
Annu. Rev. Fluid Mech. 2000. 32:93–136
Copyright q 2000 by Annual Reviews. All rights reserved.

0066–4189/00/0115–0093$12.00 93

FLUID MECHANICS IN THE DRIVEN CAVITY
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Abstract This review pertains to the body of work dealing with internal recir-
culating flows generated by the motion of one or more of the containing walls. These
flows are not only technologically important, they are of great scientific interest
because they display almost all fluid mechanical phenomena in the simplest of geo-
metrical settings. Thus corner eddies, longitudinal vortices, nonuniqueness, transition,
and turbulence all occur naturally and can be studied in the same closed geometry.
This facilitates the comparison of results from experiment, analysis, and computation
over the whole range of Reynolds numbers. Considerable progress has been made in
recent years in the understanding of three-dimensional flows and in the study of
turbulence. The use of direct numerical simulation appears very promising.

INTRODUCTION

This article concerns a class of internal flows, usually bounded, of an incom-
pressible, viscous, Newtonian fluid in which the motion is generated by a portion
of the containing boundary. A schematic of an industrial setting in which such a
flow field plays an important role is shown in Figure 1a. In the short-dwell coater
used to produce high-grade paper and photographic film, the structure of the field
in the liquid pond can greatly influence the quality of the coating on the roll. In
Figure 1b the container is cylindrical with the lower end wall in linear motion,
whereas in Figure 1c the cavity is a rectangular parallelepiped in which the lid
generates the motion. In all cases the containers are assumed to be full with no
free surfaces, and gravity is assumed to be unimportant. Note that in general the
cavity can be unbounded in one or more directions, and one can have two or
more distinct side walls in motion; we do not have much occasion to deal with
these cases in this review.

Let L be a convenient length scale associated with the cavity geometry, and
let U be a convenient speed scale associated with the moving boundary. If we
now normalize all lengths by L, velocities by U, and time and pressure suitably,
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94 SHANKAR n DESHPANDE

Figure 1 Examples of driven cavity flows. (a) Schematic of a short-dwell coater (from
Aidun et al 1991); (b) 3-D flow in a cylindrical container driven by the bottom end wall;
(c) 3-D flow in a rectangular parallelepiped driven by the motion of the lid.

the continuity and Navier-Stokes equations can be written as

¹•u 4 0

]u
11 2` (u •¹)u 4 1¹p ` Re ¹ u,

]t

where all dependent and independent variables are dimensionless and Re 4 UL/
m is the Reynolds number. Note that, although only one dimensionless parameter,
Re, enters the equations, other parameters originating from the boundary geometry
and motion can and do significantly influence the field. The boundary conditions
for the motion are the usual impermeability and no-slip conditions, whereas the
initial conditions, when necessary, usually correspond to a quiescent fluid.
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FLUID MECHANICS IN THE DRIVEN CAVITY 95

It may be worthwhile to briefly mention why cavity flows are important. No
doubt there are a number of industrial contexts in which these flows and the
structures that they exhibit play a role. For example, Aidun et al (1991) point out
the direct relevance of cavity flows to coaters, as in Figure 1, and in melt spinning
processes used to manufacture microcrystalline material. The eddy structures
found in driven-cavity flows give insight into the behavior of such structures in
applications as diverse as drag-reducing riblets and mixing cavities used to syn-
thesize fine polymeric composites (Zumbrunnen et al 1995). However, in our
view the overwhelming importance of these flows is to the basic study of fluid
mechanics. In no other class of flows are the boundary conditions so unambigu-
ous. As a consequence, driven cavity flows offer an ideal framework in which
meaningful and detailed comparisons can be made between results obtained from
experiment, theory, and computation. In fact, as hundreds of papers attest, the
driven cavity problem is one of the standards used to test new computational
schemes. Another great advantage of this class of flows is that the flow domain
is unchanged when the Reynolds number is increased. This greatly facilitates
investigations over the whole range of Reynolds numbers, 0 , Re , `. Thus the
most comprehensive comparisons between the experimental results obtained in a
turbulent flow (Prasad & Koseff 1989) and the corresponding direct numerical
simulations (DNS) (Deshpande & Shankar 1994a,b; Verstappen & Veldman 1994)
have been made for a driven cubical cavity. Thirdly, driven cavity flows exhibit
almost all phenomena that can possibly occur in incompressible flows: eddies,
secondary flows, complex three-dimensional (3-D) patterns, chaotic particle
motions, instabilities, transition, and turbulence. As a striking example, it was in
such flows that Bogatyrev & Gorin (1978) and Koseff & Street (1984b) showed,
contrary to intuition, that the flow was essentially 3-D, even when the aspect ratio
was large. In this sense, cavity flows are almost canonical and will continue to
be extensively studied and used.

