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Abstract

Fluid-mechanics is an “ancient science” that is incredibly alive today. The modern technologies
require a deeper understanding of the behavior of real fluids; on the other hand new discoveries
often pose new challenging mathematical problems.

In this framework a special role is played by incompressible viscous flows. The study of these
flows has been attached with a wide range of mathematical techniques and, today, this is a stimu-
lating part of both pure an applied mathematics.

The aim of this thesis is to furnish some results in very different areas, that are linked by the
common scope of giving new insight in the field of fluid mechanics. Since the arguments treated
are various, an extensive bibliography has been added. For the sake of completeness, there is an
introductory chapter and each subsequent new topic is illustrated with the will of a self-contained
exposition.

The reader’s background is a good understanding of the classical arguments of functional anal-
ysis and partial differential equations. In particular, it is needed a knowledge of the Sobolev spaces
and of the variational formulation of linear elliptic and parabolic problems. The reader can find in
the book by Dautray and Lions (the second of the series cited in the bibliography) almost all the
required background material.

The first chapter is a reasonable introduction to few aspects of the mathematical theory of fluid
mechanics. In the first Section 1.1 we introduce the Navier-Stokes equations, while in the other
three sections of Chapter 1 we introduce the contents of the other three chapters, respectively.
In each of the following Chapters 2,3, and 4 it is introduced a particular topic of fluid mechanics
and some original results are given. The thesis can be read by following the natural order of the
chapters, but also along the following paths:

Section 1.1

Section 1.2 Section 1.3 Section 1.4

Chapter 2 Chapter 3 Chapter 4

We now describe the contents with more detail. In Chapter 1 the equations of motion of ideal and
viscous fluids are derived. Then the weak formulation of the Navier-Stokes equations is introduced,
together with some existence results. Some concepts regarding the long-time behavior are presented
and finally, the basic concepts and results regarding the finite element method and the numerical
approximation of the Navier-Stokes equations are given.

In Chapter 2 it is introduced the problem of the regularity and of the possible global existence
of smooth solutions in the three dimensional case. Particular emphasis is given to the role of weak
and strong solutions. The classical Prodi-Serrin condition is then introduced, because it is one
of the best-known conditions which ensure the regularity of the solutions. Furthermore, the role
of the pressure is discussed together with some regularity results for the Navier-Stokes equations.
Finally, in Section 2.4.1 some new results regarding the possible regularizing effect of the pressure
are given.

In Chapter 3 some results regarding the long-time behavior of solutions to the 2D Navier-Stokes
equations are presented. Furthermore, the basic theory for stochastic partial differential equations
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is briefly recalled, together with the heuristic explanation of the role of random solutions in the
theory of Navier-Stokes equations. Finally, in Section 3.3.6 and 3.3.7 some new results regarding
the long-time behavior of the solution to the Stochastic Navier-Stokes equations are given.

In the last Chapter 4 a particular numerical strategy is proposed: the domain decomposition
method. The techniques of domain decomposition are very interesting because they allow to split the
computational effort into parallel steps and, consequently, they can use computational capabilities
offered by parallel computers. A rather detailed introduction of the known results for the Poisson
equation is given in the Section 4.2. Then, motivated by the study of non-symmetric problems
(as the ones arising in the discretization of the Navier-Stokes equations), in Section 4.3.2 and 4.4
some new results regarding two classes of non-symmetric problems are presented. In particular,
optimal convergence results for some iterative methods for the advection-diffusion equations are
given. It is also proved a result concerning the time-harmonic Maxwell equations, which, though
they have a different structure, can be studied with a similar approach. We emphasize that our
interest for the advection-diffusion equations is due to the fact that they are a model-problem for
transport equations and their solution gives also one of the main “computational kernels” of the
computational fluid dynamics.
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Chapter 1

Navier-Stokes equations

The aim of this chapter is to present the Navier-Stokes equations, that are the equations governing
the motion of viscous fluids. We briefly derive the Navier-Stokes equations and then we recall some
classical results regarding different approaches to their study.

1.1 Derivation of the equations

In this section we follow essentially the book by Chorin and Marsden [CM93] and we explain the
main features arising in the study of fluid-mechanics. We recall that the study of fluid-mechanics
is one of the most challenging fields for mathematicians and also for physicists. In the preface
of the classical book by Landau and Lifshitz [LL59] fluid-mechanics is intended to be a branch of
theoretical physics, nevertheless difficult and still unsolved problems arise in the study of analytical,
statistical and numerical properties of the solutions the equations of fluids.

1.1.1 Euler equations

We start with some basic facts of continuum mechanics. Let D ⊂ Rd be a region in the two (d = 2)
or three (d = 3) dimensional space, filled with a fluid. Imagine a particle in the fluid and let
u(x, t) = (u1, . . . , ud)(x, t) be a vector, depending on the space-time variable (x, t) = (x1, . . . , xd, t),
denoting the velocity of a particle of fluid that is moving through x at time t. For each time t we
assume that the fluid has a well-defined mass density ρ(x, t). Thus if W is any subregion of D, the
mass fluid in W at time t is given by m(W, t) :=

∫
W ρ(x, t) dx, where dx is the volume element in

the plane or in the space. The assumption that ρ exists is a continuum assumption. The derivation
of the equations is based on three basic physical principles: 1) mass is never created or destroyed;
2) the rate of change of momentum of a portion of the fluid equals the force applied to it; 3) energy
is neither created or destroyed.

Conservation of mass

As consequence of conservation of mass we have that

0 =
d

dt
m(W, t) =

∫
W

∂ρ

∂t
dx.

Let n denote the outward normal defined at points of ∂W and let dS denote the area (or (d − 1)-
surface) element on ∂W. Since the volume flow rate across ∂W per unit area is u · n, the principle
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of conservation of mass can be stated as

d

dt

∫
W
ρ dx = −

∫
∂W

ρu · n dS.

By using the divergence theorem the last equation becomes∫
W

[∂ρ
∂t

+ div (ρu)
]
dx = 0, where div u :=

∂u1
∂x1

+ · · · +
∂ud
∂xd

.

Since the previous equality holds for all W it is equivalent to the following one

∂ρ

∂t
+ div (ρu) = 0,

called the “continuity equation.”

Conservation of momentum

To define an ideal fluid we split the different forces acting on a piece of material into two classes:
the stress forces (when a piece of material is acted on by forces across its surface, by the rest of the
continuum) and the body forces (forces which exert a force per unit of volume as the gravity or an
electro-magnetic field).

Definition 1.1.1. We say that a continuum is an ideal fluid if for any motion of the fluid there
is a function p(x, t), called “pressure”, such that if S is a surface in the fluid, with a chosen unit
normal n, the force of stress exerted across the surface S per unit area, at x ∈ S and at time t, is
p(x, t) n.

Many papers have been written on the hypotheses underlying this definition. We do not enter
into details, but we only remark that the absence of tangential forces implies that there is no way
for rotation to start or to stop. In other words if curl u vanishes at time t = 0, it must be identically
zero for every time. We recall that in three dimensions the vorticity field curl u is:

curl u(x, t) :=
(
∂u3
∂x2

− ∂u2
∂x3

,
∂u1
∂x3

− ∂u3
∂x1

,
∂u2
∂x1

− ∂u1
∂x2

)
(x, t).

If W is a region in the fluid, at time t the total force exerted on the fluid inside W by the stresses
is

S∂W =
{

force on W
}

= −
∫
∂W

pn dS.(1.1)

We now impose the conservation of momentum: let us write φ(x, t) (fluid flow map) for the
trajectory followed by the particle that is at point x at time t = 0. We assume φ to be smooth
enough and we denote the map at fixed time t by φt(x, t) : x → φ(x, t). We denote by Wt the
moving with the fluid region, where Wt := φt(W ). If it is given a body force per unit mass b(x, t),
the balance of momentum reads as

d

dt

∫
Wt

ρu dx = S∂Wt +
∫
Wt

ρb dx.

If J(x, t) denotes the Jacobian of φt, with straightforward calculations we get the following formula

∂

∂t
φ(x, t) = J(x, t) div u(φ(x, t), t).(1.2)
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This formula is interesting because it shows that a fluid is incompressible (i.e. ,
∫
Wt

dx is constant
in t) if and only if J ≡ 1 or if and only if div u = 0. By a change of variables and by using formula
(1.2) we get (recall that D

Dt := ∂
∂t + u · ∇)

d

dt

∫
Wt

ρu dx =
∫
W

[
D

Dt
(ρu) + div u(ρu)

]
φ J dx =

∫
Wt

[
D

Dt
(ρu) + (ρdiv u) u

]
dx.

and by using the conservation of mass we obtain

d

dt

∫
Wt

ρu dx =
∫
Wt

ρ
Du
Dt

dx.

After reasoning on the integral formulation (since the last equation holds for each W ⊂ D) we
establish the differential form of the conservation of momentum1

ρ
Du
Dt

= −∇p + ρb.

Conservation of energy

We have developed d + 1 equations with the d + 2 unknowns ρ, p, and u. Consequently we need
another equation to avoid an over-determined problem. We suppose, as usual, that all the energy is
the kinetic (Ekin) one, and that the rate of change of the kinetic energy in a portion of fluid equals
the rate at with the pressure and body forces work:

d

dt
Ekin(t) =

d

dt

1
2

∫
Wt

ρ(x, t)|u(x, t)|2 dx = −
∫
∂Wt

pu · n dS +
∫
Wt

u · b dx.

The application of the divergence theorem and of the formulas obtained before shows that neces-
sarily div u = 0. The Euler equations for a fluid filling D, derived firstly by Euler [Eul1755], are
finally 

ρ
Du
Dt

= −∇p + ρb.

Dρ

Dt
+ ρdiv u = 0.

div u = 0.

When the previous system is equipped with the tangential boundary condition u ·n = 0 on ∂D and
initial conditions on ρ and u, it is (in suitable spaces) a well-posed mathematical problem. For a
collection of mathematical results regarding the Euler equations the reader can see the recent book
by P.-L. Lions [PLL96].

1.1.2 Navier-Stokes equations

The Euler equations describe an ideal fluid, but if we want to consider a more general fluid we need
different equations. The need of generalization comes from simple considerations about the kinetic

1The term D
Dt

is called the material derivative, because it takes into account the fact that the fluid is moving. If

we denote by a(t) the acceleration of a particle we have, by the chain rule, that a(t) := du
dt = ∂u

∂t + u1
∂u
∂x1

+ · · ·+
ud

∂u
∂xd

= ∂u
∂t + (u · ∇) u := Du

Dt .
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theory of matter. We do not enter into details, but we simply change our previous assumption2

(1.1) on the stress forces into the following one:{
force per unit of area

}
= −p(x, t) n + σ(x, t) n,

where σ is a matrix which depends only on the velocity gradient ∇u = ∂ui/∂xj . The matrix σ
must be symmetric and for physical reasons regarding the invariance (with respect to orthogonal
transformations) of the equations we obtain

σ = λ(div u) I + 2µDS ,

where I is the identity matrix and DS is the symmetric part of ∇u. The last equation is generally
written by putting all the trace terms in one term

σ = 2µ
[
DS − 1

3
(div u)

]
+ ζ(div u) I,

where µ is the first coefficient of viscosity and ζ = λ + 2µ/3 is the second coefficient.
If we employ the transport theorem and the divergence theorem, as we did before, (we pass also

from the integral formulation to the differential one) we get the following equation:

ρ
Du
Dt

+ (u · ∇) u = −∇p + (λ + µ)∇(div u) + µ∆u,

where ∆u =
∑d

i=1 ∂
2u/∂x2i is the Laplacian of u. We observe that the Laplacian raises the order of

derivatives of u involved. This is accompanied by an increase in the number of boundary conditions:
from the tangential condition we must pass to the no-slip condition u = 0. The physical need for
this boundary conditions comes from simple experiments involving flow past a solid wall. From the
mathematical point of view other conditions are suitable, but we shall confine to the no-slip one.

Remark 1.1.2. A crucial feature of the no-slip boundary condition is that it provides a mechanism
by which a boundary can produce vorticity in the fluid.

We are interested to incompressible problems and we mainly deal with homogeneous3 (i.e. ,
ρ = ρ0 = const.) viscous fluid. To study the scaling properties of the Navier-Stokes equations we
must write the equations in a non-dimensional form. We set ν = µ/ρ0 and p∗ = p/ρ0; for a given
problem let L be a characteristic length and U a characteristic velocity. These numbers are chosen
in a somewhat arbitrary way. If we measure x,u, and t as fraction of these scales we are changing
the variables and introducing the following dimensionless quantities

u∗ :=
u
U
, x∗ :=

x
L
, t∗ :=

t

T
.

By straightforward computations and by suppressing the stars (with an abuse of notation) we
obtain the following equations

∂u
∂t

+ (u · ∇) u + ∇p− 1
R

∆u = 0,

2The fact that the force acting on S should be a linear function of n is not an assumption, but it derives from
balance of momentum. This result is known as Cauchy Theorem. Complete discussion with also historical remarks
regarding the constitutive relation for σ can be found in Lamb [Lam93]. We recall that the Navier-Stokes equations
were introduced by Navier [Nav1822] and, while Stokes studied in [Sto1849] mainly the linearized problem, the
equation inherited the names of both.

3We recall that the incompressibility conditions implies that, if the density ρ is constant in space, it is also constant
in time because Dρ/Dt = 0.
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where the dimensionless quantity R := LU/ν is the Reynolds number.
With another abuse of notation (to have the equation as they are generally written in the mathe-
matical literature) we write the equations with ν = 1/R. The complete set of incompressible and
homogeneous Navier-Stokes equations, driven by an external force f and with proper boundary and
initial condition, is finally

∂u
∂t

+ (u · ∇) u− ν∆u + ∇p = f in D × [0, T ],(1.3)

div u = 0 in D × [0, T ],(1.4)
u = 0 on ∂D × [0, T ],(1.5)
u(x, 0) = u0(x) in D × {0},(1.6)

1.2 Main existence theorems

In this section we state some of the basic results regarding the mathematical approach to the Navier-
Stokes equations. The main problem regarding the equations of incompressible fluid dynamics are:
there exists a solution? Is it unique?

Many mathematicians have faced with this problem and the first satisfactory answer arrived
from Leray [Ler33, Ler34a, Ler34b]. He proved the basic existence and uniqueness results by
using the techniques of hydrodynamic potentials. These results were improved and the proof were
simplified by Hopf [Hop51], by using a more functional approach. The role of the weak solutions
became more and more important, especially after the appearance of the paper by Kiselev and
Ladyženskaya [KL57] and the fundamental book by Ladyžhenskaya [Lad69]. We remark that in
the same years appeared the extremely complete4 paper by Berker [Berk63], in which big importance
is given to explicit (classical) solutions of the problem, in particular geometric situations.

In this section we outline some basic facts regarding the functional approach to the Navier-Stokes
equations. We only state some basic results; for their proof we refer to the book by Constantin and
Foiaş [CF88], if no other explicit reference is given.

1.2.1 Function spaces and the Stokes operator

In the sequel we shall use extensively the customary Sobolev spaces Wm,p(D) and Hk(D), respec-
tively with norm ‖ . ‖m,p,D and ‖ . ‖k,D. For the reader not acquainted with these function spaces a
classical reference is Adams [Ada75]. Since we deal with evolution equations it is classical to use
the Banach spaces Lp(0, T ;B). They are the spaces of strongly (Lebesgue) measurable B-valued
functions v : [0, T ] → B such that∫ T

0
‖v(t)‖pB dt < ∞ if 1 ≤ p < ∞ and ess sup

0<t<T
‖v(t)‖B < ∞ if p = +∞.

These spaces are Banach spaces endowed with the norms:

‖v‖p,B =

[∫ T

0

‖v(t)‖p
B dt

]1/p

if 1 ≤ p < ∞ and ‖v‖∞,B = ess sup
0<t<T

‖v(t)‖B if p = +∞.

4The author would like to thank Prof. Cimatti for having pointed out this reference.
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Remark 1.2.1. We remark that for any p ∈ [1,+∞], Lp(0, T ;B) is the set of classes of functions
induced by the equivalence relation

u ∼ v if and only if u = v a.e. in (0, T ),

and for simplicity we shall speak of functions instead of classes of functions.

In the treatment of the Navier-Stokes equations we shall use some appropriate Hilbert spaces.
We define

V :=
{
φ ∈ (C∞

0 (D))d : divφ = 0
}
.

Let us denote by H and V the closure of V in (L2(D))d and (H10 (D))d, respectively. We equip H with
the (L2(D))d-norm denoted by | . |, induced by the usual scalar product (u,v) :=

∫
D u·v dx. Since we

deal essentially with problems in bounded domains, we equip V with the norm ‖u‖2 :=
∫
D |∇u|2 dx.

The norm in V is equivalent to that one in (H10 (D))d (by the Poincaré inequality) and it is induced
by the scalar product ((u,v)) =

∫
D ∇u · ∇v dx.

We have the following proposition

Proposition 1.2.2 (Helmholtz decomposition). Let D be open, bounded, connected of class C2.
Then (L2(D))d = H ⊕H1 ⊕H2, where H1,H2 are the following mutually orthogonal spaces,

H1 :=
{
u ∈ (L2(D))d : u = ∇p, p ∈ H1(D), ∆p = 0

}
,

H2 :=
{
u ∈ (L2(D))d : u = ∇p, p ∈ H10 (D)

}
.

The Stokes equations

The Stokes equations for (u, p) are
−ν∆u + ∇p = f in D,
div u = 0 in D,
u = 0 on ∂D.

If (u, p) are smooth then, after multiplying by v ∈ V and by an integration by parts (recall that
∇p belongs to a space orthogonal to H) we obtain ((u,v)) = (f,v).

Definition 1.2.3. We say that u is a weak solution of the Stokes equations if u ∈ V and

((u,v)) = (f,v) ∀v ∈ V.

We have the following proposition which states the role of the weak solutions.

Proposition 1.2.4. Let D be open bounded and of class C2. Then the following statements are
equivalent

i) u is a weak solution of the Stokes equations;

ii) u ∈ (H10 (D))d and satisfies: there exist p ∈ L2(D) such that
−ν∆u + ∇p = f in the sense of distributions,
divu = 0 in the sense of distributions,
u = 0 in the trace sense;
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iii) u ∈ V achieves the minimum of J(v) := ν‖v‖2 − 2(f,v) on V.

By using the Lax-Milgram lemma in the separable Hilbert space V, we have the following
theorem:

Theorem 1.2.5. Let D be open and bounded in some direction. Then (( . , . )) is a scalar product
in V and for every f ∈ (L2(D))d there exists a unique weak solution of the Stokes equations.

We have also the following regularity result, for which we refer5 to Cattabriga [Cat61].

Theorem 1.2.6. Let D ⊂ Rd d = 2, 3 be bounded and of class Cr, r = max {m + 2, 2}, m ≥ −1.
Let f belong to (Wm,α(D))d. Then there exists a unique u ∈ (Wm+2,α(D))d) and there exists a
unique (up to an additive constant) p ∈ Wm+1,α(D) solutions of the Stokes equations. Moreover

‖u‖m+2,α,D + |‖p‖|m+1,α,D ≤ C‖f‖m,α,D,

where |‖ . ‖|m+1,α,D is the norm in Wm+1,α(D)/R.

The Stokes operator

We denote by P is the (Leray) orthogonal projection operator P : (L2(D))d → H. Let us assume
that D is bounded of class C2.

Definition 1.2.7. The Stokes operator A acting on D(A) ⊂ H into H is defined by

A : D(A) → H, A := −P∆.

We have the following proposition.

Proposition 1.2.8. The following results hold for the Stokes operator:

1) The Stokes operator is selfadjoint and D(A) = (H2(D))d ∩ V ;

2) The inverse of the Stokes operator, A−1, is a compact operator in H;

3) There exist {wj}j∈N, wj ∈ D(A) and 0 < λ1 ≤ · · · ≤ λj ≤ λj+1 ≤ . . . such that:

a) Awj = λjwj ,

b) limj→+∞ λj = +∞6,

c) {wj}j∈N is an orthonormal basis of H.

Remark 1.2.9. More regularity of ∂D is inherited by wj. In particular we have that if D is of
class C l+2, l ≥ 0, then wj belongs also to (H l+2(D))d.

5See also, in the case α = 2, the simplified proof given in Beirão da Veiga [BdV97a], which avoids the methods of
potential theory.

6We remark that the precise asymptotic behavior of the eigenvalues of the Stokes operator is known to be

lim
j→+∞

(
|D|
j

)2/d λj

(2π)2
= ((n − 1)ωd)−2/d, where ωd = |B(0, 1)| denotes the Lebesgue measure of the unitary ball

and |D| that one of D, see Kozhevnikov [Koz84].
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Due to the previous result we can define, as usual, the fractional powers of A as follows:

Definition 1.2.10. Let α > 0 be real. For u ∈ D(Aα), where

D(Aα) :=
{
u ∈ H : u =

+∞∑
j=1

ujwj,

+∞∑
j=1

λ2αj |uj |2 < +∞, uj ∈ Rd
}
,

we define Aαu, by

Aαu :=
+∞∑
j=1

λαj ujwj for u :=
+∞∑
j=1

ujwj .

1.2.2 Inequalities for the nonlinear term

The presence of the nonlinear term is the most painful fact in the theory of Navier-Stokes equations.
Its presence causes the lack of satisfactory existence and uniqueness theorems.

It is important to have good estimates on this term. In the Sobolev framework to treat the
nonlinear term we introduce the following trilinear form

b(u,v,w) :=
d∑

i,j=1

∫
D
uj

∂vi
∂xj

wi dx =
∫
D

(u · ∇) v · w dx.(1.7)

We recall the following definition.

Definition 1.2.11. Let u,v ∈ (C(D))d. We define B(u,v) by

B(u,v) := P ((u · ∇) u),

where P is the Leray projector.

The trilinear term b(u,v,w) surely makes sense for u,v,w ∈ (C1(D))d, and the following
proposition states one important estimate.

Proposition 1.2.12. Let D be bounded, open and of class C l. Let s1, s2, s3 be real numbers such
that 0 ≤ s1 ≤ l, 0 ≤ s2 ≤ l − 1 and 0 ≤ s3 ≤ l. Let us assume that

i) s1 + s2 + s3 ≤
n

2
if si �=

d

2
for i = 1, 2, 3

or

ii) s1 + s2 + s3 >
n

2
if si =

d

2
for at least one i.

Then ∀u,v,w ∈ (C∞(D))d there exists a constant c, depending on s1, s2, s3, such that

|b(u,v,w)| ≤ C‖u‖1+[s1]−s1
[s1],D

‖u‖s1−[s1][s1]+1,D
‖v‖1+[s2]−s2

[s2]+1,D
‖v‖s2−[s2][s2]+2,D

‖w‖1+[s3]−s3
[s3],D

‖w‖s3−[s3][s3]+1,D
.

The last proposition can be proven with a clever use of Hölder and interpolation inequalities.
We recall also the orthogonality property

b(u,v,v) = 0 ∀u ∈ V, ∀v ∈ (H10 (D))d,

which is of basic importance to get energy-type estimates.
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1.2.3 Weak solutions

We now consider the Navier-Stokes equations in the particular cases of d = 2, 3, which are the
most important from the physical point of view. The Navier-Stokes equations will be written in
the abstract form as functional equations in the Hilbert space H as follows:

du
dt

+ ν Au + B(u,u) = f(1.8)

u(0) = u0.(1.9)

The solution will be a vector valued function u(t) such that Au(t) and B(u(t),u(t)) make sense.
We now define the notion of weak solution and then we outline the proof of an existence theorem.

Definition 1.2.13. A weak solution of the Navier-Stokes equations (1.8) is a function u belonging
to L2(0, T ;V ) ∩Cw(0, T ;H), satisfying du/dt ∈ L1loc(0, T ;V ′) and

<
du
dt

,v > +ν((u,v)) + b(u,u,v) = (f,v) a.e. in t ∀v ∈ V,(1.10)

u(0) = u0,(1.11)

where we denoted by V ′ the topological dual space of V, with pairing < . , . > . The space Cw(0, T ;H)
is a subspace of L∞(0, T ;H) consisting of functions which are weakly continuous, i.e. (u(t),h) is a
continuous function for all h ∈ H. In particular the initial datum is taken in this sense.

The main result regarding weak solutions is the following, which is essentially due to Hopf [Hop51].

Theorem 1.2.14. There exists at least a weak solution of (1.8), for every u0 ∈ H and f ∈
L2(0, T ;V ′). Moreover, the energy inequality

1
2
|u(t)|2 + ν

∫ t

t0

‖u(s)‖2 ds ≤ 1
2
|u(t0)|2 +

∫ t

t0

< f(s),u(s) >ds(1.12)

holds for all 0 ≤ t0 ≤ t ≤ T, a.e. t0 in [0, T ] and

if d=3 then
du
dt

∈ L4/3(0, T ;V ′)

if d=2 then
du
dt

∈ L2(0, T ;V ′).

We do not enter into details of the proof of Theorem 1.2.14, but we only outline that it is based
on three steps:

i) a Faedo-Galerkin approximation with smooth functions un : (0, T ) → R
k ⊂ V, for some

k ∈ N;

ii) the energy-type estimate

1
2
d

dt
|un|2 + ν‖un‖2 =< f,un >(1.13)

to get that un is bounded in L∞(0, T ;H) ∩ L2(0, T ;V ), uniformly in n;

iii) extraction of subsequences and additional compactness results (d = 3).
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1.2.4 Strong solutions

In this section we introduce the notion of strong solution and we show some results which highlight
the differences between problem in two and in three space dimensions.

Definition 1.2.15. A strong solution of the Navier-Stokes equations is a function u satisfying
(1.10)-(1.11) and belonging to L∞

loc(0, T ;V ) ∩ L2loc(0, T ;D(A)) ∩ L2(0, T ;V ) ∩ L∞(0, T ;H).

The main tool to prove existence of strong solutions is an “high order” energy-type inequality.
We consider again a Galerkin approximation, but this time we multiply the Navier-Stokes equations
by Aun and integrate over D. The “bad” term will obviously be b(un,un, Aun).

The two dimensional case

If d = 2, by setting s1 = 1/2, s2 = 1/2, and s3 = 0 in Proposition 1.2.12 we obtain

|b(un,un, Aun)| ≤ C|un|1/2‖un‖|Aun|.

By using Young inequality we have

|(f, Aun)| ≤ ν

4
|Aun|2 +

‖f ‖2∞,H

ν
.

These estimates lead to the inequality

d

dt
‖un‖2 + ν|Au|2 ≤

2‖f ‖2∞,H

ν
+

c

ν3
|un|2‖un‖4(1.14)

By using the estimates on |un| and ‖un‖, which are known for weak solutions, and by applying
the Gronwall lemma, we get the estimates needed to prove the following result, see Kiselev and
Ladyženskaya [KL57].

Theorem 1.2.16. Let D ⊂ R2 be an open bounded set of class C2. Let u0 ∈ H, f ∈ L∞(0,∞;H).
Then ∀T > 0 there exists a solution u of the Navier-Stokes equations satisfying

u ∈ L∞
loc(0, T ;V ) ∩ L2loc(0, T ;D(A)) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ).

The three dimensional case

In the three dimensional case we estimate again the nonlinear term by using Proposition 1.2.12
with s1 = 1, s2 = 1/2, s3 = 0, but we can obtain the following estimate:

|b(un,un, Aun)| ≤ C‖un‖3/2|Aun|3/2.

Reasoning as before on the energy-type estimate, derived by multiplying the Navier-Stokes equa-
tions by Aun, we get

d

dt
‖un‖2 + ν|Au|2 ≤

2|f |2∞,H

ν
+

c

ν3
‖un‖6.(1.15)

By using the last estimate (1.15) it is possible to prove the following theorem
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Theorem 1.2.17. Let D ⊂ R3 be an open bounded set of class C2. There exists a positive constant
C such that for u0 ∈ V and f ∈ L2(0, T ;H) satisfying

‖u0‖2

ν2λ
1/2
1

+
2

ν3λ
1/2
1

∫ T

0
|f(s)|2 ds ≤ 1

4
√
C
,(1.16)

there exists a solution u(t) of the Navier-Stokes equations belonging to L∞(0, T ;V )∩L2(0, T ;D(A)).

The condition (1.16) can be interpreted in various way: small initial data and external force,
but arbitrary T. The same inequality shows also that if ‖u0‖ and ‖f ‖2,H are not small with respect
to suitable expression in ν2 and λ1, only local existence can be inferred. We understand the need
to deal with weak solutions, which are defined for any time interval [0, T ] even for d = 3. As we
shall see with more detail later (see Chapter 2)

. . . even if u0 and f are very nice functions, in this case the existence of classical solu-
tions of the Navier-Stokes equations is known, in general, only for short time intervals.

Remark 1.2.18. We remark that in the absence of boundaries the Leray projector P commutes
with the Laplace operator ∆. By absence of boundaries we mean either the case D = Rd or the case
D = Td, the dth dimensional torus. In the latter case we can speak of periodic boundary conditions.
In this case the Navier-Stokes equations are studied as equations on the whole space Rd with the
following condition

u(x1 + 2π, x2, . . . , xd) = · · · = u(x1, . . . , xd−1, xd + 2π) = u(x1, . . . , xd) ∀ (x1, . . . , xd) ∈ Rd,

and there is no loss of generality to assume that
∫
D u0(x) dx = 0. We define Hper as the closure in

(L2(D))d of the set {
u ∈ (C1per(D))d : div u = 0 and

∫
D

u(x) dx = 0
}
,

where C1per(D) is the space of differentiable periodic functions. We also define Vper as the divergence-
free subspace of (H1per(D))d, where Hm

per(D) are the periodic functions in Hm(D). By setting k =
(k1, . . . , kd) ∈ Zd, we define, for m ≥ 0,

Hm
per(D) :=

{
u : u =

∑
k∈Zd

ckei(k1x1+···+kdxd),
∑
k∈Zd

(1 + |k|)2m|ck|2 < ∞ and c0 = 0
}
,

with the norm
‖u‖2m =

∑
k∈Zd

(1 + |k|)2m|ck|2 < ∞.

We recall that since ck ∈ C we have to impose ck = c−k, to have real valued functions. We have
again the Helmholtz decomposition (L2per(D))d = Hper ⊕ G, where G denotes a space of gradients,
that is orthogonal to Hper.

With the periodic boundary conditions we have that if d = 2, then

b(um,um, Aum) ≡ 0.

The last equation shows one the main simplifications due to the use of periodic boundary conditions.
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1.3 Long-time behavior

In this section we briefly explain the basic results regarding the long-time behavior of the Navier-
Stokes equations. When dealing with long-time analysis we restrict to the two dimensional case.
In this case the solution globally exist and it is unique. Further results will be presented when
necessary. The main idea, underlying the results we shall show, is the following one: since the
Navier-Stokes equations are dissipative, “probably” the dynamical system generated by their solution,
can be described (asymptotically) with a finite number of degrees of freedom. The first results in
this direction are due to Foiaş and Prodi [FP67] and Ladyženskaya [Lad72]. We shall present two
of the main approaches: attractors and determining projections.

1.3.1 Attractors

In this section we describe the main features of the attractors in metric spaces, see Babin and
Vǐshik [BV92]. We consider a dynamical system whose state is described by an element u(t)
of a metric space H. The evolution of the system is described by the semigroup S(t). We recall
that a family of operators {S(t)}t≥0 that maps H into itself for each t, is called a semigroup if
S(t + s) = S(t) ◦ S(s), for s, t ≥ 0 and S(0)x = x, ∀x ∈ H. We assume at least that S(t) is a
continuous nonlinear operator for t ≥ 0. We give now the definition of ω-limit set.

Definition 1.3.1. We say that the orbit starting at u0 is the set
⋃

t≥0 S(t)u0. For u0 ∈ H or for
A ⊂ H we define the ω-limit set of u0 and of A respectively as

ω(u0) :=
⋂
s≥0

⋃
t≥s

S(t)u0 and ω(A) :=
⋂
s≥0

⋃
t≥s

S(t)A,

where the closures are taken in H.

Remark 1.3.2. We remark that φ ∈ ω(A) if and only if there exists a sequence {φn}n∈N ⊂ A and
a real sequence tn → +∞ such that limtn→+∞ S(tn)φn = φ.

Another important definition is that one of functional invariant set.

Definition 1.3.3. A set X ⊂ H is a functional invariant set for the semigroup S(t) if

S(t)X = X ∀ t ≥ 0.

Trivial examples of a invariant set are

a) a singleton fixed point u0 or any union of fixed points;

b) any time-periodic orbit7, when it exists.

The discussion of other examples, less trivial than the ones above, can be found in Temam [Tem97],
§1. In the same reference one can also find the proof of all results of this section. We start with an
abstract lemma.

Lemma 1.3.4. Assume that for some nonempty subset A ⊂ H and for some t0 > 0 the set⋃
t≥t0

S(t)A is relatively compact in H. Then ω(A) is nonempty, compact and invariant.

7An orbit is periodic if there exists 0 < T < +∞ such that S(T )u0 = u0.
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Remark 1.3.5. The lemma above provides us examples of invariant sets whenever we can show
that ∪t≥t0S(t)A is relatively compact. This set can consist of a single stationary solution u∗, if
all the orbits starting form A converge to u∗ as t → +∞. It can also be a single periodic or a
quasi-periodic8 solution or even a more complex object.

At this point it is clear that some compactness is needed. The problem reduces to show that the
set

⋃
t≥t0

S(t)A is bounded if H is finite dimensional; the same set should be bounded in some
subspace W, compactly embedded in H, if we deal with a problem in infinite dimensions.

Definition 1.3.6. An attractor is a set A ⊂ H that enjoys the following properties

i) A is a functional invariant set;

ii) A has an open neighborhood U such that, for every u0 in U S(t)u0 converges to A as t goes
to +∞, i.e.

d(S(t)u0,A) → 0 as t → +∞,

where the distance is understood to be the distance of a point to a set

d(x,A) = inf
y∈A

d(x, y).

If A is an attractor, the largest open set U that satisfies ii) is called the basin of attraction of
A. We can express condition ii) by saying that A attracts the points of U . We shall say that A
uniformly attracts a set B ⊂ U if

d(S(t)B,A) → 0 as t → +∞,

where d(B0,B1) is the semidistance9 of B0,B1, defined by d(B0,B1) = supx∈B0
infy∈B1 d(x, y). We

can now define the key concept of global attractor.

Definition 1.3.7. We say that A ⊂ H is a global attractor for the semigroup {S(t)}t≥0 if A is
compact attractor that attracts the bounded sets of H. Its basin of attraction is then all of H.

It is easy to prove that such a set is necessarily unique and that such a set is maximal for
inclusion relation among the bounded attractors and among the bounded functional invariant sets.
For this reason it is also called the maximal attractor

Existence of attractors

To prove the existence of attractors we introduce the notion of absorbing sets and that one of
uniformly compact semigroup.

Definition 1.3.8. Let B be a subset of H and U an open set containing B. We say that B is
absorbing in U if the orbit of any bounded set of U enters into B after a certain time, depending
on the set:

∀B0 ⊂ U B0 bounded ∃ t∗(B0) such that S(t)B0 ⊂ B ∀ t ≥ t∗(B0).
8An orbit is quasi-periodic if the function t �→ S(t)u0 is of the form g(ω1t, . . . , ωdt) where g is a periodic with

period 2π in each variable and the frequencies ωj are rationally independent.
9We recall that the Hausdorff distance defined on the set of nonempty compacts subsets of a metric space is defined

by δ(B0,B1) := max(d(B0,B1), (B1,B0)). We remark that d is not a distance as d(B0,B1) = 0 implies only B0 ⊂ B1.
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Definition 1.3.9. Let {S(t)}t≥0 be a semigroup of operators from H into itself. We say that
{S(t)}t≥0 is a uniformly compact semigroup if for every bounded set B there exists t0, which may
depend on B, such that: ⋃

t≥t0

S(t)B is relatively compact in H.

The existence of a global attractor for a semigroup implies that of an absorbing set. Conversely
the next theorem will show that a semigroup, which possesses an absorbing set and enjoys some
other properties, has a global attractor.

Theorem 1.3.10. Let us suppose that H is a metric space and that the operators S(t) are con-
tinuous and satisfy the semigroup property. Let us suppose furthermore that the operators S(t) are
uniformly compact for t large.

If we also assume that there exists an open set U and a bounded B ⊂ U such that B is absorbing
in U , then the ω-limit set of B is the global attractor in U . Furthermore if U is convex and connected,
then A = ω(B) is connected too.

With this abstract result it is immediate to prove that the Lorenz system has the global attractor.
The equations of this system are 

x′ = −σ x + σ y,
y′ = r x− y − x z,
z′ = −b z + x y,

and this system is a three-mode Galerkin approximation (one in velocity and two in temperature
of the Boussinesq equation, for a fluid heated from below). The numbers σ, r, b represent non-
dimensional quantities. This model was proposed by Lorenz [Lor63], as an indication of the limits
of predictability in weather prediction.

Attractors for the Navier-Stokes equations

We do not give the proof of the following result. The interested reader can find it in Temam [Tem97],
§3–5. We only observe that it is based on application of the energy-type estimates (1.13)-(1.14).

