπis/2

k∑
r=1

g(r)ζ
(
s,
r

k

)
+ e−πis/2

k∑
r=1

g(−r)ζ
(
s,
r

k

)}
.
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Proof. From Theorem 12.8,

F (1− s) = ks−1
k∑
r=1

f(r)ζ
(

1− s, r
k

)
= ks−1

k∑
r=1

f(r)
2Γ(s)

(2πk)s

k∑
t=1

cos

(
πs

2
− 2πtr

k

)
ζ

(
s,
t

k

)

=
2Γ(s)

(2π)s

k∑
t=1

ζ

(
s,
t

k

)
1

k

k∑
r=1

f(r)

{
eπis/2−2πitr/k + e−πis/2+2πitr/k

2

}

=
Γ(s)

(2π)s

k∑
t=1

ζ

(
s,
t

k

){
eπis/2

k

k∑
r=1

f(r)e−2πitr/k +
e−πis/2

k

k∑
r=1

f(r)e−2πi(−t)r/k

}

=
Γ(s)

(2π)s

{
eπis/2

k∑
t=1

g(t)ζ

(
s,
t

k

)
+ e−πis/2

k∑
t=1

g(−t)ζ
(
s,
t

k

)}
.

Exercise 12.22. Let χ be any nonprincipal character mod k and let S(x) =
∑

n≤x χ(n).
(a) If N ≥ 1 and σ > 0 prove that

L(s, χ) =
N∑
n=1

χ(n)

ns
+ s

∫ ∞
N

S(x)− S(N)

xs+1
dx.

(b) If s = σ + it with σ ≥ δ > 0 and |t| ≥ 0, use (a) to show that there is a constant A(δ)
such that, if δ ≤ 1,

|L(s, χ)| ≤ A(δ)B(k)(|t|+ 1)1−δ

where B(k) is an upper bound for |S(x)|. In Theorem 13.15 it is shown that B(k) =

O
(√

k log k
)

.

(c) Prove that for some constant A > 0 we have

|L(s, χ)| ≤ A log k if σ ≥ 1− 1

log k
and 0 ≤ |t| ≤ 2.

[Hint : Take N = k in (a).]

Proof.
(a) For σ > 0 and 1 ≤ N < M , by Abel’s summation formula

M∑
n=1

χ(n)

ns
=

N∑
n=1

χ(n)

ns
+

M∑
n=N+1

χ(n)

ns

=
N∑
n=1

χ(n)

ns
− S(N)

N s
+
S(M)

M s
+ s

∫ M

N

S(x)

xσ+1
dx.
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Noting σ > 0 and S(x) = O(1), let M → ∞. As a consequence S(M)M−s → 0 and the
integral converges. This means

L(s, χ) =
N∑
n=1

χ(n)

ns
− S(N)

N s
+ s

∫ ∞
N

S(x)

xσ+1
dx

=
N∑
n=1

χ(n)

ns
+ s

∫ ∞
N

S(x)− S(N)

xs+1
dx.

(b) For σ ≥ δ > 0 and δ ≤ 1, by Theorem 3.2 (b),

|L(s, χ)| ≤ B(k)
N∑
n=1

1

nδ
+ |s|

∫ ∞
N

2B(k)

xσ+1
dx

≤ A′(δ)B(k)N1−δ + 2

(
1 +
|t|
σ

)
B(k)N−σ

≤ A′(δ)B(k)N1−δ +
2

δ
(δ + |t|)B(k)N−δ

≤ A′(δ)B(k)N1−δ +
2

δ
(1 + |t|)B(k)N−δ.

Letting N = b|t|+ 1c ≤ |t|+ 1 gives

|L(s, χ)| ≤
(
A′(δ) +

2

δ

)
B(k)(|t|+ 1)1−δ.

(c) Following the hint,

L(s, χ) =
k∑

n=1

χ(n)

ns
+ s

∫ ∞
k

S(x)

xs+1
dx.

This leads to

|L(s, χ)| ≤
k∑

n=1

1

nσ
+ (σ + 2)

∫ ∞
k

B(k)

xσ+1
dx

=
k∑

n=1

1

nσ
+

(
1 +

2

σ

)
B(k)k−σ

=
k1−σ

1− σ
+ ζ(σ) +O

(
k−σ
)

+

(
1 +

2

σ

)
B(k)k−σ,

where Theorem 3.2 (b) was applied in the last step. Now σ ≥ 1− 1/ log k so we have

|L(s, χ)| ≤ k1/ log k

1/ log k
+ ζ

(
1− 1

log 2

)
+O

(
k1/ log k

k

)
+

(
1 +

2

1− 1/ log k

)
B(k)

k1/ log k

k

= e log k + ζ

(
1− 1

log 2

)
+ o(1) + eB(k)

log k − 3

k(log k − 1)

≤ e log k + C1
B(k)√
k

+ C2,

for some constants Ci. Since B(k) = O
(√

k log k
)

, as mentioned in (b), we’re done.
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Analytic Proof of the Prime Number
Theorem

Exercise 13.1. Chebyshev proved that if ψ(x)/x tends to a limit as x→∞ then this limit
equals 1. A proof was outlined in Exercise 4.26. This exercise outlines another proof based
on the identity

−ζ
′(s)

ζ(s)
= s

∫ ∞
1

ψ(x)

xs+1
dx, (σ > 1)(26)

given in Exercise 11.1 (d).
(a) Prove that (1− s)ζ ′(s)/ζ(s)→ 1 as s→ 1.
(b) Let δ = lim sup

x→∞
(ψ(x)/x). Given ε > 0, choose N = N(ε) so that x ≥ N implies

ψ(x) ≤ (δ+ ε)x. Keep s real, 1 < s ≤ 2, split the integral (26) into two parts,
∫ N
1

+
∫∞
N

and
estimate each part to obtain the inequality

−ζ
′(s)

ζ(s)
≤ C(ε) +

s(δ + ε)

s− 1
,

where C(ε) is a constant independent of s. Use (a) to deduce that δ ≥ 1.
(c) Let γ = lim inf

x→∞
(ψ(x)/x) and use a similar argument to deduce that γ ≤ 1. Therefore if

ψ(x)/x tends to a limit as x→∞ then γ = δ = 1.