TWO-DIMENSIONAL CAVITY FLOWS

Although one cannot experimentally realize genuine two-dimensional (2-D) cav-
ity flows, they are still of interest, because planar flows afford considerable ana-
lytical simplification, and their study leads to an understanding of some issues,
which is valuable. The visualizations shown in Figure 2 of shear driven flow over
rectangular cavities give one an idea of what the flow fields look like; in particular,
note the primary eddies that are symmetric about the centerline and the eddies at
the corners. We must emphasize, however, that this article deals only with flows
driven by boundaries rather than those driven by shear. Even if the planar flow
is unsteady, a stream function w exists such that the cartesian components of the
velocity are given by u(x, y) 4 ]w/]y, v(x, y) 4 1]w/]x. Note that the vorticity
has only one component, x, in the z direction. If the above representations are
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Figure 2 Experimental visualization of particle paths in shear driven Stokes flows in rectangular cavities. (a) The depth-to-width ratio,
$ 4 1/3. Note that only corner eddies are present; (b) $ 4 2. Only one primary eddy is clearly discernable. (From Taneda 1979.)
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FLUID MECHANICS IN THE DRIVEN CAVITY 97

used, the whole field can then be determined, in principle, from the pair of equa-
tions for the stream function and vorticity:

]x
2 11 2¹ w 4 1x, ` (w x 1 w x ) 4 Re ¹ x.y x x y]t

Most of the published literature on 2-D cavity flows deals with a rectangular
cavity in which the flow is generated by the steady, uniform motion of one of the
walls alone, for example, the lid. This would correspond in Figure 1c to the
situation in which there are no end walls to the cavity in the z direction and in
which the field is independent of z and t and is generated by the steady, uniform
motion of the lid x 4 0 in the y direction as shown. Note that in general the field
will depend not only on Re but also on lx, the depth of the cavity; if lx 4 1, the
cavity is of square section, the most frequently studied geometry. Here the external
length scale has been taken to be Ly, the width of the lid. If we apply the no-slip
and impermeability conditions on the side walls and bottom of the cavity and
demand that the fluid move with the lid at the lid, there will be a discontinuity in
the boundary conditions at the two top corners, where the side walls meet the lid.
This is the origin of the so-called corner singularity, which is of theoretical interest
but which, not surprisingly, plays but a minor role in the overall field. We postpone
for now a discussion of the nature of this singularity.

Stokes Flow

To get a feel for the nature of the flow field, it is best to start by looking at the
Stokes limit Re 4 0, when the nonlinear inertial terms drop out. It is easy to
show that in this limit the stream function now satisfies the biharmonic equation
¹4w 4 0, with w 4 0 on all the walls and with ]w/]n vanishing on the stationary
walls and taking the value 11 on the lid. All the early work was based on the
numerical solution of the equations resulting from the finite difference formula-
tion of the problem (Kawaguti 1961, Burggraf 1966, Pan & Acrivos 1967). How-
ever, for this simple cartesian geometry, it would seem that a series solution based
on elementary separable solutions of the biharmonic equation may be feasible. If
we take the side walls to be at y 4 51⁄2, the relevant symmetric solutions are of
the form fn(y) where fn 4 y sin kny 1 1⁄2 tan (1⁄2kn) cos kny, and where1k xne
the eigenvalues kn satisfy the transcendental equation sin kn 4 1kn, all of whose
roots are complex. Let {kn, n 4 1, 2, 3.…} be the roots in the first quadrant,
ordered by the magnitudes of their real parts; then 1kn, n, and 1 n are also¯ ¯k k
roots. The principal eigenvalue k1 is ;4.212 ` 2.251i.