Theorem 1.3.11. The dynamical system associated to the two-dimensional Navier-Stokes equa-
tions possesses a global attractor. Furthermore the Hausdorff dimension of the global attractor A
turns out to be finite. (See also the note at the end of page 16)

In particular it is easy to check that the hypotheses of Theorem 1.3.10 are satisfied; more
technical (not necessary in the sequel) tools are needs to show the finite dimensionality of the
attractor.

1.3.2 Determining modes, nodes and volumes

The results of this section are mainly based on the results which followed the germinal paper by
Foiaş and Prodi [FP67]. They proved that, at least asymptotically, the behavior of the solutions
to the Navier-Stokes equations can be described by the behavior of a finite dimensional system or,
in other words, by a system of ordinary differential equations.
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General setting

We consider the Navier-Stokes equations with two external forces f,g and we denote by u and v
the relative solutions. We assume that D is a bounded smooth susbset of R2 and that

lim
t→+∞

|(f − g)(t)| = 0.

We have various results on the behavior of u − v.

Determining modes

The basic result stated by Foiaş and Prodi [FP67] is the following one, which states that the behavior
of the solutions is described by that one of the projection on a finite number of eigenfunctions of
the Stokes operator.

Theorem 1.3.12. Let D, f,g satisfy the hypotheses described above. Then there exists N, which
depends only on ν,D, f,g, such that

lim
t→+∞

‖PN (u − v)(t)‖R2N = 0 implies lim
t→+∞

|(u − v)(t)| = 0,

where PN denotes the projection operator on the subspace spanned by the first N eigenfunctions of
the Stokes operator

PN : V → VN := span < w1, . . . ,wN > .

This result is very important, but of no practical use, because the eigenfunctions of the Stokes
operator are no computable, unless we study problems with periodic boundary conditions.

Determining nodes

Another result in this direction was given by Foiaş and Temam [FT84]. They proved that if the
large time behavior of the solutions is known on an appropriate discrete set (nodes), then the large
time behavior of the solution itself is totally determined.

It is given a set of points EN = {x1, . . . ,xN} ⊂ D, then the density of this set is measured in
the following way. We associate to every point x ∈ D its distance to EN by dN (x) := min

1≤j≤N
|x− xj |

and we set
dN := max

x∈D
dN (x),

which will be the main parameter to measure density. We have the following theorem

Theorem 1.3.13. Let the same hypotheses on D, f,g of the previous Theorem 1.3.12 hold. If we
assume that, as t → +∞,

u(xj , t) − v(xj, t) → 0 for j = 1, . . . , N,

then there exists a constant α = α(ν,D, f,g) such that if dN ≤ α, then

‖u(t) − v(t)‖ → 0 as t → +∞.

The interesting feature of this result is that the point xj can be, for example, the nodal points
for a finite element method or a collocation method. The result of Theorem 1.3.13 is then strictly
linked with the numerical analysis of Navier-Stokes equations. We observe that regular solutions,
say at least belonging to (H2(D))d ⊂ (C(D))d a.e. in time, are needed to define the value at points
in D.
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Determining finite element volumes

A further generalization is based on the idea that the behavior of non-smooth solution cannot be
characterized by nodal values, see Foiaş and Titi [FT91] and Jones and Titi [JT92]. We recall that
V �⊂ C(D), if d ≥ 2 and that if u is a weak solution, then u ∈ V a.e. t ∈ [0.T ]. A result, which does
not use further regularity properties of the solutions, can be obtained by using the spatial mean of
the solution.

We consider D := (0, L)2 and we study the problem with periodic boundary conditions. We
divide D into N equal squares of side l = L/

√
N, labelled by Qj . We define the average of solutions

on the square Qj by

〈u〉Qj =
N

L2

∫
Qj

u(x) dx, for 1 ≤ j ≤ N.

We have the following theorem.

Theorem 1.3.14. Let the same hypotheses on f,g of Theorem 1.3.12 hold. There exists a natural
number N = N(ν, f,g, L) such that if N ≥ N then

lim
t→+∞

〈u〉Qj − 〈v〉Qj = 0 for 1 ≤ j ≤ N implies lim
t→+∞

|u − v| = 0.

Precise estimates10 on the number of degrees of freedom are known and the fundamental pa-
rameter is the Grashof number defined by

Gr :=
1

λ1 ν2
lim sup
t→+∞

|f(t)|.

We do not enter into details, referring to the paper by Jones and Titi [JT93].

1.3.3 Determining projections

The results on nodes, modes and volumes can be generalized with a more abstract setting, which
encompasses them. The definition of determining projection was given by Holst and Titi [HT97]

. . . an operator which projects weak solutions onto a finite-dimensional space is deter-
mining if it annihilates the difference of two “nearby” weak solutions asymptotically,
and if it satisfies a single approximation inequality.

We now give the precise results.

Definition 1.3.15. The projection operator RN : V → VN ⊂ (L2(D))d, N = dim(VN ) < +∞
is called a determining projection operator for weak solutions of the d-dimensional Navier-Stokes
equations if

lim
t→+∞

|RN (u(t) − v(t))| = 0,

implies that
lim

t→+∞
|(u(t) − v(t))| = 0.

10Sharp estimates (periodic boundary conditions) for the number of determining modes, nodes and volumes is Gr.
This bound must be compared to the bound Gr2/3(1 + logGr)1/3, which holds for the global attractor. We recall
that an estimate of order of Gr is in agreement with the heuristic estimates, which are based on physical arguments,
that have been conjectured by Manley and Treve.
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The result that can be proven is the following one, see Holst and Titi [HT97].

Theorem 1.3.16. Let the same hypotheses on D, f,g of the previous Theorem 1.3.12 hold. Let
there exists a projection operator RN : V → VN ⊂ (L2(D))2, N = dim(VN ) < +∞ satisfying

lim
t→+∞

|RN (u(t) − v(t))| = 0(1.17)

and satisfying the following approximation inequality

∃ γ > 0 ‖u −RN (u)‖(L2(D))2 ≤ C
1
Nγ

‖u‖(H1(D))2 ∀u ∈ (H1(D))2.(1.18)

Then if N > C(λ1Gr)1/γ , where C is a constant independent of ν, f and g, the following estimate
holds

lim
t→+∞

|u(t) − v(t)| = 0.

We do not give the proof of this result here, because we shall analyze the problem in Chapter 3.

Remark 1.3.17. We observe that:

a) the projection operator acts on weak solutions (say only in V );

b) the definition of determining projection encompasses each of the notions of determining modes,
nodes, volumes;

c) an operator satisfying (1.17)-(1.18) can be explicitly constructed, as we shall show in the following
Section 3.1.1.

1.4 A review of numerical methods in Fluid Dynamics

In this section we review some basic techniques used in the numerical approximation of the Navier-
Stokes equations. The basic framework will be that one of Finite Element Method. We only give
the definition and the reader can find the details in the classical book by Ciarlet [Cia78].

Given a coercive bilinear form a( . , . ) : X × X → R in the real Hilbert space X and given
f ∈ X, the Faedo-Galerkin method reads as

find xh ∈ Xh : a(xh, yh) = f(yh) ∀ yh ∈ Xh,

where Xh is a suitable finite dimensional subspace of X. The major result is the following

Proposition 1.4.1. Let a( . , . ) and f as before and let Xh be a family of finite dimensional sub-
spaces of X. Assume that there exists a dense subset X ⊂ X such that

lim
h→+∞

inf
xh∈Xh

‖y − yh‖ = 0 ∀ y ∈ X .

Then, as h → 0, xh converges in X to the solution x of the “continuous problem”

find x ∈ X : a(x, y) = f(y) ∀ y ∈ X.

We recall that the Finite Element Method is a particular Faedo-Galerkin method in which, roughly
speaking, the finite dimensional subspace, used to approximate the problem, is given and really
computable.
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The Finite Element Method

To introduce some concepts on finite element spaces we start from the following definition.

Definition 1.4.2. The triple (K,PK,NK) is called a finite element if

i) K ⊂ Rd is a domain with piecewise smooth boundary (the element domain);

ii) PK is a finite dimensional space of functions on K (the shape functions);

iii) NK = {N1, . . . , Nk} is a basis for P ′
K (the nodal variables).

We define some other objects needed for the polynomial interpolation. We define P d
s as the

space of polynomials in d variables of degree less or equal than s. We have that P d
s is a linear

space, whose dimension is easily calculated to be
(d+s

d

)
. As basic examples of finite element we

recall the triangular Lagrange element, i.e. , K is a triangle, PK = P 21 and NK = {N1, N2, N3} with
Ni(v) = v(xi), where xi are the vertices of K. Another example is the Crouzeix-Raviart element in
which the vertices are replaced by the midpoints of the edges. This examples can be generalized to
high order polynomials and to higher dimensional simplices.

We now define the notion of local interpolant.

Definition 1.4.3. Given a finite element (K,PK,NK), let the set {ϕi}di=1 ⊆ PK be the basis dual
to NK (i.e. 〈Nj , ϕj , 〉P ′

K,PK = δij). If v is a function for which all Ni ∈ NK are defined, then we
define the local interpolant by

IKv :=
d∑

i=1

Ni(v)ϕi.

Definition 1.4.4. A subdivision T of a domain D is a finite collection of d-simplices {Ki} such
that:

i) Ki ∩ Kj = ∅ if i �= j;

ii)
⋃
Ki = D;

iii) the faces (which are (d-1)-simplices) of each simplex Ki lie on ∂D or are faces of another
simplex Kj .

In this way it is is possible to create finite dimensional subspaces of some function spaces defined
on D, by piecing together finite elements (Ki,PKi ,NKi), with Ki belonging to a given subdivision
T .

We are now in position to define the notion of global interpolant.

Definition 1.4.5. Suppose D is a domain with a subdivision T . Assume each element domain Ki

in the subdivision is equipped with some type of shape functions PKi and nodal variables NKi such
that (Ki,PKi ,NKi) form a finite element. Let f belong to a space on which the nodal variables are
well defined. The global interpolant is defined by

IT f |Ki = IKif, for all Ki ∈ T .

In our context we use as PKi polynomials of a given degree (equal for every Ki). It is easy to
see that if v belongs just to P, then its global interpolant is v itself.

Since without further assumptions on a subdivision no regularity properties can be asserted for
the global interpolant we must give some conditions on the subdivision.
Let D ⊂ Rd be a connected, open bounded domain with Lipschitz polyhedral boundary.
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Definition 1.4.6. A simplicial subdivision T (i.e. a subdivision in which each Ki is a simplex) of
D is regular if

max
Ki∈Th

hKi

ρKi

≤ γ0,

with the constant γ0 ≥ 1 independent of h. With ρK we denote the radius of the largest closed ball
contained in K and with hKi the diameter of Ki.

We define the mesh size h of a given subdivision T to be

h := sup
Ki∈T

hKi

and we denote a subdivision T with mesh size h by Th.

The regularity condition means (roughly speaking) that the elements of Th do not shrink too
much. The main result is the following one, see Ciarlet [Cia78].

Theorem 1.4.7. Let D be a polygonal domain of Rd, d = 2, 3, with Lipschitz boundary and let Th
be a regular family of subdivisions of D such that each Kj is affine equivalent to the unit d-simplex.
If the bilinear form a( . , . ) is continuous and coercive on X = H10 (D) and

Xr
h := {xh ∈ C0(D) : xh|K ∈ P d

r ∀K ∈ Th},

then the finite element method converges. Moreover if the exact solution belongs to Hs(D) for some
s ≥ 2, then the following error estimate holds

‖x− xh‖1,D ≤ Chl‖x‖l+1, with l = min (k, s − 1).

1.4.1 Stokes equations

When dealing with the numerical analysis of the Stokes problem it is simple to apply an abstract
Faedo-Galerkin method in V. On the other hand it is very difficult to find really computable finite
dimensional subspaces of V, i.e. , to find divergence-free polynomial spaces. To overcome this
problem it is generally used the so-called mixed formulation in which the approximate solution uh

belongs to Ṽh �⊂ V which is a (not a-priori divergence-free) finite dimensional space of (H10 (D))d.
The problem reads as: find uh ∈ Ṽh and ph ∈ Qh ⊂ L20(D) such that

ν((uh,vh)) + (div uh, ph) = (fh,vh) ∀vh ∈ Ṽh,(1.19)
(div uh, qh) = 0 ∀ qh ∈ Qh,(1.20)

where L20(D) := Q = {p ∈ L2(D) :
∫
D p dx = 0}. We do not enter into details of the numerical

approximation of the Stokes operator, because we shall not use it. We only recall the basic fact
regarding the analysis of mixed problems, see Brezzi and Fortin [BF91].

Theorem 1.4.8. Let us assume that the spaces Ṽh and Qh satisfy the following compatibility con-
dition (inf-sup or Ladyženskaya-Babuška-Brezzi condition): ∃ βh > 0 such that

∀ qh ∈ Qh ∃ 0 �= vh ∈ Ṽh :
∫
D
qh div vh dx ≥ βh

(
‖vh‖0,D + ‖div vh‖0,D

)
‖qh‖0,D.(1.21)

Then the problem (1.19)-(1.20) has a unique solution (uh, ph) ∈ Ṽh ×Qh.
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It is easy to show that if the inf-sup condition is not satisfied, then the problem is ill-posed and
great effort has been done to find appropriate couples of spaces (Ṽh, Qh) satisfying (1.21). We do
not give any detail regarding this topic, which is worth of a book itself, because we shall not use
the mixed formulation. For an accurate analysis regarding the mixed formulation and the Stokes
problem we refer, for example, to Brezzi and Fortin [BF91] and to Quarteroni and Valli [QV94],
§7–9.

1.4.2 Navier-Stokes equations

In the study of time-dependent problems one possible approach is the semi-discretization, i.e. , the
problem is discretized only with respect to the space variables. This approach leads to the study
of systems of ordinary differential equations.

Semi-discrete approximation

In the numerical study of the Navier-Stokes equations we choose {Vh}h≥0, a family of finite dimen-
sional subspaces of the divergence free subspace V ⊂ (H10 (D))d. With the semi-discrete approach
we reduce to the following problem: for each t ∈ (0, T ) find uh ∈ Vh such that

d

dt
(uh,vh) + ν((uh,vh)) + b(uh,uh,vh) = (fh,vh) ∀vh ∈ Vh,

uh(0) = u0h,

where u0h is any approximation of u0 in Vh. For the same reason explained for the Stokes problem
the method described above is not suitable and a mixed formulation must be used. The mixed
formulation reads as: for each t ∈ (0, T ) find uh ∈ Ṽh and qh ∈ Qh such that

d

dt
(uh,vh) + ν((uh,vh)) + b̃(uh,uh,vh) + (div uh, ph) = (fh,vh) ∀vh ∈ Ṽh,

(div uh, qh) = 0 ∀ qh ∈ Qh,

uh(0) = u0h,

We note that the trilinear form b(u,u,v) has been replaced by the

b̃(u,v,w) :=
1
2

[b(u,v,w) − b(u,w,v)] ,

for stability purposes. The analysis of this method has been done by Heywood and Rannacher [HR82]
and the basic result is that if (Ṽh, Qh) satisfy the inf-sup condition (1.21), if

inf
v∈Ṽh

‖v − vh‖1,D + inf
qh∈Qh

‖q − qh‖0,D = O(h) ∀ (v, q) ∈ V ×Q,

if the initial datum is regular and if ∇u belongs to (L∞(0, T ;L2(D)))d×d, then

‖u − uh‖0,D ≤ KeK th2, ‖p− ph‖0,D ≤ K min {t, 1}−1/2eK th ∀ t ∈ (0, T ).

We remark that the results previously shown are suitable for moderately low Reynolds numbers.
For high Reynolds number the convective term might induce numerical oscillations if not properly
treated. Stabilization can be introduced by using implicit finite difference methods or stabilization
terms. For the analysis of the numerical instability of advection-diffusion problems we refer to
Section 4.4.2.
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1.4.3 Operator splitting: the Chorin-Temam method

The operator splitting (also known as fractional-step or splitting-up method) is a method of approx-
imation of evolution equations based on a decomposition of the operators.

We have to approximate a linear evolution equation
du
dt

+ Au = 0, 0 < t < T

u(0) = u0,

where u belongs to a suitable Banach space X and A is a linear operator from X into itself. A first
way is to introduce, with a standard Finite Differences Method11, an implicit scheme and define a
sequence of vectors um, for m = 0, . . . , N, as follows: u0 = u0,

um+1 − um

k
+ Aum+1 = 0, m = 0, . . . , N − 1.

We recall that N is an integer, T = kN, and k is the mesh-size.
A second way is a splitting-up method, based on the existence of a decomposition of A as a sum

A =
∑q

j=1Aj. Starting again with u0 = u0 we recursively define a family of elements um+j/q, for
M = 0, . . . , N − 1, and j = 1, . . . , q as follows

um+j/q − um+(j−1)/q

k
+ Ajum+j/q = 0, m = 0, . . . , N − 1, j = 1, . . . , q.

When um is known um+1 can be computed, in the case of an ordinary scheme, by the inversion of
the operators I +k A. In the case of a fractional step method the computation of um+1 requires the
inversion of the q operators I + k Aq and the algorithm is useful if all these operators are simpler
to invert than I + k A.

The Chorin-Temam method

In the classical method introduced by Chorin [Cho67, Cho68] and Temam [Tem69], two12 operators
A1 and A2 are considered. The operator A1 is defined by

A1u := −ν∆u + (u · ∇) u,

while the second one is an operator taking into account the term ∇p and the incompressibility
condition div u = 0. This method is also called the Projection Method.

The interval [0, T ] is divided into N ∈ N intervals of length k and we set

f m :=
1
k

∫ mk

(m−1)k
f(t) dt, for m = 1, . . . , N.

The projection method reads as follows: start with u0 = u0 and when um ∈ (L2(D))d, m ≥ 0, is
known, define um+1/2 ∈ (H10 (D))d by

1
k

(um+1/2 − um,v) + ν((um+1/2,v)) + b̃(um+1/2,um+1/2,v) = (fm,v) ∀v ∈ (H10 (D))d,

11The derivative with respect to to time is approximated with an incremental ratio.
12In this case we speak of a two-steps method.
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and then define um+1 ∈ H by

(um+1,v) = (um+1/2,v) ∀v ∈ H.

The method is called a projection method because in the first step it is solved a non linear elliptic
problem (without the incompressibility constraint); the second step amounts to project the solution
onto H. If we introduce the “approximate functions” u(j)k from [0, T ] with values in (L2(D))d

such that u(j)k := um+j/2 for mk ≤ t < (m + 1)k we have the following convergence result, see
Temam [Tem77] Ch. 3, §7.

Theorem 1.4.9. Let f ∈ L2(0, T ;H) and u0 ∈ H.
If the dimension of the space is d = 2, then, as k → 0, the following convergence results hold:

u(j)k → u strongly in L2(D × (0, T )),

u(j)k
∗
⇀ u weakly-star in L∞(0, T ; (L2(D))2),

u(j)k → u strongly in L∞(0, T ; (H10 (D))2),

where u is the unique solution of the Navier-Stokes equations.
If the dimension of the space is d = 3, then there exists some sequence k′ → 0 such that:

u(j)k → u strongly in L2(D × [0, T ]),

u(j)k
∗
⇀ u weakly-star in L∞([0, T ]; (L2(D))d),

u(j)k ⇀ u weakly in L∞([0, T ]; (H10 (D))d),

where u is some solution of the Navier-Stokes equations.

We remark that the condition which defines um+1 can be written, with a strong formulation, as
um+1 − um+1/2 + k∇pm+1 = 0 in D,
div um+1 = 0 in D,
um+1 · n = 0 on ∂D.

From this system it easily deduced that the approximate pressure pm+1 satisfies the homogeneous
Neumann boundary value problem (A), which should be compared with the non-homogeneous
Neumann boundary-value problem (E), satisfied by the exact pressure p.

(A)


−∆pm+1 =

1
k

div um+1/2 in D,

∂pm+1

∂n
= um+1 · n = 0 on ∂D,

(E)


∆p = div f −

d∑
i,j=1

∂ui
∂xj

∂uj
∂xi

in D,

∂p

∂n
= (f + ν∆u) · n = 0 on ∂D.

It is interesting to note that this discrepancy on the boundary conditions for the exact and the
approximate problem implies that pm converges only in a very weak sense to the exact pressure p;
nevertheless, this does not affect the convergence of the scheme for the velocity field u, as we have
seen in the Theorem 1.4.9 above.
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The Chorin-Temam (or projection) method is very useful because the first step involves a prob-
lem without the incompressibility constraint. In this way its discretization does not suffer of the
problems arising in the numerical study of the Stokes problem. A further step can be introduced
to linearize the equations. For simplicity we restrict to a two-dimensional problem and we refer
to Temam [Tem77] Ch. III, §7 for more details. A three-steps method can be the following: start
with u0 = u0 and when um ∈ ((L2(D))2 is known, define um+1/3 ∈ (H10 (D))2 by:

1
k

(um+1/3 − um,v) + ν((um+1/3,v)) + b̃1(um,um+1/3,v) = (f m,v) ∀v ∈ (H10 (D))2.

Then find um+2/3 ∈ (H10 (D))2 such that:

1
k

(um+2/3 − um+1/3,v) + ν((um+2/3,v)) + b̃2(um+1/3,um+2/3,v) = (f m,v) ∀v ∈ (H10 (D))2,

and finally um+1 ∈ V is the solution to the following problem:

(um+1,w) = (um+2/3,w) ∀w ∈ V,

where we set

b̃i(u,v,w) :=
1
2

∫
D

2∑
j=1

[
ui
∂vj
∂xi

wj − ui
∂wj

∂xi
vj

]
dx for i = 1, 2.

Existence and uniqueness of the solutions of the first two steps follow in a standard manner from
coercivity, by using the Lax-Milgram lemma. Furthermore, um+1 is simply a (L2(D))d orthogonal
projection.

This method has a natural finite dimensional counterpart in which the space (H10 (D))2 can be
replaced by the polynomial Finite Element Spaces (Xr

h)2, see Theorem 1.4.7. It is interesting to
note that the first two steps involve the discretization of standard elliptic problems, i.e. , problems
without conditions on the divergence of the solution. The third and last step of a discrete problem
is again a projection on a divergence-free subspace.

The convergence of the method at a finite dimensional level (and for different discretization of
the space variable), is discussed in Temam [Tem77] Ch. 3, §7.

In the concrete applications it is very important to have efficient numerical methods to solve
the linear, non-symmetric and elliptic systems arising in the first two steps. Systems of this kind
are known in literature as advection-diffusion systems. For these systems (but also the scalar non-
symmetric problem presents the same pathologies) abstract results, as the Lax Milgram lemma,
imply existence and uniqueness of the solution at both the infinite and finite dimensional level. On
the other hand, their numerical approximation involves some difficult stability questions when the
viscosity ν term is “small,” see Section 4.4.2.

Having in mind the Chorin Temam method the importance of the numerical analysis of advection
diffusion equations becomes clear. These equations are not only a linearized model for the fluid-
dynamic equations, but they are also a basic tool in some numerical methods for the Navier-Stokes
equations. In Chapter 4 we shall discuss some numerical methods for solving non-symmetric elliptic
equations and the numerical difficulties arising in their study.
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Chapter 2

Regularity results

In this chapter we recall some basic fact regarding uniqueness, and regularity for the solutions of
the Navier-Stokes equations. We consider the problems regarding the possible global existence,
in time, of smooth solutions in three dimensions. In particular we present the classical result
regarding strong solutions and the uniqueness conditions due to Prodi and Serrin, which ensures
also the regularity of weak solutions. Then we explain the special role played by the pressure in the
system of Navier-Stokes equations and we show how to reconstruct the pressure from the velocity
field. Some recent results concerning the regularity are presented. These results, due to Beirão
da Veiga, use the truncation method and give sufficient conditions for the regularity. They are
based on suitable combination of velocity and pressure. In the last section we reverse the standard
approach and we obtain new results regarding the smoothness of the velocity, by starting from
the pressure. In particular the smoothness of the velocity field is proved by starting only from
summability conditions on the pressure.

2.1 Regular solutions

In this section we briefly explain how is it possible to prove more regularity for the solutions of the
Navier-Stokes equations. We recall that if f = 0, u0 ∈ V and the boundary of D ⊂ R3 is smooth,
then there exists a fully classical solution (u, p) ∈ (C∞(D× (0, T )))4, on a time interval (0, T ) with
T bounded below in terms of the Dirichlet norm ‖u0‖ of the initial datum. We present this result,
that is due to Ladyženskaya [Lad66]; a simple proof and additional remarks regarding this result
can be found in Heywood [Hey80].

Without entering into details of sharp results, we show how the boot-strap argument works. This
is one of the most powerful tools to prove regularity results. We restrict ourselves to the steady state
problem, since it is rather standard to pass to the non-stationary problem, see Temam [Tem77],
Ch. III, §3. Some difficulties arise if we want to have full regularity also at time t = 0, provided
the initial datum is smooth; for instance it is not sufficient that u0 ∈ (C∞(D))3∩V and that ∂D is
of class C∞ to ensure that u ∈ (C∞(D × [0, T ]))3, for some T > 0. In this case some compatibility
conditions must be satisfied and these can be found in Temam [Tem82].

We remark that in the two dimensional case, the regularity results which hold for the stationary
case can be extended to the time-dependent Navier-Stokes equations. In three spatial dimensions
the regularity results hold only locally in time.

The main idea is to consider the first term u of the convective term (u · ∇) u as a known term
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and then to study the linear problem

−ν∆u + ∇p = −(v · ∇) u.

with v = u as regular as weak solutions are. To show how this method work we give some of
the calculations needed to prove the regularity. Some distinction, between the problem in two
dimension and that one in three dimensions, is needed.

The two dimensional case

The term (u · ∇) u equals
∑d

i=1 ∂(uiu)/∂xi. If d = 2, we use the Sobolev embedding theorem to
get that ui ∈ H10 (D) ⊂ Lα(D), for any 1 ≤ α < +∞. This implies that ∂(uiuj)/∂xi belongs to
W−1,α(D). The regularity results for the Stokes operator show that ui belongs to W 1,α(D) and p
belongs to Lα(D). If now α > 2, we have that W 1,α(D) ⊂ L∞(D), hence ui ∂uj/∂xi belongs to
Lα(D). This implies that ui ∈ W 2,α(D) and p ∈ W 1,α(D). Repeating the same argument we find
that ui ∂uj/∂xi belongs to W 1,α(D) and consequently ui ∈ W 3,α(D) and p ∈ W 2,α(D). The same
argument can be used till the regularity of D and f allows to get regularity of the solutions of the
Stokes problem, see Theorem 1.2.6.

The three dimensional case

In the three dimensional problem we have to use different estimates. In particular we can only
infer that ui ∈ H10 (D) ⊂ L6(D). This implies that ui ∂uj/∂xi belongs to L3/2(D). By using again
Theorem 1.2.6, we have that ui ∈ W 2,3/2(D) and this finally implies that ui ∈ Lα(D) for any
1 ≤ α < ∞. Therefore,

∑d
i=1 ∂(uiuj)/∂xi ∈ W−1,α(D) for any 1 ≤ α < ∞ and we can use the same

proof given for d = 2.

2.1.1 On weak and strong solutions

In the previous Sections 1.2.3-1.2.4 we introduced the notion of weak and strong solution. The
strong solutions are not classical solutions, but they are very important. We now give some addi-
tional results which can be useful to understand the role of weak and strong solutions, in the theory
of Navier-Stokes equations. We recall the following result (a corollary of Proposition 1.2.12), which
is useful to estimate the trilinear term and that is stated as Lemma 1 in Ladyženskaya book [Lad69].

Proposition 2.1.1. For any open set D ⊂ R2, we have that:

‖u‖L4(D) ≤ 21/4‖u‖1/2
L2(D)

‖∇u‖1/2
L2(D)

∀u ∈ H10 (D).

Proof. It suffices to prove the last inequality for v ∈ C∞
0 (D). For such a v we write

|v(x)|2 = 2
∫ x1

−∞
v(ζ1, x2)

∂v(ζ1, x2)
∂x1

dζ1

and therefore
|v(x)|2 ≤ 2 v1(x2),

where

v1(x2) =
∫ +∞

−∞
|v(ζ1, x2)|

∣∣∣∣∂v(ζ1, x2)
∂x1

∣∣∣∣ dζ1.
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By interchanging the role of x1 and x2 we have

|v(x)|2 ≤ 2 v2(x1) = 2
∫ +∞

−∞
|v(x1, ζ2)|

∣∣∣∣∂v(x1, ζ2)
∂x2

∣∣∣∣ dζ2.
We finally obtain∫

R2 |v(x)|4 ≤
∫
R2 v1(x2)v2(x1) dx ≤ 4

( ∫
R
v1(x2) dx2

)( ∫
R
v2(x1) dx1

)

≤ 4‖v‖2L2(R2)

∥∥∥∥ ∂v

∂x1

∥∥∥∥2
L2(R2)

∥∥∥∥ ∂v

∂x2

∥∥∥∥2
L2(R2)

≤ 2‖v‖2L2(D)‖∇v‖2L2(D).

This inequality is very simple, but it plays a very big role in the theory of Navier-Stokes equations.
With Proposition 2.1.1 we can easily prove the following uniqueness result.

Theorem 2.1.2. Let D ⊂ R
2 be open bounded and of class C2. Let f ∈ L2(0, T ;V ′). Two weak

solutions u1 and u2 of the Navier-Stokes equations must coincide, or in other words, weak solutions
are unique.

Proof. The proof of this theorem is very simple and makes use of the classical methods for linear
equations, joint with a simple estimate for the nonlinear term. If u1 and u2 are two solutions, as
usual, we define w := u1 − u2. It is easily seen that w solves the following problem:

dw
dt

+ νAw + B(u1,w) + B(w,u2) = 0,

w(0) = 0.

We take the scalar product with w and we obtain the following equality

1
2
d

dt
|w|2 + ν‖w‖2 + b(w,u2,w) = 0.

We use the Hölder inequality and Proposition 2.1.1 to deduce that |b(w,u2,w)| ≤ c|w|‖w‖‖u2‖.
By applying the Young inequality (with exponents q = q′ = 2), we get

d

dt
|w|2 ≤ c

ν
‖u2‖2|w|2.

By using Gronwall lemma, we can infer the following inequality

|w(t)|2 ≤ |w(0)|2 e

c

ν

∫ t

0
‖u2(s)‖2 ds.

Since w(0) = 0 and since u2 belongs to L2(0, T ;H), we can conclude that w(t) ≡ 0.
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We try to use (at least formally, because du/dt is not regular) the same techniques for the three
dimensional problems. If d = 3, by using the same argument of Proposition 2.1.1, we can prove the
following estimate:

‖u‖L4(D) ≤
√

2‖u‖1/4
L2(D)

‖∇u‖3/4
L2(D)

∀u ∈ H10 (D).

If we mimic the proof of Theorem 2.1.2, we get into troubles. In fact we obtain that

d

dt
|w(t)|2 ≤ c

ν4
‖u2(t)‖4|w(t)|2

and we do not know wether
∫ T
0 ‖u2(t)‖4 dt is finite1 or not, and consequently we cannot use the

Gronwall lemma to conclude.
This argument seems crude and one can think that sharper estimates can make the proof work.

We recall that each of the sophisticated methods used in the last seventy years to try to prove the
uniqueness if d = 3, failed in a similar way.

The problem of uniqueness of weak solution is still open. In three dimensions we can prove the
following result, due to Kiselev and Ladyženskaya [KL57].

Theorem 2.1.3. Let D ⊂ R
3 be open bounded and of class C2 and let f belong to L2(0, T ;H).

Two solutions u1 and u2 of the Navier-Stokes equations belonging to L2(0, T ;D(A)) ∩ Cw(0, T ;V )
must coincide.

Proof. We use the same techniques and the estimate |b(w,u2,w)| ≤ c|w|‖w‖‖u2‖1/2|Au|1/2, to
obtain

d

dt
|w|2 ≤ c

ν
‖u2‖ |Au2| |w|2.

From the Gronwall lemma we have the following estimate

|w(t)|2 ≤ |w(0)|2 e

∫ t

0

c

ν
‖u2(s)‖ |Au2(s)| ds

and, by using the hypothesis on u2, the integral is finite. Consequently we get that w ≡ 0.

Remark 2.1.4. With a completely different technique it is possible to prove the same result by
assuming that only one of the two solutions is strong: in other words, strong solutions are unique
in the larger class of weak solutions.

A continuation principle

If we are concerned to the regularity of the weak solutions of the Navier-Stokes equations, we
may suppose D,u0 and f as smooth as we want (say again f = 0, to avoid inessential technical
arguments). We know that there exists a strong solution, at least in an time-interval [0, T0) and in
particular sup0≤t≤T0

‖u(t)‖ is finite.

1By the way we found that u2 ∈ L4(0, T ;V ) is a sufficient condition for uniqueness, and strong solutions satisfy it.
It is possible to make this formal argument rigorous and, to have uniqueness, it is sufficient the weaker assumption
that only one of the two weak solution belongs to L8(0, T ; (L4(D))3), see Serrin [Ser63].
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Let now T > T0; we know that there exists a weak solution ũ on (0, T ) and, from the previous
remark, we know that u ≡ ũ on (0, T0). We consider the maximal interval of existence (0, T∗) (or
life-span) of strong solutions, where

T∗ := max
{
T > 0 : such that there exists a solution u ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A))

}
.

We have the following result

Proposition 2.1.5. Since strong solutions are unique, for a strong solution we have that neces-
sarily

lim sup
t→T∗

‖u(t)‖ = ∞ if T∗ = ∞ and lim sup
t→T

‖u(t)‖ < ∞ if T < T∗ < ∞.

Proof. The proof follows by a contradiction argument. Suppose that [0, T∗) is the maximal existence
interval of u. If lim supt→T∗ ‖u(t)‖ < ∞, then we could find c ∈ R and t as close as we want to T∗
such that

‖u(t)‖ ≤ c.

From the global existence theorem we have a weak solution v(s) with v(0) = u(t0) ∈ V. The solution
v(s) would be also strong in a time interval (0, T1), depending on ‖v(0)‖ = ‖u(t0)‖ through relation
(1.16). Since ‖u(t0)‖ is bounded from above as t tends to T∗, the corresponding T1 is bounded
below (in other words T1 can be chosen uniformly for t0 near T∗.) If T∗−t0 < T1, we obtain a strong
solution ũ(s) := v(s+ t0) which coincides with u for t < T∗. Contradiction, because in this way we
extended u(t) beyond T∗. The quantity ‖u( · )‖ becoming infinite is then a necessary condition for
loss of regularity.

Remark 2.1.6. We finally understand the role of strong solutions. A strong solution is not a
classical solution at all, but it is unique in the class of weak solutions and furthermore a strong
solution is smooth as the initial datum u0, provided the boundary ∂D and f are smooth enough. The
last sentence says that if we are in the life-span of a strong solution, the solution belongs at least to
L∞(0, T ;V ) ∩ L2(0, T ;D(A)), but it is also more regular. In particular it has the same regularity
of the data, till the norm in V is bounded, recall the result of Ladyženskaya [Lad66] in Section 2.1.

2.1.2 On the possible global existence of strong solutions

We start by recalling that in Section 1.2.4 we showed that in dimension two strong solutions are
unique and exist globally in time. In three dimensions the situation changes drastically: strong
solutions are unique, but they exist only for small initial data (or small times). In three dimensions
we can only prove that weak solution are global in time, but we do not have a uniqueness result
for them.

One of the main open problems is to show that a solution which is smooth at one instant cannot
develop a singularity at a later time. Many authors tried to find appropriate a-priori estimates for
smooth solutions, in order to use them in a continuation argument. All the efforts regarding this
subject failed because many conditions on the velocity were found, but we are not able to check if
they are satisfied by weak solutions.

By following the exposition given by Heywood [Hey90], we suppose f ≡ 0 and the basic differ-
ential inequality we have to deal with is the following one:

d

dt
‖u(t)‖2 ≤ C


‖u(t)‖4 for d = 2,

‖u(t)‖6 for d = 3.
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We essentially derived the last inequality in the previous chapter and in spite of its simplicity, it is
the basic point to understand the problems arising in the study of three dimensional Navier-Stokes
equations.

We consider a solution with an hypothetical singularity2 at t = t∗, i.e. , a solution for which
‖u(t)‖ → +∞ when t → t∗. We consider the function φ(t) which satisfies the following ordinary
differential equation

d

dt
φ(t) = C φ2(t) for d = 2,

d

dt
φ(t) = C φ3(t) for d = 3.

These equations correspond to the differential inequalities for ‖u(t)‖2. Let φ1(t) ∈ C([0, T )) be the
solution corresponding to the initial datum φ1(0) = ‖u0‖2. Furthermore, let φ2(t) be a solution
chosen to have a singularity at t∗. The graph of φ2(t) lies below the graph of ‖u(t)‖2 and∫ t∗

t∗−T
φ2(s) ds ≤

∫ t∗

t∗−T
‖u(s)‖2 ds.

Simple calculations show that∫ t∗

t∗−T
φ2(s) ds = ∞ if d = 2,

∫ t∗

t∗−T
φ2(s) ds =

√
2

C

√
T if d = 3.

