

Computer Applications in Chemical Engineering

Priv.-Doz. Dr. Roland Dittmeyer Karl-Winnacker-Institut der DECHEMA e.V., Frankfurt am Main

Summer 2003

<u>No.</u>	Date	<u>Lecturer</u>	Topic: Reactor Modelling in AspenPlus
1.	April 8	Wenzel	Unit 1
2.	April 15	Wenzel	Material and energy balances, basic definitions
	April 22	no lecture	Implementation in AspenPlus
3.	April 29	Dittmeyer	Warm up examples
4.	May 6	Wenzel	Unit 2
5.	May 13	Wenzel	Equilibrium reactor models
6.	May 20	Wenzel	Implementation in AspenPlus
7.	May 27	Dittmeyer	
8.	June 3	Dittmeyer	Unit 3 Stirred tank and tubular reactors
	June 10	no lecture	Implementation in AspenPlus
9.	June 17	Dittmeyer	Exercise 2: Cyclohexanol dehydrogenation
10.	June 24	Lockemann	Unit 4
11.	July 1	Lockemann	Batch reactor operations
12.	July 8	Test	Implementation in AspenPlus
			Trouble shooting for Exercise 2

Process Simulation: Required Knowledge, Recommended Books

Required knowledge:

- Chemical Engineering Thermodynamics
- Unit Operations
- Chemical Reaction Engineering

Books:

- David M. Himmelblau, Basic Principles and Calculations in Chemical Engineering, 6th edition, Prentice-Hall, Upper Saddle River, 1996
- Warren D. Seider, J.D. Seader, Daniel R. Lewin, *Process Design Principles: Synthesis, Analysis, and Evaluation*, Wiley, New York, 1999

General Principle:

Conservation of: **Requirements:**

- 1. Total mass no nuclear reactions !
- 2. Total moles _____ no net change of moles due to
- 3. Mass of an atomic species
- 4. Moles of an atomic species
- 5. Moles of a chemical compound
- 6. Mass of a chemical compound

see 1.

no chemical reactions !

chemical reactions !

<u>Task:</u>

Find mathematical expressions for these terms that accurately describe the particular situation

Solve the resulting system of equations (linear, nonlinear)

2. Determining the Number of Independent Equations

Systems of Linear Equations:

The rank of the coefficient matrix equals the number of independent variables !

rank = order of the largest nonzero determinant in a matrix (can be determined by Gauss-Jordan method)

Rule:

The number of variables whose values are unknown equals the number of independent equations !

Total Mole Balance:

0 = F - P - W

Component Mole Balances:

EtOH: $0 = F \cdot x_{1F} - P \cdot x_{1P} - W \cdot x_{1W}$ H₂O: $0 = F \cdot x_{2F} - P \cdot x_{2P} - W \cdot x_{2W}$ MeOH: $0 = F \cdot x_{3F} - P \cdot x_{3P} - W \cdot x_{3W}$

Balance of Mole Fractions:

٦VV

$$\sum x_{iF} = 1$$

$$\sum x_{iP} = 1$$

$$\sum x_{iM} = 1$$

Component Mole Balances in Matrix Form:

$$\begin{pmatrix} F \cdot x_{1F} - P \cdot x_{1P} \\ F \cdot x_{2F} - P \cdot x_{2P} \\ F \cdot x_{3F} - P \cdot x_{3P} \end{pmatrix} = \begin{pmatrix} W & 0 & 0 \\ 0 & W & 0 \\ 0 & 0 & W \end{pmatrix} \times \begin{pmatrix} x_{1W} \\ x_{2W} \\ x_{3W} \end{pmatrix}$$

3. Number of Degrees of Freedom

f	Problem is	Meaning
0	properly specified	unique solution exists
< 0	underspecified	infinite number of solutions
> 0	overspecified	no solution, equations are inconsistent