One can then attempt to represent the stream function as an infinite sum
over these basis functions; that is, 1k xnw(x, y) 4 5 ( {a f (y)e `n41 n n

, where the unknown complex coefficients {an, bn, n 4 1, 2,1k (l 1x)n xb f (y)e }n n

3,…} are determined from the boundary conditions on the lid and the bottom
wall alone; the side wall conditions are satisfied exactly by the eigenfunctions.
The mathematically inclined reader can see Joseph et al (1982) for some results
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98 SHANKAR n DESHPANDE

on the convergence of a biorthogonal series closely related to the above series. It
must be noted that, for this non–self-adjoint problem in which all the eigenvalues
are complex, there are no obvious orthogonality or biorthogonality relations by
which the coefficients can be simply determined. So far, these coefficients have
had to be obtained by truncating infinite systems of equations for the unknowns
and then solving them for a finite number N of each of the coefficients an and bn.
Whereas Joseph & Sturges (1978) generate the infinite system from a biortho-
gonal series, Shankar (1993) generates the system from a simple least-squares
procedure applied directly on the series given above. The latter procedure appears
to be more general because it can be carried over, unmodified, to three-dimen-
sional problems.

Primary Eddies An idea of the overall eddy structure in the cavity can be
obtained from the fields shown in Figure 3 for cavities of depths ranging from
0.25 to 5. One immediately notes that the field consists mainly of a number of
counter-rotating eddies. There is but a single primary eddy (PE) when the cavity
depth is #1, two eddies when the depth is 2, and four eddies when the depth is
5. In the last case it might be observed that the eddies are similar in shape and
almost equally spaced. These features can be easily explained from the form of
the eigenfunction expansion for w(x, y) given above. Because the real parts of
the eigenvalues kn increase with n, the field for a deep cavity is soon dominated
by the principal eigenvalue k1 and can be represented to a very good approxi-
mation by the first term of the expansion alone! The x dependence then1(k `ik )x1r 1ie
indicates that the counter-rotating eddies will be spaced ;p/k1i apart, whereas the
field will decay by a factor exp (1pk1r/k1i) in going from one eddy center to the
next. This works out to an eddy spacing of ;1.396 and a decay of ;1/357 in the
stream function. Although the eddy spacings seen in Figure 3 roughly agree with
these ideas, calculations for the infinitely deep cavity (Shankar 1993) verify them
to great accuracy. For the latter calculation one need only retain the coefficients
an, setting all the bn to zero, reducing the computations by half. We find an infinite
sequence of counter-rotating eddies with the properties deduced above. Not only
would it be impossible to reach this conclusion by purely numerical means, it is
very difficult to make accurate calculations for deep cavities because of the slow
penetration of the field into the depths and the large number of grid points
required.

Corner Eddies and Primary-Eddy Evolution The other important feature of
these cavity flow fields is a little less easily seen in Figure 3. At the bottom left
and right corners of each cavity are corner eddies, the outer boundary of each
being indicated by a w 4 0 streamline. As Moffatt (1964) has shown on very
general grounds, we should expect these eddies, driven by the PEs, to exist at the
corners. In fact, the theory shows that there should be an infinite sequence of
eddies of diminishing size and strength as the corner is approached. Examin-
ing Figure 3, which shows a single PE for ,x 4 1 and two for ,x 4 2, a natural
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FLUID MECHANICS IN THE DRIVEN CAVITY 99

Figure 3 The depen-
dence on the depth $ of
the 2-D Stokes flow eddy
structure in a rectangular
cavity. Panels a–e illus-
trate the effects of increas-
ing depth ($). (From Pan
& Acrivos 1967.)
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100 SHANKAR n DESHPANDE

Figure 4 Growth and merger of the corner eddies with increasing cavity depth $ (panels
a r c), leading to the formation of the second primary eddy. (From Shankar 1993.)