By referring to the energy identity, which holds for smooth solutions,

1
2
|u(t)|2 + ν

∫ t

0
‖u(s)‖2 ds =

1
2
|u(0)|2,

we see that a singularity is impossible if d = 2 and it is impossible in the three dimensional case if

1
2
|u(0)|2 ≤

√
2

C

√
T .

In the last case the development of a singularity requires more than the available energy. This
simple argument shows the critical point in the theory of Navier-Stokes equations.

2.1.3 The Prodi-Serrin condition

In the previous section we pointed out the importance of strong solutions. We observe that the
theory of Navier-Stokes equations is not satisfactory in the three dimensional case, because we have
existence in a class (weak solutions) in which we do not have uniqueness and, on the other hand,
we have uniqueness in a class (strong solutions) in which only local existence is known.

The problem was investigated in several directions and some sufficient conditions which ensure
the uniqueness of weak solutions were found. The best known condition is that one known as
Prodi-Serrin condition. The result, that we are going to show, was proved independently3 by

2This is the condition for the blow-up of a strong solution.
3As it was pointed out to me by Prof. G.P. Galdi, the Prodi-Serrin condition (just for the pure Cauchy problem)

is also given in a footnote of the 1934 seminal paper by Leray [Ler34b]. The Prodi-Serrin condition should be called,
more properly, Leray-Prodi-Serrin condition.
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Prodi [Pro59] and Serrin [Ser62]. The condition (2.1) seems very simple but, up to now, no result
ensures that a weak solution satisfies it.

Theorem 2.1.7. Let d ≥ 3 and let u be a weak solution of the Navier-Stokes equations which
satisfies the additional hypothesis

uj ∈ Lr(0, T ;Ls(D))d for
2
r

+
d

s
≤ 1, s ≥ d.(2.1)

Then such a solution is unique in the class

L2(0, T ;V ) ∩ L∞(0, T ;H) ∩ Lr(0, T ; (Ls(D))d)

Proof. We divide the proof into three steps.

Step 1) Estimate on the trilinear term.
We consider the interesting limit case of (2.1): 2r + d

s = 1. By using the Hölder inequality we get

|b(u,v,w)| ≤ C‖u‖(Ls(D))d‖v‖‖w‖(Lρ(D))d , if
1
s

+
1
ρ

=
1
2
.

For each u ∈ (C∞(D))d we have, by the Hölder inequality,

‖u‖(Lρ(D))d ≤ ‖u‖2/r
(L2(D))d

‖u‖d/s
(L2d/(d−2)(D))

for
1
ρ

=
2/r
2

+
d/s

2d/(d − 2)
.

By using the Sobolev embedding theorem, we have that H10 (D) ⊂ L2d/(d−2)(D) and consequently

‖u‖(Lρ(D))d ≤ C‖u‖2/r
(L2(D))d

‖u‖d/s.

The last estimate shows that

|b(u,v,w)| ≤ C‖u‖(Ls(D))d‖v‖|w|2/r‖w‖d/s.(2.2)

Step 2) Regularity of the time-derivative.
With the preliminary estimate (2.2) we can prove additional regularity of du/dt. We recall that
a-priori du/dt ∈ L4/3(0, T ;V ′) while, if the Prodi-Serrin condition (2.1) is satisfied, we have that
du/dt ∈ L2(0, T ;V ′).

By using the estimate (2.2) and by recalling that u ∈ L∞(0, T ;H) we have

|b(u,u,v)| = | − b(u,v,u)| ≤ C1‖v‖‖u‖(Ls(D))d |u|2/r‖u‖d/s,
≤ C2‖v‖‖u‖(Ls(D))d‖u‖d/s.

By observing that t +→ ‖u(t)‖(Ls(D))d belongs to Lr(0, T ) and that t +→ ‖u(t)‖d/s belongs to
L2s/d(0, T ), we get that

t +→ ‖u(t)‖(Ls(D))d‖u(t)‖d/s belongs to L2(0, T ).

Consequently (g,v) := b(u,u,v) with g belonging to L2(0, T ;V ′). This last result implies that
du/dt ∈ L2(0, T ;V ′).
Step 3) Proof of uniqueness.
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Let u1 and u2 be two solutions. We define w := u1 − u2. By using the regularity on the time
derivative we obtain

1
2
d

dt
|w(t)|2 + ν‖w(t)‖2 = −b(w(t),w(t),u2(t)).

An application of the method used in Step 1 (the following formula follows from (2.2) by inter-
changing the role of u and w) gives

|b(w,w,u2)| ≤ C‖u2‖(Ls(D))d |w|2/r‖w‖1+d/s.

We define M(t) := ‖u2‖r(Ls(D))d and we use the Young inequality with exponents

p = r and p′ defined by
1
p′

= 1 − 1
p

= 1 − 1
r
≤ by (2.1) ≤ 1 − 1

2

(
1 − d

s

)
=

s + d

2s
.

We obtain
|b(w(t),w(t),u2(t))| ≤ CM(t)1/r|w(t)|2/r‖w(t)‖1+d/s,

≤ ν‖w(t)‖2 + C3M(t)|w(t)|2,

and finally
1
2
d

dt
|w(t)|2 ≤ C3M(t)|w(t)|2.

The last inequality and the fact that (by hypothesis) M(t) := ‖u‖r
(Ls(D))d

belongs to L1(0, T ),
proves that w(t) ≡ 0.

If d = 3 Theorem 2.1.7 can be compared with the results of uniqueness for strong solutions, that we
know to exist locally. In fact if u ∈ L∞(0, T ;V ) then u ∈ L∞(0, T ; (Ls(D))d) with 1/s = 1/2−1/d,
and consequently

u ∈ Lr(0, T ; ((Ls(D))d),
2
r

+
d

s
= 1.

Remarks and references regarding the existence of solutions for d ≥ 4 can be found in J.-L. Li-
ons [JLL69], Ch. 1.

Further regularity by the Prodi-Serrin condition

The Prodi-Serrin condition was introduced to study the uniqueness of the solutions, but it was
later discovered by Sohr [Soh83], that the condition

uj ∈ Lr(0, T ;Ls(D))d for
2
r

+
d

s
= 1 s ∈ (d,∞]

implies also regularity (provided the data are regular and the necessary compatibility conditions
are satisfied). We do not give the proof of this sharp result, but we only say that its proof is based
on fine estimates on the solution of linear Cauchy problems, see also Section 2.3.1.
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2.2 A short digression on the role of the pressure

When dealing with the Navier-Stokes equations we pointed out in Chapter 1 that the problem is
well-posed because we have d+ 1 equations and d + 1 unknowns. The equations satisfied by u is a
semilinear parabolic system, but when we try to apply the standard variational techniques we come
into some troubles. The main problem is that the pressure p does not satisfy a parabolic equation,
but it is a Lagrange multiplier associated to the constraint div u = 0. If we apply the divergence to
the first (vectorial) equation we obtain the following:

−∆p =
d∑

i,j=1

∂ui
∂xj

∂uj
∂xi

−
d∑

i=1

∂fi
∂xi

.(2.3)

This last equation is very useful in the study of Euler equations (ν = 0). In the case of inviscid
fluids we have a well-posed elliptic problem if we couple (2.3) with the Neumann condition which
arise by taking the scalar product by n of the equation for the conservation of momentum.

When dealing with the Navier-Stokes equations, the boundary condition is

∂p

∂n
= (f + ν∆u) · n on ∂D,

which is of no practical4 use (unless we restrict to D = R
d or to periodic boundary conditions),

because the elliptic problem for the pressure is not well posed. When dealing with D = R
3, for

example, we can write the pressure as a function of u and f,

p(x, t) = G(u, f) := − 1
4π

∫
R3

1
|x− y|div

[
(u · ∇) u + f

]
(y, t) dy

and we can study the equation

∂u
∂t

+ (u · ∇) u − ν∆u + ∇G(u, f ) = f in R3 × [0, T ].

We observe that the operator G(u, f) is non-local, i.e. , the pressure has a non-local effect on the
velocity. In other words, the velocity field at each point y ∈ R3 is responsible for the values of the
pressure gradient at a given point x ∈ R3; then the pressure gradients acts like a body force at the
point x.

Remark 2.2.1. To see in more detail the role of the pressure, we consider a system of two coupled
partial differential equations in two scalar variables u, v

∂u

∂t
= F1(Dαu,Dαv) |α| ≤ m,

∂v

∂t
= F2(Dαu,Dαv) |α| ≤ m,

where α := (α1, . . . , αd) is a multi-index, Dα is the differential operator ∂|α|/∂xα1
1 . . . ∂xαdd and m

is a positive integer. When both u, v are known at time t, we can compute the right hand sides
and we can find the rates of change (partial derivative with respect to time) of u and v at the same
time. We can know the infinitesimal change of u and v at point x. The effect of u and v, each

4The compatibility condition
∫
D

∆p dx =
∫
∂D

∂p/∂ndS is not a-priori satisfied.
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on the other, is local. The influence of the pressure is different. It is not the effect of a variable
coupled with the others, but it is a consequence of the incompressibility constraint divu = 0. A way
to impose local effect of the pressure is to come back to problems with variable density and to make
the constitutive assumption

p(x, t) = F(ρ(x, t)).

In this way the variables u and p are coupled in the ordinary (local) way. From the physical point
of view the incompressibility constraint implies the infinite propagation-speed of perturbations. On
the other hand, in compressible models with variable density, the perturbations travel with a finite
speed. Unfortunately, the study of compressible models causes, up to now, mathematical difficulties
bigger than the ones arising in the study of incompressible equations.

2.2.1 Introduction of the pressure

The problems regarding the pressure were “solved” (or better hidden in the formulation) by using
the Helmholtz decomposition, see Proposition 1.2.2. In this case the pressure disappears from the
weak formulation, because gradients are orthogonal to divergence-free fields. The various theorems
of existence, that we have shown, do not involve the pressure. We introduce now the pressure in
the following way. Let us set:

U(t) :=
∫ t

0
u(s) ds, β(t) :=

∫ t

0
B(u(s),u(s)) ds, F(t) :=

∫ t

0
f(s) ds.

If u is a solution of the Navier-Stokes equations we have that U, β,F belong to C([0, T ];V ′). By
integrating in time the abstract Navier-Stokes equations du/dt + ν Au + B(u,u) = f, we get

ν((U(t),v)) =< g(t),v > ∀v ∈ V, ∀ t ∈ [0, T ],

with
g(t) := F(t) − β(t) − u(t) + u0, g ∈ C([0, T ];V ′).

We recall the following proposition, see Duvaut and J.-L. Lions [DL76] Ch. 3.

Proposition 2.2.2. Let D ⊂ Rd be an open set and let f = (f1, . . . , fd) such that fi are distribu-
tions on D, for i = 1, . . . , d. Then we have the following result:

f = ∇p, p being a distribution, if and only if < f,v >= 0 ∀v ∈ V.

Let furthermore D ⊂ Rd be a bounded Lipschitz domain.

a) If a distribution p has all its first distributional derivatives in L2(D), then p itself belongs to
L2(D) and

‖p‖L2(D)/R ≤ c1‖∇p‖L2(D), 0 < c1 ∈ R.

b) If a distribution p has all its first distributional derivatives in H−1(D), then p belongs to L2(D)

‖p‖L2(D)/R ≤ c2‖∇p‖−1,D, 0 < c2 ∈ R.

With the last proposition it is easy to conclude that for each t ∈ [0, T ] there exists q(t) ∈ L2(D),
such that ∇q ∈ C([0, T ]; (H−1(D))3) which satisfies

−ν∆U(t) + ∇q(t) = g(t).
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This result imply that
q ∈ C([0, T ];L2(D)).

By setting p = ∂q/∂t (the derivative is defined in the distributional sense) we obtain

∂u
∂t

+ (u · ∇) u − ν∆u + ∇p = f.

In this way we can show a first regularity result for the pressure: it is the time derivative of a
continuous function with value in L2(D). We observe that the same argument shows that more
regularity on the velocity field implies more regularity on the pressure.

2.3 On the possible regularizing effect of the pressure

The problem of uniqueness of weak solutions or of their global regularity are basically open since
appeared the papers by Leray cited in the bibliography. There were found many conditions of the
following kind: if the velocity satisfies condition . . . then it is regular. These results were found
with the hope that, later, someone could be able to show that such a condition is satisfied by weak
solutions.

In this section we show some results which are guided by the same idea. A new approach is,
instead of looking for conditions for the velocity, to look for conditions involving the pressure or
some combination of velocity and pressure.

We start by showing some recent results, which are obtained by using the classical truncation
method. Then we show some results which are based on the use of Lα energy-type estimates.

2.3.1 Some results via the truncation method

The basic idea underlying the following results is to use (in a non standard way) some estimates
for linear scalar parabolic equations. The idea used in the boot-strap argument is generalized and
different methods are applied.

We consider the following parabolic equation for the scalar unknown u :

∂u

∂t
− ν∆u +

d∑
j=1

bj
∂u

∂xj
=

d∑
j=1

∂fj
∂xj

− f in D × [0, T ] := DT ,(2.4)

and we treat in a classical way the linear initial-boundary value problem, which arise supplementing
the equation above with bounded initial and boundary data. An application of Theorem 7.1. Ch.
III §7 of the classical book by Ladyženskaja, Solonnikov and Ural’ceva [LSU67], gives the following
result for (2.4).

Theorem 2.3.1. Assume that

bi, fi ∈ Lr(0, T ;Ls(D)) and f ∈ Lr/2(0, T ;Ls/2(D)),(2.5)

with

2
r

+
d

s
< 1, r ∈ (2,∞], s ∈ (d,∞].(2.6)

(Note that the pairs (r, s) can be different for different coefficients, i.e., each coefficient bi, fi, f
may have its own couple (r, s), provided (2.5) and (2.6) are satisfied). Then the solution u of (2.4)
belongs to L∞(DT ).
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Moreover, if we restrict to the coefficients bi, we can replace (2.6) by the stronger condition

2
r

+
d

s
= 1, s ∈ (d,∞](2.7)

If we consider the system of the Navier-Stokes equations, the results above do not apply. One
idea to understand what results should be expected for the Navier-Stokes equations is to apply
“formally” the same results where |u|2 plays the role of the fi, because (u · ∇) u = ∂(uiu)/∂xi.

In this case we should get that u is bounded if |u|2 ∈ Lr(0, T ;Ls(D)), with the condition r, s
as in (2.6). For the Navier-Stokes equations the known result is that the solution is regular if u
satisfy (2.7). This stronger result is also suggested by the use of the “linearized” equation

∂u
∂t

− ν∆u + (v · ∇)u + ∇p = 0 in D × [0, T ],

where vi plays the role of the bi and u = v plays the role of the unknown. In this case the techniques
are similar to that one used in the boot-strap argument, see Sohr [Soh83].

Use of the pressure as a known term

Throughout this section | . | will denote indifferently the absolute value of a scalar, the modulus of
a vector or the Lebesgue measure of a set of Rd.

A completely new device, in the study of regularity, is to use the pressure p as a “known smooth
term.” We recall that equation (2.3) suggests some correspondence between p and |u|2. The scalar
equation (p corresponds now to the fi’s) suggests that the solution of the Navier-Stokes equations
is regular if

p ∈ Lr(0, T ;Ls(D)) for
2
r

+
d

s
< 2, r ∈ (2,∞] and s ∈ (d,∞].

We recall that if we consider D = Rd or a problem with periodic boundary conditions, from (2.3)
(and if f = 0) we can infer that ‖p‖L2(D) ≤ C‖|u|2‖L2(D). In these two cases the compatibility
condition is satisfied (more precisely if D = Rd there are no conditions to be satisfied) and we can
use the classical regularity result for elliptic equations, see also Section 2.2. On the other side, it
is an open question if ‖|u|2‖L2(D) ≤ C‖p‖L2(D). We remark that this condition is true for inviscid
irrotational stationary flows via the Bernoulli law, but there is no heuristic reason to believe that a
similar relation holds for viscous fluids. The formal use of the results for linear parabolic equations
suggests that |p| - |u|2, at least as source of regularity. With this heuristic introduction we can
show the first result, which is due to Beirão da Veiga [BdV97b].

Theorem 2.3.2. Let u be a weak solution of the Navier-Stokes equations and let u0 be bounded.
Assume that, for some positive real number k, the function φk, defined by

φk(x, t) =


|p(x, t)|

1 + |u(x, t)| if |u(x, t)| > k,

0 otherwise,

belongs to Lr(0, T ;Ls(D)), where (r, s) satisfy (2.6). Then u is bounded in DT .

As simple corollary, it is possible to prove the following result.
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Corollary 2.3.3. If the following condition

|p|
1 + |u| ∈ Lr(0, T ;Ls(D))(2.8)

holds, with (r, s) satisfying (2.6), then the solution u is bounded in DT .

This result gives a new insight into the possible regularity for the Navier-Stokes equations.
Furthermore it involves (2.6) instead of condition (2.7), relative to the known results. The proof of
Theorem 2.3.2 is rather technical and since in the sequel we do not use its methods we only give
an idea of the proof. By using the truncation method introduced by De Giorgi [DG57] we set, for
each k > 0

u(k) :=


(

1 − k

|u|

)
u if |u| ≥ k,

0 otherwise.

By using u(k) as test function in the weak formulation of the Navier-Stokes equations, after some
calculations it is possible to arrive to the following inequality

1
2
d

dt

∫
D
|u(k)|2 dx +

ν

2

∫
D
|∇u(k)|2 dx ≤ 2

ν
k2

∫
Ak

|p|2
|u|2 dx,

where Ak(t) := {x ∈ D : |u(x, t)| > k}. From this inequality it is standard to conclude by
using the following theorem, that can be found in the book by Ladyženskaja, Solonnikov and
Ural’ceva [LSU67], Ch. II §1.

Theorem 2.3.4. Let u be a real function defined on DT such that∫
DT

|u|2 + |∇xu|2 dx dt < +∞, and ess sup
0<t<T

∫
D
|u|2 dx +

∫
DT

|∇xu|2 dx dt < ∞.

Suppose that ess sup∂D×(0,T ) u ≤ ĥ, for some ĥ ≥ 0, and that for certain positive constants γ, κ the
following inequality holds:

|u(k)|DT
≤ γ κµ

1+χ
r (k), k ≥ k̃.

Here µ(k) :=
∫ T
0 |Ak(t)|r/q, with 1/r + d/2q = d/4, ( with r > 2 if d > 2). Then ∃ β > 0 such that:

ess sup
DT

|u(x, t)| ≤ 2k̂
[
1 + 2

2
χ
+ 1

χ2 (β γ)1+
1
χ T

1+χ
r |D|

1+χ
q

]
.

2.3.2 A result in the framework of Marcinkiewicz spaces

In this section we show a regularity result, which holds in the Marcinkiewicz spaces. This result,
which is strictly linked with that one of the previous section, is based on a different application of the
truncation method. The result we present in this section, is due again to Beirão da Veiga [BdV98].
We start by defining the Marcinkiewicz spaces Lp

∗(E).

Definition 2.3.5. Let E be a measurable bounded subset of Rd and let 1 ≤ p < +∞. A measurable
function f : E → R belongs to Lp

∗(E) if there exists a constant [f ]p such that

|{y ∈ Rd : |f(y)| > σ}| ≤
(

[f ]p
σ

)1/p
∀σ > 0.(2.9)

The smallest constant [f ]p for which (2.9) holds is called the “norm” of f in Lp
∗(E).
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The most important property of these spaces is that they are “very close” to the classical
Lebesgue spaces Lp(E). The following topological and algebraic inclusions hold:

Lp(E) ⊂ Lp
∗(E) ⊂ Lp−ε(E), ∀ ε > 0.

We now investigate on regularity properties of solutions belonging to Lp(0, T ;Lp(D)) := Lp(DT )
and Lp

∗(DT ) spaces. We recall that, up to the known results, a weak solution is regular if it satisfies

uj ∈ Ld+2(DT ), j = 1, . . . , d,

because the condition
2
r

+
d

r
= 1

implies r = d+ 2. Furthermore a similar result it is not known for any exponent less than d+ 2. In
the framework of Marcinkiewicz spaces the following theorem can be proved.

Theorem 2.3.6. Let (u, p) be a weak solution of the Navier-Stokes equations. Assume that for
some θ ∈ [0, 1[ and some γ such that

2(d + 2)
2θ + (1 − θ)(d + 2)

< γ < d + 2(2.10)

one has
p

(1 + |u|)θ ∈ Lγ
∗(DT ).(2.11)

Then

ui ∈ Lµ(DT ), µ = (1 − θ)
(d + 2)γ
d + 2 − γ

.(2.12)

Moreover if

p

1 + |u| ∈ Lγ
∗(DT ), γ > d + 2,(2.13)

then u is bounded in DT .

We omit the proof of this result and we remark that it is obtained by using the truncation
method with the following test functions:

u(k)(x, t) := max{|u(x, t)| − k, 0}.

The proof follows with the application of a technique, which generalizes that one introduced by
Stampacchia [Sta65]. We show the implications of Theorem 2.3.6, without other details about its
proof.

Remark 2.3.7. We start observing that if γ > (d+ 2)/(2− θ) then the solution is smooth, because
in this case µ > d + 2. If we consider the result and we suppose the “formal” relation |p| - |u|2,
the assumption (2.11) corresponds to

uj ∈ L
(2−θ)γ
∗ (DT ).

From Theorem 2.3.6 we can infer that:
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the known regularity on u increases if µ > (2 − θ)γ or equivalently (d + 2)/(2 − θ) < γ

the known regularity on u decreases if µ < (2 − θ)γ or equivalently γ < (d + 2)/(2 − θ)

the known regularity on u does not change if µ = (2 − θ)γ or equivalently γ = (d + 2)/(2 − θ)

and in the last case µ = (2 − θ)γ = d + 2 is the minimal exponent which gives regularity.

We start by observing that the case θ = 1 and γ > d + 2 falls within the range of applicability of
Theorem 2.4.4 with r = s = d + 2. It is interesting to consider the particular case with θ = 0. In
this case we have hypotheses which involve only p and we can infer the following corollary.

Corollary 2.3.8. Let (u, p) be a weak solution of the Navier-Stokes equations. Assume moreover
that

p ∈ Lγ
∗(DT ), γ ∈ ]2, d + 2[.

Then

uj ∈ Lµ
∗ (DT ), µ =

(d + 2)γ
d + 2 − γ

.

In particular if p ∈ L
d/2+1
∗ (DT ), then uj ∈ Ld+2

∗ (DT ) and if p ∈ L
γ/2
∗ (DT ), with γ > d + 2, then u

is “smooth”.

Remark 2.3.9. We remark that the last result gives the same regularity which can be obtained by
solving the heat equation

∂u

∂t
− ν∆u = ∇p,

with a given p. This is interesting, because we obtain the same regularity which holds for the problem
with the nonlinear term dropped out. However the result is different because in the Navier-Stokes
equations the pressure p is an unknown and not a given datum.

2.4 Energy-type methods

In this section we present other results regarding the effect of the pressure. The methods used are
now very similar to that one used in the construction of weak solutions. The energy inequality is now
replaced by some Lα(D) estimates. This technique, which is the natural Lα(D), α �= 2, counterpart
of the energy method, was introduced by Beirão da Veiga [BdV87] to obtain the estimates needed
to prove the existence of suitable solutions in Rd. This method consists in multiplying the Navier-
Stokes equations by |u|α−2u, for suitable α > d, and then integrating by parts. In this way the
pressure5 term does not disappear, but the problem is without boundaries and it is possible to use

5In this problem the pressure is determined by the condition p → 0 as |x| → +∞.
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the Poisson equation (2.3) in the whole space Rd. With the classical Calderón-Zygmund inequality,
we have, for some 0 < c ∈ R, the following estimate

‖p‖L(α+2)/2(Rd) ≤ c‖u‖2(Lα+2(Rd))d ,

which is strong enough to get (provided f and u0 are “smooth”) existence and uniqueness of weak
solutions such that

ui ∈ L2(0, T ;H1(Rd)) ∩ C([0, T ];Lα(Rd) ∩ L2(Rd)).

2.4.1 Some regularity results

We start this section by recalling the first (and unique, up to 1997) regularity result based on the
pressure. We have the following theorem, which was proved by Kaniel [Kan68]. As in the previous
sections D ⊂ Rd will be “smooth” and bounded.

Theorem 2.4.1. Let u be a weak solution of the three-dimensional Navier-Stokes equations, with
smooth initial conditions. If the associate pressure p satisfies

p ∈ L∞(0, T ;Lq(D)) for q >
12
5
,(2.14)

then u is smooth.

This theorem is based on the following technique: the Navier-Stokes equations are multiplied
by the vector u3 := (u31, . . . , u

3
3); suitable calculations are performed to show that the V norm of

the solution is bounded on (0, T ) and consequently to infer that the solution is strong. Then the
passage to a smooth solution (if the data of the problem are smooth) is standard.

We now show some results which generalize that one of Theorem 2.4.1. The improvement is
based on sharper energy-type estimates, joint with classical regularity results.

Remark 2.4.2. To avoid non essential calculations we assume f = 0, but it is easy to see that the
same results holds if we add a forcing term belonging at least to L1(0, T ; (Lα(D))d).

To study the problem in the context of Lα(D) spaces, we need the space Hα, which is defined
as the closure of V in (Lα(D))d. This space is the natural counterpart of the space H defined in
Section 1.2.1. It is the space in which there were proved some existence and regularity results for
problem in bounded domains. These results are shown by using the different method of semigroup
in Banach spaces, see Giga and Miyakawa [GM85] and Miyakawa [Miy81].

We start by recalling a simple lemma, that follows from Sobolev embedding theorem and that
will be crucial in the sequel.

Lemma 2.4.3. Let |u|α/2 belong to H10 (D). Then

‖u‖α
L

α d
d−2 (D)

≤ C0

∫
D
|∇|u|α2 |2 dx,

with C0 a positive real constant.

Proof. We recall the following basic fact (see Adams [Ada75] for its proof):

H10 (D) ⊂ Lp∗(D) with
1
p∗

=
1
2
− 1

d
.
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This inclusion holds algebraically and topologically and we have

‖φ‖2Lp∗ (D) ≤ C0‖∇φ‖2(L2(D))d ∀φ ∈ H10 (D).(2.15)

This last inequality (2.15) applied to |u|α/2 gives the desired result.

The exponent (α d)/(d − 2) will play an important role in the sequel, similar to the exponent 6,
which is the maximal one for the inclusion V ⊂ (Lp(D))3, in three dimensions. Recall for instance
the estimates for the nonlinear term we used in the previous sections.

We have the following results. The first one is due to Beirão da Veiga [BdV99] and it is in the
same spirit of the results of the previous section. The second one is due to Berselli [Ber99] and it
is the claimed generalization of Kaniel Theorem 2.4.1.

Theorem 2.4.4. Let α > d. Assume that u0 ∈ Hα. Let (u, p) be a weak solution of the d-
dimensional Navier-Stokes equations, such that

p

1 + |u| ∈ Lr(0, T ;Ls(D)),
2
r

+
d

s
< 1.

Then the solution is “smooth.”

Theorem 2.4.5. Let (u, p) be a weak solution of the d-dimensional Navier-Stokes equations with
initial conditions u0 ∈ Hα, for α > d. If the pressure p satisfies

p ∈ Lα(0, T ;L
α d

α+d−2 (D)),(2.16)

then the solution is “smooth.”

Remark 2.4.6. The condition u0 ∈ Hα is not restrictive and it is the natural one used to deal
with problem in the Banach spaces Lα(D) with α �= 2, see Giga and Miyakawa [GM85].

Theorem 2.4.4 should be compared with Theorem 2.3.2 and Theorem 2.3.6 of the previous
section, since the results are very similar. From Theorem 2.4.5 we can immediately infer the
following corollary.

Corollary 2.4.7. Let d = 3, let p belong to Lα(0, T ;Lp(D)) with 9/4 < p < 3 and let u0 belong to
Hα, with α = p/(3 − p). Then the weak solutions of the 3-dimensional Navier-Stokes equations are
regular. In particular this holds if p belongs to L∞(0, T ;Lp(D)).

Proof. If we restrict the results of Theorem 2.4.5 to the problem with d = 3, we have that
L

α d
α+d−2 (D) = L

3α
1+α (D) and

inf
α>3

3α
1 + α

=
9
4
.

The lowest upper bound is attained for α = 3. We observe that

Lα(0, T ;L
3α

1+α (D)) ⊃ L∞(0, T ;L
3α

1+α (D)).

Moreover, for every 9
4 < p < 3, if we set α = p/(p − 3) > 3, we get

Lα(0, T ;L
3α

1+α (D)) ⊃ L∞(0, T ;Lp(D)),

and this concludes the proof.
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Remark 2.4.8. We remark that 9/4 (the best exponent) is strictly lower than 12/5 and in this
special setting we improve the cited result (2.14) by Kaniel. He assumed that u0 ∈ H10 (D) and this
also implies that our summability condition on the initial datum u0 is satisfied, since p close to
9/4 means that α is close to 3. Clearly, we also obtain a generalization of Kaniel result by taking
α = 4. In this case the regularity holds if p belongs to L4(0, T ;L12/5(D)).

Remark 2.4.9. If we take our condition (2.16) and if we put r = α and s = α d/(d + α− 2), we
get as a sufficient condition for regularity that

p ∈ Lr(0, T ;Ls(D)) with
2
r

+
d

s
= 1 +

d

α
.(2.17)

Note that the right hand side is a real number greater than one and strictly lower than two. It
is worth noting that, at the light of the result shown before, (see Section 2.3.1) we expect that
2/r+d/s < 2 (or even equal to 2) should be sufficient here. Note that the exponent two corresponds
exactly to the sufficient condition (2.1), if p - |u|2. Also note that we arrive at this exponent if we
could take α = d. In fact in that case we will get a pressure belonging to Ld(0, T ;Ld2/2(d−1)(D)),
for which condition (2.17) gives exactly two, the number relative to the hypothesis p - |u|2.

We start by observing that if a weak solution satisfies

u ∈ C(0, T ;Hα) and |u|α/2 ∈ L2(0, T ;H10 (D)),(2.18)

if u0 and f are regular and if the necessary compatibility conditions are satisfied, then it is “smooth,”
see for example von Wahl [vW80]. Our aim will be to find some a-priori estimates to use the
previous remark.

The following lemma is the core of the proof of Theorem 2.4.4 and Theorem 2.4.5.

Lemma 2.4.10. Let (u, p) be a smooth solution of the Navier-Stokes equations in D×]0, T ]. Then
the following estimate is satisfied

1
α

d

dt
‖u‖α(Lα(D))d +

ν

2
Nα

α (u) + 4 ν
α− 2
α2

Mα
α (u) ≤ (α− 2)2

2ν

∫
D
p2|u|α−2 dx,(2.19)

where

Nα =
[∫

D
|∇u|2|u|α−2 dx

]1/α
and Mα =

[∫
D
|∇|u|α2 |2 dx

]1/α
.

Proof. We apply the “energy” method previously described, even if we study the problem in a
bounded domain D ⊂ Rd. The tool needed to prove (2.19) is simply to multiply the Navier-Stokes
equations by |u|α−2u and to integrate over D. Then suitable integrations by parts are performed
by taking into account that the fluid is incompressible (i.e. , div u = 0) and that the problem is
equipped with no-slip (i.e. , u|∂D = 0) boundary conditions.

We observe that, since div u = 0, with an integration by parts we get:

b(u,u, |u|a−2u) = 0.

The term which requires more attention is

I := −
∫
D

∆uu|u|α−2 dx =
∫
D

d∑
i,k=1

∂2ui
∂x2k

ui

( d∑
j=1

u2j

)(α−2)/2
dx.
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If we integrate by parts the boundary terms disappear and we obtain I = I1 + I2 with

I1 :=
∫
D

d∑
i,k=1

∂ui
∂xk

∂ui
∂xk

( d∑
j=1

u2j

)(α−2)/2
dx,

and

I2 := (α− 2)
∫
D

d∑
i,k=1

ui
∂ui
∂xk

uj
∂uj
∂xk

( d∑
j=1

u2j

)(α−2)/2−1
dx.

The term I1 is exactly Nα
α (u). The term I2 requires some cares. Expanding |∇|u|α/2|2 we get

d∑
i=1

( ∂

∂xi

( d∑
k=1

u2k
)α/4)2 =

(α
4
( d∑
k=1

u2k
)α/4−12uk ∂uk

∂xi

)2
=

α2

4
( d∑

k

u2k
)(α−4)/2

u2k

(∂uk
∂xi

)2
,(2.20)

and finally we observe that

I2 = 4
α− 2
α2

∫
D
|∇|u|α/2|2 dx = 4

α − 2
α2

Mα
α (u).

First we obtain that
1
α

d

dt
‖u‖α(Lα(D))d + νNα

α (u) + 4 ν
α− 2
α2

Mα
α (u) = −

∫
D
∇p · u|u|α−2 dx.(2.21)

We remark that the terms Nα(u) and Mα(u) are the same which appear if D = R
n, since the

boundary terms vanish. We also recall the following inequality (which derives from (2.20)), that
will be used in the calculations

|∇|u|α/2| ≤ α

2
|u|α/2−1|∇u| a.e. in D.

If we integrate by parts the right hand side of (2.21) we have

−
∫
D
∇p · u|u|α−2 dx = (α− 2)

d∑
i,j=1

∫
D
p
∂ uj
∂ xi

ui uj|u|α−2 dx,

=
2(α− 2)

α

∫
D
p|u|α/2−2

[
d∑

i=1

ui

][
d∑

i=1

∂

∂ xi
|u|α/2

]
dx,

and by observing that ∣∣∣∣∣∣
∑
i,j=1

uiuj
∂uj
∂xi

∣∣∣∣∣∣ ≤ |u|2|∇u| a.e. in D,

we obtain ∣∣∣∣∫
D
∇p · u|u|α−2 dx

∣∣∣∣ ≤ (α− 2)
∫
D
|p||∇u||u|α−2 dx.

Finally, by using the Young inequality (q=q’=2) and Lemma 2.4.3, we arrive to the following
inequality ∣∣∣∣∫

D
∇p · u|u|α−2 dx

∣∣∣∣ ≤ (α− 2)2

2 ν

∫
D
p2|u|α−2 dx +

ν

2
Nα

α (u),

which proves the lemma.
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We now derive the two inequalities which prove the Theorems cited above. Given the a-priori esti-
mates (2.22)-(2.24) both the proofs conclude by using the continuation argument and a regularity
result.

Proof of Theorem 2.4.4: a-priori estimate. Let now (r, s) satisfy 2/r + d/s < 1 and assume that
s < ∞ ∫

D
p2|u|α−2 dx ≤

∫
D

(
p

1 + |u|

)2
(1 + |u|)α s−d

d (1 + |u|)αds dx.

Since 2/s + (s− d)/s + (d− 2)/s = 1, we can use the Hölder inequality to get∫
D
p2|u|α−2 dx ≤ ‖p/(1 + |u|)‖2Ls(D)‖(1 + |u|)‖α(1− d

s )
Lα(D) ‖(1 + |u|)‖

αd
s

L
αd
d−2 (D)

.

By using the Young inequality with exponents r/2 and s/d we obtain, for ε > 0,∫
D
p2|u|α−2 dx ≤ ε−

s
s−d ‖p/(1 + |u|)‖rLs(D)‖(1 + |u|)‖αLα(D) + ε

s
d ‖(1 + |u|)‖α

L
αd
d−2 (D)

,

and we have

1
α

d

dt
‖u‖α(Lα(D))d +

ν

2
Nα

α (u) + 4 ν
α− 2
α2

Mα
α (u) ≤ ε−

s
s−d

∥∥∥∥ p

1 + |u|

∥∥∥∥r
Ls(D)

2α−1
(
|D| + ‖u‖αLα(D)

)
+

+ε
s
d 2α−1

(α− 2)2

2ν

(
|D|

d−2
d + ‖u|‖α

L
αd
d−2 (D)

)
.

Finally, by fixing ε and by using Lemma 2.4.3, we get6

1
α

d

dt
‖u‖α(Lα(D))d +

ν

2
Nα

α (u) + 4 ν
α− 2
α2

Mα
α (u) ≤ c1 + c2

∥∥∥∥ p

1 + |u|

∥∥∥∥r
Ls(D)

(
|D| + ‖u‖(Lα(D))d

)
.

(2.22)

Proof of Theorem 2.4.5: a-priori estimate. We use the Hölder inequality in the last term of (2.19)
with exponents

p =
α d

(α− 2)(d− 2)
and q =

p− 1
p

=
α d

2(d + α− 2)
.

