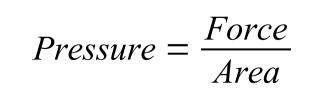

FLUID MECHANICS

Fluids: Liquids vs. Gases

- Chemical bonds can <u>break</u> when heated
 - Leaving individual molecules free to "roam" randomly
- Liquids: Volume held constant due to surface tension
 - So density (mass / volume) is also constant (approximately)
 - Density of water \rightarrow 1000 kg / m³

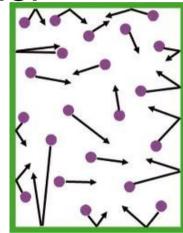
A liquid takes the shape of its container. It has a definite volume but no definite shape.

- <u>Gases</u>: No surface tension
 - Molecules are completely free to roam
 - Volume of gas is not constant
 - So density (mass / volume) is not constant
 - Air \rightarrow 1 kg / m³ at sea level, 0 kg / m³ at top of atmosphere

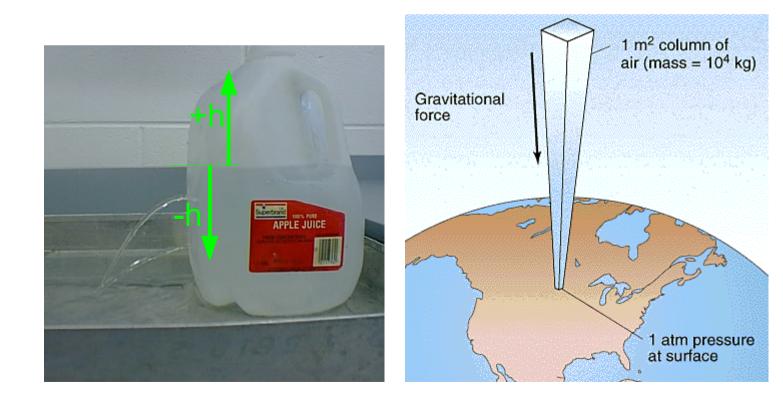


<u>Pressure</u>

- Fluids → molecules bounce off each other
 - Therefore exert <u>forces</u> on each other!
 - And exert forces on the container of the fluid
- To measure pressure:



- Measure force exerted on detector


<u>Units</u>: 1 Pascal (Pa) = $1 \text{ N} / \text{m}^2$

- 1 atmosphere (atm) $\approx 10^5$ N / m²
- 1 pound per square inch (psi) \approx 6900 N / m²

Pressure vs. Depth

- Deep under the surface of a fluid:
 - Lots of fluid above, weighing down
 - Fluid pressure is greater than it is near the surface

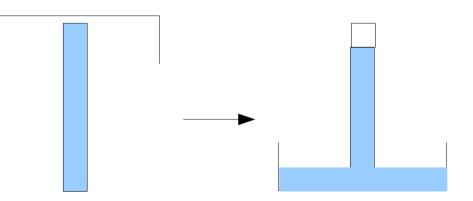
$$p = p_0 - \rho g h$$

p₀ is the pressure at the surface of the fluid

p is the density of the fluid

h is a <u>negative</u> number, meaning depth <u>below</u> the fluid surface

Absolute Pressure vs. Gauge Pressure

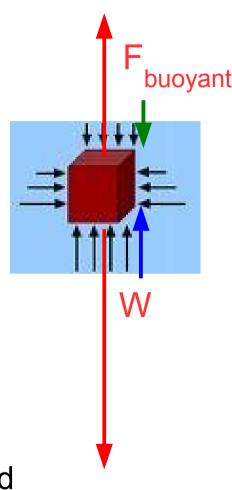

- Submerged object feels compressive stress
 - At large depths below the fluid surface:
 - Forces can become enormous (1 atm $\approx 10^5$ N / m²!)

