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Abstract-- This paper presents the study of the 

representation of compact mappings in Hilbert Space . Here 

we denote the Scalar Product of two elements (x,y) of a (real 

or complex ) Hilbert Space by (x,y). Here it is proved in this 

paper that the study of compact mappings in Hilbert Space is 

a consequence of the spectral theory of compact Symmetric 

operators. 
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I. INTRODUCTION  

Hall (1) and Kothe (2,3) are the pioneer worker of the 

present area . In fact , the present work is the extension of 

work done by Wong , Yau- Chuen (10) , Srivastava et al . 

(4), Srivastava et al. (5), Srivastava et al. (6) , Srivastava et 

al .(7), Kumar et al. (8) and Srivastava et al.(9). In this 

paper we have studied analytically about  compact mapping 

in Hilbert Space. 

Here , we use the following definitions, Notations and 

Fundamental ideas : 

If M and N are subspaces of a Linear space X such 

that every xX can be written uniquely as x = y + z 

where y ϵ M & z ϵN then the direct sum of M and N 

can also be written X= M  N where N is called 

complimentary subspace of M in X and if M  N = 

{0 }, the decomposition x = y + z is unique. 

A given subspace M has many complimentary 

subspaces and every complimentary subspace of  M has 

the same dimension and the dimension of a 

complimentary subspace is called co-dimension of M 

in X , as if  X = R
3
 and M is a plane through the origin 

then any line through the origin that does not lie in M 

is a complimentary subspace.  

If    X = M  N then we define the projection P: X 

 X of X on to M along N by Px = y, where x = y+z 

with y  M , Z N which is Linear with ran P = M and 

ker P = N satisfying  P
2
 = P .  

This property characterizes projections for which the 

following definitions and theorems follow : -  

Definition 1:  Any projection associated with a direct 

sum decomposition of a projection on a Linear space X 

is a linear map P:X  X such that P
2
 = P 

Definition 2: An orthogonal projection on a Hilbert 

space H is also a Linear mapping P:H  H satisfying 

P
2
 = P, <Px,y> = <x , Py>  for all x, y  H. 

“An orthogonal projection is necessarily bounded.”  

Theorem 1 :  Let X be a linear space, 

(i) If  P:X  X is a projection then X = ran P  

kerP 

(ii) If X = M  N where M and N are Linear 

subspaces of X then there is a projection P:X 

 X with ran P = M  and ker P = N. 

Proof: 

For (i) We show that x  ran P if x = Px 

If x = Px then clearly x  ran P 

If x ran P then x = Py for some y  x 

And since P
2
 = P which follows that Px = P

2
y = Py = x  

If x  ran P  kerP then x = Px & Px  = 0  

So ran P  kerP = {0}. If x  X then  

We have x = Px + (x- Px) ; where Px  ran P and (x – 

Px)  kerP . 

Since P (x- Px) = Px - P
2
x = Px –Px = 0 

Thus X  = ran P  kerP. ………………………(1.1) 

Now for (ii) 

We consider if X = M N then x  N has unique 

decomposition x = y+z with y M & Z  N and Px = y 

defines the required Projection .  
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In particular, in orthogonal subspaces while using 

Hilbert Space, let us suppose that  M is a closed 

subspace of Hilbert Space H then by well known 

property we have H = M M
 

. We call the projection 

of H on to M along M
 

 the orthogonal projection of H 

on to M. 

If x= y+z and x1 = y1 + z1 where y, y1  M and z, z1 

 M

 then by orthogonality of M and M


   <Px, x1> 

= <y, y1 +z1> = <y, y1> = <y+z, y1> 

     = <x, Px1> …………… (1.2) 

Which states that an orthogonal projection is self 

Adjoint. We show the properties (1.1) and (1.2) 

characterize orthogonal projections with Defn-2 . 

Lemma :- If P is a non zero orthogonal projection then 

 P = 1 . 

Proof : - If x  H and Px ≠ 0 then by Cauchy Schwarz  

inequality , 

  Px   =  < Px, Px> = <x, P
2
x > = < x, Px > ≤  x 

         Px     Px                  Px  

Therefore   P  ≤ 1. If  P ≠ 0 then there is an x H 

with Px ≠ 0 and  P( Px)  =  Px   so that  P ≥ 1. 