We observe that the condition p ≥ 1 is satisfied since α > d ≥ 3. We obtain∫
D
p2|u|α−2 dx ≤ ‖u‖α−2

(Lp(α−2)(D))d
‖p‖2L2q(D) ≤ ‖u‖α−2

(L
αd
d−2 (D))d

‖p‖2L2q(D).(2.23)

Now we apply the Young inequality to (2.23) with exponents

p′ =
α

α− 2
and q′ =

α

2
,

6With ε =

(
ν2

2α−1(α− 2)

)d/s
, c1 =

2ν(α− 2)

αC0
|D|

d−2
d , and c2 = 2α−2 (α− 2)2

ν

[2α−3α(α− 2)C0

ν2

] d
s−d .
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to get
(α− 2)2

2ν

∫
D
p2|u|α−2 dx ≤ 2ν

α− 2
αC0

‖u‖α
(L

α d
d−2 (D))d

+ c1‖p‖α
L

αd
α+d−2 (D)

and the explicit value for c1 is c1 = (α−2)2
ν α

[
(α−2)2C0

4ν2

](α−2)/2
.

By collecting the previous results (Lemma 2.4.3 and inequality (2.19)) we finally obtain

1
α

d

dt
‖u‖α(Lα(D))d +

ν

2
Nα

α (u) + 2 ν
α− 2
α

Mα
α (u) ≤ c1‖p‖α

L
α d

α+d−2 (D)
.(2.24)

We can now conclude the proof of Theorems 2.4.4-2.4.5 by using the comparison theorems for
ordinary differential equations. With inequality (2.22)-(2.24) and by using the hypotheses satisfied
respectively by p/(1 + |u|) and p in a Gronwall inequality, we have that u ∈ L∞(0, T ;Hα) and that
|∇u|α/2 belongs to L2(0, T ;H10 (D)).

We denote by t the lowest upper bound of the values in [0, T ] for which the velocity satisfies
the condition (2.18):

u ∈ C(0, t;Hα) and |u|α/2 ∈ L2(0, t;H10 (D)).

We have that t > 0 and, as we claimed, the solution is regular in ]0, t[, see for example the classical
references by Giga and Miyakawa [GM85], Miyakawa [Miy81], Sohr [Soh83] and von Wahl [vW80].

Since estimate (2.22)-(2.24) holds in ]0, t[, it follows that u ∈ L∞(0, t;Hα) and, as consequence
of the hypothesis α > d, we have u ∈ C(0, t;Hα). By taking now u(t) as initial datum we can
construct a solution in a larger interval and it is easy to see that necessarily t = T.

In the continuation argument we used the fact that if u is bounded with values in Hα, α > d then
u is also continuous with values in Hα. The proof of this result of strong continuity, which is based
on appropriate interpolation inequalities and a boot-strap argument, can be found in Beirão da
Veiga [BdV99] and it is based on the argument developed for D = Rd in Beirão da Veiga [BdV87],
Appendix B.
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Chapter 3

On determining projections

In this chapter we analyze with more details the results regarding the long-time behavior of so-
lutions. We start by presenting the results regarding the determining projections stated in Sec-
tion 1.3.3. This result will be the starting point for some generalization. In particular we introduce
several concepts regarding the analysis of stochastic partial differential equations and we study
some aspects concerning the long-time behavior of their solutions. The new result we prove are
the natural generalization to the stochastic framework of the result of Holst and Titi regarding the
existence of determining projections for the two dimensional Navier-Stokes equations.

3.1 A result on determining projections

We start this chapter by proving Theorem 1.3.16, that we claimed in Section 1.3.3. We give the
proof by Holst and Titi [HT97] regarding the existence of a determining projection operator. We
start with a lemma, which is important in the analysis of the long time behavior of the Navier-Stokes
equations. This lemma, whose proof can be found in Jones and Titi [JT93], is a generalization of
the classical Gronwall lemma.

Lemma 3.1.1. Let T > 0 be fixed, and let α(t) and β(t) be locally integrable and real-valued on
(0,+∞), satisfying

lim inf
t→∞

1
T

∫ t+T

t
α(τ) dτ =m > 0, lim sup

t→∞

1
T

∫ t+T

t
α−(τ) dτ = M < ∞,

lim
t→∞

1
T

∫ t+T

t
β+(τ) dτ = 0,

(3.1)

where α− := max{α, 0} and β+ := max{β, 0}. Then if y(t) is an absolutely continuous, non-negative
function on (0,∞) and if y(t) satisfies

y′(t) + α(t) y(t) ≤ β(t), a.e. on (0,∞),

then limt→∞ y(t) = 0.

Proof. From the standard Gronwall lemma, we obtain that

0 ≤ y(t) ≤ y(t0) e
−
∫ t

t0

α(σ) dσ
+
∫ t

t0

β+(τ) e
−
∫ t

τ
α(σ) dσ

dτ, for 0 < t ≤ t0.
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From the assumptions on α, we may choose t0 large enough so that, for all s ≥ t0, we have∫ s+T

s
α−(σ) dσ ≤ M + 1 and

∫ s+T

s
α(σ) dσ ≥ m

2
.

Hence, if t0 ≤ τ ≤ t and if k is an integer chosen such that τ + k T ≤ t ≤ τ + (k + 1)T, then

e
−
∫ t

τ
α(σ) dσ

= e
−
∫ τ+k T

τ
α(σ) dσ

e
−
∫ t

τ+k T
α(σ) dσ

≤ e−mk/2eM+1 ≤ M ′e−m/2T (t−τ),

for some M ′. By choosing an integer k0 such that t ≤ t0 + K0T ≤ t + T, we have that

∫ t

t0

β+(τ)M ′e−m (t−τ)/2T dτ ≤
k0∑
k=1

∫ t0+k T

t0+(k−1)T
β+(τ)M ′e−m (k0T−kT−T )/2T dτ

≤
(

sup
t≥t0

∫ t+T

t
β+(τ) dτ

)
M ′ em/2

e − 1
.

It follows that

lim sup
t→∞

|y(t)| ≤
(

sup
t≥t0

∫ t+T

t
β+(τ) dτ

)
M ′ em/2

e − 1

and by hypothesis (3.1) we can conclude that |y(t)| → 0 as t → ∞.

We can now easily prove that the long-time behavior of the solutions of the Navier-Stokes equations
is determined by their projection, if the projection operator satisfies:

‖u −RN (u)‖(L2(D))2 ≤ C
1
Nγ

‖u‖(H1(D))2 for 0 < C ∈ R.(3.2)

Proof of Theorem 1.3.16. Let u and v be solutions, corresponding to f and g respectively. We set,
as usual, w := u − v. The application of the “energy method” and of the basic estimates for the
nonlinear terms gives

1
2
d

dt
|w|2 + ν‖w‖2 ≤ ‖u‖|w|‖w‖ + ‖f − g‖V ′‖w‖.

An application of the Young inequality leads to

d

dt
|w|2 + ν‖w‖2 − 2

ν
‖u‖2|w|2 ≤ 2

ν
‖f − g‖2V ′(3.3)

To bound the term on the left we use (3.2) in the following form

|w|2 ≤ 2
N2γ

C‖w‖2 + 2‖RNw‖2(L2(D))2 ,

and we obtain

d

dt
|w|2 +

(
ν N2γ

2C
− 2

ν
‖u‖2

)
|w|2 ≤ 2

ν
‖f − g‖2V ′ +

ν N2γ

C
‖RNw‖2(L2(D))2 .
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The last inequality is of the form

d

dt
|w(t)|2 + α(t)|w(t)|2 ≤ β(t).

To apply Lemma 3.1.1 to the last expression (and to prove that w → 0 as t → ∞) we need to
check that the hypothesis (3.1) on α and β is satisfied. The conditions on α− and β+ are trivially
satisfied, because u,v and w belong to V. It remains to check that

lim inf
t→∞

1
T

∫ t+T

t
α(τ) dτ = m > 0,

and the last reduces to verify that, for some fixed T > 0, the following hold:

Nγ >
2C2

ν
lim sup
t→∞

∫ t+T

t

2‖u(τ)‖2
ν

dτ =
4C2

ν2
lim sup
t→∞

1
T

∫ t+T

t
‖u(τ)‖2 dτ.

Classical estimates on weak solutions yield

lim sup
t→∞

1
T

∫ t+T

t
‖u(τ)‖2 dτ ≤ 2

ν2
lim sup
t→∞

‖f(t)‖2V ′ for T =
C(D)
ν

,

where C(D) is the best Poincaré constant. Therefore if

N2γ ≥ 4C2

ν2

(
2
ν2

)
lim sup
t→∞

‖f(t)‖2V ′ ,

then
lim
t→∞

|w(t)| = 0.

Remark 3.1.2. From the proof it will follow that N should be of order of Gr2 (recall that Gr is
the Grashof number, defined at page 10) The bound can be improved to the claimed N - Gr if the
no-slip conditions are replaced with the periodic boundary conditions, mainly for the simplification
due to b(um,um, Aum) ≡ 0, see Remark 1.2.18. This identity show the lack of a boundary vorticity
shedding source, when the boundary is absent, recall also Remark 1.1.2.

3.1.1 Scott and Zhang interpolant

The operator RN was introduced in the previous sections as an abstract operator. We now explain
why it is needed and how to construct it explicitly.

We recall that the basic finite element interpolant (Lagrange and Crouzeix-Raviart and some
others) are defined for v at least in C0(K) and the nodal interpolant (i.e. , the nodal variables are
defined as evaluation at some points) are not well defined for functions in H1(D) with D ⊂ Rd, d ≥
2. Since H10 (D) (or more precisely V) is the natural space in which we want to study the Navier-
Stokes equations (it is the space in which weak solution live) it is necessary to introduce some
different interpolant. The Definition 1.4.2 in its generality encompasses also the setting needed to
describe the Scott and Zhang interpolant we are going to introduce. This interpolant, which was
introduced by Scott and Zhang [SZ90, SZ92], will turn out to be well defined on H1(D) and also
to have optimal properties of approximation.

The interpolant we shall construct needs an additional hypothesis on the subdivision: the quasi
uniformity.
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Definition 3.1.3. A simplicial subdivision Th is said to be quasi-uniform if there exists η > 0 such
that

min
Ki∈Th

(ρKi) ≥ η h

we recall (see Section 1.4) that ρKi is the radius of the largest ball contained in Ki.

This condition means, roughly speaking, that all the simplices Ki are of comparable size and
it is needed to make good estimates, since all the calculations can be done on a single reference
element (the one for which K is the standard d-simplex). Observe also that if a family is quasi-
uniform then it is regular, but not conversely. We point out that to construct the Scott and Zhang
interpolant the mesh needs to be regular. Furthermore, to make the approximation property (3.2)
hold, the mesh needs also to be quasi-uniform.

We consider a finite element space Vh consisting of continuous piecewise polynomials:

Vh :=
{
v ∈ C(D) : v|Ki

∈ PKi = P d
s , ∀Ki ∈ Th

}
,(3.4)

and its subspace V0h, consisting of functions vanishing on the boundary.
Now we present the Scott and Zhang interpolant, which defines an interpolation operator from

W k,p(D) into Vh, with

k ≥ 1 if p = 1 and k > 1/p otherwise.(3.5)

We construct the global interpolant Ih as follows: we shall use the same nodes {xi}Ni=1 of the
Lagrange element and the nodal basis {ϕi}Ni=1 of Vh to define the interpolation operator. We choose
for every node xi either a d-simplex (a triangle in our two dimensional problem) or a (d−1)-simplex
(a side), according to the following rules

• if xi is an interior point of some d-simplex Ki ∈ Th we let

σi = Ki,

• if xi is an interior point of some face (which is a (d − 1)-simplex) K′ of a d-simplex Ki ∈ Th
we let

σi = K′,

• if xi is on a (d − 2)-simplex there are some degrees of freedom in the choice that produce
different interpolant; we have in fact to pick one (d− 1)-simplex K′ in such a way that

σi ∈ K′ with the restriction K′ ⊂ ∂D if xi ∈ ∂D,

and we set
σi = K′.

The condition K′ ⊂ ∂D is made for the purpose to preserve homogeneous boundary conditions in
a natural way. It is the main improvement with respect to the Clément interpolant [Clé75], since
the Scott and Zhang interpolant allows us to treat non-homogeneous problems, as for example
elliptic problems with non zero Dirichlet data or Navier-Stokes equations with periodic boundary
conditions.

For each (d− 1)-simplex K′ of K there is a natural restriction of (K,P,N ) that defines a finite
element

(K′,PK′ ,NK′) = (K,PK,NK)|K′ .



3.1 A result on determining projections 51

With NK′ we denote the evaluation points of NK that lie on the simplex K′ and PK′ = P d−1
s . Let us

denote by n1 the dimension of P d
s and by n0(σi) the dimension of P dimσi

s (that is
(s+d

d

)
or

(s+d−1
d−1

)
).

Let xi,1 = xi and let {xi,j}n0
j=1 be the set of nodal points in σi, in which σi is the simplex associated

to xi.

We associate to the nodal basis {ϕi,j}n0
j=1, defined on σi, the L2(σi)-dual basis {ψi,j}n0

j=1 (which
exists by the Riesz representation theorem):∫

σi

ψi,j(x)ϕi,k(x) dx = δjk j, k = 1, . . . , n0.(3.6)

We set ψi = ψi,1, for every xi ∈ NKi , and we have the following relation∫
σi

ψi(x)ϕj(x) dx = δij i, j = 1, . . . , N.

We define the interpolation operator Π{σi} : W k,p(D) → Vh(D), as follows:

Π{σi} v(x) =
N∑
i=1

ϕi(x)
∫
σi

ψi(ξ)v(ξ) dξ.

Remark 3.1.4. The operator Π{σi} depends on the choices of the simplices σi, but we do not write
it explicitly. We refer to Π as the projection operator determined by a certain choice of the σi.

Condition (3.5) also guarantees that the nodal values, {Π v(xi)}, are well defined owing to the
trace theorems for Sobolev spaces. Furthermore, the same condition guarantees the validity of the
homogeneous boundary condition

∀ v ∈ W k,m
0 (D), v|∂D = 0 in L1(∂D).

The particular choice of σi, that we made, implies that Π preserves the homogeneous boundary
condition:

Π : W k,p
0 (D) → V0h.

From the orthogonality condition (3.6) we can also conclude that Π is a projection operator on Vh
or, in other words, Π(v) = v, for every v ∈ Vh. We now recall the following theorem, which states
the approximation properties of Π, see Scott and Zhang [SZ90].

Theorem 3.1.5. Let v ∈ W k,p(D) and let k, p satisfy (3.5) and let Th be a regular simplicial
subdivision of D. Then the Scott and Zhang interpolant Π made with polynomials of degree less or
equal than s, satisfies ∑

Ki∈Th

h
p(m−k)
Ki

‖v − Π v‖pWm,p(K)

 1
p

≤ C‖v‖p
W k,p(D)

0 ≤ m ≤ k ≤ s + 1,

where C denotes a constant that does depend nor on v nor on TK.

Letting m = k, we obtain the following corollary
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Corollary 3.1.6. With the same hypotheses of Theorem 3.1.5 we have ∑
Ki∈Th

‖Π v‖p
W k,p(Ki)


1
p

≤ C‖v‖W k,p(D).

Recalling that h is the mesh size, the statement of Theorem 3.1.5 can be written in the following
form, more interesting for our applications: ∑

Ki∈Th

‖v − Π v‖pWm,p(K)

 1
p

≤ C hk−m‖v‖W k,p(D), 0 ≤ m ≤ k ≤ s + 1.

Now, to fit this result into our problem, we must make some additional assumptions. First we
consider the setting with d = 2 and we suppose that D is an exactly triangulated polygon (each Ki

is a triangle) with a regular and quasi-uniform triangulation. We also restrict to linear polynomials,
i.e. , we use as shape functions P 21 . For quasi-uniform triangulation it holds that there exist two
constants C0, C1 > 0, independent of both N and h, such that

C0
|D|
h2

≤ N ≤ C1
|D|
h2

,(3.7)

where N is the number of interpolation points (the vertices of the triangles Ki). We must note
that given some initial triangulation, by repeated bisection, we obtain a quasi-uniform family of
triangulations, see Ciarlet [Cia78]. Furthermore, inequality (3.7) holds with the same constants for
finer and finer meshes.

The results of Theorem 3.1.5 can be easily extended to vector valued functions and we can
finally obtain an interpolant, Ih : (H1(D))d → Vh, that satisfies

‖u − Ih(u)‖(L2(D))d ≤ C h1+α|u|(H1+α(D))d .

Now, by defining RN = Ih with N that is of order of 1/h2, we get the desired inequality (3.2) with
γ = 1/2.

As a final remark we observe that the operator RN acts from H1(D) into a finite dimensional
subspace of (L2(D))d. In particular this subspace does not need to be a subspace of divergence-
free polynomials. In particular we point out that the shape functions need not to span a finite
dimensional subspace of V : they can be external approximations. This is very interesting, because
the problems arising with the divergence free constraint (recall the results for the Stokes operator
in Section 1.4.1) are by-passed.

3.2 The Stochastic Navier-Stokes equations

In this section we introduce the Stochastic Navier-Stokes equations:

∂u
∂t

+ (u · ∇) u− ν∆u + ∇p = f +
∂g
∂t

in D × [0, T ],(3.8)

div u = 0 in D × [0, T ],(3.9)
u = 0 on ∂D × [0, T ],(3.10)
u(x, 0) = u0(x) in D × {0}.(3.11)
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The body forces are split into two terms: f is a classical term, and may represent slowly (differ-
entiable) varying force, while ∂g/∂t correspond to fast fluctuations of the force. It is possible to
assume different assumptions to describe rapid fluctuations; we mainly assume that g is continuous,
but not differentiable. Another possible choice is to take generalized stochastic processes, but we
shall not enter into details, since our approach will be mainly the deterministic one, i.e. , we study
the problem path-wise, for a fixed g. Overview on stochastic partial differential equations can be
found in Da Prato and Zabczyk [DPZ92, DPZ96].

The introduction of the stochastic Navier-Stokes equations is reasonable since the nonlinear
nature of the equation leads naturally to the study of chaotic dynamical systems; a recent reference
about chaos is Wiggins [Wig90]. The heuristic justification of the study of Navier-Stokes equations
can be the following, see Chorin [Cho94]:

. . . we shall now consider random fields u(x, ω) which, for each ω (i.e., for each exper-
iment that produces them), satisfy the Navier-Stokes equations. u depends also on the
time t; we shall usually not exhibit this dependence explicitly.

There is an interesting question of principle that must be briefly discussed: why does
it make sense to view solutions of the deterministic Navier-Stokes equations as being
random? It is an experimental fact that the flow one obtains in the laboratory at a
given time is a function of the experiment. The reason must be that the flow described
by the Navier-Stokes equations for large R is chaotic; microscopic perturbations, even
at a molecular scale, are amplified to macroscopic scales; no two experiments are truly
identical and what one gets is a function of the experiment. The applicability of our con-
structions is plausible even if we do not know how to formalize the underlying probability
space.

Another justification is given by Barenblatt [Bar96] by considering the solution of the Navier-Stokes
equations at high Reynolds number as a realization of a turbulent1 flow:

...the flow properties for supercritical values of the Reynolds number undergo sharp and
disorderly variations in space and in time, and the fields of flow properties,- pressure,
velocity etc.-can to a good approximation be considered random. Such a regime of flow
is called turbulent...

We do not address to the result arising in the statistical study of Navier-Stokes equations, for which
we refer to Vǐsik and Fursikov [VF88]. The main result, which is not known in the deterministic
case, is that in the presence of certain initial data and suitable “fast fluctuating terms” there is
uniqueness of asymptotic behavior and an ergodic theorem holds. In particular there is a unique
invariant measure associated to the Stochastic Navier-Stokes equations. We recall that if S(t, ω) is
the transition semigroup associated to the Stochastic Navier-Stokes equations, then a measure µ
on H is invariant if, for every time t, S(t, ω) satisfies the following equality:∫

S(t, ω)ψ dµ =
∫

ψ dµ, ∀ψ belonging to the Borel bounded functions defined on H,

see Cruzeiro [Cru89].

1Observe that, in his diaries, Leonardo Da Vinci used the word turbulent in the same sense we use it now.
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3.2.1 Weak solutions of the Stochastic Navier-Stokes equations

We consider the Stochastic Navier-Stokes equations written as a functional differential equation

du
dt

+ νAu + B(u,u) = f +
∂g
∂t

.(3.12)

We assume that u0 ∈ H and that f ∈ L2(0, T ;V ′). Furthermore, we assume that

g ∈ C([0, T ];V ) and g(0) = 0.

The equation above has now meaning only in an integral sense. To construct a weak solution, we
project the Stochastic Navier-Stokes equations onto the space spanned by the first m eigenvectors
of the Stokes operator and we consider the following integral system in Vm := Pm(H) :

um(t) +
∫ t

0
Aum(s) ds+

∫ t

0
Pm(B(um(s),um(s)) ds = Pm u0+

∫ t

0
Pm f(s) ds +Pm g(t), t ≥ 0,

which has a unique maximal solution um ∈ C(0, T ;Vm). We define vm := um−Pm g ∈ C(0, T ;Vm),
that satisfies

vm(t) +
∫ t

0
Avm(s) ds+

∫ t

0
Pm(B(vm(s) + Pm g(s),vm(s) + Pm g(s)) ds =

= Pm(u0 − g(0)) +
∫ t

0
Pm f(s) ds +

∫ t

0
APm g(s) ds, t ∈ [0, T ].

(3.13)

Therefore vm is of class C1 and it satisfies the equation

dvm

dt
+ νAvm + B(vm + Pm g,vm + Pm g) = f + Ag, t ∈ [0, T ].

We can use the “energy method” and we obtain

1
2
d

dt
|vm|2 + ‖vm‖2 ≤ −B(vm + Pm g, Pm g),vm > +‖vm‖‖f‖V ′ + ‖vm‖‖Ag‖V ′ .

We now observe that the term B(vm +Pm g,vm +Pm g) is no longer orthogonal to vm and we need
some special estimates. In particular, by using the Hölder2 inequality, we get, for suitable positive
constants

| < B(vm + Pm g, Pm g),vm > | = | < B(vm + Pm g,vm), Pm g > |

≤ C1‖vm‖‖vm‖L4(D)‖Pm g‖L4(D) + C1‖vm‖‖Pm g‖2L4(D)

≤ C2‖vm‖7/4|vm|1/4‖Pm g‖L4(D) + C1‖vm‖‖Pm g‖2L4(D).

By using the Young inequality, we have:

1
2
d

dt
|vm|2 + ‖vm‖2 ≤ C

(
|vm|2‖Pm g‖8L4(D) + ‖Pm g‖4L4(D) + ‖Ag‖2V ′ + 2‖f‖V ′

)
.(3.14)

2We restrict to d = 3 but, as in the deterministic problem, if d = 2 different (and more powerful) estimates hold.



3.2 The Stochastic Navier-Stokes equations 55

From the last equation (3.14) if some estimate on Pm g is given, we can extract (as in the deter-
ministic case) subsequences vmk

that converge to some v, which satisfies

< v(t) − v(t0),φ > +
∫ t

t0

< A1/2v(s), A1/2φ > ds +
∫ t

t0

< B(v(s) + g(s),v(s) + g(s)),φ > ds =

=
∫ t

t0

< f(s) + Ag(s),φ > ds, ∀ t ≥ t0 ≥ 0, ∀φ ∈ V.

Now by recalling that, for m ∈ N, we defined vm := um − Pm g, we can give the definition of a
weak solution by setting u := v + g.

Definition 3.2.1. Given f ∈ L2(0, T ;V ′) and g ∈ C([0, T ];V ), we say weak solution of the Stochas-
tic Navier-Stokes equations (3.8) a function u belonging to L2(0, T ;V )∩L∞(0, T ;H), which satisfies
the following regularity property

if d=3 then
d

dt
(u − g) ∈ L4/3(0, T ;V ′)

if d=2 then
d

dt
(u − g) ∈ L2(0, T ;V ′).

and such that:

a) < u(t) − u(t0),φ > +
∫ t

t0

< A1/2u(s), A1/2φ > ds +
∫ t

t0

< B(u(s),u(s)),φ > ds =

=< g(t) − g(t0),φ > +
∫ t

t0

< f(s),φ > ds ∀ t ≥ t0 ≥ 0, ∀φ ∈ V ;

b) for almost all t and t0, with t ≥ t0 ≥ 0 it holds

|u(t) − g(t)|2 ≤e
∫ t
t0
(−λ1+C‖g(s)‖8

L4 ) ds|u(t0) − g(t0)|2 +

+
∫ t

t0

e
∫ t
σ (−λ1+C‖g(s)‖8

L4 ) dsC
[
‖g(σ)‖4L4 + ‖Ag(σ)‖2V ′ + ‖f(σ)‖2V ′

]
dσ;

c) for almost all t and t0, with t ≥ t0 ≥ 0 it holds

|u(t) − g(t)|2 +
∫ t

t0

‖u(s) − g(s)‖2 ds ≤ |u(t0) − g(t0)|2 +

+ C

∫ t

t0

[
|u(σ) − g(σ)|2‖g(σ)‖8L4 + 4‖g(σ)‖4L4 + 4‖Ag(σ)‖2V ′ + 4‖A f(σ)‖2V ′

]
dσ.

This is the first method introduced to study the Stochastic Navier-Stokes equations, see Ben-
soussan and Temam [BT73]. Another method, which is slightly different, is based on the introduc-
tion of an auxiliary (vector) Stokes equation, which is known as Ornstein-Uhlenbeck equation in
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the stochastic literature:
∂z
∂t

− ν∆z + ∇q =
∂g
∂t

in D × [0, T ],(3.15)

div z = 0 in D × [0, T ],(3.16)
z = 0 on ∂D × [0, T ],(3.17)
z(x, 0) = 0 in D × {0}.(3.18)

By setting v := u− z we have to study the modified Navier-Stokes equations:
dv
dt

+ νAv + B(v + z,v + z) = f.(3.19)

The term Ag is now absent and to obtain energy estimates we need some information on the
regularity of z. The application of the usual estimates on the nonlinear term gives the following
condition

z ∈ C([0, T ]; (L4(D))d),

which is sufficient to prove the existence of weak solutions.

Regularity results for the Ornstein-Uhlenbeck equations

We deal with the Ornstein-Uhlenbeck equations, in the abstract form:{
dz
dt

+ A z =
dg
dt

t ∈ [0, T ]

z(0) = z0,

and since g ∈ C([0, T ];D(A−1)) is not differentiable3 with respect to time in the usual way, we
must define the solution in an integral sense.

Definition 3.2.2. A solution of the Ornstein-Uhlenbeck equations is a continuous function z on
the interval [0, T ], with values in D(Aγ) for γ ≥ 0, such that

< z(t) − z(0),φ > +
∫ t

0
< z(s), Aφ > ds =< g(t) − g(0),φ > ∀ t ∈ [0, T ], ∀φ ∈ D(A).

There are different methods to study the Ornstein-Uhlenbeck equations, for example by using
the semigroup method. We write the solution by using the variation of constants formula below

z(t) := e−tAz0 +
∫ t

0
e−(t−s)A dg(s)

dt
ds(3.20)

and by an integration by parts we give meaning to the integral. The following result is well-known,
see for instance Flandoli [Fla96].

Theorem 3.2.3. Let γ ≥ 0 be given. Assume that z0 ∈ D(Aγ) and

i) assume that g ∈ C([0, T ];D(Aγ+ε)). Then the Ornstein-Uhlenbeck equations have a unique solu-
tion, which is given by (3.20). If ε ∈ (0, 1/2], we also have:

z ∈ L2(0, T ;D(Aγ+ε));

ii) let ε ∈ (0, 1) and let β ∈ (γ + ε − 1, γ + ε) be given. Assume that g ∈ Cγ+ε−β([0, T ];D(Aβ)).
Then the Ornstein-Uhlenbeck equations has a unique solution given by

z(t) = e−tA(z0 + g(t) − g(0)) +
∫ t

0
A e−(t−s)A(g(t) − g(s)) ds.

3This is the regularity assumption we generally made on the fast fluctuating force g.
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3.3 Determining projections for stochastic equations

In this section we consider the problem of determining projections for some dissipative stochastic
equations. This problem was studied for the first time in the abstract context of random dynamical
systems by Flandoli and Langa [FL99]. The results were simplified and improved by Berselli and
Flandoli [BF99]. We basically refer to this paper in the following sections. We give now the
definition of determining projection for a stochastic equation.

Definition 3.3.1. The projection operator

RN : V → VN ⊂ (L2(D))m, N = dim (VN ) < ∞, and D ⊂ Rd,

is called a determining projection for weak solutions of the d-dimensional stochastic dissipative
equations if the following property holds true. Assume that the two initial conditions u0,v0 ∈ H
are such that for P -a.e. ω ∈ Ω

lim
t→+∞

‖RN (u(t, ω) − v(t, ω))‖(L2(D))m = 0.(3.21)

Then for P -a.e. ω ∈ Ω
lim

t→+∞
‖u(t, ω) − v(t, ω)‖(L2(D))m = 0.

Here P is the Wiener probability measure on the space Ω := C0([0, T ]) of continuous functions
vanishing at zero. We define a cylindrical subset of Ω as

I(t1, . . . , tn;B) := {ω ∈ Ω : (w(t1), . . . , w(tn)) ∈ B, B Borel subset of Rn}.

The Wiener measure is defined on cylindrical subsets as

P (I(t1, . . . , tn;B)) :=
1√

(2π)nt1(t2 − t1) · · · (tn − tn−1)

∫
B

e
− 1

2
[
ξ21
t1
+···+ (ξn−ξn−1)2

tn−tn−1
]
dξ1 . . . ξn,

and then extended by a standard argument to F , the σ-algebra of Borel subsets of Ω.
We start by considering a very simple equation, for which there are satisfactory results. Then

we shall study the Stochastic Navier-Stokes equations, in which the nonlinear term causes some
additional difficulties.

3.3.1 The model problem: a reaction-diffusion equation

In this section we study a scalar reaction-diffusion equation. Let D denote a smooth bounded open
set of Rd and let g be a polynomial of odd degree with a positive leading coefficient

g(s) :=
2p−1∑
j=0

bjs
j with b2p−1 > 0.

We consider the following boundary-initial value problem:

∂u

∂t
− ν∆u + g(u) = f +

n∑
i=1

φi
dWi

dt
in D × (0, T ),(3.22)

u = 0 on ∂D × (0, T ),(3.23)
u(x, 0) = u0(x), in D × {0}.(3.24)
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The scalars Wi(t) are independent Brownian motions on a probability space (Ω,F , P ), and the
functions φi are smooth and depend only on the space variables. We take only a finite number of
Brownian motions to avoid inessential problems. The reader, not acquainted with this topic, can
view this additional forcing term again as the derivative of a certain not differentiable function.

Definition 3.3.2. Let (H, ‖ . ‖) be a separable Banach space and let (Ω,F , {Ft}t≥0, P ) be a prob-
ability space. A family of random variables {X(t)}t∈I⊂R on this probability space, with values
in (H,B(H)) (B(H) are Borel sets) is a stochastic process. A Brownian motion is a real valued
stochastic process such that

a) W(0) = 0;

b) for any 0 ≤ s ≤ t the random variable W(t) −W(s) is independent of Fs;

c) for any 0 ≤ s ≤ t the distribution of W(t)−W(s) is N (0, t− s), i.e. a normal distribution with
zero mean and variance t− s.

We refer to Billingsley for other details [Bil97]. We recall the following property satisfied by
g(s), that is easily obtained with repeated application of the Young inequality.

Proposition 3.3.3. There exists c > 0 such that

2p− 1
2

b2p−1s
2p−2 − c ≤ g′(s) ≤ 3

2
(2p − 1)b2p−1s2p−2 + c.

We consider the reaction-diffusion equation, because the nonlinear term is Lipschitz continuous
and can be treated in a simple way. For the mathematical setting of this section we use the
customary Sobolev space (H, | . |) := (L2(D), | . |) and (V, ‖ . ‖) := (H10 (D), ‖ . ‖), where

|u| =
(∫

D
u2 dx

)1/2
and ‖u‖ =

(∫
D

d∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2 dx

)1/2
.

We consider the following abstract evolution equation in H

du

dt
+ ν Au + B (u) = f +

n∑
i=1

φi
dWi

dt
,(3.25)

u(0) = u0,(3.26)

that is obtained from (3.22) by taking B(u) = g(u), with u a scalar unknown and

A = D(A) ⊂ H → H,

where D(A) = H2(D)∩H10 (D) and Au is defined by Au = −∆u. The main existence and regularity
result we are going to use is the following one, see Crauel and Flandoli [CF94].

Theorem 3.3.4. Let u0 ∈ H, let D ⊂ R
d be a smooth bounded domain and let f ∈ L2(0, T ;H).

Then P -a.e. ω ∈ Ω there exists a unique solution to (3.25)-(3.26) such that

u(t, ω) ∈ C([0, T ];H) ∩ L2(0, T ;V ) ∩ L2p(0, T ;L2p(D)),

and
d

dt

(
u(t, ω) −

n∑
i=1

φiWi

)
∈ L2(0, T ;V ′),

where V ′ denotes the topological dual of V.



3.3 Determining projections for stochastic equations 59

The proof of Theorem 3.3.4, that is a natural extension of the result that holds for the de-
terministic problem, is made with a standard Galerkin approximation on a modified equation in
which the unknowns are translated. By using the techniques by Bensoussan and Temam [BT73],
described in the previous Section 3.2.1, the new unknown

U = u−
n∑
i=1

φiWi,

is introduced, for which the existence can be obtained by using the standard tools (with minor
changes) that are needed in the deterministic setting, see J.-L. Lions [JLL69].
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We can now prove the main result of this section, which is due to Berselli and Flandoli [BF99].

Theorem 3.3.5. An operator satisfying the properties of the Scott and Zhang interpolant is deter-
mining for the stochastic reaction-diffusion equation (3.25)-(3.26).

Proof. We start by considering two solutions u and v corresponding to the initial data u0 and v0
and by defining w := u− v. We obtain the following equation

∂w

∂t
− ν∆w + g(u) − g(v) = 0.

We now multiply the last expression by w and we integrate over D to obtain

1
2
d

dt
|w|2 + ν‖w‖2 +

∫
D
g′(ξu,v)w2 dx = 0,(3.27)

where ξu,v denotes a point depending on u and v. By using the result of Proposition 3.3.3 in (3.27)
we obtain

1
2
d

dt
|w|2 + ν‖w‖2 +

∫
D
ξ2p−2u,v w2 dx ≤ c|w|2.

Now by using the following inequality (that holds for an interpolation operator like the Scott and
Zhang one):

|w|2 ≤ |RN (w)|2 +
C

N
‖w‖2,

we get
1
2
d

dt
|w|2 +

(
ν

2
‖w‖2
|w|2 − C2

N

‖w‖2
|w|2

)
|w|2 ≤ Cν |RN (w)|2.

If we take N big enough we have that

ν

2
− C2

N
= σ > 0,

and we can write

1
2
d

dt
|w|2 + λ1

(
ν

2
− C2

N

)
|w|2 ≤ Cν |RN (w)|2,(3.28)

where λ1 > 0 is the smallest eigenvalue of A. Finally, we can the use Gronwall lemma in (3.28) to
get

|w(t)|2 ≤ |w(0)|e−σ t + 2Cν

∫ t

0
e−σ(t−s)|RN (w(s))|2 ds.(3.29)

We easily obtain that |w(t)| converges to zero when t goes to plus infinity. In fact, the first
term decays exponentially and the integral appearing in (3.29) is seen to decay to zero, provided
RN (w(s)) → 0. If we split it as∫ τ

0
e−σ(t−s)|RN (w(s))|2 ds +

∫ t

τ
e−σ(t−s)|RN (w(s))|2 ds,

we can see that the first integral decays to zero since the integration is performed on a finite interval
and a bounded term is multiplied by an exponential. The second integral is seen to be, in the limit
of large t, smaller than every positive constant ε. In fact there exists ε1 > 0 such that

lim
t→+∞

∫ t

τ
e−σ(t−s)ε21 ds ≤ ε,
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and we can choose τ = τ(ε1) in such a way (by the hypothesis on RN (w))

∀ s ≥ τ RN (w(s)) ≤ ε1.

3.3.2 On determining projections for Stochastic Navier-Stokes equations

In this section we consider the problem of determining projections for the Stochastic Navier-Stokes
equations. We start by recalling the following result, that extends in a natural way the result, we
have seen previously for the deterministic problem, see Bensoussan and Temam [BT73].

Theorem 3.3.6. Let u0 ∈ H, let D ⊂ R
2 be a smooth bounded domain and let f ∈ L2(0, T ; H).

Then P -a.e. ω ∈ Ω there exists a unique solution to (3.12) such that

u(t, ω) ∈ C([0, T ]; H) ∩ L2(0, T ; V),

and
d

dt

(
u(t, ω) −

n∑
i=1

φiWi

)
∈ L2(0, T ; V′),

where V′ denotes the topological dual of V.

The proof of Theorem 3.3.6 (and in particular the uniqueness condition) follows essentially
by the deterministic techniques and by the change of variables with a regular z, as described in
Section 3.2.1.

3.3.3 Stochastic framework

In this section we consider the Stochastic Navier-Stokes equations in the domain D =]0, 2π[×]0, 2π[

∂u
∂t

− ν∆u + (u · ∇) u + ∇p = f +
n∑
i=1

φi
dWi

dt
in D × (0, T ),(3.30)

div u = 0 in D × (0, T ),(3.31)
u(x, 0) = u0 in D × {0},(3.32)

and the vector u = (u1, u2) is equipped with periodic boundary conditions, see Remark 1.2.18 for
the definition of the functional spaces needed. We use these simplifying boundary conditions since
they allow us to get the estimates of Lemma 3.3.8.