Proof. By Theorem 4.9, there are positive constants c1, c2 such that c2x ≤ ψ(x) ≤ c1x
eventually holds for all x. Thus both the liminf and limsup of ψ(x)/x exist.

(a) By Theorem 12.4 ζ(s) has a simple pole at s = 1 with residue 1. Therefore there is an
entire function R(s) such that

ζ(s) =
1

s− 1
+R(s) and ζ ′(s) = − 1

(s− 1)2
+R′(s).

This means
(1− s)ζ ′(s)

ζ(s)
=

1− (s− 1)2R′(s)

1 + (s− 1)R(s)
,

hence (1− s)ζ ′(s)/ζ(s)→ 1 as s→ 1.
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(b) Let δ = lim supψ(x)/x and ε > 0. By definition of limsup, there exists N = Nε such
that for all x ≥ N , ψ(x) ≤ (δ + ε)x. Then

−ζ
′(s)

ζ(s)
= s

(∫ N

1

+

∫ ∞
N

)
ψ(x)

xs+1
dx

≤ s

∫ N

1

ψ(N)

xs+1
dx+ s

∫ ∞
N

δ + ε

xs
dx

= (1−N1−s)ψ(N) +N1−s s(δ + ε)

s− 1

≤ ψ(N) +
s(δ + ε)

s− 1
.

Multiplying through by s− 1 gives

(1− s)ζ ′(s)
ζ(s)

≤ (s− 1)ψ(N) + s(δ + ε)

and applying (a) while taking s→ 1+ shows

1 ≤ δ + ε.

Letting ε→ 0+ proves 1 ≤ δ.

(c) Let γ = lim inf ψ(x)/x and ε > 0. By definition of limsup, there exists N = Nε such that
for all x ≥ N , ψ(x) ≥ (γ − ε)x. Then

−ζ
′(s)

ζ(s)
= s

(∫ N

1

+

∫ ∞
N

)
ψ(x)

xs+1
dx

≥ s

∫ N

1

1

xs+1
dx+ s

∫ ∞
N

γ − ε
xs

dx

= (1−N1−s) +N1−s s(γ − ε)
s− 1

≥ 1 +
s(γ − ε)
s− 1

.

Multiplying through by s− 1 gives

(1− s)ζ ′(s)
ζ(s)

≥ (s− 1) + s(γ − ε)

and applying (a) while taking s→ 1+ shows

1 ≥ γ − ε.

Letting ε→ 0+ proves 1 ≥ γ.
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Exercise 13.2. Let A(x) =
∑

n≤x a(n), where

a(n) =

{
0 if n 6= a prime power,
1
k

if n = pk.

Prove that A(x) = π(x) +O(
√
x log log x).

Proof. Observe by the prime number theorem

A(x) =

blog2(x)c∑
n=1

π(x1/n)

n

= π(x) +
1

log x

blog2(x)c∑
n=2

(
x1/n + o

(
x1/n

))
= π(x) +

1

log x
O
(√

x log2(x)
)

= π(x) +O
(√

x
)
.

Exercise 13.3.
(a) If c > 1 and x 6= integer, prove that if x > 1,

1

2πi

∫ c+∞i

c−∞i
log ζ(s)

xs

s
ds = π(x) +

1

2
π(x1/2) +

1

3
π(x1/3) + · · · .

(b) Show that the prime number theorem is equivalent to the asymptotic relation

1

2πi

∫ c+∞i

c−∞i
log ζ(s)

xs

s
ds ∼ x

log x
as x→∞.

A proof of the prime number theorem based on this relation was given by Landau in 1903.

Proof.
(a) Let σ = c. It was shown in Theorem 11.14 that

log ζ(s) =
∞∑
n=2

Λ(n)

log n
n−s,

so by Theorem 11.18 (Perron’s formula)

1

2πi

∫ c+∞i

c−∞i
log ζ(s)

xs

s
ds =

∑
n≤x

Λ(n)

log n
.

Observe
Λ(n)

log n
=

{
0 if n 6= a prime power,
1
k

if n = pk,
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so
1

2πi

∫ c+∞i

c−∞i
log ζ(s)

xs

s
ds =

∑
pk≤x

1

k
= π(x) +

1

2
π(x1/2) +

1

3
π(x1/3) + · · · .

(b) By Exercise 13.2 and (a) we have

1

2πi

∫ c+∞i

c−∞i
log ζ(s)

xs

s
ds = A(x) = π(x) +O

(√
x log log x

)
,

and the proof follows since

O
(√

x log log x
)

= o

(
x

log x

)
.

Exercise 13.4. Let M(x) =
∑

n≤x µ(n). The exact order of magnitude of M(x) for large
x is not known. In Chapter 4 it was shown that the prime number theorem is equivalent to
the relation M(x) = o(x) as x → ∞. This exercise relates the order of magnitude of M(x)
with the Riemann hypothesis.

Suppose there is a positive constant θ such that

M(x) = O
(
xθ
)

for x ≥ 1.

Prove that the formula
1

ζ(s)
= s

∫ ∞
1

M(x)

xs+1
dx,

which holds for σ > 1 (see Exercise 11.1 (c)) would also be valid for σ > θ. Deduce that
ζ(s) 6= 0 for σ > θ. In particular, this shows that the relation M(x) = O

(
x1/2+ε

)
for every

ε > 0 implies the Riemann hypothesis. It can also be shown that the Riemann hypothesis
implies M(x) = O

(
x1/2+ε

)
for every ε > 0.

Proof. Suppose there is some positive constant θ such that M(x) = O
(
xθ
)
. Then it’s clear

s

∫ ∞
1

M(x)

xs+1
dx

converges for σ > θ. As mentioned in Exercise 11.16, the integral is thus analytic in this
half-plane. Hence by the uniqueness of analytic continuation,

1

ζ(s)
= s

∫ ∞
1

M(x)

xs+1
dx for σ > θ.

Therefore 1/ζ(s) is analytic in this half-plane, so ζ(s) 6= 0 for σ > θ.

Exercise 13.5. Prove the following lemma, which is similar to Lemma 2. Let

A1(x) =

∫ x

1

A(u)

u
du,
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where A(u) is a nonnegative increasing function for u ≥ 1. If we have the asymptotic formula

A1(x) ∼ Lxc as x→∞,

for some c > 0 and L > 0, then we also have

A(x) ∼ cLxc as x→∞.