 $P_{gauge} < 0$

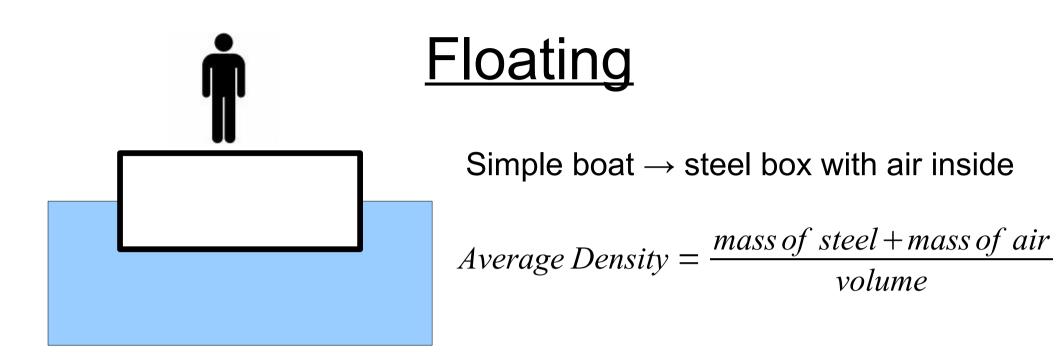
- Expensive and dangerous to explore ocean floor
- Absolute Pressure
 - Actual pressure due to molecular collisions
- Gauge Pressure
 - Measured relative to surrounding pressure
 - Better measure for determining motions of fluids
 - Example: Drinking Straw

Measuring Pressure: Barometer

- One way to measure gas pressure:
 - Measure how much weight it can lift
- Simple Barometer
 - Fill tube with liquid...
 - Then flip it into a dish
 - No air bubbles allowed!



- Why doesn't all the liquid fall into the dish?
 - Empty space inside the tube is a <u>vacuum</u> \rightarrow no pressure
 - Atmospheric pressure pushes on liquid in dish
 - Measure height of liquid in tube \rightarrow can find P_{atm}


<u>Buoyancy</u>

- Pressure increases with depth
 - So does force on an object!
 - Upward force > Downward force
 - Fluid exerts upward "buoyant" force!
- If weight > buoyant force
 - Object <u>sinks</u>!
 - Occurs if object is more dense than liquid

 $F_{buovant} = \rho_{fluid} g Vol_{displaced}$

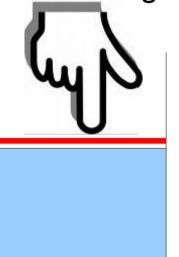
"Archimedes' Principle"

- Steel is heaver than water
 - But the average density of the steel/air combo is light
- Put a person on top
 - More water displaced to balance extra weight
 - Boat still floats, but now a little lower

Buoyant Force in Air

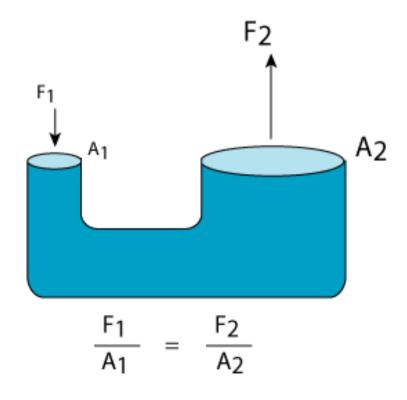
- Pressure gets weaker with height \rightarrow buoyant force
 - Similar to liquids, pressure difference causes an upward force
- To "<u>float</u>" on air:
 - An object must be less dense than air! (very light)

Common ways to do this:


- 1) Heat air inside a balloon
 - It expands and becomes less dense
- 2) Use a light gas like helium or hydrogen
 - Why is hydrogen a <u>bad</u> idea?

Pascal's Principle

- For a body of liquid:
 - Every point at the same height has the same pressure
 - Pushing on one edge increases the pressure everywhere



Pushing on the red piston will increase the pressure everywhere in the fluid by the same amount

- This is an excellent way to "transmit" force
 - <u>Example</u>: Car brakes (foot force \rightarrow force on brake pads)