Since we need to use some ergodic properties of the random attractor associated to the Stochastic
Navier-Stokes equations, we introduce a suitable stochastic framework. Let Ω be the space of all
continuous functions ω : R → R

n vanishing at the origin, endowed with the topology of uniform
convergence on compact sets and let F be the Borel σ-algebra on Ω. Moreover let P be the Wiener
measure on (Ω,F), namely the measure such that the Rn-valued stochastic processes W+(t, ω) and
W−(t, ω), defined, for t ≥ 0 on (Ω,F , P ), as

W+(t, ω) := ω(t), W−(t, ω) := ω(−t),
are independent n-dimensional Brownian motions. The process

W(t, ω) := ω(t) t ∈ R,
is now called a 2-sided n-dimensional Brownian motion. We remark that, by its definition, it
has continuous trajectories. We use this 2-sided Brownian motion in the Stochastic Navier-Stokes
equations. Furthermore we denote by E the expectation in (Ω,F , P ).
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3.3.4 The random attractor

In the previous Section 1.3.1 we described the attractors for deterministic dynamical systems. We
now introduce the concept of random attractor, i.e. , the attractor for a random dynamical system,
as that one generated by the Stochastic Navier-Stokes equations.

As we have stated above, for every given ω ∈ Ω one can solve uniquely the Navier-Stokes
equations, with arbitrary initial time and initial condition, and construct a dynamical system, in
the following sense. The introduction of these concepts is due essentially to Crauel, Debussche and
Flandoli. For the results used in this section we refer to Crauel and Flandoli [CF94] or Crauel,
Debussche and Flandoli [CDF97].

Random dynamical systems

There is a family S(t, s, ω) of continuous operators in the Hilbert space H, defined for all real t ≥ s
and for all ω ∈ Ω, such that for every u0 ∈ H, the stochastic process (t, ω) +−→ S(t, s, ω)u0 is
the solution of the Stochastic Navier-Stokes equations over the time interval [s,∞), with initial
condition u0 at time s. This family of operators satisfies the usual evolution properties for all
ω ∈ Ω:

S(t, s, ω)S(s, r, ω) = S(t, r, ω) for all t ≥ s ≥ r,

S(t, t, ω) = identity in H.

It also satisfies certain continuity and measurability properties in its variables, that we do not need
to specify here.

It is convenient to express this random dynamical system with a different language which
exploits the ergodicity of the noise. Over the path space Ω, a group of transformations ϑt is
defined, for t ∈ R, by

(ϑt ω) (s) = ω(t + s) − ω(t).

The system (Ω,F , P, ϑt) is an ergodic dynamical system. For every t ≥ s and u0 ∈ H, we have

S(t, s, ω)u0 = S(t− s, 0, ϑt ω)u0 P − a.e.

We recall the definition of random attractor.

Definition 3.3.7. A compact-set valued (in H) stochastic process A(t, ω) (i.e. a mapping from
R × Ω to the family of compact subsets of H, such that for every x ∈ H the real valued function
(t, ω) +−→ d(x,A(t, ω)) is measurable) is called a random attractor if it is invariant:

S(t, t0, ω)A(t0, ω) = A(t, ω),

and attracts (at least) the bounded sets B ⊂ H :

lim
t0→−∞

d(S(t, t0, ω)B,A(t, ω)) = 0,

where d(., .) is the semi-distance between sets in H and the previous properties have to hold P -a.e.
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It is known that the Stochastic Navier-Stokes equations considered here has a random attractor.
Many results on random attractors are known, including a finite Hausdorff dimension and an
estimate on moments of its radius. The estimate on the radius are valid at least in the case of two
dimensional Navier-Stokes equations on a torus with periodic boundary conditions. We recall such
result and some of its consequences, see Berselli and Flandoli [BF99].

Lemma 3.3.8. We denote by RA(t, ω) the radius in L4 of the random attractor A(t, ω) of the
Stochastic Navier-Stokes equations. The stochastic process RA(t, ω) is ergodic and satisfies

E

(
sup
t∈[0,1]

RA(t)p
)

≤ Cp,(3.33)

for all p ≥ 1. In particular, there exist a constant CA and a random variable CA,1(ω), a.e. finite,
such that P -a.e. ∫ 0

t
RA(s, ω)8 ds ≤ (CA,1(ω) + CA |t|) for all t ≤ 0(3.34)

and ∫ t

0
RA(s, ω)8 ds ≤ (CA,1(ω) + CAt) for all t ≥ 0.(3.35)

Moreover, there exists a random variable CA,2(ω), a.e. finite, such that P -a.e.

RA(t, ω)8 ≤ (CA,2(ω) + |t|) ,(3.36)

for all t ∈ R (any other power of RA(t, ω) has a similar bound).

Proof. We have RA(s, ω) = RA(0, ϑs ω) (these two processes are modifications one of the other)
since A(s, ω) = A(0, ϑs ω). Since ϑs is ergodic and RA(0, .) is measurable, RA(s, ω) is an ergodic
process.

From these facts it is standard to deduce the bounds of the lemma. Indeed, by the ergodic
theorem, we have

lim
t→−∞

1
|t|

∫ 0

−t
RA(s, ω)8 ds = E(RA(0, .)8),

which implies, by setting CA = E(RA(0, .)8) + 1, that the first bound is true for sufficiently large
|t|; for smaller t we bound, path-wise, the continuous function∫ 0

−t
RA(s, ω)8 ds,

by a constant CA,1(ω), and complete the proof of the bound (3.34). The proof of (3.35) is similar.
Finally, the proof of (3.36) is based on Borel-Cantelli lemma. We have, for n ≥ 0, by using the

stationarity and (3.33)

P ( sup
t∈[n,n+1]

RA(t, ω)8 > n) = P ( sup
t∈[0,1]

RA(t, ω)8 > n)

≤
E

(
supt∈[0,1]RA(t, ω)16

)
n2

≤ C16
n2

.
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Since the last term is the term of a convergent series, the condition

sup
t∈[n,n+1]

RA(t, ω)8 > n

holds true only for a finite number of n, giving RA(t, ω)8 ≤ [t] ≤ t for sufficiently large t. For smaller
values of t, since RA(t, ω)8 is locally bounded (again from (3.33)), we bound it by a constant CA,2(ω).
This completes the proof of (3.36) for positive values of t, while for negative ones the argument is
similar.

In the next section we shall use the random variable C(ω), a.e. finite, that is made precise in the
definition below.

Definition 3.3.9. The random variable C(ω) is defined by means of

C(ω) := eCA,1(ω)

(∫ 0

−∞
(CA,2(ω) + |s|) e−

νλ1
8

|s|ds

) 1
2

.(3.37)

We observe that C(ω) is defined only in terms of random constants related to the attractor.

3.3.5 Energy-type estimate

We now obtain a classical inequality that is the counterpart of the much more powerful (3.27)
used for the reaction-diffusion equation. We consider u and v two solutions of (3.12) and we set
w = u− v. We can see that w satisfies the following equation

dw
dt

+ νA w + B(u,w) + B(w,v) = 0.(3.38)

As usual we get

1
2
d

dt
|w|2 + ν‖w‖2 ≤ |< B(w,v),w >| .(3.39)

By recalling the definition of B and with the Hölder inequality with exponents p = 4 and q = 4/3,
we get

| < B(w,v),w > | ≤ Cν |w|2‖v‖4L4 +
ν

2
‖w‖2,

with Cν = 33/25ν3.
By collecting the previous results we get

1
2
d

dt
|w|2 +

ν

2
‖w‖2 ≤ Cν |w|2‖v‖4L4 .

Now by using the following inequality, that holds for an interpolation operator like the Scott and
Zhang one:

|w| ≤ |RN (w)| +
C√
N
‖w‖,

we get
1
2
d

dt
|w|2 +

(
ν

2
‖w‖2
|w|2 − C2√

N

‖w‖
|w| ‖v‖

4
L4

)
|w|2 ≤ Cν |w||RN (w)|‖v‖4L4 ,
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Finally we can use the Gronwall lemma in

d

dt
|w| +

(
νλ1
4

− C2
N

‖v‖8L4

)
|w| ≤ |RN (w)| ‖v‖4L4 ,

where λ1 is the smallest eigenvalue of the Stokes operator to obtain the following inequality

|u(t, ω) − v(t, ω)| ≤ |u(t0, ω) − v(t0, ω)| e−
∫ t
t0

(
νλ1
4

−C2
N

‖v(r,ω)‖8
L4

)
dr+

+
∫ t
t0
|RN (u(s, ω) − v(s, ω))| ‖v(s, ω)‖4L4 e

∫ t
s

(
νλ1
4

−C2
N

‖v(r,ω)‖8
L4

)
dr
ds.

(3.40)

We observe that the last expression (with a slight variation in the derivation) can be obtained with
the term ‖u‖8L4 instead of ‖v‖8L4 . In this way we can see that the subsequent properties, we shall
obtain from (3.40), are based on the regularity or ergodicity of only one of the two solutions.

3.3.6 Determining projections forward in time

The property of determining projections proved in the following theorem is slightly weaker than
the property introduced in Definition 1.1. We require indeed a small exponential decay of the
projections, and we assume that one solution is on the random attractor. Restrictions of this kind
are imposed also in Flandoli and Langa [FL99] (in fact stronger, since both solutions have to belong
to the random attractor and the exponential decay of the projections cannot be arbitrarily small).
To remove these restrictions is an open problem. We have the following result, see Berselli and
Flandoli [BF99].

Theorem 3.3.10. Let N be a given natural number such that

λ :=
νλ1
4

− C2
N
E
(
RA(0, ω)8

)
> 0.

Let u(t, ω) and u∞(t, ω) be two solutions on [0,∞), such that

u∞(t, ω) ∈ A(t, ω) for all t ≥ 0, P -a.e.

Assume that for some δ > 0 and some random constant Cδ(ω) we have

|RN (u(t, ω) − u∞(t, ω))| ≤ Cδ(ω)e−δt for all t ≥ 0, P -a.e.

Then, for every γ < min {δ, λ} and for some random constant Cγ(ω), we have

|u(t, ω) − u∞(t, ω)| ≤ Cγ(ω)e−γt

for all t ≥ 0, P -a.e.

Proof. Since u∞(t, ω) ∈ A(t, ω), we have

‖u∞(t, ω)‖L4 ≤ RA(t, ω).

Let

w(t, ω) := u(t, ω) − u∞(t, ω), and ρ(t, ω) :=
νλ1
4

− C2
N

RA(t, ω)8.
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We have

−
(
νλ1
4

− C2
N

‖u∞(s, ω)‖8L4

)
≤ −ρ(t, ω).

Thus, from the inequality (3.40), we have

|w(t, ω)| ≤ e−
∫ t
0
ρ(σ,ω)dσ |w(0, ω)| +

∫ t

0
e−
∫ t
s
ρ(σ,ω)dσ |RN (w(s, ω))| ‖u∞(s, ω)‖4L4 ds,

for all t ≥ 0, P -a.e., that we rewrite in the form

|w(t, ω)| ≤ e−
∫ t
0 ρ(σ,ω)dσ

(
|w(0, ω)| +

∫ t

0
e
∫ s
0 ρ(σ,ω)dσ |RN (w(s, ω))| ‖u∞(s, ω)‖4L4 ds

)
.

From the assumption on the decay of |RN (w(s, ω))| and from the last bound in Lemma 3.3.8, given
any δ′ < δ there exists a random constant Cδ′(ω) such that

|RN (w(s, ω))| ‖u∞(s, ω)‖4L4 ≤ Cδ′(ω)e−δ′s for all t ≥ 0, P -a.e.

Therefore, we have the inequality

|w(t, ω)| ≤ e−
∫ t
0 ρ(σ,ω)dσ

(
|w(0, ω)| + Cδ′(ω)

∫ t

0
e
∫ s
0 ρ(σ,ω)dσe−δ′sds

)
for all t ≥ 0, P -a.e.

By the ergodic theorem

lim
t→+∞

1
t

∫ t

0
ρ(σ, ω)dσ = E (ρ(0, ω)) =

νλ1
4

− C2
N
E
(
RA(0, ω)8

)
= λ > 0.

Choose ε > 0 such that ε < λ and 2ε < δ′. There exists t0(ω) such that

t (λ− ε) ≤
∫ t

0
ρ(σ, ω)dσ ≤ t (λ + ε) for all t ≥ t0(ω) and P -a.e.

Therefore, for all t ≥ t0(ω), P -a.e.,

|w(t, ω)| ≤ e−t(λ−ε)

(
|w(0, ω)| + Ct0(ω) + Cδ′(ω)

∫ t

t0(ω)
es(λ+ε)e−δ′sds

)
,

where

Ct0(ω) = Cδ′(ω)
∫ t0(ω)

0
e
∫ s
0 ρ(σ,ω)dσe−δ′sds.

By explicit computation (we can always choose a smaller ε > 0 such that λ + ε− δ′ �= 0)

|w(t, ω)| ≤ e−t(λ−ε)

(
|w(0, ω)| + Ct0(ω) + Cδ′(ω)

et(λ+ε−δ′) − et0(ω)(λ+ε−δ′)

λ + ε− δ′

)

= e−t(λ−ε)

(
|w(0, ω)| + Ct0(ω) −Cδ′(ω)

et0(ω)(λ+ε−δ′)

λ + ε− δ′

)
+ e−t(δ′−2ε) Cδ′(ω)

λ + ε− δ′
.

The arbitrariness of ε > 0 and δ′ < δ proves the theorem.
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3.3.7 Determining projections backward in time

In the stochastic framework it makes sense to consider solutions defined for all t ≤ 0. Roughly
speaking, a property of determining projections over (−∞, 0] could say that two solutions are close
for t = 0 if we know that their projections are close for t < 0. In the following theorem and its two
corollaries we state some results in this direction, see again Berselli and Flandoli [BF99].

Theorem 3.3.11. Let N be sufficiently large, depending on the constants of the problem (it is
sufficient, for instance, that N ≥ C2 and νλ1

4 − C2
N CA > 0). Let u∞(t, ω) be a solution of the

Stochastic Navier-Stokes equations defined for t ∈ R, such that P -a.e.

u∞(t, ω) ∈ A(t, ω) for all t ∈ R.

Let u(t, ω) be any other solution of the Stochastic Navier-Stokes equations, also defined for t ∈ R.
Assume that

lim
t→−∞

log+ |u(t, ω)|
|t| = 0, P − a.e. ω ∈ Ω.

Then P -a.e. (recall (3.37))

|u∞(0, ω) − u(0, ω)| ≤ C(ω)
(∫ 0

−∞
|RN (u∞(s, ω) − u(s, ω))|2 e−

νλ1
8

|s|ds

) 1
2

.(3.41)

This theorem shows that the difference of the solutions can be bounded by the difference of
their projections. In particular, if the projections coincide, the solutions also coincide.

Corollary 3.3.12. Under the same assumptions, if

RN (u∞(t, ω) − u(t, ω)) = 0,

for all t ≤ 0 (or at least for t ≤ t0 for some t0 ∈ R), then

u∞(t, ω) − u(t, ω) = 0 for all t ∈ R.

The previous corollary holds true either P -a.e., or even for a single ω satisfying (3.41). The
next consequence of the first theorem of this section expresses the fact that better and better
approximations of the projections of a solution u∞(t, ω) give us better and better approximations
of u∞(t, ω) itself.

Corollary 3.3.13. Let uε(t, ω), ε ∈ (0, 1) be a family of solutions satisfying the assumptions of
the previous theorem and in addition such that

lim
ε→0

RN (u∞(t, ω) − uε(t, ω)) = 0 for all t ≤ 0

and
|RN (u∞(t, ω) − uε(t, ω))| ≤ C1(ω)eδ|t|

uniformly in ε, for some random constant C1(ω) and a sufficiently small δ > 0 (for instance
δ < νλ1

8 ). Then
lim
ε→0

|u∞(0, ω) − uε(0, ω)| = 0.
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We now prove Theorem 3.3.11 and we do not give the very easy proofs of the two corollaries.

Proof of Theorem 3.3.11. We estimate the difference between u∞(0, ω) and u(0, ω) with

|u∞(0, ω) − u(0, ω)| ≤ |u∞(t0, ω) − u(t0, ω)| e−
∫ 0
t0

(
νλ1
4

−C2
N

‖u∞(r,ω)‖8
L4

)
dr

+
∫ 0
t0
|RN (u∞(s, ω) − u(s, ω))| ‖u∞(s, ω)‖4L4 e

∫ 0
s

(
νλ1
4

−C2
N

‖u∞(r,ω)‖8
L4

)
dr
ds =

= I1(t0, ω) + I2(t0, ω) ≤ I1(t0, ω) + I2(ω),

where

I2(ω) =
∫ 0

−∞
|RN (u∞(s, ω) − u(s, ω))| ‖u∞(s, ω)‖4L4 e

∫ 0
s

(
νλ1
4

−C2
N

‖u∞(r,ω)‖8
L4

)
dr
ds.

We prove that

lim
t0→−∞

|u∞(t0, ω) − u(t0, ω)| e−
∫ 0
t0

(
νλ1
4

−C2
N

‖u∞(r,ω)‖8
L4

)
dr = 0(3.42)

and that

I2(ω) ≤ C(ω)
(∫ 0

−∞
|RN (u∞(s, ω) − u(s, ω))|2 e−

νλ1
8

|s| ds

) 1
2

.(3.43)

This implies the inequality of the theorem.
By the estimates on the radius in L4 of the random attractor, we have for all t ≤ 0

e
−
∫ 0
t

(
νλ1
4

−C2
N

‖u∞(r,ω)‖8
L4

)
dr ≤ e−

νλ1
4

|t|+C2
N

∫ 0
t
‖u∞(r,ω)‖8

L4dr,

≤ e−
νλ1
4

|t|+C2
N (CA,1(ω)+CA |t|),

≤ e
C2
N

CA,1(ω)e
−
(
νλ1
4

−C2
N

CA

)
|t|
,

≤ eCA,1(ω)e−
νλ1
8

|t|,

for N sufficiently large, depending only on the constants of the equation (C2, ν, λ1, CA).
The limit (3.42) is now obvious, since |u∞(t0, ω) − u(t0, ω)| grows less than eε|t0| as t0 → −∞,

for every ε > 0. To prove the inequality (3.43), it is sufficient to use the previous bound and the
Hölder inequality. We get

I2(ω) ≤ eCA,1(ω)

∫ 0

−∞
|RN (u∞(s, ω) − u(s, ω))| ‖u∞(s, ω)‖4L4 e−

νλ1
8

|s| ds,

≤ C∞(ω)
(∫ 0

−∞
|RN (u∞(s, ω) − u(s, ω))|2 e−

νλ1
8

|s| ds

) 1
2

,

where

C∞(ω) = eCA,1(ω)

(∫ 0

−∞
‖u∞(s, ω)‖8L4 e

− νλ1
8

|s| ds

) 1
2

.

Finally, to see that C∞(ω) ≤ C(ω), we recall the definition (3.37).



Chapter 4

Domain decomposition methods

In this chapter we present some numerical methods to solve the non-symmetric elliptic systems
which arise in the first step of the Chorin-Temam method, see Section 1.4.3.

We start by recalling some results on linear systems and we explain the basic features of the
domain decomposition methods on the model problem of the Poisson equation. We recall that
domain decomposition methods are powerful iterative methods for solving large linear systems that
arise from the discretization of partial differential equations. At each step of an iteration we
solve smaller systems, which correspond to the restriction of the original problem to subregions.
Some small “interface” problems are then considered. These divide and conquer methods are
very interesting for parallel computation since many operations can be done in parallel. Another
interesting feature is that domain decomposition methods lead to the construction of optimal
(independent of h, the mesh size) preconditioners.

In the following sections, we shall present some possible extension to non-symmetric problems.
Finally, we give some new results regarding the Maxwell equations and advection-diffusion equations
and systems.

4.1 Linear systems

After a suitable discretization, a problem described by partial differential equations, can be reduced
to the solution of a linear system. We have seen an example in Section 1.4 in which the approxi-
mating finite dimensional problem is obtained by using the Finite Element Method. In this section
we recall some of the problems arising when dealing with a linear system with a n× n real matrix
A

Ax = f,(4.1)

where x and f, belonging to Rn, are the unknown and the load vector respectively.

Error analysis

We recall that when we are faced with the problem of inverting a square matrix A (or equivalently
to solve a linear system) one of the most important parameters is the condition number

χ(A) := ‖A‖‖A−1‖,
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where ‖ . ‖ is any norm in the matrix space. We recall that a norm in the matrix space is a function
F : Rn×n → R, such that, for all A,B ∈ Rn×n :

a) F(A) ≥ 0 and F(A) = 0 if and only if A = 0; b) F(A + B) ≤ F(A) + F(B);

c) F(αA) = |α| F(A), α ∈ R; d) F(AB) ≤ F(A)F(B).

The spectral radius of A is defined as

ρ(A) := max{|λi(A)| : for i = 1, . . . , n},

where λi(A) are the eigenvalues of A. It is well-known that the spectral radius of A is the upper
lower bound of ‖A‖, taken over all possible natural norms1. We have the following result, see
Isaacson and Keller [IK66].

Proposition 4.1.1. Let A be non singular and suppose that ‖E‖ < 1/‖A−1‖, for the natural norm
induced by the vector norm | . |. Then suppose that in the linear system (4.1) the data A and f are
perturbed by the matrix E and by the vector e respectively. If x satisfies (A+E)x = f + e, then the
following error estimate holds

|x − x|
|x| ≤ χ(A)

1 − ‖A−1‖‖E‖

(
|e|
|x| +

‖E‖
‖A‖

)
.

We have to take into account this result, because it shows how the condition number affects the
solution of a linear system. Recall also that, in general, the matrices arising in the finite element
approximation of an elliptic problem are ill-conditioned. If we use a mesh with size h and the shape
functions {φk(x)}k and if furthermore a( . , . ) is the bilinear form associated to a weak formulation,
we define Ah, the stiffness matrix, as

(Ah)ij := a(φj(x), φi(x))

and we have that χ(Ah) - 1/h2. We do not describe the direct methods for solving a linear system,
i.e. , methods which produce a solution in a finite number of steps, but we prefer to consider iterative
methods, which produce the solution as limit of a suitable sequence. The choice between direct or
iterative methods can be a matter of taste, but can also be determined by the particular problem
to be solved. We describe the second method, because we shall use it in the following sections
regarding domain decomposition methods.

4.1.1 Iterative methods

An iterative method provides the solution of a linear system as the limit of a sequence of vectors
xm. The calculation of such vectors involves only multiplication by A and other “less-expensive”
operations. This methods are used especially when dealing with sparse matrices, i.e. , matrices such
that the number of non-zero terms is of order of n.

An iterative method is generally based on the splitting of A into A = P −N, where P must be
non singular. Given x0 ∈ Rn, the sequence {xm}m∈N is generated by:

P xm+1 = N xm + f, m ≥ 0.(4.2)

1We recall that the natural norm ‖ . ‖ is the norm induced by a vector norm | . | in Rn as: ‖A‖ = sup
Rn�x	=0

|Ax|
|x| .
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The sequence {xm}m∈N converges if and only if the spectral radius of B = P−1N, the iteration
matrix, satisfies

ρ(B) < 1.

If we define the error vector em := xm − x, we have that em = Bme0 and, for each ε > 0, there
exists a natural norm ‖ . ‖ (induced by the vector norm | . |) such that ‖B‖ ≤ ρ(B) + ε, and

|em| ≤ ‖B‖m|e0| ≤ [ρ(B) + ε]m |e0|.

This last inequality gives the convergence in the norm | . |, if ε is small enough. Furthermore it
is clear that as ρ(B) is smaller, then the convergence is quicker. The divergence of the scheme is
easily proved if ρ(B) ≥ 1. We observe that, if e0 is an eigenvector associated to the eigenvalue of
maximum modulus, the sequence |em| = [ρ(B)]m |e0| is not convergent, with respect to any vector
norm | . |.

4.1.2 Preconditioning

We recall that an iterative method is effective when the condition number of the iteration matrix
P−1N is smaller than that one of the original matrix A. In particular, the matrix P is called
preconditioner. The construction of easily computable and effective preconditioner is one of the
most interesting problems in the solution of linear systems by iterative methods. We now propose
some classical methods.

Jacobi method

One classical method is the Jacobi method, which can be defined for matrices having non-zero
diagonal elements. We write

A = D + E + F :=

 0
DA

0

 +

 0
0

LA

 +

 UA

0
0

 ,

where DA, LA, and UA are the diagonal of A and its lower and upper triangular parts respectively.
The Jacobi method is based on the splitting P := D and N := −(E + F ). The iteration matrix is
therefore

BJ := −D−1(E + F ).

Gauss-Seidel

The Gauss-Seidel method is based on the splitting P := D + E and N = −F and is therefore
well-defined for matrices with non-zero diagonal elements. The iteration matrix is

BGS := −(D + E)−1F.

Preconditioned Richardson method

The iteration (4.2) previously introduced can be rewritten as P (xm+1−xm) = rm, where the vector
rm := f −Axm is called the residual. A generalization2 can be the following

P (xm+1 − xm) = α rm.
2More general methods can be introduced if the parameter is αm, different at each step. The method with

αm = const. is known as stationary preconditioned Richardson method.
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This method can also be written as: given x0 (and consequently r0 = f −Ax0), solve for m ≥ 0,
P zm := rm,
xm+1 := xm − α zm,
rm+1 := rm − αA zm.

(4.3)

Each step requires the solution of a linear system with matrix P and a matrix-vector product
involving the original matrix A.

The preconditioned Richardson iteration matrix is

Rα := I − αP−1A.

We denote by ηj ∈ C the eigenvalues of P−1A. We have the following theorem.

Theorem 4.1.2. For any non-singular matrix P, the preconditioned Richardson method (4.3) con-
verges if and only if

|ηj |2 ≤
2
α

Re ηj ∀ j = 1, . . . , n,(4.4)

where Re η denotes the real part of η.

We remark that a necessary condition for the convergence is a constant-sign of the real parts of
the eigenvalues of P−1A. We refer to the book by Golub and Van Loan [GVL89] for some sufficient
conditions that ensure the convergence of the Jacobi and Gauss-Seidel methods and for the proof
of Theorem 4.1.2. In the same reference it can be found the discussion relative to other modern
iterative methods.

4.2 Brief introduction to domain decomposition methods

In this section we introduce some techniques and we recall some results regarding domain decom-
position methods. In the following we shall confine to problems involving two sub-domains.

In the study of domain decomposition there are two main approaches: the one that uses over-
lapping domains, which takes its origin in Schwarz [Sch1869] and the other one (substructuring),
that uses non-overlapping regions, in which the differential problem can give some additional ideas.
The delicate interplay of these methods and some results towards a unified interpretation can be
found in Nepomnyashchikh [Nep86] and Drya and Widlund [DW95]. We show the basic results
for the Laplace operator and then we analyze the problems arising in the study of non-symmetric
equations.

4.2.1 A survey of Schwarz method

We start by introducing the classical Schwarz method for the model problem of the Poisson equation:

Lu := −∆u = f in D,(4.5)
u = 0 on ∂D.(4.6)

It is well-known (see Nečas [Neč67] for a classical reference), that this problem can be treated
successfully with a weak formulation in V := H10 (D). By defining the symmetric, continuous and
coercive bilinear form

a(u, v) :=
∫
D
∇u · ∇v dx,
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we can prove the existence and the uniqueness of the solution of the variational problem: find u ∈ V
such that

a(u, v) = (f, v) ∀ v ∈ V.(4.7)

In this section we denote by |v|21,D =
∫
D |∇v|2 dx the norm in H10 (D), that is induced by the scalar

product defined by the bilinear form a( . , . ).
In 1869 Schwarz proposed the following iterative procedure to solve (4.5)-(4.6) in particular

domains D, that are subdivided into two overlapping sub-domains D1 and D2.

Schwarz iterative procedure

Given u02, solve for each n ≥ 1 :
−∆un1 = f in D1,

un1 = 0 on ∂D1\Γ1,

un1 = un−12 on Γ1,

and


−∆un2 = f in D2,

un2 = 0 on ∂D2\Γ2,

un2 = un1 on Γ2.

Schwarz proved that the sequence {uni }n∈Ni=1,2 converges in the sup norm to ui := u|Di
, as n → +∞.

D2

D1

Γ2

∂D2

Γ1

∂D1

D1 ∩ D2

Note that the work by Schwarz was motivated by the construction of explicit solutions, available
only for domains with particular geometry, like the D′

is in the figure. A modern variational inter-
pretation has been given by P.-L. Lions [PLL88], see also Matsokin and Nepomnyashchikh [MN85].
The fundamental result, needed to make a proper error analysis, is that in each step the error is
projected onto a suitable subspace. We make a little change of notation (we want to follow the
classical literature) to write the iteration in a single step.

Given u02, solve for each n ≥ 1 :
Lu

n+1/2
1 = f in D1,

u
n+1/2
1 = 0 on ∂D1\Γ1,

u
n+1/2
1 = un2 on Γ1,

and


Lun+12 = f in D2,

un+12 = 0 on ∂D2\Γ2,
un+12 = u

n+1/2
1 on Γ2.
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By considering the weak formulation in H10 (D), (each function belonging to H10 (Di) is considered,
after an extension to zero on D\Di, as a function of H10 (D)) we easily see that the Schwarz iteration
is, for n ∈ N, equivalent to

find un+1/2 − un ∈ H10 (D1) : a(un+1/2 − un, v) = (f, v) − a(un, v) ∀ v ∈ H10 (D1),

find un+1 − un+1/2 ∈ H10 (D2) : a(un+1 − un+1/2, v) = (f, v) − a(un+1/2, v) ∀ v ∈ H10 (D2).

If we denote by en the error after n-steps, en := u− un, we have that it satisfies

a(un+1/2 − un, v) = a(en, v) ∀ v ∈ H10 (D1)

and
a(un+1 − un+1/2, v) = a(en+1/2, v) ∀ v ∈ H10 (D2).

The analysis above proves the following proposition:

Proposition 4.2.1. In each half-step the Schwarz iteration projects the error onto H10 (Di), i.e.
the solution is corrected (no error) in Di. We have in fact that

un+1/2 − un = P1 e
n with P1 : H10 (D) → H10 (D1),

un+1 − un+1/2 = P2 e
n+1/2 with P2 : H10 (D) → H10 (D2),

where Pi are the orthogonal projectors defined by the variational problems

find Pi u ∈ H10 (Di) a(Pi u, v) = a(u, v) ∀ v ∈ H10 (Di).

Finite dimensional interpretation

When we pass to a discretization with a finite dimensional space, as in the previous Section 1.4, we
can write the iteration in matrix form. As usual, u will belong to the polynomial space V h ⊂ H10 (D),
that we defined in Section 3.1.1. Furthermore A and Ai will be respectively the stiffness matrix
relative to the bilinear form a( . , . ) and to its restrictions to Di

ai(u, v) := a|Di
(u, v) :=

∫
Di

∇u · ∇v dx.

In matrix form the Schwarz iteration can be written as
un+1/2 = un +

(
A−1
1 0
0 0

)
(f −Aun),

un+1 = un+1/2 +
(

0 0
0 A−1

2

)
(f −Aun+1/2).

If we now introduce the rectangular matrices Ri, such that Ri applied to v ∈ V h returns the vector
of coefficients defined in the interior of Di, the iteration can be written as

un+1/2 = un + RT
1 (R1ART

1 )−1R1(f −Aun),

un+1 = un+1/2 + RT
2 (R2ART

2 )−1R2(f −Aun+1/2).

Then, by defining the matrices Bi := RT
i (RiAR

T
i )−1Ri, we can use a compact notation.
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MSM-Multiplicative Schwarz method

The multiplicative Schwarz method read as: solve for each m ≥ 0
un+1/2 = un + B1(f −Aun),

un+1 = un+1/2 + B2(f −Aun+1/2).

or in a one-step version

un+1 = un + (B1 + B2 −B2AB1)(f −Aun).

The particular form that we used to write the iteration points out clearly as the multiplicative
Schwarz method performs a preconditioned Richardson iterations, with preconditioner

B := B1 + B2 −B2AB1.

It can be easily seen that this preconditioner is exactly the block Gauss-Seidel. The blocks are
relative to the unknowns of Di for i = 1, 2.

ASM-Additive Schwarz Method

It is now natural to consider the block Jacobi preconditioner, to get the additive Schwarz method.
Solve for each m ≥ 0 :

un+1 = un + (B1 + B2)(f −Aun).

The preconditioner is
B := B1 + B2.

We shall not investigate the properties of these overlapping methods. We only observe that an
iterative procedure produces a preconditioner, which can be proved to be optimal, if Vh con-
sists of piecewise linear functions. For detailed discussion, see the book by Smith, Bjørstad and
Gropp [SBG96].

4.2.2 Substructuring methods

In this section we want to introduce the other approach to domain decomposition methods. We
consider a domain D partitioned into two non-overlapping sub-domains D1 and D2, and we suppose
that the interface Γ := D1 ∩D2, which separates them, is a (d− 1)-dimensional Lipschitz manifold.
We define again ui := u|Di

and by we denote by ni the outward normal direction on ∂Di ∩ Γ.
Moreover, we let n := n1. It is a classical result that the Poisson problem (4.5)-(4.6) in D can be
reformulated as follows: 

−∆u1 = f in D1,

u1 = 0 on ∂D1 ∩ ∂D,

u1 = u2 on Γ,

∂u2
∂n

=
∂u1
∂n

on Γ,

u2 = 0 on ∂D2 ∩ ∂D,

−∆u2 = f in D2.

(4.8)
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The conditions u1 = u2 and ∂u2/∂n = ∂u1/∂n on Γ are known as transmission conditions. We now
denote by λ the unknown value of u on Γ and, with standard notation, we define wi, for i = 1, 2,
by 

−∆wi = f in Di,

ui = 0 on ∂Di ∩ ∂D,

ui = λ on Γ,

(4.9)

and we observe that wi = u0i + ûi, where u0i and ûi are defined by
−∆u0i = 0 in Di,

u0i = 0 on ∂Di ∩ ∂D,

u0i = λ on Γ,


−∆ûi = f in Di,

ûi = 0 on ∂Di ∩ ∂D,

ûi = 0 on Γ.

If we compare the problem solved by wi and by ui, we obtain that wi = ui if and only if

∂w1
∂n

=
∂w2
∂n

on Γ.(4.10)

We recall that u0i is the harmonic extension of λ into Di, which will be denoted by Hiλ.

Steklov-Poincaré interface equation

The problem in two domains can be written, by recalling the latter condition (4.10) involving the
normal derivative of wi, as a single interface condition. We formally define S, the Steklov-Poincaré
operator, as:

Sη :=
∂H1η

∂n
− ∂H2η

∂n
.(4.11)

This operator, which can be split in S := S1+S2, with Si := ∂Hiλ/∂ni, was introduced3 by Steklov
and Poincaré at the end of the 19th century. If we define Tif := ûi and furthermore

χ :=
∂T1f

∂n
− ∂T2f

∂n
,

we can write (4.10), as the following equation satisfied by λ :

Sλ = χ.(4.12)

Variational formulation

The calculations of the previous section were only formal. To properly define the Steklov-Poincaré
operators we need a weak formulation of the multi-domain Problem 4.8. In order to do this we
define:

Vi := {vi ∈ H1(Di) : vi|∂D∩∂Di
= 0},

V 0i := H10 (Di),
Λ := {η ∈ H1/2(Γ) : η = v|Γ for some v ∈ V }.

(4.13)

3We recall that in the Russian literature it is studied the inverse operator S−1 and it is called Poincaré-Steklov
operator.
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Remark 4.2.2. If Γ∩∂D = ∅ then Λ = H1/2(Γ). Moreover, when Γ∩∂D �= ∅ the space Λ, usually
denoted by H

1/2
00 (Γ), is topologically and algebraically strictly included in H1/2(Γ), see J.-L. Lions

and Magenes [LM72] for further results. Note, in particular, that the following trace inequality
holds:

∃C∗
i > 0 such that ‖vi|Γ‖Λ ≤ C∗

i ‖vi‖1,Di ∀ vi ∈ Vi, for i = 1, 2.(4.14)

Finally, for i = 1, 2 denote by Ri any possible (continuous) operator from Λ to Vi that satisfies
(Riη)|Γ = η. Any such operator (we can prove that it exists) will be called an extension operator
from Λ to Vi.

By using suitable test functions it can be easily proved that the Poisson equation (4.7) can be
equivalently reformulated as: find u1 ∈ V1 and u2 ∈ V2 such that

a1(u1, v1) = (f, v1)D1 ∀ v1 ∈ V 01 ,
u1 = u2 on Γ,
a2(u2, v2) = (f, v2)D2 ∀ v2 ∈ V 02 ,
a2(u2,R2µ) = (f,R2µ)D2 + (f,R1µ)D1 − a1(u1,R1µ) ∀µ ∈ Λ,

where Ri denotes any possible extension operator from Λ to Vi.