Proof. Since xc →∞ as x→∞, we can apply L’Hôpital’s rule to find

L = lim
x→∞

A1(x)

xc
= lim

x→∞

A(x)/x

cxc−1
= lim

x→∞

A(x)

cxc
.

Exercise 13.6. Prove that

1

2πi

∫ 2+∞i

2−∞i

ys

s2
ds = 0 if 0 < y < 1.

What is the value of this integral if y ≥ 1?

Proof. When 0 < y < 1 consider the contour C1 illustrated in Figure 5 (a). Since ys/s2 is
analytic for s 6= 0,

1

2πi

∫
C1

ys

s2
ds = 0.

Now observe |ys| = yσ ≤ y2 for any s on C1. Hence if CR is the circular sector of C1,∣∣∣∣∫
CR

ys

s2
ds

∣∣∣∣ ≤ y2

R2
(πR)→ 0 as R→∞,

which means
1

2πi

∫ 2+∞i

2−∞i

ys

s2
ds = 0.

When y ≥ 1 consider the contour C2 illustrated in Figure 5 (b). Note

Res
s=0

(
ys

s2

)
= log y,

hence
1

2πi

∫
C2

ys

s2
ds = log y.

Now observe |ys| = yσ ≤ y2 for any s on C2. Hence if CR is the circular sector of C2,∣∣∣∣∫
CR

ys

s2
ds

∣∣∣∣ ≤ y2

R2
(2πR)→ 0 as R→∞,

which means
1

2πi

∫ 2+∞i

2−∞i

ys

s2
ds = log y.
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2

R

!a" 0 ! y ! 1

2

R

!b" y " 1

Figure 5: Contours used in Exercise 13.6.

Exercise 13.7. Express
1

2πi

∫ 2+∞i

2−∞i

xs

s2

(
−ζ
′(s)

ζ(s)

)
ds

as a finite sum involving Λ(n).

Lemma 13.7. Suppose f(s) =
∑∞

n=1 ann
−s converges absolutely for σ > σa. If c > max{0, σa},

1

2πi

∫ c+∞i

c−∞i
f(s)

xs

s2
ds =

∑
n≤x

an log
(x
n

)
.

Proof of Lemma. Applying Exercise 13.6, for c > max{0, σa},

1

2πi

∫ c+∞i

c−∞i
f(s)

xs

s2
ds =

∞∑
n=1

an
2πi

∫ c+∞i

c−∞i

(x/n)s

s2
ds

=
∑
n≤x

an log
(x
n

)
.

Proof of Exercise. Let

f(s) = −ζ
′(s)

ζ(s)
=
∞∑
n=1

Λ(n)

ns
.

By Lemma 13.7,
1

2πi

∫ 2+∞i

2−∞i

xs

s2

(
−ζ
′(s)

ζ(s)

)
ds =

∑
n≤x

Λ(n) log
(x
n

)
.
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Exercise 13.8. Let χ be any Dirichlet character mod k with χ1 the principal character.
Define

F (σ, t) = 3
L′

L
(σ, χ1) + 4

L′

L
(σ + it, χ) +

L′

L
(σ + 2it, χ2).

If σ > 1 prove that F (σ, t) has real part equal to

−
∞∑
n=1

Λ(n)

nσ
Re
{

3χ1(n) + 4χ(n)n−it + χ2(n)n−2it
}

and deduce that Re F (σ, t) ≤ 0.

Proof. Let σ > 1. By Theorem 11.14, L(s, χ) = eG(s) where

G(s) =
∞∑
n=2

Λ(n)χ(n)

log n
n−s.

Differentiating gives
L′(s, χ) = G′(s)eG(s) = G′(s)L(s, χ),

therefore

F (σ, t) = −3
∞∑
n=1

Λ(n)χ1(n)

nσ
− 4

∞∑
n=1

Λ(n)χ(n)

nσ+it
−
∞∑
n=1

Λ(n)χ2(n)

nσ+2it

= −
∞∑
n=1

Λ(n)

nσ
{

3χ1(n) + 4χ(n)n−it + χ2(n)n−2it
}
.

Taking the real part shows

Re F (σ, t) = −
∞∑
n=1

Λ(n)

nσ
Re
{

3χ1(n) + 4χ(n)n−it + χ2(n)n−2it
}
.

Letting χ(n) = eiθ gives

Re
{

4χ(n)n−it
}

= 4 cos(θ) cos(t log n) + 4 sin(θ) sin(t log n) = 4 cos(θ − t log n)

and similarly
Re
{
χ2(n)n−2it

}
= cos(2(θ − t log n)).

Thus if (n, k) = 1, then

Re
{

3χ1(n) + 4χ(n)n−it + χ2(n)n−2it
}

= 3 + 4 cos(θ − t log n) + cos(2(θ − t log n))

= 2(1 + cos(θ − t log n))2 ≥ 0.

If (n, k) 6= 1 then
3χ1(n) + 4χ(n)n−it + χ2(n)n−2it = 0,

so it follows that Re F (σ, t) ≤ 0.



167

Exercise 13.9. Assume that L(s, χ) has a zero of order m ≥ 1 at s = 1 + it. Prove that
for this t we have:

(a)
L′

L
(σ + it, χ) =

m

σ − 1
+O(1) as σ → 1+, and

(b) there exists an integer r ≥ 0 such that

L′

L
(σ + 2it, χ2) =

r

σ − 1
+O(1) as σ → 1+,

except when χ2 = χ1 and t = 0.

Proof.
(a) We have L(σ + it, χ) = (σ − 1)mR(σ + it), where R(σ + it) 6= 0 in a small neighborhood
about 1 + it. Logarithmically differentiating shows

L′(σ + it, χ)

L(σ + it, χ)
=

m

σ − 1
+
R′(σ + it)

R(σ + it)
.

Since R(σ + it) 6= 0 for σ near 1, R′(σ + it)/R(σ + it) must be bounded as σ → 1+.
(b) Suppose χ2 6= χ1 or t 6= 0, i.e. L(s, χ2) is analytic at s = 1 + 2it. Define r ≥ 0 to
be the order of the zero of L(s, χ2) at s = 1 + it. (Note if there is no zero, then r = 0.)
Mimicking (a) shows

L′(σ + 2it, χ2)

L(σ + 2it, χ2)
=

r

σ − 1
+O(1) as σ → 1+.