question that arises is, ‘‘How does this change in flow topology take place?’’
Accurate calculations show that, when ,x . 1, the corner eddies begin to grow
with depth, this growth being very rapid around ,x 4 1.5; moreover, the change
in PE topology takes place between depths of 1.6 and 1.7. The relevant changes
are shown in Figure 4, in which only one half of the cavity is shown. When ,x

4 1.6295 (Figure 4a), the two corner eddies are still distinct but just touching at
the mid-plane. When ,x 4 1.7 (Figure 4b), merger has already taken place with
a saddle point in the symmetry plane and with lift off of the first PE. With increas-
ing depth the characteristic cat’s-eye pattern lifts off, becomes weaker, and ulti-
mately disappears, leaving behind the second PE (Figure 4c). Note the growth of
the second corner eddy (of the infinite sequence) in this process, which becomes
the primary corner eddy after the merger. This process, of the formation of new
PEs from the growth and merger of the corner eddies, is repeated indefinitely as
the depth is increased. Hellou & Coutanceau (1992) have very skillfully visual-
ized a similar primary-eddy evolutionary process in a different geometry, in which
a rotating cylinder drives the motion in a rectangular channel.

Corner Singularities We now touch on an issue that is of some theoretical
interest, namely the corner singularity issue. To bring the matter into focus, con-
sider the 2-D cavity field formulated above with the lid moving uniformly at unit
speed in the y direction. Because the y component of velocity is now required to
be 1 on the lid (x 4 0) and 0 on the side walls (y 4 50.5), the boundary condition
is discontinuous at the corner; in fact the velocity appears to be bivalued at the
corner. With the considerable experience gained from the study of similar prob-
lems, for example, in heat conduction in plates with discontinuous boundary
conditions and from the Saint-Venant problem in elasticity, one would informally
conclude that, whereas the influence of the discontinuity will be increasingly felt
as a singular corner is approached, its effect will be negligible over most of the
field. Such considerations have led most workers to analyze the field while ignor-
ing the singularity, and the consistency of the results obtained suggests that such
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FLUID MECHANICS IN THE DRIVEN CAVITY 101

an approach is, by and large, satisfactory. One could avoid this whole issue by
making the lid speed continuous but nonuniform in y, such that it vanishes at y
4 50.5, in which case the velocity would be continuous on the whole boundary.
But this would amount to the evasion of a genuine issue because an experimental
realization of a cavity flow would normally involve a uniformly moving lid.

Let us take a more careful look at what is really involved in the corner issue.
Let the side wall be of thickness t, and let h be the gap between the moving lid
and the top of the side wall. A proper formulation of the problem would now
extend the domain to include the gap and permit the specification of no-slip on
the top of the side wall and the extended lid and a constant pressure condition,
for example, on the external face of the gap. This would make things unambig-
uous. If h r 0, it seems reasonable to suppose that the field local to the corner
must behave as the field local to the corner formed by two rigid planes bounding
a viscous fluid, when one of them slides over the other (Batchelor 1967, pp. 224–
26). This can be achieved in a number of ways. Srinivasan (1995) achieves this
by writing the stream function as a sum of a singular part with the correct behavior
near the corners and a nonsingular part that essentially corrects the contribution
of the singular part on the boundaries; a fair amount of numerical work is
involved. On the other hand, Meleshko (1996) uses ordinary real Fourier series
expansions for the rectangular cavity in a manner such that the required behavior
of the field near the singular corners is recovered. The upshot of these studies is
what had all along been assumed to be true: the singularities have virtually no
effect over most of the flow field, their effects being confined to the neighborhood
of the singular corners.