Nonlinear Equations:

more than one solution may exist even for f = 0

if so, the physics of the process tell which solution (s) is (are) relevant

no general statement can be made

- 12 variables in total
- 7 equations, of which 1 is not independent
- · 6 variables have to be specified
- choice of these independent variables is not at will
 - → selection must leave a number of independent material balances equal to the number of unknown variables

Gen	General Strategy for Analyzing Material Balance Problems			
1.	Read the problem and clarify what is to be accomplished.			
2.	Draw a sketch of the process; define the system by a boundary.			
3.	Label with symbols the flow of each stream and the associated compositions and other information that is unknown.			
4.	Put all the known values of compositions and stream flows on the figure by each stream; calculate additional compositions from the given data as necessary. Or, at least initially identify the known parameters in some fashion.			
5.	Select a basis.			
6.	Make a list by symbols for each of the unknown values of the stream flows and compositions, or at least mark them distinctly in some fashion, and count them.			
7.	Write down the names of an appropriate set of balances to solve; write the balances down with type of balance listed by each one. Do not forget the implicit balances for mass or mole fractions.			
8.	Count the number of independent balances that can be written; ascertain that a unique solution is possible. If not, look for more information or check your assumptions.			
9.	Solve the equations. Each calculation must be made on a consistent basis.			
10.	Check your answers by introducing them, or some of them, into any redundant material balances. Are the equations satisfied? Are the answers reasonable?			

Distillation Unit:

System Boundary

<u>Task:</u>

Calculate composition of bottoms and mass of lost alcohol

Steps 1–3: Symbols and data placed in flow sheet

Step 4: Evaluate *D* = 0.1 · *F* = 100 kg

Step 5: Select as the basis the given feed *F* = *1000 kg*

Steps 6–8: The remaining unknowns are $w_{EtOH,B}$, $w_{H2O,B}$ and B. Two components exist, yielding two independent component mass balances, and $w_{EtOH,B} + w_{H2O,B} = 1$, so that the problem has a unique solution.

Step 9: The total mass balance yields: B = F - D = 100 kg

The solution for the composition of the bottoms can be computed directly by subtraction:

	kg in Feed	kg Distillate out	kg Bottoms	percent
EtOH	0.1.1000	- 0.6 ·100	= 40	4.4
H ₂ O	0.9 ·1000	- 0.4·100	= 860	95.6
			900	100.0

Material Balance Problem Involving Chemical Reactions

0.0048 lb H ₂ O	29 lb air	1 lb mol H ₂ O	- 0 0077	lb mol H_2O
lb air	1 lb mol air	18 lb H ₂ O	- 0.0077	lb mol air

C, H, O, N, S in **unburned coal** (assumption: proportions may not change)

Component	Mass %*	lb	lb mol	
С	89.65	1.076	0.0897	
Н	4.8	0.058	0.0537	
0	3.63	0.0436	0.0027	
N	1.17	0.014	0.0010	
S	0.76	0.009	0.0003	
100.00 1.20 0.1474				
*on an ash-free basis				

Mass of unburned coal: $0.14 \cdot R = 1.2 \ lb$

Step 6 (repeated): A, W, P remain unknown. Only four mole balances on the elements can be written, because S + C must be combined as these elements are linked in the stack gas analysis $(SO_2 + CO_2)$.

		Input					
		F	Α		W	Р	R
1.	C+ S	83.05/12 + 0.70/32	+ 0	=	0	+ 0.154·P	+ 0.0897 + 0.0003
3.	Н	4.45/1.008 + 0.433	+ 0.0154· <mark>A</mark>	=	2∙W	+ 0	+ 0.0537
Test	0	3.36/16 + 0.217	+ 0.21·2·A + 0.0077·A	=	W	+ 2·(0.154+0.04)· P	+ 0.0027
2.	N	1.08/14	+ 2·0.79· <mark>A</mark>	=	0	+ 2·0.806· P	+ 2·0.001

 $C+S \rightarrow P = 50 \ lb \ mol$ $N \rightarrow A = 45.35 \ lb \ mol$ $H \rightarrow W = 2.746 \ lb \ mol$