We can now define properly the Steklov-Poincaré operators with a variational formulation.
The Steklov-Poincaré operator S introduced in (4.11) can be characterized as an operator acting
between the space of trace functions Λ and its dual Λ′. We apply the Green formula and we recall
that Hiη is the harmonic extension in Di of an η belonging to Λ, for i = 1, 2. We have

〈Sη, µ〉 =
2∑

i=1

〈
∂Hiη

∂ni
, µ

〉
=

2∑
i=1

∫
Di

∇Hiη · ∇Riµ = ai(Hiη,Riµ) ∀ η, µ ∈ Λ,

where Ri are the extension operators as in Remark 4.2.2. Hereafter 〈 . , . 〉 denotes the duality
pairing between Λ′ and Λ. In particular, taking Riµ = Hiµ, we obtain the following variational
representation of S:

〈Sη, µ〉 =
2∑

i=1

ai(Hiη,Hiµ) ∀ η, µ ∈ Λ,(4.15)

hence the operator S is symmetric. Moreover, from the Poincaré inequality, we have that

〈Sη, η〉 =
2∑

i=1

‖∇Hiη‖20,Di
≥

2∑
i=1

1
1 + C(Di)

|Hiη|21,Di
.

By taking into account the trace inequality (4.14), we finally have

〈Sη, η〉 ≥ α‖η‖2Λ ∀ η ∈ Λ,

for a suitable constant α > 0. Therefore S is a coercive operator.
Proceeding in an analogous way, from (4.11) we have

〈Siη, µ〉 =
∫
Di

∇Hiη · ∇Hiµ = ai(Hiη,Hiµ) ∀ η, µ ∈ Λ.
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Clearly, each Si is symmetric and furthermore it is coercive:

∃αi > 0 : 〈Siη, η〉 ≥ αi‖η‖2Λ ∀ η ∈ Λ.(4.16)

Another relevant property of the Steklov-Poincaré operators Si is that they are continuous:

∃ βi > 0 : 〈Siη, µ〉 ≤ βi‖η‖Λ ‖µ‖Λ ∀ η, µ ∈ Λ.(4.17)

In fact
〈Siη, µ〉 ≤ |Hiη|1,Di |Hiµ|1,Di ∀ η, µ ∈ Λ

and, from well known estimates for the solution of elliptic boundary value problems (see, for
example, J.-L. Lions and Magenes [LM72]), it follows that

‖Hiη‖1,Di ≤ C‖η‖Λ ∀ η ∈ Λ.

These properties are of great interest, because they can be used to obtain a numerical solution of
the Steklov-Poincaré interface Problem 4.12. Clearly, as soon as an approximation of λ is available,
problem (4.9) can be reduced to the solution of two independent Dirichlet problems.

Finally, we can also give a variational interpretation of the right-hand side χ in (4.12). It can
be expressed through the functions f and Tif as follows:

〈χ, µ〉 = −
2∑

i=1

〈
∂Ti
∂ni

f, µ

〉
=

2∑
i=1

∫
Di

(f Riµ−∇Tif · ∇Riµ)

=
2∑

i=1

[(f,Riµ)Di − ai(Tif,Riµ)] ∀µ ∈ Λ.

Therefore, the Steklov-Poincaré equation (4.12) can be written in the following variational form:

find λ ∈ Λ : 〈Sλ, µ〉 = 〈χ, µ〉 ∀ µ ∈ Λ.(4.18)

From a variational point of view, the functions u0i = Hiλ and ûi = Tif, previously introduced, are
the solutions to the following problems:

find Hiλ ∈ Vi : ai(Hiλ, vi) = 0 ∀ vi ∈ V 0i , with Hiλ|Γ = λ.

and
find Tif ∈ V 0i : ai(Tif, vi) = (f, vi) ∀ vi ∈ V 0i .

One possible approach to the solution of (4.18) is to discretize the space Λ and to solve the interface
equation directly. The variational formulation will use the following spaces

Λh := {vh|Γ : vh ∈ Vh},
Vi,h := {vh|Ωi : vh ∈ Vh},
V 0i,h := {vh ∈ Vi,h : vh|Γ = 0}.

(4.19)

We define the discrete harmonic extension Hi,hη as the solution to

find Hi,hηh ∈ Vi,h : ai(Hi,hηh, vi,h) = 0 ∀ vi,h ∈ V 0i,h, with Hi,hηh|Γ = ηh.



4.2 Brief introduction to domain decomposition methods 79

By using the same arguments that we have shown for the continuous problem, we can define the
discrete Steklov-Poincaré operator4 Sh as

〈Shη, µ〉 =
2∑

i=1

ai(Hi,hηh,Hi,hµh) =
2∑

i=1

〈Si,hηh, µh〉 ∀ ηh, µh ∈ Λh.

It easily turns out that Si,h are both symmetric, continuous and coercive.
It should be remarked that the direct approximation of the interface problem is not useful. We

are now reduced to an interface problem with much less unknowns, but the condition number still
behaves badly, because χ(Sh) - 1/h.

4.2.3 Some iterative methods

In this section we propose some iterative methods, which can be used to solve the interface equation
(4.18). The methods, we are going to introduce, are generally known as iterative substructuring
methods. Their main feature is that they have a sub-domain counterpart, defined by solving suitable
sequences of Poisson problems. In particular, we introduce the classical Dirichlet-Neumann and
Neumann-Neumann methods and we prove that they furnish an optimal preconditioner.

Extension results

Before introducing the methods and the convergence results, we propose two theorems, that are
the core of the convergence results. In particular, with the following two theorems we can see that
the continuity and coercivity constants of the discrete Steklov-Poincaré operators do not depend
on h.

Theorem 4.2.3. Let the space Λ be defined as in (4.13) and let Hi be harmonic extension opera-
tors. Then there exist two positive constants C1 and C2 such that

C1‖η‖Λ ≤ ‖Hiη‖1,Di ≤ C2‖η‖Λ ∀ η ∈ Λ, for i = 1, 2.(4.20)

The proof is based on the application of the trace inequality (4.14) and classical estimates for
the solution of elliptic problems, see J.-L. Lions and Magenes [LM72].

We now introduce the following theorem, see Bjørstad and Widlund [BW86], Bramble, Pasciak
and Schatz [BPS86] and Marini and Quarteroni [MQ89]. It is very important because it states
that, a finite dimensional level, the constants that bound the harmonic extension of a function, in
terms of its trace norm, do not depend on h.

Theorem 4.2.4 (Uniform extension theorem). Let D,D1, and D2 be Lipschitz polygonal domains.
Let the space Vh := Xh

r ∩H10 (D). Assume that the family of triangulations Th is regular and that
the family of triangulations Mh, induced by Th on the interface Γ, is quasi-uniform. Then there
exist two positive constants C1 and C2, which depend on the relative sizes of D1 and D2 but are
independent of h, such that

C1‖ηh‖Λ ≤ ‖Hi,hηh‖1,Di ≤ C2‖ηh‖Λ ∀ ηh ∈ Λh for i = 1, 2.(4.21)

4We recall that we can the interpret the discrete Steklov-Poincaré operator as the well-known Schur complement
matrix. When the Schur matrix is explicitly computed we have the method known as substructuring. This operation
is very expensive and leads to the construction of an ill-conditioned matrix. The iterative methods, we shall present,
have the advantage of including a good preconditioner; furthermore, in the sub-domain iteration the Schur matrix
should not be assembled explicitly.
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Proof. Since ηh is the trace on the interface Γ of both H1,hηh and H2,hηh, the trace inequality (4.14)
states that there exist real positive constants C∗

i such that

‖ηh‖Λ ≤ C∗
i ‖Hi,hηh‖1,Di ∀ ηh ∈ Λh for i = 1, 2.

Therefore, the left-hand inequality in (4.21) follows by choosing

C1 := min{1/C∗
1 , 1/C

∗
2}.

On the other hand, we have

‖Hi,hηh‖1,Di ≤ ‖Hi,hηh −Hiηh‖1,Di + ‖Hiηh‖1,Di .

From (4.20), it follows that

‖Hiηh‖1,Di ≤ C2‖ηh‖Λ, for i = 1, 2.

Since ηh is a piecewise-polynomial continuous function on Γ and Di is a Lipschitz polygonal domain,
the solution Hiηh belongs to H1+s(Di) for some s > 1/2 (see Dauge [Dau88], Corollary 18.15). For
each r ∈ R we denote by ‖ . ‖r,Di and by ‖ . ‖r,Γ, the norm of the Sobolev spaces Hr(Di) and Hr(Γ),
respectively. The following regularity estimate holds:

‖Hiηh‖1+s,Di ≤ C‖ηh‖1/2+s,Γ.

Moreover, we have the finite element error estimate

‖Hi,hηh −Hiηh‖1,Di ≤ Chs‖Hiηh‖1+s,Di ,

which is a consequence of the continuity and coercivity of the bilinear forms ai( . , . ) and of the
interpolation error estimate (see, for example, Ciarlet [Cia78]).

We now use the following inverse inequality5 (see again Ciarlet [Cia78]) to get

hs‖ηh‖1/2+s,Γ ≤ C‖ηh‖Λ ∀ ηh ∈ Λh,

with a constant C independent of h. Therefore, for a suitable constant C2 independent of h we
obtain

‖Hi,hηh‖1,Di ≤ C2‖ηh‖Λ.

Remark 4.2.5. We remark that, under the assumptions of the uniform extension theorem the
discrete Steklov-Poincaré operators Si,h are continuous and coercive in Λh, uniformly with respect
to h.

5Recall that the quasi-uniformity of the mesh on Γ is necessary to have the inverse inequality

‖ηh‖Λ ≤ Ch−1/2

(∫
Γ

η2
h

)1/2

.
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The Dirichlet-Neumann method

We start by introducing the strong formulation of the Dirichlet-Neumann method. Given λ0, solve
for each k ≥ 0 :

−∆uk+11 = f in D1,

uk+11 = 0 on ∂D1 ∩ ∂D,

uk+11 = λk on Γ,

and



−∆uk+12 = f in D2,

uk+12 = 0 on ∂D2 ∩ ∂D,

∂uk+12

∂n
=

∂uk+11

∂n
on Γ,

with

λk+1 := θuk+12|Γ + (1 − θ)λk,(4.22)

where θ is a positive acceleration parameter.
This method6 was considered, among the others, by Bjørstad and Widlund [BW86], Bramble,

Pasciak and Schatz [BPS86] and Marini and Quarteroni [MQ89].
The variational formulation of this method is the following:

find uk+11 ∈ V1 : a1(uk+11 , v1) = (f, v1)D1 ∀ v1 ∈ V 01 ,(4.23)

with uk+11 = λk on Γ. Then find uk+12 ∈ V2 such that
a2(uk+12 , v2) = (f, v2)D2 ∀ v2 ∈ V 02 ,

a2(uk+12 ,R2µ) = (f,R2µ)D2 + (f,R1µ)D1 − a1(uk+11 ,R1µ) ∀µ ∈ Λ
(4.24)

and complete the scheme with (4.22). This scheme is easily interpreted as the following precondi-
tioned Richardson method

λk=1 = λk + θS−1
2 (χ− Sλk).(4.25)

We now give an abstract convergence theorem concerning the Richardson iterations (4.25) for
equation (4.12) preconditioned by PDN = S2. The convergence will be proved in the abstract way
proposed in Alonso, Trotta and Valli [ATV98], even if weaker convergence results (strictly regarding
symmetric problems, see Remark 4.2.8) were known till 1986. In the sequel the operators Si, for
i = 1, 2, act on the Hilbert space (X, ‖ . ‖X ), and S = S1 + S2.

Theorem 4.2.6. Suppose that

a) S2 is continuous: ∃ β2 > 0 : 〈S2η, µ〉 ≤ β2 ‖η‖X ‖µ‖X ∀ η, µ ∈ X;

b) S2 is coercive: ∃α2 > 0 : 〈S2η, η〉 ≥ α2 ‖η‖2X ∀ η ∈ X;

c) S1 is continuous: ∃ β1 > 0 : 〈S1η, µ〉 ≤ β1 ‖η‖X ‖µ‖X ∀ η, µ ∈ X;

d) there exists a constant κ∗ > 0 : 〈S2η,S−1
2 Sη〉 + 〈Sη, η〉 ≥ κ∗‖η‖2X ∀ η ∈ X.

6The same method without relaxation (that is, with θ = 1) does not necessarily converge, unless special assump-
tions are made about D1 and D2, see Quarteroni and Valli [QV99] §1.
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Then for any given λ0 in X and for any θ satisfying 0 < θ < θmax, with

θmax :=
κ∗α22

β2(β1 + β2)2
,

the sequence defined by
λk+1 = λk + θS−1

2 (F − Sλk)

converges in X to the solution of problem

find λ ∈ X : 〈Sλ, µ〉 = 〈F , µ〉 ∀µ ∈ X ′.(4.26)

Proof. We note that the operator S2 is invertible as a consequence of assumption a), b) and of the
Lax–Milgram lemma. Let us introduce the S2-scalar product

(η, µ)S2 :=
1
2

(〈S2η, µ〉 + 〈S2µ, η〉).

The corresponding S2-norm ‖η‖S2 := (η, η)1/2S2
= 〈S2η, η〉1/2 is equivalent to the norm ‖η‖X , because

it satisfies the two inequalities:

α2‖η‖2X ≤ ‖η‖2S2
≤ β2‖η‖2X ∀ η ∈ X.

To prove the convergence of the sequence {λk}k∈N it is sufficient to show that the mapping Tθ from
X into itself:

Tθη := η − θ S−1
2 Sη

is a contraction with respect to the S2-norm. By assuming that θ ≥ 0, we have

‖Tθη‖2S2
= ‖η‖2S2

+ θ2〈Sη,S−1
2 Sη〉 − θ(〈S2η,S−1

2 Sη〉 + 〈Sη, η〉)

≤ ‖η‖2S2
+ θ2

(β1 + β2)2

α2
‖η‖2X − θκ∗‖η‖2X .

By setting

Kθ = 1 + θ2
(β1 + β2)2

α22
− θ

κ∗

β2
,

we obtain ‖Tθη‖2S2
≤ Kθ‖η‖2S2

. The bound Kθ < 1 holds if 0 < θ < θmax.

Remark 4.2.7. In Theorem 4.2.6, the upper bound θmax, as well as the contraction constant K
1/2
θ ,

depends only on α2, β1, β2, and κ∗; consequently, the rate of convergence of the preconditioned
Richardson iterative procedure in the S2-norm depends only on these parameters.

Remark 4.2.8. If the operator S2 is symmetric, then assumption d) reduces to the coercivity of
S, that is

〈Sη, η〉 ≥ κ∗

2
‖η‖2X .

The corollary below follows immediately, by applying Theorem 4.2.6 with X = H
1/2
00 (Γ), F = χ,

S = S, and Si = Si, i = 1, 2. In fact, by (4.16)-(4.17) we have that the Steklov-Poincaré operators
satisfy all the hypotheses of Theorem 4.2.6, with constants independent of h, see Remark 4.2.5

Corollary 4.2.9. The Dirichlet-Neumann method converges at a rate which is independent of h.
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The Neumann-Neumann method

This method was considered by Bourgat, Glowinski, Le Tallec and Vidrascu [BGLTV89], see also
the paper by Agoshkov and Lebedev [AL85] for an algebraic approach.

In this case, for each k ≥ 0 we have to solve


−∆uk+1i = f in Di,

uk+1i = 0 on ∂Di ∩ ∂D,

uk+1i = λk on Γ,

and



−∆ψk+1
i = 0 in Di,

ψk+1
i = 0 on ∂Di ∩ ∂D,

∂ψk+1
i

∂n
=

∂uk+11

∂n
− ∂uk+12

∂n
on Γ,

for i = 1, 2 with

λk+1 := λk − θ(σ1ψk+1
1|Γ − σ2ψ

k+1
2|Γ ).(4.27)

As before λ0 is a given datum, θ > 0 is an acceleration parameter while σ1 and σ2 are two positive
averaging coefficients (whose introduction becomes essential only when dealing with many sub-
domains).

Also the Neumann-Neumann can be interpreted, after a weak formulation, as a preconditioned
method to solve the interface equation (4.12). We have arrive to the following preconditioned
Richardson method

λk+1 = λk + θ(σ1S−1
1 + σ2S

−1
2 )(F − Sλk).(4.28)

Remark 4.2.10. We recall that if a linear operator A : Λ → Λ′ is continuous and coercive, with
continuity constant given by β and coercivity constant given by α, then its inverse A−1 : Λ′ → Λ
exists (by the Lax–Milgram lemma). Moreover, A−1 is continuous with continuity constant given by
α−1 and coercive with coercivity constant given by α/β2. Consequently, for each σ1 > 0 and σ2 > 0
the Neumann-Neumann preconditioner PNN := (σ1S−1

1 + σ2S
−1
2 )−1 is symmetric, continuous and

coercive in Λ. If denote by βPNN
and αPNN

its continuity and coercivity constant, a straightforward
computation shows that they are respectively given by

βPNN
:=

β21β
2
2

σ1α1β
2
2 + σ2α2β

2
1

,

αPNN
:=

(σ1α1β22 + σ2α2β
2
1)α

2
1α
2
2

β21β
2
2(α1σ2 + α2σ1)2

.

We present now another abstract theorem, which concerns the preconditioned Richardson iter-
ation, based on the preconditioner PNN = (σ1S−1

1 + σ2S
−1
2 )−1, see Quarteroni and Valli [QV99].

As in Theorem 4.2.6, the operators Si, i = 1, 2 act on the Hilbert space (X, ‖ . ‖X ) and S = S1+S2.

Theorem 4.2.11. Assume that both Si are continuous and coercive; that is, for i = 1, 2, we have
that

a) ∃ βi > 0 : 〈Siη, µ〉 ≤ βi ‖η‖X ‖µ‖X ∀ η, µ ∈ X;

b) ∃αi > 0 : 〈Siη, η〉 ≥ αi ‖η‖2X ∀ η ∈ X.
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Assume, moreover, that, for any choice of the averaging parameters σ1 > 0 and σ2 > 0, the operator
PNN := (σ1S−1

1 + σ2S−1
2 )−1 satisfies the condition

c) ∃κ∗ > 0 : 〈PNNη,P−1
NNSη〉 + 〈Sη, η〉 ≥ κ∗‖η‖2X ∀ η ∈ X.

Then there exists θ0 > 0 such that for each θ ∈ (0, θ0) and for any given λ0 ∈ X the sequence

λk+1 = λk + θP−1
NN (F − Sλk)(4.29)

converges in X to the solution of (4.26).

Proof. We have already pointed out (recall Remark 4.2.10) that, due to assumptions a) and b),
the operator PNN : X → X ′ is continuous and coercive. Let us denote by βPNN

and αPNN
its

continuity and coercivity constants. We introduce the PNN -scalar product

(η, µ)PNN
:=

1
2

(〈PNNη, µ〉 + 〈PNNµ, η〉),

and the corresponding PNN -norm ‖η‖PNN
:= (η, η)1/2PNN

= 〈PNNη, η〉1/2, which is equivalent to the
norm ‖η‖X , i.e. ,

αPNN
‖η‖2X ≤ ‖η‖2PNN

≤ βPNN
‖η‖2X .

To prove the convergence of {λk}k∈N, we show that the following map Tθ from X into itself

Tθη := η − θP−1
NNSη

is a contraction with respect to the norm ‖ · ‖PNN
. By assuming that θ ≥ 0, for η ∈ X we have

‖Tθη‖2PNN
= ‖η‖2PNN

+ θ2〈Sη,P−1
NNSη〉 − θ(〈PNNη,P−1

NNSη〉 + 〈Sη, η〉)

≤ ‖η‖2PNN
+ θ2〈Sη,P−1

NNSη〉 − θκ∗‖η‖2X .

The operator P−1
NN = σ1S−1

1 + σ2S−1
2 is continuous and satisfies

〈ψ,P−1
NNψ〉 ≤

(
σ1
α1

+
σ2
α2

)
‖ψ‖2X′ ∀ψ ∈ X ′,

therefore

〈Sη,PNN
−1Sη〉 ≤

(
σ1
α1

+
σ2
α2

)
(β1 + β2)2‖η‖2X .

By setting

Kθ = 1 + θ2
(
σ1
α1

+
σ2
α2

)
(β1 + β2)2

αPNN

− θ
κ∗

βPNN

,

we obtain
‖Tθη‖2PNN

≤ Kθ‖η‖2PNN
.

Finally, by setting

θ0 :=
κ∗αPNN

βPNN

(
σ1
α1

+
σ2
α2

)
(β1 + β2)2

,

we conclude that Tθ is a contraction for all θ ∈ (0, θ0).



4.2 Brief introduction to domain decomposition methods 85

Remark 4.2.12. We observe that the rate of convergence in the PNN -norm of the preconditioned
Richardson iterative procedure (4.29) depends only on the constants σ1, σ2, α1, α2, β1, β2, and κ∗.
Moreover, if S1 and S2 are symmetric, assumption c) is equivalent to the coercivity of S. On the
other hand, this property follows directly from b). Hence, in the symmetric case assumption c) is
not necessary.

Again, by setting X = H
1/2
00 (Γ), F = χ, S = S, and Si = Si, for i = 1, 2, we have the following

result, see Corollary 4.2.9

Corollary 4.2.13. The Neumann-Neumann method converges at a rate which is independent of
h.

The Robin method

We now propose the Robin method, that was introduced and analyzed by P.-L. Lions [PLL90]. It
reads as: given u02, for each k ≥ 0 solve

−∆uk+11 = f in D1,

uk+11 = 0 on ∂D1 ∩ ∂D,

∂uk+11

∂n
+ γ1u

k+1
1 =

∂uk2
∂n

+ γ1u
k
2 on Γ,

and



−∆uk+12 = f in D2,

uk+12 = 0 on ∂D2 ∩ ∂D,

∂uk+12

∂n
− γ2u

k+1
2 =

∂uk1
∂n

− γ2u
k
1 on Γ,

where γ1 and γ2 are two nonnegative acceleration parameters such that γ1+γ2 > 0. We now present
the proof of convergence in the simplified context of γ1 = γ2 = γ. This reduction greatly simplifies
the calculations, but leaves unaffected the main idea. Furthermore, we make the calculations in the
differential context, but the same method can be used to show the convergence of the variational
formulation, both at the infinite-dimensional and discrete level, see Quarteroni and Valli [QV99].

Theorem 4.2.14. If γ1 = γ2 = γ > 0, then the local errors eki := uki − u|Di
converge to zero with

respect to the norm H1(Di), for i = 1, 2.

Proof. The local errors satisfy

−∆ek+11 = 0 in D1,

ek+11 = 0 on ∂D1 ∩ ∂D,

∂ek+11

∂n
+ γ1e

k+1
1 =

∂ek2
∂n

+ γ1e
k
2 on Γ,

and



−∆ek+12 = 0 in D2,

ek+12 = 0 on ∂D2 ∩ ∂D,

∂ek+12

∂n
− γ2e

k+1
2 =

∂ek1
∂n

− γ2e
k
1 on Γ.

We multiply the equation satisfied by ek+12 by ek+12 itself. Then we integrate by parts and we get
that

‖∇ek+12 ‖20,D2
= −

∫
Γ

∂ek+12

∂n
ek+12 .

By using the identity AB =
1

4γ
[(A + γB)2 − (A− γB)2], we can write

−
∫
Γ

∂ek+12

∂n
ek+12 =

1
4γ

∫
Γ

(
∂ek+12

∂n
− γek+12

)2
− 1

4γ

∫
Γ

(
∂ek+12

∂n
+ γek+12

)2
.
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By recalling the boundary condition on Γ satisfied by ek+12 , we obtain

‖∇ek+12 ‖20,D2
+

1
4γ

∫
Γ

(
∂ek+12

∂n
+ γek+12

)2
=

1
4γ

∫
Γ

(
∂ek+11

∂n
− γek+11

)2
.

By repeating the same argument for ek+11 , we find that

‖∇ek+11 ‖20,D1
+

1
4γ

∫
Γ

(
∂ek+11

∂n
− γek+11

)2
=

1
4γ

∫
Γ

(
∂ek2
∂n

+ γek2

)2
.

Adding the last two equalities and summing over k, from k = 0 to k = M − 1, we obtain that

M∑
k=1

(‖∇ek1‖20,D1
+ ‖∇ek2‖20,D2

) +
1

4γ

∫
Γ

(
∂eM2
∂n

+ γeM2

)2
=

1
4γ

∫
Γ

(
∂e02
∂n

+ γe02

)2
.

Consequently, the series on the left hand side is convergent and eki tends to 0 in H1(Di) for
i = 1, 2.

Remark 4.2.15. In contrast with the Dirichlet-Neumann and Neumann-Neumann methods, for
the Robin method we do not have estimates regarding the reduction of the error. Furthermore, we
do not have any information about the rate of convergence.

4.3 Non-symmetric problems

In this section we analyze the domain decomposition methods for non-symmetric elliptic equa-
tions. When dealing with elliptic equations with first order terms or with non-symmetric principal
part, the theory becomes more difficult. In general no convergence result can be proved, if some
assumption linking the “bigness” of non-symmetric part and the dimension of sub-domains are
not assumed. We do not study the problem with overlapping sub-domains. For Schwarz methods
regarding non-symmetric equations, we refer to Cai, Gropp and Keyes [CGK92] and Cai and Wid-
lund [CW92]. The study of non-symmetric equation gives new additional problems, as we shall see
in the following sections. Particular interface conditions should be used and new method must be
introduced. We consider a non-symmetric elliptic operator of the following form:

Lw := −
d∑

l,j=1

∂

∂xl

(
alj

∂w

∂xj

)
+

d∑
j=1

∂(bjw)
∂xj

+ a0w.(4.30)

We assume that the coefficients alj are uniformly positive-definite:

∃α0 > 0 :
d∑

l,j=1

alj(x)ξjξl ≥ α0|ξ|2 ∀ ξ ∈ Rd, a.e.x ∈ D.

We shall study the homogeneous Dirichlet problem associated with the operator L. When dealing
with the two-domain formulation, the interface condition on Γ are

u1 = u2 on Γ,

∂u1
∂nL

=
∂u2
∂nL

on Γ,
or equivalently


u1 = u2 on Γ,

∂u1
∂nL

+ γu1 =
∂u2
∂nL

+ γu2 on Γ,
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where
∂u

∂nL
:=

d∑
l,j=1

alj
∂u

∂xj
nl

is called the co-normal derivative.

Variational formulation

Let us assume that alj , bj, and a0 belong to L∞(D), for each l, j = 1, . . . , d and that div b belongs
to L∞(D). Then we can introduce in H1(D) the continuous bilinear form, associated to L :

a#(w, v) :=
∫
D

[
d∑

l,j=1

alj
∂w

∂xj

∂v

∂xl
+
(

1
2

div b + a0

)
w v

]
dx +

1
2

∫
D

(v b · ∇w − w b · ∇v) dx,

Under the further assumption that

1
2

div b(x) + a0(x) ≥ 0 a.e.x ∈ D,(4.31)

the bilinear form a#(·, ·) is coercive in V = H10 (D). Therefore, the homogeneous Dirichlet boundary
value problem: find u ∈ H10 (D) such that

a#(u, v) = (f, v) ∀ v ∈ H10 (D)(4.32)

has a unique solution. By defining in Vi, i = 1, 2, (see page 76) the local bilinear forms

a#i (wi, vi) :=
∫
Di

[
d∑

l,j=1

alj
∂wi

∂xj

∂vi
∂xl

+

(
1
2

div b + a0

)
wivi dx +

1
2

∫
D

(vi b · ∇wi − wi b · ∇vi) dx,

we can define the extension operators E#i : Λ → Vi such that

E#i η ∈ Vi : a#(E#i η, v) = 0 ∀ v ∈ V 0i with E#i η|Λ = η.

With these operators, we can define the Steklov-Poincaré operators exactly as for the Laplace
equation

〈Siη, µ〉 = a#i (E#i η,E
#
i µ) ∀ η, µ ∈ Λ.(4.33)

We have easily that Si are continuous and coercive, i.e. , that (4.16)-(4.17) are satisfied for suitable
positive constants αi and βi. We can formulate an interface problem

find λ ∈ Λ : 〈Sλ, µ〉 = 〈χ, µ〉 ∀ µ ∈ Λ,

which is equivalent to (4.32). In this problem χ is defined by

〈χ, µ〉 =
2∑

i=1

[(f,Riµ)Di − a#i (T#i f,Riµ)] ∀µ ∈ Λ

and T#i f solves the following variational problem

find T#i f ∈ V 0i : a#i (T#i f, vi) = (f, vi) ∀ vi ∈ V 0i , for i = 1, 2.
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Due to the choice7 of the bilinear form a#( . , . ), the interface condition is:

∂u2
∂nL

− 1
2

b · nu2 =
∂u1
∂nL

− 1
2

b · nu1 on Γ.

4.3.1 Results for “slightly” non-symmetric problems

We now give some convergence results for iterative methods corresponding to non-symmetric equa-
tions. We shall use the abstract theorems of the previous section and we give some condition which
make the assumptions to be satisfied, see Quarteroni and Valli [QV99] §5.

Dirichlet-Neumann method

We denote by Dirichlet-Neumann the method that is the counterpart of (4.22)-(4.23)-(4.24), in-
troduced for the Laplace equation. In this case we have a Dirichlet problem coupled with a Robin
problem and not a Neumann one as for the Laplace equation.

We claim that if the skew-symmetric part of S2 is small enough, we can prove that condition
d) in Theorem 4.2.6, namely

〈S2η,S−1
2 Sη〉 + 〈Sη, η〉 ≥ κ∗‖η‖2Λ ∀ η ∈ Λ,

is satisfied (for Si = Si) and then the method converges. We introduce the symmetric and skew-
symmetric parts of the bilinear form a#(·, ·), which are given respectively by

as(w, v) :=
∫
D

[
d∑

l,j=1

1
2

(alj + ajl)
∂w

∂xj

∂v

∂xl
+
(

1
2

div b + a0

)
w v

]
dx

ass(w, v) :=
∫
D

[
d∑

l,j=1

1
2

(alj − ajl)
∂w

∂xj

∂v

∂xl
+

1
2

(v b · ∇w − w b · ∇v)

]
dx.

Clearly, a# = as + ass. In a similar way we can define the local symmetric and skew-symmetric

7We remark that this is not the only bilinear form (and consequently weak formulation) that can be used. In the
paper by Cai and Widlund [CW92] the different bilinear form

a#(w, v) :=

∫
D

[
d∑

l,j=1

alj
∂w

∂xj

∂v

∂xl
+ (a0 + ∇ · b)wv + v b · ∇w

]
dx

is used for some technical reasons. This form is obtained without integrating by parts the term
[
∇ · (bw)

]
v. The

following bilinear form is used by adaptive methods

â(w, v) :=

∫
D

[
d∑

l,j=1

alj
∂w

∂xj

∂v

∂xl
+ a0wv − wb · ∇v

]
dx

and it is obtained integrating by parts
[
∇ · (bw)

]
v, see Carlenzoli and Quarteroni [CQ95] and Gastaldi, Gastaldi

and Quarteroni [GGQ96]. We believe (and numerical experiments confirm it) that in a non overlapping context our
bilinear form a#( . , . ) (that is obtained with “1/2-integration”) is more powerful, since the others can lead to non
solvable sub-domain problems, see Section 4.4.
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parts asi( . , . ) and assi ( . , . ), for i = 1, 2. By setting µ := S−1
2 Sη, from (4.33) we have

〈S2η, S−1
2 Sη〉 + 〈Sη, η〉 = 〈S2η, µ〉 − 〈Sη, η〉 + 2〈Sη, η〉

= 〈S2η, µ〉 − 〈S2µ, η〉 + 2〈Sη, η〉

= as2(E
#
2 η,E

#
2 µ) + ass2 (E#2 η,E

#
2 µ) − as2(E

#
2 µ,E

#
2 η) − ass2 (E#2 µ,E

#
2 η)

+ 2〈Sη, η〉

= 2ass2 (E#2 η,E
#
2 S

−1
2 Sη) + 2〈Sη, η〉.

By denoting with α the coercivity constant of S, we get

〈S2η, S−1
2 Sη〉 + 〈Sη, η〉 ≥ 2α‖η‖2Λ − 2|ass2 (E#2 η,E

#
2 S

−1
2 Sη)|.

Therefore, we only have to show that

∃ 0 < ρ < α : |ass2 (E#2 η,E
#
2 S

−1
2 Sη)| ≤ ρ ‖η‖2Λ.(4.34)

By setting
κssi := max

l,j
‖alj − ajl‖L∞(Di) + ‖b‖L∞(Di) for i = 1, 2,

we obtain
|ass2 (E#2 η,E

#
2 S

−1
2 Sη)| ≤ C1κ

ss
2 ‖E#2 η‖1,D2‖E

#
2 S

−1
2 Sη‖1,D2

≤ C2κ
ss
2 ‖η‖Λ‖S−1

2 Sη‖Λ

≤ C3κ
ss
2 ‖η‖2Λ.

Then (4.34) follows if

C3κ
ss
2 < α,(4.35)

which is a smallness assumption on the skew-symmetric part of the operator L in D2. By applying
Theorem 4.2.6 with Si = Si, for i = 1, 2, we can infer the following result.

Corollary 4.3.1. The Dirichlet-Neumann method converges at a rate which is independent of h,
provided (4.35) is satisfied.

Neumann-Neumann method

We consider the analogue of the Neumann-Neumann method for the Poisson equation, even if the
iteration steps regarding ψ (see page 83) now involve problems with a Robin-condition on the
interface Γ. We claim that we can use Theorem 4.2.11 if the non-symmetric term is small in both
D1 and D2. In particular, this assumption is necessary to satisfy condition c) :

∃ k∗ > 0 : 〈PNNη,P−1
NNSη〉 + 〈Sη, η〉 ≥ κ∗‖η‖2Λ ∀ η ∈ Λ.

In this case PNN = PNN := (σ1S−1
1 + σ2S

−1
2 )−1. In fact, by setting µ := P−1

NNSη, we have

〈PNNη, P
−1
NNSη〉 + 〈Sη, η〉 = 〈PNNη, µ〉 − 〈Sη, η〉 + 2〈Sη, η〉

= 〈PNNη, µ〉 − 〈PNNµ, η〉 + 2〈Sη, η〉.
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Moreover, by setting ρi := S−1
i PNNη and ξi := S−1

i PNNµ for i = 1, 2, we have

PNNη = S1ρ1 = S2ρ2 and PNNµ = S1ξ1 = S2ξ2,

and consequently
η = P−1

NNPNNη = σ1ρ1 + σ2ρ2 and µ = σ1ξ1 + σ2ξ2.

Therefore

〈PNNη, µ〉 − 〈PNNµ, η〉 = 〈PNNη, σ1ξ1 + σ2ξ2〉 − 〈PNNµ, σ1ρ1 + σ2ρ2〉

= σ1(〈S1ρ1, ξ1〉 − 〈S1ξ1, ρ1〉) + σ2(〈S2ρ2, ξ2〉 − 〈S2ξ2, ρ2〉)

= 2
2∑

i=1

σia
ss
i (E#i ρi, E

#
i ξi)

= 2
2∑

i=1

σia
ss
i (E#i S

−1
i PNNη,E

#
i S

−1
i Sη).

We finally obtain that condition c) in Theorem 4.2.11 is satisfied, provided that the constant κssi is
small enough, for i = 1, 2. Hence, by using Theorem 4.2.11 with Si = Si for i = 1, 2, we obtain the
following corollary.

Corollary 4.3.2. The Neumann-Neumann method converges at a rate which is independent of h,
provided κssi , for i = 1, 2, is small enough

4.3.2 Time-harmonic Maxwell equations

The methods used in the previous section are essentially based on the fact that the operator to be
studied is a small perturbation of a symmetric one. In other problems of classical mathematical
physics these method are not applicable. In particular, in this section we study the time-harmonic
Maxwell equations. This problem is interesting because leads to a complex bilinear form, that is
coervice but not self-adjoint and appropriate techniques must be used. Then we show how the
same analysis of domain decomposition methods applies to the real elliptic equations, to prove in
a different and new way the results of Section 4.3.1.

We recall that the Maxwell equations read (recall the definition of curl in Section 1.1.1)
∂D
∂t

= curlH−J ,

∂B
∂t

= −curl E ,

where E and B (which are real, three-dimensional, vector-valued functions of (x, t) ∈ R3 ×R ) are
respectively the electric and magnetic field. Furthermore, D and B are the electric and magnetic
induction and J is the current density. We assume the constitutive equations D = ε E and B = µH,
where ε is the dielectric constant while µ is the magnetic permeability. We also assume the so-
called Ohm law J = σ E , where σ is the electric conductivity. The quantities ε , µ , σ are symmetric
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matrices, which depend on the spatial variable x. We recall that ε and µ are assumed to be uniformly
positive definite, i.e. , there exist two real positive constants C1 and C2 such that:

3∑
i,j=1

εij(x)ζiζj ≥ C1|ζ|2 and
3∑

i,j=1

µij(x)ζiζj ≥ C2|ζ|2 ∀ ζ ∈ R3, a.e. x ∈ R3.