Thus, the Orthogonal Projection P and closed 

subspace M of H such that ran P = M will must obey 

one –one correspondence, then the kernel of 

Orthogonal Projection is the Orthogonal Complement 

of  M .  

Example .1 – The space L
2
 (R) is the Orthogonal direct 

sum of space M of even functions and the space N of 

odd functions . 

The Orthogonal Projection P and Q of H onto M and 

N, respectively are given by  

Pf (x) =  f (x) + f(-x)  , Q f (x) = f (x) – f (-x ) 

        2    2 

Where I- P = Q . 

Proposition: (a) A Linear functional on a Complex 

Hilbert space H is a Linear map from H to C. A Linear 

functional  is bounded or continuous, if there exists a 

constant M such that   (x)  ≤ M  x  for all x  H . 

The norm of bounded linear functional  is  

   = sup  (x)  

 x  = 1 

If   y  H then y (x) = < y, x > is a bounded Linear 

functional on H, with  

 y  =  y . 

(b) If  is a bounded Linear functional on a Hilbert 

space H, then there is a unique vector y  H such that 

 (x) = < y, x>   for all  x  H 

Theorem.2 : (Riesz representation) If  is a bounded 

linear functional on a Hilbert space  H , then there is a 

unique vector y  H such that 

 (x) = < y, x>  for all  x  H .   ………….. (2.1) 

Proof.  If  = 0 , then y = 0 , so we suppose that  ≠ 0. 

In that case , ker  is a proper closed subspace of H. 

and , it implies that , there is a nonzero vector 

z H such  that z   ker. We define a linear map P : H 

H by  

 Px  =  (x) / (z) .z 

Then P
2
 = P, so Theorem 1 implies that , H  = ran P 

 kerP. Moreover,  

 ran P ={ z| C}, kerP = ker 

So that ran P   ker P. It follows that P is an 

orthogonal projection, and  

H ={ z| C}  ker is an orthogonal direct sum. 

We can therefore write  

x  H as x=    +n,   C and n  ker. 

Taking the inner product of this decomposition with 

z, we get 

   = < z, x >/II z II
2
, and evaluating  on x =    

                 

    (x) =    ( ). 

The elimination 

                                                          
result  

              ___ 

yields  (x) = < y, x > , where y =  ( )/II z II
2
.z   

Thus, every bounded linear functional is given by 

the inner product with a fixed vector.We have already , 

seen that y (x) = < y, x > defines a bounded linear 

functional on H for every y  H .  

 



 
International Journal of Emerging Technology and Advanced Engineering 

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 10, October 2016) 

151 
 

To prove that there is a unique y in H associated 

with a given linear functional, suppose that  y1 = y2 . 

Then y1(y) = y2(y). When y= y1- y2 , which implies 

that II y1 – y2 II
2 

 = 0 , so y1 = y2   . 

The Map J :HH* given by Jy =y , therefore 

identifies a Hilbert space H with its dual space H*. The 

norm of y is equal to the norm of y,  so j is an 

isometry . In this case of complex Hilbert spaces , J is 

antilinear , rather than linear, because y = y.  Thus, 

Hilbert spaces are self – dual , meaning that H and H* 

are isomorphic as Banach spaces, and anti-isomorphic 

as Hilbert spaces. Thus Hilbert spaces are special                   

in this respect. This completes the proof of the 

Theorem 2. 

Proposition : ( c )  An important consequences of the 

Riesz representation theorem is the existence of the 

adjoint of a bounded linear operator on a Hilbert space. 

The defining property of the adjoint A*  B(H) of an 

operator A  B(H) is that  

< x, Ay > = <A*x ,y >        for all x, y  H ………(2.2) 

The Uniqueness of A* is obvious . The definition 

implies that  

(A*)* = A ,     (AB)* = B*A*. 