12

 $O \rightarrow 19.8 \approx 20$

Average percentage excess air:

% excess air =
$$100 \times \frac{O_2 \text{ entering} - O_2 \text{ required}}{O_2 \text{ required}}$$

O₂ required is calculated from reaction stoichiometry:

Component	mponent Reaction		lb mol	Required O ₂ (lb mol)	
С	$C + O_2 \rightarrow CO_2$	83.05	6.921	6.921	
Н	$H_2 + 0.5 O_2 \rightarrow H_2O$	4.45	4.415	1.104	
0	-	3.36	0.210	-0.105	(
N	-	1.08	0.077	-	
S	$S + O_2 \rightarrow SO_2$	0.70	0.022	0.022	
				7.942	

 O_2 coming with the coal !

 O_2 entering with the air: 45.35 lb mol \times 0.21 = 9.524 lb mol.

% excess air =
$$100 \times \frac{9.524 - 7.942}{7.942} = 19.9\%$$

Extent of Reaction, Reaction Rate and Fractional Conversion in Single Reactions:

stoichiometric coefficients

Reaction: $|\mathbf{v}_A| A + |\mathbf{v}_B| B \rightarrow |\mathbf{v}_C| C + |\mathbf{v}_D| D$ Molar extent: $\xi = \frac{n_A - n_A^0}{N}$ [kmol] $\longrightarrow n_A = n_A^0 + v_A \xi$ **Batch Reactor:** V_R 🗢 if there is no volume change due to the reaction $\lambda = \frac{\xi}{V_{-}} \left| \frac{\text{kmol}}{m^3} \right| \implies c_A = c_A^0 + v_A \lambda$ you better divide by the volume of the reaction mixture and work with concentrations **Rate of Consumption:** $R_A = -\frac{r_A}{V_R} = -\frac{1}{V_R} \frac{dn_A}{dt} \left[\frac{\text{kmol}}{\text{m}^3 \text{s}} \right]$ **Rate of Reaction:** $v_{A} = -1$ f_{A} Remaining fraction of A Fractional <u>Conversion</u> of A: $X_{A} = \frac{n_{A}^{0} - n_{A}}{n_{A}^{0}} = 1 - \frac{n_{A}}{n_{A}^{0}} = -\frac{v_{A}\xi}{n_{A}^{0}} [-]$ $=1-\frac{c_A}{c_0}=-\frac{v_A\lambda}{c_0} [-] \quad \text{for } V_R=\text{const.}$ 14

Rate of Consumption/Formation, Yield and Selectivity in Multiple Reactions:

Rate of Consumption/Formation, Yield and Selectivity in Multiple Reactions:

Example:

ATTENTION

The definitions based on moles – as given here – is convenient for most applications in chemical reaction engineering, but an analogeous definition of extent of reaction, reaction rate, rate of formation/consumption, conversion, yield and selectivity *based on mass** is used frequently as well.

Sometimes even *mixed definitions*, e.g. moles produced per mass of feed.

Yield of CO either based on CH_4 or on O_2 :

1. Closed System (without Chemical Reactions)

Energy Balance:

 $\Delta E = E(t_2) - E(t_1) = \Delta U + \Delta P + \Delta K = Q + W$

2. Open System (without Chemical Reactions)

Energy Balance:

$$\Delta E = E(t_2) - E(t_1) = (\hat{U}_2 + \hat{K}_2 + \hat{P}_2)m_2 - (\hat{U}_1 + \hat{K}_1 + \hat{P}_1)m_1$$

$$= (\hat{U}_a + \hat{K}_a + \hat{P}_a)m_a - (\hat{U}_b + \hat{K}_b + \hat{P}_b)m_b + Q + W + p_a\hat{V}_am_a - p_b\hat{V}_bm_b$$
Energy transfer due to mass tranport
$$\Delta E = E(t_2) - E(t_1) = Q + W - \Delta[H + K + P]$$