Exercise 13.10. Use Exercises 8 and 9 to prove that

L(1 + it, χ) 6= 0 for all real t if χ2 6= χ1

and that
L(1 + it, χ) 6= 0 for all real t 6= 0 if χ2 = χ1.

[Hint : Consider F (σ, t) as σ → 1+.]

Proof. Recall for σ > 1,

L(σ, χ1) = ζ(σ)
∏
p|k

(1− p−σ) = ck(σ)ζ(σ).

Thus L(σ, χ1) has a simple pole at σ = 1 with residue ck(1), and long division shows

3
L′(σ, χ1)

L(σ + χ1)
=

3

σ − 1
+O(1) as σ → 1+.

Suppose L(1 + it, χ) = 0. If χ2 6= χ1 or t 6= 0, then by Exercise 13.9,

F (σ, t) =
3 + 4m+ r

σ − 1
as σ → 1+.

Hence since 3 + 4m+ r > 0, F (σ, t)→∞ as σ → 1+. This contradicts Exercise 13.8, which
says Re F (σ, t) ≤ 0. This means L(1 + it, χ) 6= 0.
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Exercise 13.11. For any arithmetical function f(n), prove that the following statements
are equivalent:
(a) f(n) = O(nε) for every ε > 0 and all n ≥ n1.
(b) f(n) = o

(
nδ
)

for every δ > 0 as n→∞.

Proof. If f(n) = O(nε) for every ε > 0 and all n ≥ n1, then for all δ > ε

f(n) = O(nε) = o
(
nε+δ

)
.

This shows (a) implies (b), since ε+ δ can be as close to 0 as we like.
If f(n) = o

(
nδ
)

for every δ > 0, then in particular f(n) = o(n). Hence there is exists n1

such that for all n ≥ n1, |f(n)| ≤ n. This means for any ε ≥ 1,

f(n) = O(nε) for n ≥ n1.

Now for 0 < ε < 1 there exists nε such that for all n ≥ nε, |f(n)| ≤ nε. Let

mε = max
n1≤n≤nε

∣∣∣∣f(n)

nε

∣∣∣∣ and Mε = max{mε, 1}.

Then for all n ≥ n1 we have |f(n)| ≤Mεn
ε, i.e. f(n) = O(nε) and all n ≥ n1.

Exercise 13.12. Let f(n) be a multiplicative function such that if p is prime then

f(pm)→ 0 as pm →∞.

That is, for every ε > 0 there is an N(ε) such that |f(pm)| < ε whenever pm > N(ε). Prove
that f(n)→ 0 as n→∞.
[Hint : There is a constant A > 0 such that |f(pm)| < A for all primes p and all m ≥ 0, and
a constant B > 0 such that |f(pm)| < 1 whenever pm > B.]

Proof. Following the hint let M be the number of prime powers ≤ B, which means AM is a
fixed constant. Letting n = pαs1 · · · pαss · q

β1
1 · · · q

βt
t where pαii ≤ B and q

βj
j > B, then

|f(n)| ≤ AM
t∏
i=1

|f(qβii )|.

Now n can approach ∞ in two ways.

• If βi →∞ as n→∞ for some i, then f(qβii )→ 0 which means f(n)→ 0 too.

• If n→∞ but βi 6→ ∞ for all i, it must be that t→∞. Assuming qβ11 < qβ22 < · · · < qβtt ,
then qt → ∞ as t → ∞. Thus for any ε > 0 there is a t large enough such that
|f(qβtt )| < ε. Hence

|f(n)| ≤ AM
t∏
i=1

|f(qβii )| < AMε,

or in other words f(n)→ 0 as n→∞.
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Exercise 13.13. If α ≥ 0 let σα(n) =
∑

d|n d
α. Prove that for every δ > 0 we have

σα(n) = o
(
nα+δ

)
as n→∞.

[Hint : Use Exercise 13.12.]

Proof. Fix δ > 0 and define f(n) = σα(n)/nα+δ. Observe f(n) is multiplicative and

f(pm) =
1

pmα+mδ
p(m+1)α − 1

pα − 1
=

1

(pm)δ

{
pα − p−mα

pα − 1

}
,

hence f(pm) → 0 as pm → ∞. So applying Exercise 13.12 it’s clear f(n) = o(1), i.e.
σα(n) = o

(
nα+δ

)
.
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Partitions

Exercise 14.1. Let A denote a nonempty set of positive integers.
(a) Prove that the product ∏

m∈A

(1− xm)−1

is the generationg function of the number of partitions of n into parts belonging to the set A.
(b) Describe the partition function generated by the product∏

m∈A

(1 + xm) .

In particular, describe the partition function generated by the finite product
∏k

m=1(1 +xm).

Proof.
(a) We will mirror the rigorous argument made in the proof of Theorem 14.2. Write

A = {k1, k2, k3, . . .},

where A is possibly finite and k1 < k2 < k3 < · · · . Restricting x to lie in the interval
0 ≤ x < 1, define

Fm(x) =
m∏
i=1

1

1− xki
, and F (x) =

∏
k∈A

1

1− xk
= lim

m→∞
Fm(x).

Note if |A| <∞, we take F (x) = F|A|(x). As justified in the proof of Theorem 14.2, we can
write Fm(x) as

Fm(x) = 1 +
∞∑
k=1

pm(k)xk,

where pm(k) is the number of solutions to

k = k1n1 + k2n2 + · · · kmnm.

Notice pm(k) is the number of partitions of k into parts that are in A and do not exceed m.
If |A| is finite, take m = |A| and we are done. Otherwise let pA(k) be the number of partitions
of k into parts that are in A. Therefore we always have

pm(k) ≤ pA(k)

170
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with equality when m ≥ k and
lim
m→∞

pm(k) = pA(k).

By the comparison test with
∑
pm(k)xk and the similar series in the proof of Theorem

14.2, we see
∑
pm(k)xk converges uniformly in m. Thus

F (x) = lim
m→∞

Fm(x) = lim
m→∞

∞∑
k=0

pm(k)xk =
∞∑
k=0

lim
m→∞

pm(k)xk =
∞∑
k=0

pA(k)xk,

which proves the identity for 0 ≤ x < 1. By analytic continuation this can be extended to
hold for all |x| < 1.
(b) Analogous to the fifth entry of Table 14.1, the partition function generated by∏

m∈A

(1 + xm)

counts the number of partitions of n into parts which are unequal and belong to the set A.
Therefore the partition function generated by

k∏
m=1

(1 + xm)

counts the number of partitions of n into parts which are unequal and ≤ k.