Arbitrary Reynolds Number

Once the Reynolds number is allowed to be arbitrary, one has no recourse but to
the numerical solution of the governing equations. Thus all the results that we
quote below have been obtained by numerical means alone. As has been pointed
out earlier for deep cavities, numerical computations can be difficult even for
Stokes flow. Naturally, the difficulties increase when nonlinearity is included,
particularly as the Reynolds number increases. The resolution of thin shear layers
and slow-moving corner eddies and possible new structures in the field all require
skill and care. Schreiber & Keller (1983) have pointed out that some of the early
2-D cavity flow computations yielded spurious solutions. The finite-difference
equations that are used to approximate the governing field equations will, in
general, have a very large complex solution space that may contain more than
one real solution vector; it is possible that one may then pick out a spurious real
solution. As Schreiber & Keller (1983) convincingly show, mild grid refinements
may indicate ‘‘numerical convergence,’’ but possibly to a spurious solution; the
physically correct solution may require a very much finer grid. Thus great care
and correct technique are required to make reliable and accurate calculations.
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102 SHANKAR n DESHPANDE

Figure 5 The dependence on the Reynolds number of 2-D, lid-driven flow in a square
cavity; the lid moves from left to right. (a) Re 4 100; the stream function value at the
primary eddy centre, wm 4 10.1034; (b) Re 4 1000; wm 4 10.1179; (c) Re 4 10,000;
wm 4 10.1197. (From Ghia et al 1982.)

The Square Cavity Because the lid-driven square cavity (,x 4 1) is now a
standard test case for new computational schemes, there are many dozens of
papers in the literature that present results with a variety of formulations, numer-
ical schemes, and grids. We mention only Benjamin & Denny (1979), Agarwal
(1981), and Ghia et al (1982). All the results that are quoted in this section are
from Ghia et al (1982); their results were obtained from a finite-difference form
of the stream function-vorticity (w, x) formulation, using uniform cartesian grids.
Figure 5 shows the streamline patterns for three Reynolds numbers in a square
cavity in which the lid is moving from left to right; note that, for Figures 5–7,
the origin is at the bottom left hand corner, and x is to the right. These may be
compared with Figure 3c for Stokes flow. For Re 4 100 (Figure 5a), even though
the field is no longer symmetric about the mid-plane, it is topologically not dif-
ferent from that in Stokes flow. Initially the center of the PE (where w is a min-
imum), which was located 0.24 below the lid in the mid-plane, moves a little
lower and to the right when Re 4 100. But it is found that, for Re 4 400, the
center of the primary eddy has moved lower and back towards the center plane,
and, as Figure 5 shows, as Re increases further there is the uniform tendency for
the eddy center to move towards the geometric center of the cavity. This can be
seen more quantitatively in Figure 6, which shows graphically how the various
eddy centers move as Re increases.

To facilitate the discussion of the secondary eddies, we designate them bottom
right, bottom left, and top left; they are designated BR1, BR2, …, BL1, BL2, . . . ,
TL1, where the subscripts indicate, except for TL1, the member in a presumably
infinite sequence. Recall that the corner eddies were symmetric about the mid-
plane in Stokes flow; as Re increases, although both BR1 and BL1 grow in size,
BR1’s growth is greater, as is its strength (as can be seen from the stream function
values). The trajectory of the eddy centers is complex, with the distance above
the cavity bottom of the center of BL1 being actually greater than that of BR1 for
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FLUID MECHANICS IN THE DRIVEN CAVITY 103

Figure 6 The effect of Reynolds number on the location of vortex centers in a square
cavity. Here the origin is at the bottom left of the cavity, and x is to the right. (From Ghia
et al 1982.)

Re $ 3200. Figures 5 & 6 also show the growth of BR2 and BL2, which are so
small and weak in Stokes flow that they have so far not been resolved for the
square cavity.

The emergence of the upper upstream eddy (UE) (TL1) represents a genuine
change in flow topology. Hints of its imminent appearance can be seen in the
streamline patterns at Re 4 1000, although it seems to be generally agreed that
at this Reynolds number TL1 is absent. Having emerged at a Reynolds number of
;1200 (Benjamin & Denny 1979), it grows in size and strength at least until Re
4 10,000. One must note that this secondary eddy, attached to a plane wall, is
quite different in character from the lower-corner eddies; although we have, in
agreement with Ghia et al, called it TL1, there is no reason to believe that it is
anything other than a single eddy.
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Figure 7 Vorticity contours in the square, lid-driven cavity. (a) Re 4 100; (b) Re 4 1000; (c) Re 4 10,000. (From Ghia et al 1982.)
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FLUID MECHANICS IN THE DRIVEN CAVITY 105