Hydraulics

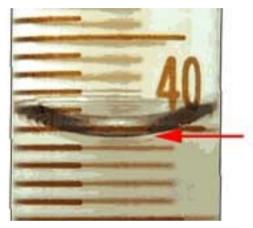
- Hydraulics use Pascal's Principle as a "force multiplier"
 - Like a pulley or lever \rightarrow greater force over shorter distance

$$F_1d_1 = F_2d_2$$

Surface Tension

- Molecules in a liquid are free to bounce around
 - Except through the surface of the liquid
 - Glass of water \rightarrow Why don't molecules "jump out"?
- Surface Tension
 - Edge of a liquid acts like a "loose balloon"
 - Holds liquid molecules to a confined volume
 - Due to weak molecular attraction at edges
- <u>Example</u>: Raindrop
 - Molecules don't just "spread out" in the air
 - Near-spherical shape held together by surface tension

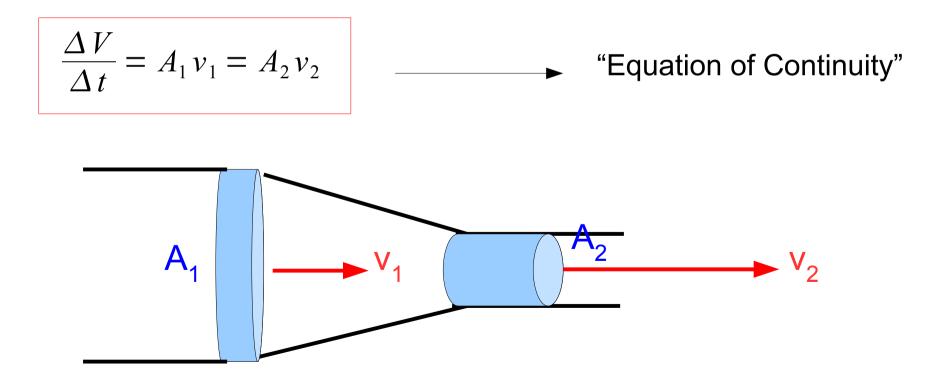
Surface Tension Example



- Insects called <u>water striders</u> can use surface tension as a "floor"
 - Their legs are covered in fine hairs so they stay dry
 - Otherwise, surface tension couldn't support them
 - <u>Note</u>: insects are not floating, but standing on surface

Capillary Action ("Capillarity")

- Molecules in a liquid often "adhere" to surfaces
 - They "stick" to their container
 - Water level at edge rises up...

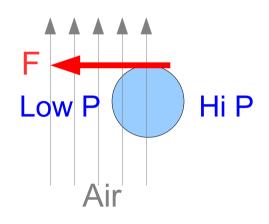

- Until the extra weight of water balances the "stickiness"
- The thinner the tube → the higher the liquid lifts
 This is how tall trees are able to lift water to the highest branches → through capillarity

Energy in Fluids (Liquids and Gases)

- 3 common forms of energy in fluids:
 - Kinetic Energy \rightarrow motion of individual molecules
 - Potential Energy \rightarrow <u>height</u> of molecules
 - "Pressure Energy" \rightarrow <u>unequal</u> pressures can exert forces
- Energy in a fluid can change forms
 - <u>Exhaling</u>: Higher pressure in lungs \rightarrow KE of air
 - <u>Hot air balloon</u>: Higher pressure on ground \rightarrow PE
- Energy can also be converted into other forms
 - <u>Wind turbine</u>: KE of air \rightarrow electrical energy

Fluid Flow

- When a moving fluid enters a tube or pipe:
 - It must eventually exit the other end
 - "Flow Rate" (volume / sec) must be constant



Bernoulli's Principle

- Applies conservation of energy to fluids
 - Important for understanding flowing gases and liquids

$$p_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = p_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$

- Important result:
 - When the <u>speed</u> of a fluid <u>increases</u>...
 - The pressure of that fluid must decrease!
- <u>Application</u>: Fluid can exert a force <u>perpendicular</u> to flow
 - By creating unequal fluid speeds on 2 sides of an object
 - Object is pushed toward high speed region

Forces Exerted by Fluids

Using the fluid's KE

Put an object in the fluid's path \rightarrow "pushing" force

Force is <u>parallel</u> to fluid motion

<u>Using the fluid pressure</u>

Can exert force by setting up unequal speeds

Force is <u>perpendicular</u> to fluid motion