Exercise 14.2. If |x| < 1 prove that

∞∏
m=1

(1 + xm) =
∞∏
m=1

(
1− x2m−1

)−1
,

and deduce that the number of partitions of n into unequal parts is equal to the number of
partitions of n into odd parts.

Proof. Let |x| < 1 and N > 0. Then

22N∏
m=1

(1 + xm)
(
1− x2m−1

)
=

22N−1∏
m=1

(
1 + x2m

) 22N∏
m=1

(
1 + x2m−1

) (
1− x2m−1

)
=

22N−1∏
m=1

(
1 + x2m

) 22N∏
m=1

(
1− x4m−2

)
=

22N−2∏
m=1

(
1 + x4m

) 22N−1∏
m=1

(
1− x8m−4

)
=

...

=
2N∏
m=1

(
1 + x2

Nm
) 2N+1∏
m=1

(
1− x2N+1m−2N

)
.
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Now for −1 < x < 1,

1 ≤
2N∏
m=1

(
1 + x2

Nm
)
≤
(

1 + x2
N
)2N
→ 1 as N →∞.

Thus

lim
N→∞

2N∏
m=1

(
1 + x2

Nm
)

= 1

and similarly

lim
N→∞

2N+1∏
m=1

(
1− x2N+1m−2N

)
= 1.

This shows for −1 < x < 1,

∞∏
m=1

(1 + xm) =
∞∏
m=1

(
1− x2m−1

)−1
and by analytic continuation this for all complex |x| < 1.

From Table 14.1, the number of partitions of n into odd parts has generating function

∞∏
m=1

(
1− x2m−1

)−1
and the number of partitions of n into unequal parts has generating function

∞∏
m=1

(1 + xm) .

Since both generating functions are the same, we conclude that the number of partitions of
n into unequal parts is equal to the number of partitions of n into odd parts.

Exercise 14.3. For complex x and z with |x| < 1, let

f(x, z) =
∞∏
m=1

(1− xmz) .

(a) Prove that for each fixed z the product is an analytic function of x in the disk |x| < 1,
and that for each fixed x with |x| < 1 the product is an entire function of z.
(b) Define the numbers an(x) by the equation

f(x, z) =
∞∑
n=0

an(x)zn.

Show that f(x, z) = (1 − xz)f(x, zx) and use this to prove that the coefficients satisfy the
recursion formula

an(x) = an(x)xn − an−1(x)xn.
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(c) From (b) deduce that an(x) = (−1)nxn(n+1)/2/Pn(x), where

Pn(x) =
n∏
r=1

(1− xr) .

This proves the following identity for |x| < 1 and arbitrary z:

∞∏
m=1

(1− xmz) =
∞∑
n=0

(−1)n

Pn(x)
xn(n+1)/2zn.

Lemma 14.3. If
∑∞

n=1 |fn(x)| converges uniformly to a bounded function on a set S, then
so does

∏∞
n=1(1 + fn(x)).

Proof of Lemma. Let PN(x) =
∏N

n=1(1 + fn(x)). Choosing M such that

∞∑
n=1

|fn(x)| ≤M for all x ∈ S,

then

|PN(x)| ≤
N∏
n=1

(1 + |fn(x)|) ≤ exp

{
N∑
n=1

|fn(x)|

}
≤ eM .

Hence for N ≥M ,

|PN(x)− PM(x)| =

∣∣∣∣∣
N∑

n=M+1

(Pn(x)− Pn−1(x))

∣∣∣∣∣
≤

N∑
n=M+1

|Pn(x)− Pn−1(x)|

=
N∑

n=M+1

|Pn−1(x)||fn(x)|

≤ eM
N∑

n=M+1

|fn(x)|.

Since
∑∞

n=1 |fn(x)| converges uniformly on S, by the Cauchy criterion, PN(x) converges
uniformly on S.

Proof of Exercise.
(a) For any |x| < 1 and z ∈ C,

∞∑
m=1

xmz =
xz

1− x

converges uniformly as a function of either x or z. The result then follows from Lemma 14.3,
since a uniformly convergent sequence of analytic functions converges to an analytic function.



174 Chapter 14 Solutions

(b) Since f(x, z) is entire in z it has a power series about z = 0, namely

f(x, z) =
∞∑
n=0

an(x)zn.

Now

(1− xz)f(x, zx) = (1− xz)
∞∏
m=1

(1− xmzx)

=
∞∏
m=0

(
1− xm+1z

)
=

∞∏
m=1

(1− xmz) = f(x, z),

and therefore
∞∑
n=0

an(x)zn = (1− zx)
∞∑
n=0

an(x)(zx)n

=
∞∑
n=0

an(x)xnzn −
∞∑
n=0

an(x)xn+1zn+1

=
∞∑
n=0

an(x)xnzn −
∞∑
n=1

an−1(x)xnzn

= a0(x) +
∞∑
n=1

(an(x)xn − an−1(x)xn) zn.

Equating coefficients for n > 0 shows an(x) = an(x)xn − an−1(x)xn.
(c) From (b) we have

an(x) = − xn

1− xn
an−1(x),

and unraveling the recursive relationship shows

an(x) = (−1)n
x1+2+···+n

(1− x)(1− x2) · · · (1− xn)
a0(x) =

(−1)n

Pn(x)
xn(n+1)/2.

Hence
∞∏
m=1

(1− xmz) =
∞∑
n=0

(−1)n

Pn(x)
xn(n+1)/2zn.

Exercise 14.4. Use a method analogous to that of Exercise 14.3 to prove that if |x| < 1
and |z| < 1 we have

∞∏
m=1

(1− xmz)−1 =
∞∑
n=0

zn

Pn(x)

where Pn(x) =
∏n

r=1(1− xr).
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Remark. This problem has a typo. To fix it, we can either start the product at m = 0 or
replace the series coefficient with xn/Pn(x). The latter is proven below.