$$\Delta means , t_2 vs. t_1$$

$$\Delta means , a minus b$$

$$Work performed to transfer mass (Volume Work)$$

$$net work done on system by surroundings$$

Summary of the Symbols to be Used in the General Energy Balance

Accumulation term			
Type of Energy	At time t ₁	At time t ₂	
Internal	U ₁	U ₂	
Kinetic	$K_1 \subset E(t_1)$	$K_2 \rightarrow E(t_2)$	
Potential	P_1	P_2	
Mass	m ₁	m ₂	
Energy accompanying mass transport			
Type of Energy	Transport in	Transport out	
Internal	$U_a = \hat{U} \cdot m_a$	$U_{b} = \hat{U} \cdot m_{b}$	
Kinetic	$K_a = K m_a$	$K_{b} = \hat{K} m_{b}$	
Potential	$P_a = P m_a$	$P_{b} = \hat{P} \cdot m_{b}$	
Net heat input to system	Q		
Net work done on system by surroundings	W		
Work to introduce material into system, or work recovered on removing material from system	$m_a(p_a \hat{V}_a)$	$-m_b(p_b V_b)$	

(1) The process is at steady state, hence $\Delta E = 0$.

(2) $m_a = m_b = m$.

- (3) Potential Energy is not changed: $\Delta P = 0$.
- (4) Q = 0 by assumption (insulation).
- (5) $v_a = 0$ by assumption (unknown but will be small)

Result: $0 = W - \Delta H - \Delta K$

Steps 6 (repeated): We have one equation and one unknown W (Δ H and Δ K can be calculated), hence a unique solution exists.

Task:

determine the required power in kW for the compressor

Steps 1 – 4: Steady state flow process (open system) without chemical reactions. Available data and unknowns listed.

Step 5: Basis 100 kg/hr of air

Steps 6 – 7: Simplification of the general energy balance.

 $\Delta E = E(t_2) - E(t_1) = Q + W - \Delta[H + K + P]$

Roasting of Iron Ore:

Step 6: Six unknowns exist. We can write 5 component mass balances (O, N, S, gangue, and Fe). With the information on FeS_2 in the gangue six equations are available, hence the problem should have a unique solution.

An iron pyrite ore containing 85 % FeS_2 and 15 % inert dirt, rock, etc. (gangue) is roasted with an amount of air equal to 200 % excess air according to the reaction:

4 FeS_2 + 11 $\text{O}_2 \rightarrow 2 \text{ Fe}_2\text{O}_3$ + 8 SO_2

In order to produce SO_2 . All the gangue plus the Fe_2O_3 end up in the solid waste product (cinder), which analyses 4% FeS₂.

Task:

Determine the heat transferred per kg of ore to keep the product stream at 25°C if the entering streams are at 25°C

Material balance:

Steps 1 – 4: Steady state flow process (open system) with reaction. The system is the reactor. Available data and unknowns listed.

Step 5: Basis 100 kg of pyrite ore.

Roasting of Iron Ore:

The excess air is calculated based on the stated reaction as if all the FeS_2 reacted to Fe_2O_3 even though some FeS_2 will not.

Required O₂:

0.85.100/120.11/4	= 1.9479 kg mol
Excess O₂: 2·1.9479	= <u>3.8958 kg mol</u>
Total O ₂ :	5.8438 kg mol
Total N ₂ : 5.8438·21/79	= 21.983 kg mol

Roasting of Iron Ore:

Step 7 – 9: The component mass balances are:

Component	In	Out
Gangue (kg)	15.0	x ₁
e (kg mol)	0.85.100/120	2·x ₂ /159.7 + x ₃ /120
D ₂ (kg mol)	5.8437	x ₄ + x ₅ + 1.5·x ₂ /159.7
l ₂ (kg mol)	21.983	хб
6 (kg mol)	0.85.100/120.2	x ₄ + 2·x ₃ /120

the solution is: $x_1 = \frac{x_3}{15 + x_2 + x_3}$

	X ₁	15.0 kg
С	x ₂	54.63 kg mol
	X ₃	2.90 kg mol
	X ₄	1.368 kg mol
Р	X ₅	3.938 kg mol
	x ₆	21.938 kg mol