We also remind that σ is positive definite in a conductor and vanishes in an isolant. For the
mathematical analysis of the Maxwell equations see Dautray and J.-L. Lions [DL92] Ch. IX; for
the physical meaning of the above equations see Jackson [Jac75].

If we rewrite the equations in terms of E and H, the Maxwell equations become
ε
∂E
∂t

= curlH− σ E ,

µ
∂H
∂t

= −curl E .

We consider the time-harmonic problem by looking for solutions of the form
E(t,x) = Re

[
E(x)ei α t

]
,

H(t,x) = Re
[
H(x)ei α t

]
,

where E and H are complex-valued three-dimensional vectors. Moreover, the complex number i
is the imaginary unit and 0 �= α ∈ R is a given angular frequency. After rewriting the Maxwell
equations in terms of E and H and after substituting in the first equation the expression for H
that is given from the second equation, we arrive to

curl (µ−1curl E) − α2(ε− iα−1σ)E = 0.

We shall consider the low-frequency problem in which α is “small.” We observe that for a lot of
real media the term α2ε is much smaller than µ−1 and ασ. It is then physically reasonable to neglect
the term α2εE and, consequently, to study the low-frequency time-harmonic Maxwell equations:

curl (µ−1curl E) + iασE = 0.

When considering the equations in a bounded domain D ⊂ R3, the natural boundary condition is
n × E = Ψ on ∂D, where, as usual, n denotes the outward normal vector to ∂D. It is generally
assumed that there exists a vector valued function Ẽ such that n× Ẽ = Ψ on ∂D. By considering
the new unknown u := E − Ẽ, we can study the following problem

curl (µ−1curl u) + iασ u = f in D,(4.36)
(n × u)|∂D = 0 on ∂D,(4.37)

where f := curl (µ−1curl Ẽ) + iσα Ẽ.

Function spaces and variational formulation

When considering equations (4.36)-(4.37), it is natural to think to a variational formulation in a
proper functional space. Clearly, the bilinear form associated to the above problem is given by

a(w,v) :=
∫
D

(µ−1curl w · curl v + iασw · v) dx.
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We need now a precise functional framework because the problem, for its nature, should not be
treated in H10 (D). The spaces we shall use are the following ones:

H(curl ;D) :=
{
u ∈ (L2(D))3 : curl u ∈ (L2(D))3

}
and

H0(curl ;D) :=
{
H(curl ;D) : (n × u)|∂D = 0

}
,

equipped with the norm

‖u‖2
H(curl ;D) = ‖u‖2(L2(D))3 + ‖curl u‖2(L2(D))3 .

For further properties of these spaces, see Girault and Raviart [GR86]. We shall also use, for
0 < s ∈ R

Hs(curl ;D) :=
{
u ∈ (Hs(D))3 : curl u ∈ (Hs(D))3

}
equipped with the norm

‖u‖2
Hs(curl ;D) = ‖u‖2(Hs(D))3 + ‖curl u‖2(Hs(D))3 .

We need a knowledge of corresponding trace spaces to properly formulate the problem with two
sub-domains, as in the previous sections. We define the tangential divergence of a vector field λ.

Definition 4.3.3. Given λ ∈ (H−1/2(∂D))3 such that (λ · n)|∂D = 0, we define its tangential
divergence divτλ ∈ H−3/2(∂D) as the distribution such that

〈〈divτλ, ψ〉〉∂D := −〈λ, (∇ψ∗)|∂D〉∂D ∀ψ ∈ H3/2(∂D),

where ψ∗ ∈ H2(D) is any extension of ψ in D. We denote with 〈〈 . , . 〉〉∂D the duality between
H−3/2(∂D) and H3/2(∂D) and with 〈 . , . 〉∂D that one between H−1/2(∂D) and H1/2(∂D)

We define the Hilbert spaces χ∂D and χΣ, where Σ is a proper subset of ∂D as:

χ∂D :=
{
λ ∈ (H−1/2(∂D))3 : (λ · n)|∂D = 0, divτλ ∈ H−1/2(∂D)

}
and

χΣ :=
{
λ ∈ (H−1/2(Σ))3 : (λ · n)|Σ = 0, divτ λ̃ ∈ H−1/2(∂D)

}
,

equipped with the norms

‖λ‖2χ∂D
:= ‖λ‖2−1/2,∂D + ‖divτλ‖2−1/2,∂D

and
‖λ‖2χΣ

:= ‖λ‖2−1/2,Σ + ‖divτ λ̃‖2−1/2,∂D,

where λ̃ ∈ (H−1/2(∂D))3 is the extension of λ to 0 on ∂D\Σ.
It is well-known, see Alonso and Valli [AV96], that χ∂D and χΣ are algebraically and topologi-

cally equivalent to the spaces of tangential traces of H(curl ;D) and H∂D\Σ(curl ;D), where

H∂D\Σ(curl ;D) :=
{
u ∈ H(curl ;D) : (n × u)|∂D\Σ = 0

}
.

Furthermore there exist linear and continuous operators R∂D and RΣ such that

R∂D : χ∂D → H(curl ;D), with (n× R∂Dη)|∂D = η
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and
RΣ : χΣ → H∂D\Σ(curl ;D), with (n × RΣγ)|Σ = γ.

In the proof of some results we shall need additional regularity. For this reason we define, for
0 < s ∈ R

χs
∂D :=

{
λ ∈ (Hs(∂D))3 : (λ · n)|∂D = 0, divτλ ∈ Hs(∂D)

}
,

with norm
‖λ‖2χs

∂D
:= ‖λ‖2s,∂D + ‖divτλ‖2s,∂D.

We can now define the notion of weak solution.

Definition 4.3.4. We say that a weak solution to (4.36)-(4.37) is a function u belonging to
H0(curl ;D) such that:

a(u,v) = L(v) :=
∫
D

f · v dx ∀v ∈ H0(curl ;D).

We have the following result, see Leis [Lei79].

Theorem 4.3.5. Let D be a smooth bounded open set of R3 and σ a positive definite matrix. Then
the bilinear form a( . , . ) is continuous and coercive in H0(curl ;D) and, by using the Lax-Milgram
lemma, we can state that there exists a unique weak solution to (4.36)-(4.37).

Two-domain formulation

As we did for the Poisson equations, we now derive a two domain formulation. As usual, we consider
the problem with the domain divided into two sub-domains and we also suppose that µ and σ are
positive constants. We denote by uj, for j = 1, 2, the restriction to Dj of the solution u. It is easy
to prove that the following differential problems must be satisfied:

curl (µ−1curl u1) + iασ u1 = f1 in D1,

(n× u1) = 0 on ∂D1\Γ,

(n× u1) = (n × u2) on Γ,

(n× curl u1) = (n × curl u2) on Γ,

(n× u2) = 0 on ∂D2\Γ,

curl (µ−1curl u2) + iασ u2 = f2 in D2.

We set now

Vj :=
{
vj ∈ H(curl ;Dj) : (n× vj)|∂Dj\Γ = 0

}
= H0(curl ,Dj),

aj(w,v) :=
∫
Dj

(µ−1curl wj · curl vj + iασ wj · vj) dx,

Lj(vj) :=
∫
Dj

f · vj dx.
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The variational formulation of the problem with two sub-domains is then: find (u1,u2) ∈ V1 × V2
such that

a1(u1,v1) = L1(v1) ∀v1 ∈ H0(curl ;D1),

(n × u1)|Γ = (n × u2)|Γ,

a2(u2,v2) = L2(v2) + L1(R1(n × v2)|Γ) − a1(u1,R1(n× v2)|Γ) ∀v2 ∈ V2,

where R1 : χΓ → V1 is any continuous extension operator.

Finite dimensional formulation

We now approximate the Maxwell equations (4.36)-(4.37) with the first-kind Nédélec finite elements
Nk

h , but we could use as well the other Nédélec spaces. We recall that these spaces, introduced
by Nédélec [Néd80, Néd86], are the natural ones in the finite element approximation of Maxwell
equations. We suppose that Dj ⊂ R

3 is a polyhedra with Lipschitz boundary and we suppose
that {Th}h>0 is a regular subdivision of D, made with tetrahedra of diameter less than h. We
also suppose that each element of Th intersects only D1 or D2 and that {Th}h>0 induce on Γ a
quasi-uniform triangulation Mh. To construct the finite element approximant we define

Nk
j,h :=

{
vh ∈ H(curl ;Dj) : vh|K ∈ Rk, ∀K ∈ Tj,h with Tj,h = Th ∩Dj

}
,

where
Rk := (Pk−1)3 ⊕ Sk.

We denoted by Pk := P 3k , for k ≥ 1, the space of polynomials with degree equal or less than k and
by Sk the following space

Sk :=
{
p ∈ (P̃k)3 : p(x) · x = 0

}
,

where P̃k ⊂ Pk is the space of homogeneous polynomials of degree k.
We also define

Vj,h := Nk
j,h ∩ Vj,

V 0j,h := Nk
j,h ∩H0(curl ;Dj),

χΓ,h :=
{

(n× v1,h)|Γ : v1,h ∈ V1,h
}

=
{

(n× v2,h)|Γ : v2,h ∈ V2,h
}
.

The finite dimensional problem is: find (u1,h,u2,h) ∈ V1,h × V2,h such that


a1(u1,h,v1,h) = L1(v1,h) ∀v1,h ∈ V 01,h,

(n × u1,h)|Γ = (n × u2,h)|Γ,

a2(u2,h,v2,h) = L2(v2,h) + L1(R1(n × v2,h)|Γ) − a1(u1,h,R1(n × v2,h)|Γ) ∀v2,h ∈ V2,h.

(4.38)

Extension and Steklov-Poincaré operators

To properly formulate the interface problem with the Steklov-Poincaré operators we define, for
every γh ∈ χh,Γ, the extension Eh

j,Γγh which is solution of the problem: find Eh
j,Γγh ∈ Vj,h such

that
aj(Eh

j,Γγh,vj,h) = 0 ∀vj,h ∈ V 0j,h, with (n × Eh
j,Γγh)|Γ = γh.



4.3 Non-symmetric problems 95

We denote by ûj,h ∈ V 0j,h the solution of the problem

find ûj,h ∈ V 0j,h : aj(ûj,h,vj,h) = Lj(vj,h) ∀vj,h ∈ V 0j,h.

The existence and uniqueness of Eh
j,Γγh and ûj,h are a consequence of the Lax-Milgram lemma.

The couple (Eh
1,Γλh + û1,h,Eh

2,Γλh + û2,h) is solution of (4.38) if and only if the following equality
is satisfied

a2(Eh
2,Γλh + û2,h,v2,h) = L2(v2,h) + L1(Eh

1,Γ(n× v2,h)|Γ)

−a1(Eh
1,Γλh + û1,h,Eh

1,Γ(n × v2,h)|Γ) ∀v2,h ∈ V2,h.

By using the extension operators Eh
j,Γ we have that the previous equation is equivalent to

a2(Eh
2,Γλh,E

h
2,Γµh) + a2(û2,h,Eh

2,Γµh) = L2(Eh
2,Γµh) + L1(Eh

1,Γµh)

−a1(Eh
1,Γλh,E

h
1,Γµh) − a1(û1,h,Eh

1,Γµh) ∀µh ∈ χΓ,h.
(4.39)

We can now define the Steklov-Poincaré operators {Sj,h}j=1,2 as follows

〈〈 Sj,hγh,µh 〉〉h := aj(Eh
j,Γγh,E

h
j,Γµh) ∀γh,µh ∈ χΓ,h,

where 〈〈 . , . 〉〉h is the duality between χΓ,h and (χΓ,h)′. We also define the operator Φh from χΓ,h
into its dual space (χΓ,h)′ by

〈〈Φh,µh 〉〉h := L1(Eh
1,Γµh) − a1(û1,h,Eh

1,Γµh) + L2(Eh
2,Γµh) − a2(û2,h,Eh

2,Γµh) ∀µh ∈ χΓ,h.

Interface Problem

Problem 4.38 (and consequently 4.39) can be seen as the following interface problem. In the
interface spaces we have to find λh ∈ χΓ,h such that

〈〈 (S1,h + S2,h)λh,µh 〉〉h = 〈〈Φh,µh 〉〉h ∀µh ∈ χΓ,h.(4.40)

The operators Sj,h are continuous and coercive in χΓ,h and, to solve problem (4.40), we use both
the “Dirichlet-Neumann” and the “Neumann-Neumann” procedure8. We apply the Richardson
method, with preconditioners that are respectively:

Ph,DN := S−1
2,h and Ph,NN :=

(
S−1
1,h + S−1

2,h

)−1
.

The analysis of the convergence of the Dirichlet-Neumann method has been provided by Alonso
and Valli [AV99]; that one of the Neumann-Neumann method is due to Berselli [Ber99].

8We use the same terminology of the previous sections, even if the boundary conditions are not of Dirichlet or
Neumann type. See the differential interpretation.
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Dirichlet-Neumann method

We have the following iterative method: given λ0h ∈ χΓ,h, for each m ≥ 0 solve

λm+1h = λmh + θ S−1
2,h [Φh − (S1,h + S2,h)λmh ] = (1 − θ)λmh + θ S−1

2,h [Φh − S1,hλmh ] .(4.41)

With an argument similar of that of the previous sections, we have that (4.41) is equivalent to the
following sub-domain iteration: given λ0h ∈ χΓ,h, for each m ≥ 0 find um+1

1,h ∈ V1,h such that

a1(um+1
1,h ,v1,h) = L1(v1,h) ∀v1,h ∈ V 01,h with (n× um+1

1,h )|Γ = λmh .

Then find um+1
2,h ∈ V2,h such that

a2(um+1
2,h ,v2,h) = L2(v2,h) + L1(Eh

1,Γ(n × v2,h)|Γ) − a1(um+1
1,h ,Eh

1,Γ(n × v2,h)Γ) ∀v2,h ∈ V2,h

and finally

λm+1h = (1 − θ)λmh + θ(n× um+1
2,h )|Γ.(4.42)

This procedure is the finite dimensional variational formulation of the Dirichlet-Neumann iteration,
relative to problem (4.36)-(4.37). In a strong formulation the continuous problem reads as: for each
m ≥ 0, find um+1

j such that
curl (µ−1curl um+1

1 ) + iασ um+1
1 = f1 in D1,

n × um+1
1 = 0 on ∂D1 ∩ ∂D,

n × um+1
1 = λmh on Γ,

and 
curl (µ−1curl um+1

2 ) + iσαum+1
2 = f2 in D2,

n × um+1
2 = 0 on ∂D2 ∩ ∂D,

n × curl um+1
2 = n× curl um+1

1,h on Γ,

completed with condition (4.46).

Neumann-Neumann method

We now describe the second method of this section. We have the following iterative method. Given
λ0h ∈ χΓ,h, for each m ≥ 0 solve

λm+1h = λmh + θ (S−1
1,h + S−1

2,h) [Φh − (S1,h + S2,h)λmh ] .(4.43)

With a standard argument, we have that (4.43) is equivalent to the following sub-domain iteration:
given λ0h ∈ χΓ,h, for every m ≥ 0, find um+1

j,h such that

aj(um+1
j,h ,vj,h) = Lj(vj,h) ∀vj,h ∈ V 0j,h,
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with (n × um+1
j,h )|Γ = λmh , then find ψk+1

1,h ∈ V1,h such that
a1(ψk+1

1,h ,v1,h) = 0 ∀v1,h ∈ V 01,h

a1(ψk+1
1,h ,R1γh) = −L1(R1γh) − L2(R2γh)

+a1(uk+1
1,h ,R1γh) + a2(uk+1

2,h ,R2γh) ∀γh ∈ χΓ,h,

(4.44)

then find ψk+1
2,h ∈ V2,h such that

a2(ψk+1
2,h ,v2,h) = 0 ∀v2,h ∈ V 02,h

a2(ψk+1
2,h ,R2γh) = L1(R1γh) + L2(R2γh)

−a1(uk+1
1,h ,R1γh) − a2(uk+1

2,h ,R2γh) ∀γh ∈ χΓ,h,

(4.45)

with

λm+1h = λmh − θ
[
(n ×ψm+1

1,h )|Γ − (n ×ψm+1
2,h )|Γ

]
.(4.46)

This procedure is the variational formulation of the Neumann-Neumann iteration, relative to prob-
lem (4.36)-(4.37), which is written (in a strong formulation) as

curl (µ−1curl um+1
j ) + iασ um+1

j = fj in Dj,

n× um+1
j = 0 on ∂Dj ∩ ∂D,

n× um+1
j = λmh on Γ,

and 

curl (µ−1curlψm+1
j ) + iσαψm+1

j = 0 in Dj ,

n ×ψm+1
j = 0 on ∂Dj ∩ ∂D,

n × curlψm+1
j = n× curl um+1

1 − n× curl um+1
2 on Γ,

completed with condition (4.46).

A convergence result

We now state an abstract result. We shall use this proposition to prove the convergence, with a
rate which does not depend9 on h, of the Richardson methods (4.41) and (4.43).

Proposition 4.3.6. Let X be a complex Hilbert space and let Sj,h : Xh +→ X ′
h for j = 1, 2 be two

linear operators with Xh ⊂ X and dim Xh < +∞. Furthermore, let πs, s = 1, . . . ,Mh be a basis of
Xh. We define the matrices Sj,h associated to the operators Sj,h as

(Sj,hγ,µ)h := 〈〈 Sj,hγh,µh〉〉h ∀γ,µ ∈ CMh , j = 1, 2,

9We observe that, in the following, the constants that bound the eigenvalues do not depend on h.
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where ( . , . )h denotes the Euclidean scalar product in CMh . Finally, let

γh :=
Mh∑
s=1

γs πs and µh :=
Mh∑
s=1

µs πs.(4.47)

Let us suppose that there exist αj , βj > 0 for j = 1, 2, independent of h, such that

|〈〈 Sj,hγh,µh 〉〉h| ≤ βj‖γh‖X‖µh‖X ∀γh,µh ∈ Xh for j = 1, 2,(4.48)

|〈〈 Sj,hγh,γh〉〉h| ≥ αj‖γh‖2X ∀γh ∈ Xh for j = 1, 2,(4.49)

Re〈〈 Sj,hγh,γh〉〉h Re〈〈 S [j],hγh,γh〉〉h +

+ Im〈〈 Sj,hγh,γh〉〉h Im〈〈 S [j],hγh,γh〉〉h ≥ 0 ∀γ ∈ Xh,
(4.50)

where

[j] =
{

2 if j = 1,
1 if j = 2.

Then if νj,h = ν1j,h + iν2j,h ∈ C, with νij,h ∈ R for i, j = 1, 2, is an eigenvalue of S−1
[j],hSj,h, we have

that

ν1j,h ≥ 0 and |νj,h|2 =
|〈〈 Sj,hγh,γh〉〉h|2∣∣〈〈 S [j],hγh,γh〉〉h∣∣2 ≤

(
βj
α[j]

)2
.

Proof. If νj,h is an eigenvalue of S−1
[j],hSj,h, then the corresponding eigenvector 0 �= γ ∈ RMh satisfies

Sjhγh = νj,h S[j],hγ

and consequently
〈〈 Sj,hγh,γh〉〉h = νj,h 〈〈 S [j],hγh,γh〉〉h,

where γh is defined in (4.47). Since νj,h = ν1j,h + i ν2j,h we have

Re 〈〈 Sj,hγh,γh〉〉h = ν1j,h Re 〈〈 S [j],hγh,γh〉〉h − ν2j,h Im 〈〈 S [j],hγh,γh〉〉h,(4.51)

Im 〈〈 Sj,hγh,γh〉〉h = ν1j,h Im 〈〈 S [j],hγh,γh〉〉h + ν2j,h Re〈〈 S [j],hγh,γh〉〉h.(4.52)

By multiplying the two equations (4.51)-(4.52) by Re〈〈 S [j],hγh,γh〉〉h and by Im〈〈 S [j],hγh,γh〉〉h,
respectively and by summing up we obtain

ν1j,h

[(
Re 〈〈 S [j],hγh,γh〉〉h

)2 +
(
Im 〈〈 S [j],hγh,γh〉〉h

)2] = Re 〈〈 Sj,hγh,γh〉〉h·
·Re 〈〈 S [j],hγh,γh〉〉h + Im 〈〈 Sj,hγh,γh〉〉hIm 〈〈 S [j],hγh,γh〉〉h.

(4.53)

From (4.49) we obtain |〈〈 Sj,hγh,γh〉〉h| �= 0 and from (4.50) we get ν1j,h ≥ 0.
From (4.48)-(4.49) we also obtain

|νj,h|2 =
|〈〈 Sj,hγh,γh〉〉h|2∣∣〈〈 S [j],hγh,γh〉〉h∣∣2 ≤

(
βj
α[j]

)2
.
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We observe that if the operators Sj,h are the Steklov-Poincaré operators associated to the low-
frequency time-harmonic Maxwell equations (4.36)-(4.37), then the hypotheses of Proposition 4.3.6
are satisfied. We have that

Re〈〈 Sj,hγh,γh〉〉h =
∫
Dj

µ−1|curl Eh
j,Γγh|2 dx

and
Im 〈〈 Sj,hγh,γh〉〉h = α

∫
Dj

σ|Eh
j,Γγh|2 dx,

and (4.50) holds.
By using the following trace10 inequality, see Alonso and Valli [AV96], we have

‖(n × v)|Γ‖2χΓ
≤ C∗‖v‖2

H(curl ;Dj)
for j = 1, 2.

We can now prove (4.49) by observing that

|〈〈Sj,hγh, γh〉〉h| ≥ C
(
‖Eh
2,Γγh‖2L2(Dj)

+ ‖curl Eh
2,Γγh‖2L2(Dj)

)
≥ C

C∗ ‖γh‖
2
χΓ

.

The last condition (4.48) is the most technical to check. This condition is based on the (uniform
in h) continuity of the operator Eh

j,Γ. We define kj := sj − 1/2 with sj such that H1+sj(Dj) gives
the best regularity for the solutions of the Laplace problem (in the domain Dj) with homogeneous
Dirichlet or Neumann boundary conditions and with right hand side in L2(Dj). To prove (4.48) we
use the following lemmas, that are proved in Alonso and Valli [AV99]. These results are based on
some regularity results by Amrouche, Bernardi, Dauge and Girault [ABDG98].

Lemma 4.3.7. Given δ ∈ (0, kj ], there exist R 6 B1,j > 0 for j = 1, 2, such that ∀γ ∈ χΓ with
γ̃ ∈ χδ

∂Dj
we have Ej,Γγ ∈ H1/2+δ(curl ;Dj) and

‖Ej,Γγ‖H1/2+δ(curl ;Dj)
≤ B1,j‖γ̃‖χδ

∂Dj

for j = 1, 2.

Lemma 4.3.8. Let Th be a regular triangulation and let be given γh ∈ χΓ,h with Ej,Γγh belonging
to Ht(curl ;Dj) for t ∈ (1/2, 1). Then there exist R 6 B2,j > 0 for j = 1, 2, independent of h, such
that

‖Ej,Γγh − Eh
j,Γγh‖H(curl ;Dj)

≤ B2,j h
t‖Ej,Γγh‖Ht(curl ;D) ∀γh ∈ χΓ,h for j = 1, 2.

Lemma 4.3.9. Let Mh be a quasi-uniform triangulation on ∂Dj induced by Th. Then for every
η ∈ (0, 1/2) there exist R 6 B3,j > 0 for j = 1, 2, independent of h, such that

‖γ̃‖χη
∂Dj

≤ B3,jh
−1/2−η‖γ‖χΓ

∀γh ∈ χΓ,h for j = 1, 2.

With the above lemmas we can prove the following proposition, which concludes the verification
of the hypotheses of Proposition 4.3.6.

Proposition 4.3.10. There exist R 6 B4,j > 0 for j = 1, 2, independent of h, such that

|〈〈 Sj,hγh,µh 〉〉h| ≤ B4,j‖γh‖χΓ
‖µh‖χΓ

∀γh,µh ∈ χΓ,h for j = 1, 2.

10It is the counterpart of the trace inequality (4.14) that we have seen in the H1(D) framework.
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Proof. By using the definition of the Steklov-Poincaré operators, we have

|〈〈 Sj,hγh,µh 〉〉h| ≤
∣∣∣aj(Eh

j,Γγh,E
h
j,Γµh)

∣∣∣ ≤ dj‖Eh
j,Γγh‖H(curl ;Dj)

‖Eh
j,Γµh‖H(curl ;Dj)

,

where dj is the continuity constant of aj( . , . ). We prove that for j = 1, 2 there exist positive
constants Cj, which are independent of h, such that

‖Eh
1,Γγh‖H(curl ;Dj)

≤ C‖γh‖χΓ
∀γh ∈ χΓ,h.

We have

‖Eh
j,Γγh‖H(curl ;Dj)

≤ ‖Eh
j,Γγh − Ej,Γγh‖H(curl ;Dj)

+ ‖Ej,Γγh‖H(curl ;Dj)
.

The last term can be bounded by observing that the operator Ej,Γ : χΓ → Vj is continuous. Since
γh ∈ χΓ,h, we have that γ̃h ∈ χδ

∂Dj
for 0 < δ < 1/2. This fact holds because γ̃h and its tangential

divergence are piecewise polynomials. By using Lemma 4.3.7, we have that Ej,Γγh belongs to
H1/2+δ(curl ;Dj) for each δ ∈ (0, kj ].

By applying the results of Lemma 4.3.8 with t = 1/2 + δ, we obtain

‖Eh
j,Γγh − Ej,Γγh‖H(curl ;Dj)

≤ B2,jh
1/2+δ‖Ej,Γγh‖H1/2+δ(curl ;Dj)

≤ B1,jB2,jh
1/2+δ‖γ̃h‖χδ

∂Dj

.

By using Lemma 4.3.9 with η = δ, we finally have

‖Eh
j,Γγh − Ej,Γγh‖H(curl ;Dj)

≤ B1,jB2,jB3,j‖γ̃h‖χΓ
.

We can now prove the convergence of the two preconditioned Richardson methods we introduced. In
particular we shall prove that spectral radius of the iteration matrix is less than one, or equivalently
that condition (4.4) is satisfied.

Theorem 4.3.11. There exists a positive constant CDN , not depending on h, such that the precon-
ditioned Richardson methods (4.41) (corresponding to the “Dirichlet-Neumann” method) converges
for any 0 < θ < CDN . Furthermore, there exists a positive constant CNN , not depending on h, such
that the preconditioned Richardson methods (4.43) (corresponding to the “Neumann-Neumann”
method) converges for any 0 < θ < CNN .

Proof. If λh is an eigenvalue of S−1
2,h(S1,h + S2,h) = I + S−1

2,hS1,h we can write λh = 1 + ν1,h, where
ν1,h is an eigenvalue of S−1

2,hS1,h. If γ denotes the corresponding eigenvector we have

〈〈S1,hγh,γh〉〉h = ν〈〈S2,hγh,γh〉〉h.

By using Proposition 4.3.6 we have that

2
Reλh
|λh|2

= 2
1 + ν11,h

1 + 2ν11,h + |ν1,h|2
≥

1 + ν11,h
1 + 2ν11,h + β21/α

2
2

.

We now observe that the real function

φ(ξ) := 2
1 + ξ

1 + 2ξ + C21/C
2
2

,
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defined for ξ ≥ 0, is strictly increasing for C1 > C2, strictly decreasing for C2 > C1 and constantly
equal to one for C1 = C2. Moreover, we have that

φ(0) =
2C22

C11 + C22
and lim

ξ→+∞
φ(ξ) = 1.

It follows that
inf

0≤ξ<∞
φ(ξ) := CDN > 0.

We have that, for the positive constant CDN , each eigenvalue of S−1
2,h(S1,h + S2,h) satisfies

2
Reλh
|λh|2

≥ CDN

and the preconditioned Richardson method (4.41) converges with a rate independent of h, for any
0 < θ < CDN .

We pass now to the study of the second method we proposed. We make the following obser-
vation: let be given A ∈ GL(n × n,C) (invertible-n× n-complex matrix). Then the eigenvalues of
A + A−1 are of the form:

λ +
1
λ
,

with λ eigenvalue of A. This result easily follows by using the Jordan canonical form. We recall
that there exists a non-singular Q ∈ GL(n × n,C) such that QAQ−1 is in the Jordan canonical
form, i.e. , QAQ−1 is a block diagonal matrix with diagonal blocks of the form

λj 1 0 0 0

0
. . . . . . . . . 0

0
. . . . . . . . . 0

0
. . . . . . . . . 1

0 0 0 0 λj


,

corresponding to each eigenvalue λj. We observe that
(
QAQ−1)−1 is an upper triangular matrix

and each diagonal block, relative to the eigenvalue µj = 1/λj , is of the form
1
λj

∗ ∗

0
. . . ∗

0 0 1
λj


and it has the same dimension of the block relative to the eigenvalue λj of the matrix A. Written
in the Jordan basis (the basis relative to the canonical form), the sum of QAQ−1 and its inverse
(QAQ−1)−1 is an upper-triangular block-matrix with the elements λj +1/λj on the diagonal. This
proves the observation.

We can now prove the convergence of the preconditioned Richardson methods (4.43). If λh is
an eigenvalue of

(S−1
1,h + S−1

2,h)(S1,h + S2,h) = 2 I + S−1
1,hS2,h + S−1

2,hS1,h,

it can be written as 2 + νh, where νh is eigenvalue of S−1
1,hS2,h + S−1

2,hS1,h. Then νh can be written,
due to the previous observation, as

νh := ν1,h + ν2,h,
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where νj,h is an eigenvalue of S−1
[j],hSj,h. By using the results of Proposition 4.3.6 for the eigenvalues

of S−1
[j],hSj,h we have

2
Reλh
|λh|2

= 2
2 + ν11,h + ν12,h

4 + 4(ν11,h + ν12,h) + |νh|2
≥ 2

2 + ν11,h + ν12,h
4 + 4(ν11,h + ν12,h) + C

,

because
|νh|2 ≤ (|ν1,h| + |ν2,h|)2 ≤ (α1/β2 + α2/β1)2 = C.

We easily obtain that the real function Φ(ξ) := 2(2 + ξ)/(4 + 4 ξ + C) is such that

inf
ξ≥0

Φ(ξ) = min
(

4
4 + C

, 1
)
> 0.

Since ν1j,h ≥ 0 for j = 1, 2, we have that each eigenvalue λh of (S−1
1,h + S−1

2,h)(S1,h + S2,h) satisfy

2Reλh
|λh|2

≥ CNN ∀ s = 1, . . . ,Mh,

with

CNN := min
(

1,
4

4 + C

)
where C = (α1/β2+α2/β1)2. Consequently the preconditioned Richardson method (4.43) converges
with a rate which does not depend on h, for every θ ∈ (0, CNN ).

An application to advection diffusion equations

The method that we introduced for the Maxwell equations, can be used to prove in an alternative
way the convergence of the Dirichlet-Neumann and Neumann-Neumann methods for non-symmetric
elliptic equations of Section 4.3. We consider the partial differential operator (4.30) with real
coefficients. Its discretization, with the finite element method (or any other), leads to a positive-
definite non-symmetric real matrix A. To study the eigenvalues of the iteration matrix for both the
Dirichlet-Neumann and Neumann-Neumann problem, we complexify the problem. We consider A
(denoted by AC) as a linear operator from C

n into itself. We easily see that, if we set u := u1+ iu2
and f := f1+i f2, the real part u1 of the solution of ACu = f is exactly the solution of the original real
problem Ax = f1. This approach corresponds to a variational formulation with the non-Hermitian
complex bilinear form

aC(w, v) :=
∫
D

[
d∑

l,j=1

alj
∂w

∂xj

∂v

∂xl
+
(

1
2

div b + a0

)
w v

]
dx +

1
2

∫
D

(v b · ∇w − wb · ∇v) dx.

Observe that the coefficients alj , bl and a0 are still real. To better understand the result, we suppose
that alj = ajl and we isolate the non-symmetries of the problem in the first order terms. The real
part of aCi (u, u) (with obvious meaning it is the restriction to Di) is positive for i = 1, 2. Concerning
the complex part, it is easy to check that it is small, provided the quantities ‖bi‖∞ are small. It
holds because the expression of the imaginary part of aCi (u, u) is

1
2

∫
Di

(ub · ∇u− ub · ∇u) dx =
1
2

∫
Di

(
ub · ∇u− u b · ∇u

)
dx.
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Then easy calculation show that condition (4.50) is satisfied provided the modulus of the non-
symmetric part is small enough. In this way we proved with a different method the convergence of
the two classical substructuring methods, if the operator L is a “small” perturbation of a symmetric
one. We also remark that the first method, which is based on a contraction argument, gives
information on the specific norm with respect to convergence is achieved; the second method states
that the spectral radius is smaller than one and this gives bound for every norm, at a finite
dimensional level. In particular, for at least one case the norm of the iteration matrix is small than
one.

4.4 Advection diffusion equations and systems

In this section we analyze again the non-symmetric operator (4.30). In particular we want to find
convergence results or effective methods for equations with “big” non-symmetric terms. We propose
some methods, based on coercivity, which work for equation as well for systems. We recall that
this problem has been studied with some different domain decomposition methods. In particular we
shall explain that big difficulties arise in applying the abstract contraction theorems of the previous
section, because some control on the non-symmetric part is needed.

By using a terminology taken from physics, we call the non-symmetric equation associate to
the operator L of (4.30) advection-diffusion equations. It is clear that the second order term, or
diffusive term, is that one which regularizes the solution. The advection term, which corresponds
to the non-symmetric part, is that one which takes into account of “hyperbolic-type” phenomena.
The equation, that we consider, is the basic one to be solved in the (first step of) Chorin-Temam
method (recall Section 1.4.3). We observe that the advection-diffusion equations are themselves
an important numerical problem, because just in the one-dimensional case big stability problems
arise, see Quarteroni and Valli [QV94], Ch. 8. In particular, by recalling the results of Chapter 1,
we observe that the “bigness” of the non-symmetric part (relative to the symmetric part) depends
on the Reynolds number R. In real industrial problems the assumption of smallness of R are highly
unrealistic and the approximate solution of flows at high Reynolds numbers is one of the most
challenging problems in CFD, computational fluid dynamics. We propose the methods introduced
by Berselli and Saleri [BS99] and that one by Alonso, Trotta and Valli [ATV98], together with the
analysis of a new method.

To avoid inessential calculation we assume the second order part to be symmetric and we study,
for ε > 0, the following Dirichlet problem

Lεu := −ε∆u +
d∑

j=1

∂(bju)
∂xj

+ a0u = f in D,(4.54)

u = 0 on ∂D.(4.55)

We assume the same regularity hypotheses of the previous Section 4.3 on bi, i = 1, . . . , d, and a0.
Furthermore, we assume condition (4.31), to make the problem coercive.

4.4.1 Adaptive methods

For the sake of completeness, we recall some methods for advection diffusion equations. In the
first papers regarding domain decomposition methods for non-symmetric equations there where
proposed some methods that should be consistent with the hyperbolic limit: ε → 0. In the papers
by Carlenzoli and Quarteroni [CQ95] and Gastaldi, Gastaldi and Quarteroni [GGQ96] there were
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proposed the so called adaptive methods. These methods are based on the observation that, to
be consistent with the hyperbolic limit, a Dirichlet condition must not be imposed on outflow
boundary , whereas Neumann interface condition has to be enforced at the same boundary. We
recall that the outflow boundary ∂Dout of a domain D is defined by

∂Dout := {x ∈ ∂D : b(x) · n(x) > 0},

while the inflow boundary ∂Din is

∂Din := {x ∈ ∂D : b(x) · n(x) < 0}.

We now present two methods, without stating the convergence results, for which we refer to the
papers cited above or to Quarteroni and Valli [QV99] Ch. 6 §3.

The ADN-adaptive Dirichlet-Neumann method reads as: given u0i in Di, for i = 1, 2, solve for
each k ≥ 0

Lεu
k+1
1 = f in D1,

uk+11 = 0 on ∂D ∩ ∂D1,

uk+11 = λk on Γin ∪ Γ0,

ε
∂uk+11

∂n
= ε

∂uk2
∂n

on Γout,

and



Lεu
k+1
2 = f in D2,

uk+12 = 0 on ∂D ∩ ∂D2,

uk+12 = µk+1 on Γout,

ε
∂uk+12

∂n
= ε

∂uk+11

∂n
on Γin ∪ Γ0,

with

λk := θ′uk2|Γin∪Γ0 + (1 − θ′)uk1|Γin∪Γ0 on Γin ∪ Γ0

and

µk+1 := θ′′uk+11|Γout + (1 − θ′′)uk2|Γout on Γout,

where

∂D0 := {x ∈ ∂D : b(x) · n(x) = 0}.

We recall that θ′ and θ′′ are two positive parameters, that are used to allow possible under-relaxation
(if needed) to ensure convergence. It is also possible to introduce the ARN adaptive Robin-Neumann
method, that is very similar: on each sub-domain iteration the Dirichlet interface condition is
replaced with a Robin one. We observe that these methods need the knowledge (often non easily
available) of the inflow and outflow regions. Furthermore it is very difficult to apply these methods
in a vector equation, as the one we want to study.