Proof. Applying Exercise 14.3 (a) shows
∏∞

m=1 (1− xmz) analytic for |x| < 1 and z ∈ C.
Furthermore, for |x| < 1 and |z| < 1 observe this product in nonzero. Hence

g(x, z) =
∞∏
m=1

(1− xmz)−1

is analytic for all |x| < 1 and |z| < 1.
Since g(x, z) is analytic for |z| < 1 it has a power series about z = 0, namely

g(x, z) =
∞∑
n=0

bn(x)zn.

Now

g(x, zx)

1− xz
=

1

1− xz

∞∏
m=1

(1− xmzx)−1

=
∞∏
m=0

(
1− xm+1z

)−1
=

∞∏
m=1

(1− xmz)−1 = g(x, z),

and therefore

∞∑
n=0

bn(x)(zx)n = (1− xz)
∞∑
n=0

bn(x)zn

=
∞∑
n=0

bn(x)zn − x
∞∑
n=1

bn−1(x)zn

= b0(x) +
∞∑
n=1

(bn(x)− bn−1(x)x) zn.

Equating coefficients for n > 0 shows

bn(x) =
bn−1(x)x

1− xn
,

and unraveling the recursive relationship shows

bn(x) =
xn

Pn(x)
.
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Exercise 14.5.(++) If x 6= 1 let Q0(x) = 1 and for n ≥ 1 define

Qn(x) =
n∏
r=1

1− x2r

1− x2r−1
.

(a) Derive the following finite identities of Shanks:

2n∑
m=1

xm(m−1)/2 =
n−1∑
s=0

Qn(x)

Qs(x)
xs(2n+1), (27)

2n+1∑
m=1

xm(m−1)/2 =
n∑
s=0

Qn(x)

Qs(x)
xs(2n+1). (28)

(b) Use Shanks’ identities to deduce Gauss’ triangular-number theorem:

∞∑
m=1

xm(m−1)/2 =
∞∏
n=1

1− x2n

1− x2n−1
for |x| < 1.

Proof.
(a) Notice

Qn+1(x) =
1− x2n+2

1− x2n+1
Qn(x).

Using this observation and long division shows for n > 0,

Qn(x)

Qs(x)
xs(2n+1) =

Qn−1(x)

Qs(x)

1− x2n+2

1− x2n+1
xs(2n+1)

=
Qn−1(x)

Qs(x)

{
xs(2n−1) +

1− x2s+1

1− x2n−1
x(s+1)(2n−1) − 1− x2s

1− x2n−1
xs(2n−1)

}
=
Qn−1(x)

Qs(x)
xs(2n−1) + f(s, n)− g(s, n), (29)

where

f(s, n) =
Qn−1(x)

Qs(x)

1− x2s+1

1− x2n−1
x(s+1)(2n−1) and g(s, n) =

Qn−1(x)

Qs(x)

1− x2s

1− x2n−1
xs(2n−1).

Now

g(s+ 1, n) =
Qn−1(x)

Qs+1(x)

1− x2s+2

1− x2n−1
x(s+1)(2n−1)

=
Qn−1(x)

Qs(x)1−x
2s+2

1−x2s+1

1− x2s+2

1− x2n−1
x(s+1)(2n−1)

= f(s, n).
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Thus when summing over (29), f and g telescope. Since g(0, n) = 0 and f(n−1, n) = xn(2n−1)

we have

n−1∑
s=0

Qn(x)

Qs(x)
xs(2n+1) =

n−1∑
s=0

Qn−1(x)

Qs(x)
xs(2n−1) + xn(2n−1),

=
n−2∑
s=0

Qn−1(x)

Qs(x)
xs(2(n−1)+1) + x(n−1)(2n−1) + xn(2n−1),

so (27) follows through a simple induction argument. Adding xn(2n+1) to both sides of (27)
proves (28).
(b) Let |x| < 1 and define Q(x) = limn→∞Qn(x), which exists and equals the quotient of
two generating functions found in Table 14.1. From above we have

∞∑
m=1

xm(m−1)/2 = lim
n→∞

n∑
s=0

Qn(x)

Qs(x)
xs(2n+1)

= lim
n→∞

Qn(x) + lim
n→∞

n∑
s=1

Qn(x)

Qs(x)
xs(2n+1)

= Q(x) + lim
n→∞

Tn(x).

Noting Qn(x)/Qs(x) ≤ Qn(x) ≤ Q(x) for all n and s ≤ n, we have

|Tn(x)| ≤ n|Q(x)||x|2n+1.

Hence for a fixed x, Tn(x) tends to 0 as n→∞, which shows

∞∑
m=1

xm(m−1)/2 = Q(x) =
∞∏
n=1

1− x2n

1− x2n−1
.

Exercise 14.6. The following identity is valid for |x| < 1:

∞∑
m=−∞

xm(m−1)/2 =
∞∏
n=1

(
1 + xn−1

) (
1− x2n

)
.

(a) Derive this from the identities in Exercises 14.2 and 14.5 (b).
(b) Derive this from Jacobi’s triple product identity.

Proof.
(a) The substitution n = 1−m shows

∞∑
m=−∞

xm(m−1)/2 =
0∑

m=−∞

xm(m−1)/2 +
∞∑
m=1

xm(m−1)/2

= 2
∞∑
m=1

xm(m−1)/2.
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Applying Exercises 14.2 and 14.5 (b) gives

2
∞∑
m=1

xm(m−1)/2 = 2
∞∏
n=1

1− x2n

1− x2n−1

= 2
∞∏
n=1

(1 + xn)
(
1− x2n

)
= 2

∞∏
n=1

1 + xn

1 + xn−1

∞∏
n=1

(
1 + xn−1

) (
1− x2n

)
=
∞∏
n=1

(
1 + xn−1

) (
1− x2n

)
.

(b) If we replace x by x1/2 and z2 by x−1/2 in Jacobi’s identity we find

∞∏
n=1

(
1 + xn−1

) (
1− x2n

)
=

∞∑
m=−∞

xm(m−1)/2.

Exercise 14.7. Prove that the following identities, valid for |x| < 1, are consequences of
Jacobi’s triple product identity:

(a)
∞∏
n=1

(
1− x5n

) (
1− x5n−1

) (
1− x5n−4

)
=

∞∑
m=−∞

(−1)mxm(5m+3)/2.

(b)
∞∏
n=1

(
1− x5n

) (
1− x5n−2

) (
1− x5n−3

)
=

∞∑
m=−∞

(−1)mxm(5m+1)/2.