Energy Balance:

With $\Delta E = 0$, $\Delta K = 0$, $\Delta P = 0$ and W = 0, the general energy balance

 $\Delta E = E(t_2) - E(t_1) = Q + W - \Delta[H + K + P]$ reduces to: $Q = \Delta H$

Roasting of Iron Ore:

Ore: F

Steps 7 – 9: Gangue goes completely to Cinder, hence:

 $x_1 = 100 \times 0.15 \text{ kg} = 15 \text{ kg}$

To determine x_2 and x_3 we use the Fe component mass balance and the information that the FeS_2 content in C is 4%.

$$\frac{0.85 \cdot 100}{120} = \frac{2 \cdot x_2}{159.7} + \frac{x_3}{120}$$

$$0.04 = \frac{x_3}{15 + x_2 + x_3}$$

The equations can be solved easily by substitution, which gives:

 $x_2 = 57.7455 \text{ kg}$ $x_3 = 3.0311$ kg

Step 6 (repeated): We have 3 unknowns left and 3 component mass balances.

The excess air is calculated from the stated reaction while taking into account that not all the FeS₂ will react to Fe₂O₃.

Roasting of Iron Ore:

Step 7 – 9: The component mass balances are:

Component	In	Out
O ₂ (kg mol)	5.6354	x ₄ + x ₅ + 1.5·57.7445/159.7
N ₂ (kg mol)	21.200	x ₆
S (kg mol)	0.85.100/120.2	x ₄ + 3.0311/120·2

 x4
 1.3661

 x5
 3.7269

 x6
 21.200

Energy Balance:

Since $\Delta E = 0$, $\Delta K = 0$, $\Delta P = 0$ and W = 0, the general energy balance

 $\Delta E = E(t_2) - E(t_1) = Q + W - \Delta[H + K + P]$

reduces to: $Q = \Delta H$

Reactants and products are at the same temperature and pressure of 25°C and 1 atm. Hence this is chosen as reference state, so that the temperature dependent term becomes zero.

$$\Delta \hat{H}_{\text{mixture}} = \left(\sum_{i} n_i \Delta \hat{H}_{fi}^0 + \sum_{i} \int_{r_{ef}}^T n_i c_{p,i} dT \right) \qquad \Longrightarrow \qquad Q = \sum_{\text{products}} n_i \Delta \hat{H}_{fi}^0 - \sum_{\text{reactants}} n_i \Delta \hat{H}_{fi}^0$$

	Products			Reactants		
_	10 ⁻³ ×	ΔH_{f}^{0}	n _i ∆H _f ⁰	10 ⁻³ ×	ΔH_{f}^{0}	n _i ∆H _f ⁰
Component	g mol	kJ/g mol	kJ	g mol	kJ/g mol	kJ
FeS ₂	0.0253	-177.9	-4.494	0.7083	-177.9	-126.007
Fe ₂ O ₃	0.3616	-822.156	-297.281	0	-822.156	0
N_2	21.200	0	0	21.200	0	0
O ₂	3.7269	0	0	5.6354	0	0
SO_2	1.3661	-296.60	-405.185	0	-296.90	0
		Total	-706.96	6	Total	-126.007

Result:

Q = $[-706.96 - (-126.007)] \times 10^3 = -580.953 \times 10^3 \text{ kJ} / 100 \text{ kg ore} = -5.801 \times 10^3 \text{ kJ/kg ore}$ The negative sign indicates that heat is removed from the process. Many more instructive examples are contained in the book by D.M. Himmelblau (Basic Principles and Caculations in Chemical Engineering), which is an excellent textbook for self-instruction.

The last wisdom:

Take care of your units and they will take care of you !