Some very recent results on substructuring methods are that one proposed by Achdou and Nataf
[AN97] and Achdou, Nataf, Le Tallec and Vidrascu [ANLTV98]. In these papers the methods used
are essentially different: a Fourier analysis is provided. The authors also claim that the same
method can be extended to multi-domain problems, provided the sub-domain are of very simple
geometry. In particular, the analysis, that they propose, is possible only on rectangular domains,
with rectangular mesh, provided some rather restrictive assumptions linking b, ε and h are satisfied.
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4.4.2 Coercive methods

In this section we show some coercive methods for advection-diffusion equations. In particular the
methods we propose easily extend to advection-diffusion systems of the form

−ε∆u +
d∑

j=1

∂

∂xj
(B(j)u) + A0u = f in D,

u = 0 on ∂D,

where B(j), j = 1, . . . , d, and A0 are d × d symmetric matrices. We assume that the coefficients
of B(j) and A0 belong to L∞(D) and that the coefficients of

∑
j ∂B

(j)/∂xj belong to L∞(D).
Moreover, to ensure coercivity of the problem, we require that the following matrix

M(x) :=
1
2

d∑
j=1

∂

∂xj
B(j)(x) + A0(x)

is positive semi-definite for almost each x ∈ D. We can introduce the associated bilinear form

a#(w,v) :=
∫
D

[
ε∇w · ∇v + (M w) · v

]
+

1
2

∫
D

d∑
j=1

[(B(j)v) · ∂

∂xj
w − (B(j)

∂

∂xj
v) · w],

which can be used to rewrite the Dirichlet boundary value problem in the variational form

find u ∈ (H10 (D))d : a#(u,v) =
∫
D

f · v ∀v ∈ (H10 (D))d,

and to define the Steklov-Poincaré operators to pass to an interface problem and a domain decom-
position procedure.

We start by recalling some iterative methods for advection-diffusion equations. These methods
are based on the introduction of symmetric preconditioners. Together with the bilinear form

a#(w, v) :=
∫
D

[
ε∇w∇v +

(
1
2

div b + a0

)
w v

]
dx +

1
2

∫
D

(v b · ∇w − w b · ∇v) dx,

associated to the scalar advection-diffusion operator, we introduce the bilinear form associated to
its symmetric part

as(w, v) :=
∫
D

[
ε∇w∇v +

(
1
2

div b + a0

)
w v

]
dx.

We define in an obvious way the local forms corresponding to a#( . , . ) and as( . , . ). Furthermore
we denote by Qi the Steklov-Poincaré operators associated to the bilinear forms asi( . , . ), i.e. ,

〈Qiη, µ〉 = asi(H
s
i η,H

s
iµ) ∀ η, µ ∈ Λ,

where Hs is the extension operator defined by the bilinear form asi( . , . ) through

find Hsiλ ∈ Vi : asi(H
s
iλ, vi) = 0 ∀ vi ∈ V 0i , with Hsiλ|Λ = λ.

The operators Qi are continuous and coercive, as is easily checked. By using an idea taken from the
paper by Cai and Widlund [CW92] we use Qi as preconditioners for the interface problem Sλ = χ.
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A modified Dirichlet-Neumann method

In the first method we propose (that to our knowledge was not previously considered) we use
PMDN := Q2 as preconditioner for S = S1 + S2; we are faced with the iteration

λk+1 = λk + θQ−1
2 (χ− Sλk).(4.56)

For every k ≥ 0, we have to solve for i = 1, 2,
−ε∆uk+1i + ∇ · (buk+1i ) + a0u

k+1
i = f in Di,

uk+1i = 0 on ∂Di ∩ ∂D,

uk+1i = λk on Γ,

and 

−ε∆ψk+1
2 +

(
1
2∇ · b + a0

)
ψk+1
2 = 0 in D2,

ψk+1
2 = 0 on ∂D2 ∩ ∂D,

ε
∂ψk+1

2
∂n = ε

∂uk+1
1
∂n − 1

2b · nuk+11 − (ε∂u
k+1
2
∂n − 1

2b · nuk+12 ) on Γ,

with
λk+1 := λk + θ ψk+1

2|Γ ,

where θ > 0 is a relaxation parameter. We observe that this method corresponds to the following
iteration by sub-domains. Given λ0 ∈ Λ and for every k ≥ 0, find uk+1i ∈ Vi for i = 1, 2

a#i (uk+1i , v) = (f, v)i ∀ v ∈ V 0i with uk+1i |Γ = λk.

Then solve (only in the sub-domain D2): find ψk+1
2 ∈ V2 such that

as2(ψ
k+1
2 , v) = (f,E1v|Γ)1 − a1(uk+11 , E#1 v|Γ) + (f,E#2 v|Γ)2 − a2(uk+12 , E#2 v|Γ) ∀ v ∈ V2

and finally
λk+1 := λk + θψk+1

2|Γ .

The convergence of this method is based on the following abstract result, see Berselli and Sa-
leri [BS99].

Theorem 4.4.1. Let (X, ‖ . ‖X ) be a Hilbert space with dual X ′ and with duality pairing 〈 . , . 〉.
Let S from X into its dual X ′ be a linear operator which splits as S = S1 + S2. Suppose that both
Si are continuous and coercive

a) ∃ βi > 0 : 〈Siη, µ〉 ≤ βi‖η‖X‖µ‖X ∀ η, µ ∈ X for i = 1, 2,

b) ∃αi > 0 : 〈Siη, η〉 ≥ αi‖η‖2X ∀ η ∈ X for i = 1, 2.

Let us suppose that Q2 is symmetric, continuous and coercive

c) 〈Q2η, µ〉 = 〈η,Q2µ〉 ∀ η, µ ∈ X,

d) ∃ βs2 > 0 : 〈Q2η, µ〉 ≤ βs2‖η‖‖µ‖ ∀ η, µ ∈ X

e) ∃αs
2 > 0 : 〈Q2η, η〉 ≥ αs

2‖η‖2X ∀ η ∈ X.
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Then there exists θMDN > 0 such that, for each θ ∈ (0, θMDN ) and for a given λ0 ∈ X and F ∈ X ′,
the sequence λk+1 = λk + θQ−1

2 (F − Sλk) converges in X to the solution of Sλ = F .

Proof. We only sketch out the proof, because it is similar to the one of Theorem 4.2.6. To prove
the convergence we show that the map Tθ defined as Tθη := η−θQ−1

2 Sη is a strict contraction with
respect to the norm ‖ . ‖Q2 . We remark that, due to our choice, the preconditioner is symmetric and
positive definite and induces the scalar product 〈η, µ〉Q2 = 〈Q2η, µ〉 and a norm ‖η‖2Q2

= 〈Q2η, η〉
which is equivalent to the norm of X :

αs
2‖η‖2X ≤ ‖η‖2Q2

≤ βs2‖η‖2X .

We calculate the Q2-norm of Tθ and we obtain

‖Tθη‖2Q2
= ‖η‖2Q2

− 2 θ < (S1 + S2)η, η > +θ2 ‖Q−1
2 (S1 + S2)η‖2Q2

.

By recalling hypothesis b) we get that

〈(S1 + S2)η, η〉 ≥ (α1 + α2)‖η‖2X ≥ (α1 + α2)
βs2

‖η‖2Q2
= C1‖η‖2Q2

.

Since Q−1
2 is continuous with continuity constant given by 1/αs

2, we obtain that

‖Q−1
2 (S1 + S2)η‖2Q2

= 〈(S1 + S2)η,Q−1
2 (S1 + S2)η〉

≤ (β1 + β2)2

αs2
‖η‖2X

≤ (β1 + β2)2

(αs2)2
‖η‖2Q2

= C2‖η‖2Q2

By collecting these inequalities we obtain

‖Tθη‖2Q2
≤ (1 − 2 θ C1 + θ2C2)‖η‖2Q2

,

and by choosing θ ∈ (0, θMDN ), with θMDN = C1/C2, we have that Tθ is a strict contraction and
its fixed point is the solution of the interface problem Sλ = F .

By applying this result with Si = Si and Qi = Qi, for i = 1, 2, we obtain the following result, recall
that the operators Si and Qi, for i = 1, 2, are continuous and coercive.

Corollary 4.4.2. The modified Dirichlet-Neumann method converges at a rate which is indepen-
dent of h.

A modified Neumann-Neumann method

In this section we present the Richardson iterative method to solve the interface equation with

PMNN := (σ1Q−1
1 + σ2Q

−1
2 )−1(4.57)

as preconditioner. This method was introduced and analyzed in Berselli and Saleri [BS99]. Our
iteration can be described with a weak formulation as follows: given λ0 ∈ Λ, find, for each k ≥ 0,
uk+1i ∈ Vi such that

ai(uk+1i , v) = (f, v)i ∀ v ∈ V 0i with uk+1i |Λ = λk.
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Then find ψk+1
i ∈ Vi such that

asi (ψ
k+1
i , v) = (f,E#1 v|Γ)1 − a1(uk+11 , E#1 v|Γ) + (f,E#2 v|Γ)2 − a2(uk+12 , E2v|Γ)∀ v ∈ Vi

and finally
λk+1 := λk − θ(σ1ψk

1|Γ − σ2ψ
k
2|Γ).

Again the convergence is based on the following abstract theorem.

Theorem 4.4.3. Let (X, ‖ . ‖X ) be a Hilbert space with dual X ′. Let S : X → X ′ be a linear
operator which splits as S = S1 + S2. Suppose that both Si are continuous and coercive

a) ∃ βi > 0 : 〈Siη, µ〉 ≤ βi‖η‖X‖µ‖X ∀ η, µ ∈ X for i = 1, 2,

b) ∃αi > 0 : 〈Siη, η〉 ≥ αi‖η‖2X ∀ η ∈ X for i = 1, 2.

Let us suppose that Qi, for i = 1, 2 are both symmetric, continuous and coercive

c) 〈Qiη, µ〉 = 〈η,Qiµ〉 ∀ η, µ ∈ X,

d) ∃ βsi > 0 : 〈Qiη, µ〉 ≤ βsi ‖η‖X‖µ‖X ∀ η, µ ∈ X for i = 1, 2,

e) ∃αs
i > 0 : 〈Qiη, η〉 ≥ αs

i‖η‖2X ∀ η ∈ X for i = 1, 2.

Then, for any choice of the averaging parameters σi > 0, there exists θMNN > 0 such that, for each
θ ∈ (0, θMNN ) and for a given λ0 ∈ X and F ∈ X ′, the sequence

λk+1 = λk + θ(σ1Q−1
1 + σ2Q−1

2 )(F − Sλk)(4.58)

converges in X to the solution of Sλ = F .

Proof. To prove the convergence, let us show that the map Tθ defined as

Tθη := η − θ(σ1Q−1
1 + σ2Q

−1
2 )Qη

is a strict contraction with respect to the norm ‖ . ‖PMNN
below. We consider the scalar prod-

uct11 〈η, µ〉PMNN
:= 〈PMNNη, µ〉 induced by PMNN and the corresponding norm ‖η‖2PMNN

=
〈PMNNη, η〉, which is equivalent to the norm of X :

αPMNN
‖η‖2X ≤ ‖η‖2PMNN

≤ βPMNN
‖η‖2X ,

where αPMNN
and βPMNN

are, respectively, the coercivity and continuity constants of the operator
PMNN . We calculate the PMNN -norm of Tθ and we obtain

‖Tθη‖2PMNN
= ‖η‖2PMNN

− 2 θ < (S1 + S2)η, η > +θ2 ‖P−1
MNN (S1 + S2)η‖2PMNN

.

By recalling hypothesis b) we get that

〈(S1 + S2)η, η〉 ≥ (α1 + α2)‖η‖2X ≥ (α1 + α2)
βPMNN

‖η‖2PMNN
= C1‖η‖2PMNN

.

11Recall the results of Remark 4.2.10.



4.4 Advection diffusion equations and systems 109

Since P−1
MNN is continuous, with continuity constant given by 1/αPMNN

,we obtain that

‖P−1
MNN (S1 + S2)η‖2PMNN

= < (S1 + S2)η, P−1
MNN (S1 + S2)η >

≤ (β1 + β2)2

αPMNN

‖η‖2X

≤ (β1 + β2)2

(αPMNN
)2
‖η‖2PMNN

= C2‖η‖2PMNN
.

By collecting these inequalities, we obtain

‖Tθη‖2PMNN
≤ (1 − 2 θ C1 + θ2C2)‖η‖2PMNN

and by choosing θ ∈ (0, θMNN ), with θMNN = C1/C2, we have that Tθ is a strict contraction.

As in the previous Corollary 4.4.2 we can infer the following.

Corollary 4.4.4. The modified Neumann-Neumann method converges at a rate which is indepen-
dent of h.

The Neumann-Neumann method involves at each step the solution of two Dirichlet and two
mixed Dirichlet-Neumann problems. In this context, due to the presence of non-zero first order
terms, they are indeed Dirichlet-Robin problems. Heuristically we can see that the Dirichlet step
enforces the continuity of the solution and the Neumann step the continuity of the co-normal
derivative. In this way the trace and the co-normal condition on the interface are satisfied in the
limit k → +∞.

In the modified Neumann-Neumann method the second step involves an approximation of the
differential operator Lε and the co-normal derivative is glued as in a transmission problem. We
proved in Theorem 4.4.3 that convergence holds. From the numerical point of view, we observe
that the modified method may involve less calculation than the original one since the second step
involves the inversion of “better” matrices. On the other hand, an increasing of the number of
iteration needed to have convergence should be expected, because we do not use the complete
operator as preconditioner.

Some numerical Experiments

We recall that in the discretization of advection-dominated problems some stabilization procedure
à la SUPG (Streamline Upwind Petrov Galerkin) is needed, because if the Péclet number is greater
than one the Faedo-Galerkin method is unstable. We recall that the Péclet number is defined by

Pe :=
‖b‖∞,Ω h

2ε
.

To overcome this instability problem a standard method is the GALS (Galerkin/Least Squares)
stabilization method, see Hughes, Franca and Hulbert [HFH89]. In this case the bilinear form
a#( . , . ) must be substituted by

a#h (uh, vh) := a#(uh, vh) +
∑
K∈Th

τK(Lεuh, Lεvh)K ,
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where the constants τK are positive parameters and ( . , . )K is the L2(K) scalar product on each
triangle K of the triangulation Th. The term related to the external force must be changed as

Fh := (f, vh) +
∑
K∈Th

τK(f, Lεvh)K ,

in order to have consistency. A typical result that can be obtained by comparing the modified
Neumann-Neumann method with the classical Neumann-Neumann method is the following one.
We set D = (0, 1) × (0, 1), the advective field b = (1, 1)T and a0(x) ≡ f(x) ≡ 0. The boundary
condition are u = 1 on the side {x1 = 0} and vanishing on the other three sides. The computational
domain is sub-divided in D1 := (0, 1/2) × (0, 1) and D2 := (1/2, 1) × (0, 1) . In the following table
we collect the number of iterations (NIT) needed to arrive at convergence that is fixed at a tolerance
for L∞-norm of the residual of 10−5. We denoted by Cpu the CPU-time used by MATLABTM, see the
conclusions for a discussion of these results. In this test case the advective field has non-vanishing

NN MNN CpuMNN/CpuNN

ε
∖

h 1
10

1
20

1
40

1
80

1
10

1
20

1
40

1
80

1
10

1
20

1
40

1
80

1 2 2 2 2 7 6 6 6 0.74 0.78 0.91 1.25
10−1 4 3 3 3 11 14 16 18 0.75 0.86 1.24 2.30
10−2 3 3 3 4 16 24 34 59 0.78 0.99 1.95 5.78

components both in the parallel and orthogonal direction, relative to the interface. The presence
of parallel components is one of the most interesting features of a test case for advection diffusion
equations. Further numerical results relative to the modified Neumann-Neumann method can be
found in Berselli and Saleri [BS99].

We now propose another family of preconditioners for advection-diffusion equations. The fol-
lowing preconditioners are labelled by “γ”, which is a nonnegative parameter, used to have iterative
methods for which convergence results can be proven.

γ-Dirichlet-Robin method

We present the following “iteration by sub-domain” scheme for solving (4.54)-(4.55), which will be
called γ-Dirichlet-Robin (γ-DR), see Alonso, Trotta and Valli [ATV98]. The scheme reads: let λ0

be given in Λ, for each k ≥ 0 solve


Lεu

k+1
1 = f in D1,

uk+11 = 0 on ∂D1 ∩ ∂D,

uk+11 = λk on Γ,

and



Lεu
k+1
2 = f in D2,

uk+12 = 0 on ∂D2 ∩ ∂D,

ε
∂uk+12

∂n
−
(

1
2

b · n + γ

)
uk+12 =

= ε
∂uk+11

∂n
−
(

1
2

b · n + γ

)
uk+11 on Γ,

with
λk+1 := θuk+12|Γ + (1 − θ)λk on Γ,
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where θ �= 0 is a relaxation parameter introduced to accelerate convergence. Here γ = γ(x) is
a given function belonging to L∞(Γ), satisfying γ(x) ≥ 0 for almost each x ∈ Γ; the rate of
convergence of the method is in principle dependent on the choice of this function. The iterative
scheme reads, in a variational formulation, as: find uk+11 ∈ V1 such that

a#1 (uk+11 , v1) =
∫
D1

fv1 ∀ v1 ∈ V 01 (D1), with uk+1
1|Γ = λk.(4.59)

Then find uk+12 ∈ V2 such that

a#2 (uk+12 , v2) +
∫
Γ
γuk+12|Γ v2|Γ =

∫
D2

fv2 +
∫
D1

fR1v2|Γ −

− a#1 (uk+11 ,R1v2|Γ) +
∫
Γ
γuk+11|Γ v2|Γ ∀ v2 ∈ V2,

(4.60)

where Ri denotes again any extension operator from Λ to Vi. Finally set

λk+1 := θuk+12|Γ + (1 − θ)λk on Γ.(4.61)

The problem for u1 is coercive12 in H10 (D1), whereas the problem for u2 is coercive in V2, for any
γ ≥ 0. Hence the iterative scheme is correctly defined.

Remark 4.4.5. We remark that this method is different from the ADN scheme proposed by Gastaldi,
Gastaldi and Quarteroni [GGQ96]. Here the Dirichlet boundary condition is imposed on the whole
interface Γ, no matter if it is an inflow or an outflow boundary. If the flow has always the same
direction on Γ, say b · n < 0 on Γ, by choosing γ = −12 b · n, we recover the ADN scheme.

It is possible to propose a modified algorithm and hereafter γ(x) = γ ≥ 0. By setting ((η, µ))Λ
the scalar product in the trace space Λ = H

1/2
00 (Γ), we solve, in the second step, the following

problem: find uk+12 ∈ V2 such that

a#2 (uk+12 , v2) + γ((uk+12|Γ ,v2|Γ))Λ =
∫
D2

fv2 +
∫
D1

fR1v2|Γ

− a#1 (uk+11 ,R1v2|Γ) + γ((uk+11|Γ , v2|Γ))Λ ∀ v2 ∈ V2.

(4.62)

Remark 4.4.6. We remark that this latter scheme (4.59)-(4.62)-(4.61) is more difficult to imple-
ment than (4.59)-(4.60)-(4.61), but it has better convergence properties.

To prove the convergence of the latter scheme we apply the results of Theorem 4.2.6. In this
problem the Steklov-Poincaré operators (Si, for i = 1, 2) must be defined in a somewhat different
way.

For each η, µ ∈ Λ, we define the Steklov-Poincaré operators Si,γ : Λ → Λ′ as

〈S1,γη, µ〉 = a#1 (E#1 η,E
#
1 µ) − γ((η, µ))Λ,(4.63)

〈S2,γη, µ〉 = a#2 (E#2 η,E
#
2 µ) + γ((η, µ))Λ,(4.64)

12Recall that is due do the appropriate choice of the bilinear form.
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and set, as usual, S = S1,γ + S2,γ . The reader can compare the definition (4.63)-(4.64) above, with
the standard one (4.33), we previously used. It is clear, as we shall see in a while, that this definition
makes the coercivity constant of S2,γ bigger than the corredponding one of the “standard”operator
S2 defined in (4.33).

By recalling that k̃i‖η‖Λ ≤ ‖E#i η‖i,Di ≤ ki‖η‖Λ, we get that the operator S1,γ turns out to be
continuous as

〈S1η, µ〉 ≤ (β#1 k
2
1 + γ)‖η‖Λ‖µ‖Λ.

Moreover, for each γ ≥ 0, S2,γ is continuous and coercive, as

〈S2,γη, µ〉 ≤ (β#2 k
2
2 + γ)‖η‖Λ‖µ‖Λ

and
〈S2,γη, η〉 ≥ (α#2 k̃

2
2 + γ)‖η‖2Λ.

It is easily shown that the iteration operator for the γ-DR scheme is given by Tθ := I − θS−1
2,γS.

In fact, the γ-DR scheme is a preconditioned Richardson method with preconditioner given by
P := S2,γ . To apply the abstract convergence Theorem 4.2.6 we have to check that condition d)

there exists a constant κ∗ > 0 : 〈S2η,S−1
2 Sη〉 + 〈Sη, η〉 ≥ κ∗‖η‖2X ∀ η ∈ X

is satisfied if Si = Si,γ and X = Λ; the other conditions are trivially satisfied. We have the following
result.

Theorem 4.4.7. There exists γ∗ ≥ 0 and θγ−DR > 0, such that, for each γ ≥ γ∗ and for each λ0

in Λ, the γ-Dirichlet-Robin iterative scheme (4.59)-(4.62)-(4.61) is convergent in Λ, provided that
θ belongs to (0, θγ−DR).

First we observe that the operators Si,γ are continuous, with continuity constants given by
β#i k

2
i + γ, while S2,γ is coercive, with coercivity constant given by α2 = α#2 k̃

2
2 + γ. Then

〈S2,γη, S−1
2,γSη〉 + 〈Sη, η〉 = 2〈Sη, η〉 + 〈S2,γη, S−1

2,γSη〉 − 〈Sη, η〉

≥ 2〈Sη, η〉 − |〈S2,γη, S−1
2,γSη〉 − 〈Sη, η〉|

and, by using the same techniques used in the study of convergence of the Dirichlet-Neumann
method of Section 4.3.1, we get that

|〈S2,γη, S−1
2,γSη〉 − 〈Sη, η〉| ≤ 2‖b‖(L∞(D2))dk

2
2‖η‖Λ‖S−1

2,γSη‖Λ.

By setting
β := β#1 k

2
1 + β#2 k

2
2 and α := α#1 k̃

2
1 + α#2 k̃

2
2,

(they are the continuity and coercivity constant of S, respectively) we have that

〈S2η, S−1
2 Sη〉 + 〈Sη, η〉 ≥ 2α‖η‖2Λ − 2‖b‖(L∞(D2))dk

2
2
β
α2
‖η‖2Λ

= 2
(
α− ‖b‖(L∞(D2))dk

2
2
β
α2

)
‖η‖2Λ,

and the assumption d) is satisfied if

κ∗ := 2
(
α− ‖b‖(L∞(D2))dk

2
2

β

α2

)
> 0.
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By recalling the definition of α2, to get convergence it is sufficient to take

γ ≥ γ∗ :=


0 for α#2 k̃

2
2 > ‖b‖(L∞(D2))dk

2
2

β

α
,

> ‖b‖(L∞(D2))dk
2
2

β

α
− α#2 k̃

2
2 for α#2 k̃

2
2 ≤ ‖b‖(L∞(D2))dk

2
2

β

α
.

The convergence of the method can be proved also at a finite dimensional level. We observe that
the convergence depends only on the constants β#i , α

#
2 , ki and k̃i. If we consider a finite element

approximation all the constant except the ki are independent of the mesh size h.

Remark 4.4.8. In the finite dimensional case, the convergence of the first γ-DR iterative scheme
(4.59)-(4.60)-(4.61) can be proved by a similar argument. In fact, for discrete functions all the
norms are equivalent, hence there exists a constant κh > 0 such that

κh‖ηh‖2Λ ≤ ‖ηh‖20,Γ ∀ ηh ∈ Λh,

where ‖ · ‖0,Γ denotes the norm in L2(Γ). By using this estimate, we only have to substitute the
coercivity constant α2 := α#2 k̃

2
2 + γ of S2 with

α2,h := α#2 k̃
2
2 + γκh ,

and convergence is achieved for infD γ ≥ γ∗h := γ∗/κh. In this case we are not in a condition to
prove that the iterative procedure introduces an optimal preconditioner. However, the numerical
results show that also in this case the rate of convergence is independent of h, see Alonso, Trotta
and Valli [ATV98], Section 6. Furthermore, the convergence result in Theorem 4.4.7 holds only for
γ sufficiently large. Numerical experiments show that the γ-DR iterative scheme indeed converges
for any γ ≥ 0 and in particular for γ = 0.

γ-Robin-Robin method

A variant of the Robin method is the so called γ-Robin-Robin method defined as follows: given λ0

in L2(Γ), for each k ≥ 0 solve



Lεu
k+1
1 = f in D1,

uk+11 = 0 on ∂D1 ∩ ∂D,

ε
∂uk+11

∂n
−
(

1
2

b · n− γ

)
uk+11 = λk on Γ,

and



Lεu
k+1
2 = f in D2,

uk+12 = 0 on ∂D2 ∩ ∂D,

ε
∂uk+12

∂n
−
(

1
2

b · n + γ

)
uk+12 =

= ε
∂uk+11

∂n
−
(

1
2

b · n + γ

)
uk+11 on Γ,

where

λk+1 := ε
∂uk+12

∂n
−
(

1
2

b · n− γ

)
uk+12 on Γ

and γ = γ(x) is a given function in L∞(Γ) satisfying γ(x) ≥ γ̂ > 0 for almost each x ∈ Γ. The
convergence of this method is proved in Section 4 of Alonso, Trotta and Valli [ATV98]. By using
a technique very similar to that one of Theorem 4.2.14 it follows the following result.
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Theorem 4.4.9. Assume either that D is a Lipschitz polygonal domain or that ∂D ∈ C2. Suppose
moreover that b|Γ ∈ (L∞(Γ))d. For each λ0 ∈ L2(Γ) and for each i = 1, 2, the sequences uki
converge in H1(Di) to u|Di

, which is the restriction of the solution u of the homogeneous Dirichlet
problem (4.54)-(4.55).

A modified γ-Robin-Robin method

We now introduce a different γ−Robin-Robin method that, to the author knowledge, was not previ-
ously considered. A convergence result will be proved. The modified γ-Robin-Robin method is very
similar to the γ-Robin-Robin method. The main difference is that in the variational formulation
a term involving the H

1/2
00 (Γ)-scalar product is added, instead of the L2(Γ) term of the γ-Robin-

Robin method. This method is very similar to the Neumann-Neumann, previously analyzed. The
iteration reads as find uk+1i ∈ Vi such that

a#i (uk+1i , v1) =
∫
Di

fvi ∀ vi ∈ V 0i with uk+1i|Γ = λk,(4.65)

then find ψk+1
1 ∈ V1 such that

a#1 (ψk+1
1 , v1) + γ ((ψk+1

1|Γ , v1|Γ))Λ = 0 ∀v1 ∈ V 01

a#1 (ψk+1
1 ,R1µ) + γ ((ψk+1

1|Γ , µ))Λ = −
∫
D1

fR1µdx−
∫
D2

fR2µdx

+a#1 (uk+11 ,R1µ) + a#2 (uk+12 ,R2µ) ∀µ ∈ Λ,

(4.66)

then find ψk+1
2 ∈ V2 such that

a#2 (ψk+1
2 , v2) + γ ((ψk+1

2|Γ , v2|Γ))Λ = 0 ∀v2 ∈ V 02

a#2 (ψk+1
2 ,R2µ) + γ ((ψk+1

2|Γ , µ))Λ =
∫
D1

fR1µdx +
∫
D2

fR2µdx

−a#1 (uk+11 ,R1µ) − a#2 (uk+12 ,R2µ) ∀µ ∈ Λ

(4.67)

and finally

λk+1 = λk + θ(σ1ψk+1
1|Γ − σ2ψ

k+1
2|Γ ).(4.68)

We suppose that γ is a positive constant and to pass to an interface problem we define the operators
Ŝi,γ , for i = 1, 2, and from Λ into Λ′, as

〈Ŝi,γη, µ〉 := 〈Siη, µ〉 + γ((η, µ)).

Remark 4.4.10. We observe that the operator Ŝ2,γ equals the operator S2,γ introduced in the γ-
DR method, while Ŝ1,γ is different from S1,γ ; compare the definition of the “hatted” operators with
(4.63)-(4.64). We observe that in this case Ŝ1,γ + Ŝ2,γ �= S.
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We also observe that the operators Ŝi,γ are continuos and coercive with constants related to
that ones of Si (recall that they are αi and βi) as follows

〈Ŝi,γη, µ〉 ≤ (βi + γ)‖η‖X‖µ‖X ∀ η, µ ∈ X,(4.69)

〈Ŝi,γη, η〉 ≥ (αi + γ)‖η‖2X ∀ η ∈ X,(4.70)

We introduce the γ-Robin-Robin preconditioner Pγ−mRR given by

Pγ−mRR :=
(
σ1S

−1
1,γ + σ2S

−1
2,γ

)−1
and the previous iteration by subdomain (4.65)-(4.66)-(4.67) -(4.68) can be described by the fol-
lowing Richardson preconditioned iteration

λk+1 = λk + θ(σ1Ŝ−1
1,γ + σ2Ŝ

−1
2,γ)(χ− Sλk).(4.71)

To avoid ugly formulas we set P := Pγ−mRR and we have the following convergence theorem.

Theorem 4.4.11. There exists γ∗ > 0 and θγ−MRR > 0 such that, for each γ ≥ γ∗ and for each
λ0 in Λ, the modified γ-Robin-Robin iterative scheme (4.71) is convergent in Λ, provided that θ
belongs to (0, θγ−MRR).

Proof. To prove the convergence we shall use Theorem 4.2.11 and in particular we have only to
check that condition c) holds, because the Ŝi,γ’s are continuous and coercive and consequently
P inherits these properties. By setting ρi := Ŝ−1

i,γ Pη and ξi := Ŝ−1
i,γ Pµ, for i = 1, 2, we have

Pη = Ŝ1,γ ρ1 = Ŝ2,γ ρ2, Pµ = Ŝ1,γ ξ1 = Ŝ2,γ ξ2,

η = P−1Pη = σ1ρ1 + σ2ρ2

and similarly
µ = σ1ξ1 + σ2ξ2.

Therefore

〈Pη, µ〉 − 〈Pµ, η〉 = 〈Pη, σ1ξ1 + σ2ξ2〉 − 〈Pµ, σ1ρ1 + σ2ρ2〉

= σ1(〈Ŝ1,γρ1, ξ1〉 − 〈Ŝ1,γξ1, ρ1〉) + σ2(〈Ŝ2,γρ2, ξ2〉 − 〈Ŝ2,γξ2, ρ2〉)

= 2
2∑

i=1

σia
ss
i (E#i ρi, E

#
i ξi)

= 2
2∑

i=1

σia
ss
i (E#i S

−1
i,γ Pη,E

#
i S

−1
i,γ Pµ).

Furthermore, by recalling Remark 4.2.10, the continuity constant βP of the preconditioner is given
by

βγ :=
(β1 + γ)2(β2 + γ)2

σ1(α1 + γ)(β1 + γ)2 + σ2(α2 + γ)(β2 + γ)2
.(4.72)
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Hereafter we suppose that α1 = α2 := α̂ and β1 = β2 := β̂, to simplify the calculations, but the
results still work without this assumption, as can be easily seen. We have, since Pµ = Sη

2
2∑

i=1

∣∣∣σiassi (E#i S
−1
i,γ Pη,E

#
i S

−1
i,γ Sη)

∣∣∣ ≤ 2‖b‖(L∞(D))d

2∑
i=1

‖S−1
i,γ Pη‖Λ‖S−1

i,γ Sη‖Λ,

and finally, by recalling that the continuity constant of Ŝ−1
i,γ is given by (α̂ + γ)−1 and by using

(4.72),we have that

β2
S−1
i,γ
βPβS =

1
(α̂ + γ)2

(β̂ + γ)4β̂

(α̂ + γ)(β̂ + γ)2
=

β̂(β̂ + γ)2

(α̂ + γ)3
.

We get that,
2∑

i=1

∣∣∣σiassi (E#i S
−1
i,γ Pη,E

#
i S

−1
i,γ Pη)

∣∣∣ ≤ 2Ĉ(α̂, β̂) ‖b‖(L∞(D))d

α̂ + γ
‖η‖2Λ,

with Ĉ(α̂, β̂) := max
{
β̂, β̂3/α̂2

}
. We observe that, if γ is big enough, the condition c) of Theo-

rem 4.2.11 is satisfied and the modified γ-Robin-Robin method converges.

Remarks on the numerical implementation

In this section we proposed some domain decomposition methods to solve advection-diffusion equa-
tions, when the advective term is “dominant” on the diffusive one. We showed some convergence
results and some of these methods have been tested numerically; unfortunately, it is not known a
method which enjoys, at the same time, of good theoretical and numerical properties.

We proposed some methods for which we have convergence theorems (the “modified” ones and
the “γ methods”), but we can not prove such a result for the simplest method, i.e. , the classical
Neumann-Neumann. The “modified methods” (MDN and MNN, defined respectively by (4.56)
and (4.57)) are based on symmetric preconditioners. They have optimal theoretical convergence
results, but the numerical scenario concerning the MNN method is the following: the numerical
computations show its convergence and a certain independence on the mesh parameter h (on the
other hand, the MDN method has not been implemented yet). We observe that the number of
iterations seems to increase if the “viscosity” ε (or better the Péclet number) becomes small,
with respect to the other parameters of the problem. The bound on the number of iterations
(independent of h) is asymptotic and in our experiments we may not have reached the upper
bound. In practical computations, the number of iterations for the classical Neumann-Neumann
method (i.e. , if PNN := (σ1S−1

1 + σ2S
−1
2 )−1) is lower, but we recall again that no convergence

theory exists for this method, in the context of advection-dominated equations. If we see the
CPU-time, then we have that, for moderate advective term (or big diffusion), the modified method
MNN requires less elementary operations, even if the number of iterations increases of a factor up
to 5. This is the main advantage of the “modified” methods and, even if they converge for each
convective term, they can be successfully used in problems that are not advection-dominated, see
Berselli and Saleri [BS99].

On the other hand, the γ-DR and γ-RR methods show convergence for suitable γ (see The-
orem 4.4.7 and Theorem 4.4.9), which may depend on the advective field. We also recall (see
Remark 4.4.8) that the γ-DR method converges numerically for any γ ≥ 0, even if the proof works
only for γ big enough. Observe, in particular, that the γ-DR method converge numerically even if
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γ = 0. In this last case the γ-DR method reduces to a Richardson method with S2 as preconditioner;
this preconditioned iterative method is formally identical to the Dirichlet-Neumann method used
for the Laplace operator, but in this case the interface conditions are of Dirichlet and Robin type.
Furthermore, for several numerical examples, the γ-RR method converges for γ > 0 and the con-
vergence is independent of h, even if the abstract convergence results are not strong enough to give
such an independence. For the numerical results cited above see Alonso, Trotta and Valli [ATV98]
§ 6.

Regarding the last method, the “modified” γ-RR method (4.71), we have not numerical results
except for the special case γ = 0. In this case the “modified” γ-RR method reduces to the classical
Neumann-Neumann (recall that the name was used in analogy with the Poisson equation, because
the interface preconditioner PNN := (σ1S−1

1 +σ2S
−1
2 )−1 is formally the same, but a more appropri-

ate name should be Robin-Robin) and numerical tests were proposed to compare this method with
the “modified” one. We note that the “modified” 0-Robin-Robin can be used with large advection
coefficient and different mesh sizes and the rate of convergence results essentially the same. We
expect that the “modified” γ-RR method works well (from the numerical point of view) even for
γ > 0 in the range of applicability of Theorem 4.4.11.

In conclusion, we proposed different methods for which the theory is completely satisfactory.
All these methods are approximations of the Dirichlet-Neumann and Neumann-Neumann methods,
for which we have very good numerical results, but no convergence results in general situations;
precisely, the known convergence results for the Dirichlet-Neumann and Neumann-Neumann meth-
ods work only with rather restrictive assumptions on the advective field or on the geometry and
size of the subdomains and not for a general advection-dominated problem.
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tiques du type Navier-Stokes, Exposition. Math. 7 (1989), no. 1, 73–82.

[DPZ92] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge
University Press, Cambridge, 1992.

[DPZ96] G. Da Prato and J. Zabczyk, Ergodicity for infinite-dimensional systems, Cambridge
University Press, Cambridge, 1996.



122 BIBLIOGRAPHY

[Dau88] M. Dauge, Elliptic boundary value problems on corner domains, Springer-Verlag,
Berlin, 1988.

[DL88] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science
and technology. Vol. 2, Functional and variational methods. Springer-Verlag, Berlin,
1988

[DL92] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science
and technology. Vol. 3, Spectral theory and applications. Springer-Verlag, Berlin, 1992
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[FP67] C. Foiaş and G. Prodi, Sur le comportement global des solutions non-stationnaires des
équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova 39 (1967),
1–34.
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