Proof. If we replace x by x5/2 and z2 by −x3/2 in Jacobi’s identity we find

∞∏
n=1

(
1− x5n

) (
1− x5n−1

) (
1− x5n−4

)
=

∞∑
m=−∞

(−1)mxm(5m+3)/2.

Similarly, if z2 = −x1/2 we find

∞∏
n=1

(
1− x5n

) (
1− x5n−2

) (
1− x5n−3

)
=

∞∑
m=−∞

(−1)mxm(5m+1)/2.

Exercise 14.8. Prove that the recursion formula

np(n) =
n∑
k=1

σ(k)p(n− k),
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obtained in Section 14.10, can be put in the form

np(n) =
n∑

m=1

∑
k≤n/m

mp(n− km).

Proof. This identity follows through changing the order of summation described in the proof
of Theorem 3.3:

n∑
k=1

σ(k)p(n− k) =
n∑
k=1

∑
d|k

d p(n− k)

=
∑
q,d
qd≤n

d p(n− qd)

=
∑
m≤n

∑
q≤n/d

d p(n− qd).

Exercise 14.9. Suppose that each positive integer k is written in g(k) different colors,
where g(k) is a positive integer. Let pg(n) denote the number of partitions of n in which
each part k appears in at most g(k) different colors. When g(k) = 1 for all k this is the
unrestricted partition function p(n). Find the infinite product which generates pg(n) and
prove that there is an arithmetical function f (depending on g) such that

npg(n) =
n∑
k=1

f(k)pg(n− k).

Proof. This follows directly from Theorem 14.8. We have for |x| < 1,

∞∏
n=1

(1− xn)−g(n)/n = 1 +
∞∑
n=1

pg(n)xn

and pg(n) satisfies the recurrence relation

npg(n) =
n∑
k=1

f(k)pg(n− k), where f(k) =
∑
d|k

g(d).

Exercise 14.10. Refer to Section 14.10 for notation. By solving the first-order differential
equation in (22) prove that if |x| < 1 we have

∏
n∈A

(1− xn)−f(n)/n = exp

{∫ x

0

H(t)

t
dt

}
,
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where

H(x) =
∞∑
k=1

fA(k)xk and fA(k) =
∑
d|k
d∈A

f(d).

Deduce that
∞∏
n=1

(1− xn)µ(n)/n = e−x for |x| < 1,

where µ(n) is the Möbius function.

Proof. The first-order separable differential equation in (22) is

F ′A(t)

FA(t)
=
H(t)

t
,

and integrating both sides from 0 to x for some |x| < 1 gives

logFA(x)− logFA(0) =

∫ x

0

H(t)

t
dt.

Moreover, by definition FA(0) = 1 which means

FA(x) =
∏
n∈A

(1− xn)−f(n)/n = exp

{∫ x

0

H(t)

t
dt

}
.

Now let A = N and f(n) = −µ(n). Then fA(k) = −I(k), and so H(x) = −x. This
means for |x| < 1,

∞∏
n=1

(1− xn)µ(n)/n = exp

{
−
∫ x

0

dt

}
= e−x.

The following exercises outline a proof of Ramanujan’s partition identity

∞∑
m=0

p(5m+ 4)xm = 5
ϕ(x5)5

ϕ(x)6
, where ϕ(x) =

∞∏
n=1

(1− xn) ,

by a method of Kruyswijk not requiring the theory of modular functions.

Exercise 14.11.
(a) Let ε = e2πi/k where k ≥ 1 and show that for all x we have

k∏
h=1

(
1− xεh

)
= 1− xk.

(b) More generally, if (n, k) = d prove that

k∏
h=1

(
1− xεnh

)
=
(
1− xk/d

)d
,
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and deduce that
k∏

h=1

(
1− xne2πinh/k

)
=

{
1− xnk if (n, k) = 1,

(1− xn)k if k | n.

Proof.
(a) Factoring yields

xk − 1 =
k∏

h=1

(
x− εh

)
,

and so

1− xk = (−1)k+1

k∏
h=1

(
εh − x

)
= (−1)k+1

k∏
h=1

(
εh − x

)
= (−1)k+1

k∏
h=1

(
ε−h − x

)
= (−1)k+1

k∏
h=1

ε−h
k∏

h=1

(
1− xεh

)
= (−1)k+1ε−k(k+1)/2

k∏
h=1

(
1− xεh

)
=

k∏
h=1

(
1− xεh

)
.

(b) Let d = (n, k), m = n/d, and δ = e2πid/k. Then

k∏
h=1

(
1− xεnh

)
=

k∏
h=1

(
1− xδmh

)
=

k/d∏
h=1

(
1− xδmh

)d
.

Since (m, k/d) = 1, mh runs through a complete system of residues mod k, hence by (a),

k/d∏
h=1

(
1− xδmh

)d
=

k/d∏
h=1

(
1− xδh

)d
=
(
1− xk/d

)d
.

Now this means if (n, k) = 1, then

k∏
h=1

(
1− xne2πinh/k

)
=
(
1− (xn)k/1

)1
= 1− xnk.

Also if k | n, then (n, k) = k, so

k∏
h=1

(
1− xne2πinh/k

)
= (1− (xn)k/k)k = (1− xn)k .
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Exercise 14.12.
(a) Use Exercise 14.11 (b) to prove that for prime q and |x| < 1 we have

∞∏
n=1

q∏
h=1

(
1− xne2πinh/q

)
=
ϕ(xq)q+1

ϕ(xq2)
.

(b) Deduce the identity

∞∑
m=0

p(m)xm =
ϕ(x25)

ϕ(x5)6

4∏
h=1

∞∏
n=1

(
1− xne2πinh/5

)
.

Proof.
(a) Using Exercise 14.11 (b),

∞∏
n=1

q∏
h=1

(
1− xne2πinh/q

)
=
∞∏
n=1

(1− xqn)q
q−1∏
r=1

∞∏
m=1

(
1− xq(mq−r)

)
= ϕ(xq)q

q−1∏
r=0

∞∏
m=1

(
1− xq(mq−r)

) ∞∏
m=1

(
1− xq2m

)−1
=
ϕ(xq)q+1

ϕ(xq2)
.

