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With content adapted from Lise Getoor, Tom Dietterich,

Andrew Moore & Rich Maclin

What is learning theory?

• Grew from theoretical CS community

• Emphasizes formal results on

– Amount of data needed

– Efficiency of algorithm WRT time/data

• Separate community from “practical learning”

• COLT (computational learning theory conference)

• Practical and theoretical influencing each other
(Who’d have thought???  ☺ )

Motivation

• Originally learning theory was concerned with 
theories of what was “learnable”

• Different assumptions about models

– Adversarial

– Oracle

• Very little turned out to be “learnable” �

• PAC learnability more reasonable

– Probably Approximately Correct

– Draw training, testing samples from same distribution

– Try to establish WHP bounds

– Embodied in current practice

Bias & Variance Review

• Example:  Regression

• Suppose we draw m samples from an infinite 
supply of training data

• What is the right hypothesis space?

– Linear?

– Quadratic?

– Etc?

• What should answer depend on?

– Background knowledge?

– Size of m?

Bias

• We (might) want:

• We “eventually get it right” w/enough data

• Otherwise we are said to have bias

• Is bias always bad???
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Variance

• We would like (and usually get):

• Compares performance on training set 

against other draws of same sized set

• Problem:  m is finite
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Example: 20 points

y = x + 2 sin(1.5x) + N(0,0.2)

Hypothesis space = linear in x

50 fits (20 examples each)

What are we seeing here?

Bias Variance

Dealing with Bias & Variance

• Real data sets are finite

• Means that bias and variance are positive

• Can we trade one against another?

• Example:

– Suppose data come from line + noise

– m=3

– What is best H?

• Constants (bias, moderate variance)

• Lines (no bias, higher variance)

Bias & Variance with real data

• In the real world:

– Don’t know source characteristics

– Choosing a “fancier” H risks high variance

– Higher variance=

• Overfitting

• Fitting noise

• When can we risk a big H?

• COLT:  Theoretical bounds (for discrete cases)

• Practical techniques later
(not mutually exclusive with COLT!)
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Tools of Learning Theory I

• Union bound, for events e1…ek

• (Trivial consequence of axioms of prob. theory)
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Tools of Learning Theory II

• Let    be mean of m IID samples of a Bernouli RV 
w.p.   (e.g. coin flip)

• Chernoff bound (Hoeffding inequality):

• Not a trivial result

• Error drops off:

– Exponentially in γ2

– Exponentially in m
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Empirical Risk

• Empirical risk for hypothesis h on D

(= error on D):

• Many learning algorithms are empirical risk 

minimizers (ML, SSE minimization)

))(()(ˆ xytPEy
Dx

≠=
∈

ε

)(ˆminargˆ yy Hy ε∈=

Evaluating Hypotheses

• Treat each datum as a test of yi

• How reliable is         ?

• IOW:  How much do we trust our empirical 

estimate of the quality of yi?

• Use Chernoff bound:
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Evaluating our learner

• Suppose H is finite

• Learner picks “best” y, so all estimates must be “good”

• What is probability of getting a “bad” estimate:
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How much data???

• If all quality estimates are “good”, then when can we 

trust that real risk = empirical risk???

• Suppose we want to guarantee answer w.p. 1-δ

• “Sample Complexity” of our learner
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How much trust?

• Solve for γ

• WP 1-δ

• Note log dependence on k!
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Trust in our choice

• Suppose y* is “best” in H

• We pick something else b/c of finite m

• Even if we didn’t pick the best y*, we still didn’t do 

that badly
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(Since we didn’t pick y*)

Putting it all together

• Suppose |H|=k

• Fix δ, γ

• To achieve real performance within 2 γ
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Putting it all Together II

• Learning theory bounds performance on 
training set as function of performance on 
test set

• Assuming |H|=k, WP 1-δ

• Log dependence on k
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Continuous Spaces

• So far, we have assumed H is finite

• Most algorithms we have studied are 

smoothly parameterized

– Perceptron

– Logistic regression

– Etc.

• How do these results generalize?

First Cut

• Suppose we have n finite precision numbers

• Use b bits to represent each parameter

• |K| = 2bn (Uh oh…)

• But, log dependence on k saves us:

• Sample complexity linear in n

• Performance bound linear in sqrt(n) 
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Where bits counting fails

• Suppose we have a perceptron with n inputs

• Duplicating input doesn’t change things 

(no increased risk of overfitting)

• Does add one more continuous parameter

• If we’re counting bits, for our bound:

– Leads to double counting

– Gratuitously loose bounds

Shattering

• What we need:

– Way of capturing intrinsic power of classifier

– Independent of parameterization

• Step 1:  “shattering”

• Given set of training data D

• H shatters D if H can correctly classify all 

possible labelings of D

VC Dimension

• VC = Vapnik-Chervonenkis

• VC(H) = size of largest D shattered by H

• Note quantification:

– Existence of a single set at given size satisfies

– Proof typically requires demonstrating 

impossibility of shattering large sets

• VC(H) can be infinite (nearest neighbor)

Shattering with planes

Can correctly classify all possible labelings of 3 points!

VC Dimension of hyperplanes

• Our example generalizes to d dimensions

• For H = d dimensional hyperplanes

– Can shatter |D|=d+1

– Cannot shatter |D|=d+2 (e.g. XOR)

– VC(H) = d+1

VC Theory - Performance

• Suppose k=VC(H), WP 1-δ

• Compare with finite case, k=|H|

• Remember for n finite precision parameters k=2bn
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VC Theory – Sample Complexity

• Suppose VC(H)=k, fix δ, γ

• To achieve real performance within 2 γ

• Need O(k) samples

• Compare with finite case:

• k=2bn – linear dependence on n
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Continuous Hypothesis Spaces Conclusion

• “Natural” parameterization finite set of hypotheses 
(due to finite precision) leads to linear sample 
complexity in number of parameters

• VC Theory:

– Cleaner, more general theory

– Typically gives similar bounds

• Learning theory bounds:

– Sometimes loose

– Sometimes more qualitative than quantitative

Learning Theory Conclusions

• COLT helps us quantify:

– Power of a hypothesis space

– How much data we need for given level of trust

• What COLT doesn’t do:

– Tell us to search space of hypotheses

– How to improve our performance

• In practice:

– COLT bounds tend to be loose

– Not a substitute for empirical validation

– Gives good high level guidance