To prove that A* exists , we have to show that for 

every xH , there is a vector zH , depending linearly 

on x such that  

< z, y > = < x, Ay >      for all y  H  ………….. (2.3) 

For fixed x , the map x   defined by, x (y) = < x, 

Ay >   is  a bounded linear functional on H , with IIxII 

≤ IIAII IIxII . By the Riesz representation Theorem, 

there is a unique z  H such that x (y) = < z, y > . This 

z  satisfies (2.3), So we get A*x = z . The linearity of 

A* follows from the uniqueness in the Riesz 

representation theorem and the linearity of the inner 

product. 

Thus, from above definitions , Theorems, Leema , 

example , Propositions (a), (b),& (C), which Shows the 

proof of the main result as “the representation of 

compact mappings of Hilbert Spaces is a Consequence 

of the Spectral theory of Compact symmetric operators.  

1) Let H1, H2 be Hilbert spaces, A £ (H1,H2) compact 

and not of finite rank . Then, there exists orthonormal 

systems , en , n = 1,2,………. In H1 and {fn }, n= 

1,2,…….. in H2 such that  ∞  

 

2) A x = Ʃ λn (x, en ) fn , x  H1  where λn > 0 and λn → 

0. 

        n=1 

Proof :-  Since A is Compact , A*A is Compact too and 

positive , where A* denotes the adjoint in the sense of the 

scalar product . It follows from Spectral theory that there 

exists an orthonormal sequence of eigen vectors  en , n= 

1,2,3,…….. and eigen values  λn
2
 > 0 , λn

2
 →0 such that  

               ∞ 

  A* Ax =Ʃ λn
2
 (x, en ) en ,  

            n=1 

A*A is zero on the orthonormal or complement H of the 

closed subspace spanned by all the en . But then A is zero 

too on H. 

Take  y ϵ H and suppose  Ay ǂ 0. 

Then  (Ay , Ay ) = (y, A*Ay ) ǂ 0. But this would imply 

A*Ay ǂ 0 , Therefore we have a representation 

            ∞ 

   Ax = Ʃ λn (x, en ) A en. 

                 n=1 

We now define  

fn  = (1/ λn )A en . Then  

            ∞ 

   Ax =Ʃ λn (x, en ) fn    and other proposition 

will be proved if we Show  

                 n=1 

that { fn } is an orthonormal systems. 

 

But  (fi ,fk ) = (λi
-1

 Aei , λk
-1

 A ek ) 

         = λi 
-1

 λk
-1

(A*Aei,ek ) 

          = λi 
-1

 λk
-1

 (λi
2
ei, ek ) 

          =δik 

 

3) Conversely every mapping A ϵ £(H1,H2) which has a 

representation (2) with 

λn > 0 , λn →0 is compact. 

                          K 

        Let Ak be   Ʃ λn (x, en )fn , ǀǀ(A - An )x ǀǀ
2 
 

                         
n=1 

                        ∞ 

          ≤ Ʃ λn
2 
 ǀ (x , en) ǀ

2
 

                       n=k+1 

       

           ≤ ϵ
2
 ǀǀ x ǀǀ

2
 , it is  ǀ λn ǀ ≤ ϵ     for  n > k(ϵ).  
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Thus A is compact as the limit of An in £b (H1 , H2 ) . 

From this proof and (1) follow immediately.  

4) Let H1, H2 be Hilbert Spaces. Then every compact 

A ϵ £b (H1, H2 ) is the limit of a sequence of mappings 

of finite rank. 

 Then λn of (2) are called the singular values of A and 

the non- increasing sequence of all singular values of A is 

uniquely determined by A , the representation (2)  can be 

written in a different way using linear forms instead of 

scalar product for the coefficients of the fn . 

The scalar product (x,y) in Hilbert space H is linear in x 

for y fixed , thus it defines a linear functional, < Ӯ , x  > = 

(x,y), where Ӯ is uniqually determined . One calls Ӯ the 

Conjugate element to y. There exists an Orthonormal basis 

{eα }, α ϵ A , of H such that   

For   x =  Ʃ ξα eα, y 

     α 

           

= Ʃ ηα eα 

    α 

                  _ 

(x,y) = Ʃ ξα ηα =  < Ӯ , x  > 

 α 

_ 

 Since this is true for all  x ϵ H , if follows that Ӯ = Ʃ 

ηα eα : 

      α          

The coefficients of Ӯ are the Conjugate of the 

coefficients of y.  

Hence the Result.  
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