(b) Taking q = 5 gives
∞∏
n=1

5∏
h=1

(
1− xne2πinh/5

)
=
ϕ(x5)6

ϕ(x25)
,

and isolating the portion of the left hand side corresponding to h = 5, then taking reciprocals
shows

∞∏
n=1

1

1− xn
=
ϕ(x25)

ϕ(x5)6

4∏
h=1

∞∏
n=1

(
1− xne2πinh/5

)
.

Now the by Theorem 14.2, the left hand side is the generating function for p(n), which
finishes the proof.

Exercise 14.13. If q is prime and if 0 ≤ r < q, a power series of the form

∞∑
n=0

a(n)xqn+r

is said to be of type r mod q.
(a) Use Euler’s pentagonal number theorem to show that ϕ(x) is a sum of three power series,

ϕ(x) =
∞∏
n=1

(1− xn) = I0 + I1 + I2,
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where Ik denotes a power series of type k mod 5.
(b) Let α = e2πi/5 and show that

4∏
h=1

∞∏
n=1

(
1− xnαnh

)
=

4∏
h=1

(
I0 + I1α

h + I2α
2h
)
.

(c) Use Exercise 14.12 (b) to show that

∞∑
m=0

p(5m+ 4)x5m+4 = V4
ϕ(x25)

ϕ(x5)6
,

where V4 is the power series of type 4 mod 5 obtained from the product in (b).

Proof.
(a) By Eulers pentagonal number theorem (Theorem 14.3),

ϕ(x) =
∞∑

n=−∞

(−1)nxω(n), where ω(n) =
3n2 − n

2
.

It’s easy to verify ω(n) is only congruent to 0, 1, or 2 mod 5, so taking

Ik =
∑

ω(n)≡k mod 5

(−1)nxω(n)

proves the claim.
(b) Observe

4∏
h=1

∞∏
n=1

(
1− xnαnh

)
=

4∏
h=1

ϕ
(
xαh

)
and

ϕ
(
xαh

)
= I ′0 + I ′1 + I ′2,

where I ′k is equal to Ik with x replaced with xαh. Now α(5m+k)h = αkh, so we can factor
terms with α out of I ′k to get

ϕ
(
xαh

)
= I0 + I1α

h + I2α
2h.

(c) Note if Sk denotes a series of type k, then Sk · Sm is of type k +m, hence ϕ(x25)/ϕ(x5)6

is of type 0 mod 5. Thus equating terms of type 4 in Exercise 14.12 (b),

∞∑
m=0

p(5m+ 4)x5m+4 = V4
ϕ(x25)

ϕ(x5)6
,

where V4 is the type 4 part in the expansion of
∏4

h=1(I0 + I1α
h + I2α

2h).
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Exercise 14.14.
(a) Use Theorem 14.7 to show that the cube of Euler’s product is the sum of three power
series,

ϕ(x)3 = W0 +W1 +W3,

where Wk denotes a power series of type k mod 5.
(b) Use the identity W0 +W1 +W3 = (I0 + I1 + I2)

3 to the that the power series in Exercise
14.13 (a) satisfy the relation

I0I2 = −I21 .

(c) Prove that I1 = −xϕ(x25).

Proof.
(a) By Theorem 14.7,

ϕ(x)3 =
∞∑
m=0

(−1)m(2m+ 1)x(m
2+m)/2.

It’s easy to verify (m2 +m)/2 is only congruent to 0, 1, or 3 mod 5, so taking

Wk =
∑

(m2+m)/2≡k mod 5

(−1)m(2m+ 1)x(m
2+m)/2

proves the claim.
(b) Recall if Sk denotes a series of type k, then Sk · Sm is of type k + m. Now expanding
(I0 + I1 + I2)

3 shows the only terms of type 2 are I0I2 and I21 . Since W0 +W1 +W3 contains
no terms of type 2, we conclude

I0I2 + I21 = 0.

(c) Note ω(n) ≡ 1 mod 5 if and only if n ≡ 1 mod 5. Thus by Eulers pentagonal number
theorem (Theorem 14.3),

I1 = −
∞∑

n=−∞

x(3(5n+1)2−(5n+1))/2 = −x
∞∑

n=−∞

x25(3n
2+n)/2.

Substituting m = −n shows

I1 = −x
∞∑

m=−∞

x25(3m
2−m)/2 = −xϕ

(
x25
)
.

Exercise 14.15. Observe that the product
∏4

h=1(I0 +I1α
h+I2α

2h) is a homogeneous poly-
nomial in I0, I1, I2 of degree 4, so the terms contributing to series of type 4 mod 5 come
from the terms I41 , I0I

2
1I2 and I20I

2
2 .

(a) Use Exercise 14.14 (c) to show that there exists a constant c such that

V4 = cI41 ,



where V4 is the power series in Exercise 14.13 (c), and deduce that

∞∑
m=0

p(5m+ 4)x5m+4 = cx4
ϕ(x25)5

ϕ(x5)6
.

(b) Prove that c = 5 and deduce Ramanujan’s identity

∞∑
m=0

p(5m+ 4)xm = 5
ϕ(x5)5

ϕ(x)6
.

Proof.
(a) Using Exercise 14.14 (b), expanding

∏4
h=1(I0 + I1α

h + I2α
2h) shows

V4 = I41 + 3
(
α4 + α3 + α2 + α

)
I0I

2
1I2 +

(
α4 + α3 + α2 + α + 2

)
I20I

2
2

= I41 − 3
(
α4 + α3 + α2 + α

)
I41 +

(
α4 + α3 + α2 + α + 2

)
I41

= cI41 ,

where c = 3 − 2α − 2α2 − 2α3 − 2α4. Applying Exercise 14.13 (c) and Exercise 14.14 (c)
yields

∞∑
m=0

p(5m+ 4)x5m+4 = c
(
−xϕ

(
x25
))4 ϕ(x25)

ϕ(x5)6
= cx4

ϕ(x25)5

ϕ(x5)6
.

(b) Since α 6= 1 is a fifth root of unity,

c = 5− 2(α4 + α3 + α2 + α + 1) = 5− 2
α5 − 1

α− 1
= 5.

Dividing both sides by x4 then replacing x5 with x proves Ramanujan’s identity

∞∑
m=0

p(5m+ 4)xm = 5
ϕ(x5)5

ϕ(x)6
.

Back to top.
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