It should be clear from the above that even the 2-D flow in a cavity of simple
geometry can be complex. Although the Stokes flow analysis does provide us
with some insight into what might happen, it would be very difficult to even
qualitatively predict the changes that are likely to take place as the Reynolds
number increases. The vorticity contours of Figure 7 provide insight into some
general features of the flow field as the Reynolds number increases. As Re r `,
one would expect thin boundary layers to develop along the solid walls, with the
central core in almost inviscid motion. This is indeed seen in the figure. As Re
increases, there is a clearly visible tendency for the core fluid to move as a solid
body with uniform vorticity, in the manner suggested by Batchelor (1956); the
calculations show that the core vorticity approaches the theoretical infinite-Re
value of 1.886 (Burggraf 1966), with its value being about 1.881 at Re 4 10,000.
The vorticity contours show almost circular rings where the gradients in the vor-
ticity are very high and also where they are negligible; clearly great care needs
to be exercised to resolve these structures accurately.

There appears to be very little work done on deep cavities, although they are
of theoretical interest. We would expect a deep cavity to contain a sequence of
counter-rotating eddies of diminishing strength and an infinitely deep cavity to
contain an infinite number of them. A very natural question is, what happens in
a deep cavity when Re r `? We would expect, based on our knowledge of
boundary layers and recirculating eddies in channels perhaps, that the first PE
will grow in length as some power of Re, most probably the one-half power.
Although there is no computational or theoretical work to support this conjecture,
Pan & Acrivos (1967) provide some experimental support from measurements in
a cavity of depth 10; they find the first PE size to vary as Re1⁄2 over the range
1500–4000, beyond which instabilities were found to set in. Some caution has to
be exercised, however, because the spanwise aspect ratio of their cavity was only
1, and strong 3-D effects must most likely have been present, as is shown later.

Returning to the square cavity, one might wonder about the limit Re r `.
There is some computational evidence that the field becomes unsteady around Re
4 13,000. If the flow does become unsteady, what is the nature of this flow,
because it cannot, as a 2-D flow, be turbulent? Are there steady solutions that
cannot be computed because they are unstable? Although these are natural ques-
tions, they are not of practical relevance, because, as we show below, 2-D flows
are almost fictitious.

So far the discussion has been confined to steady flows in cavities of rectan-
gular section driven by a single moving wall. One can investigate cases in which
more than one wall moves (e.g. Kelmanson & Lonsdale 1996), in which the
motion is driven by shear rather than by a lid (e.g. Higdon 1985), in which the
geometries are different (e.g. Hellou & Coutanceau 1992), and in which the forc-
ing is unsteady (e.g. Leong & Ottino 1989), etc. These will, in general, lead to
the introduction of more dimensionless parameters on which the field depends
and hence to the possibility of further bifurcations. However, we do not pursue
these matters any further because it is usually possible, with the ideas developed
above and the general principles put forth in Jeffrey & Sherwood (1980), to
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106 SHANKAR n DESHPANDE

deduce the qualitative behavior of the field in each case, at least at low Reynolds
numbers.

THREE-DIMENSIONAL FLOWS

The study of 3-D cavity flows is difficult, no matter whether analytical, compu-
tational, or experimental techniques are used. In fact hardly any work existed
until the pioneering experimental work of Koseff & Street and coworkers at Stan-
ford in the early 1980s. Their studies, however, changed the whole picture because
they clearly showed that cavity flows were inherently 3-D in nature. Not only are
2-D models inadequate, they can be seriously misleading.

It is worth briefly recalling the nature of the difficulties that one faces in
handling these 3-D flows. To start with, analytically one now no longer has a
single scalar stream function with which to describe the field; one necessarily has
to deal with vector fields, thereby increasing the complexity considerably. A con-
sequence is that, even if we have a precise description of the field, it is difficult
to tell whether a given streamline is closed. It may be recalled that, in steady 2-
D flows, all streamlines are closed except for streamlines that separate eddies by
starting and ending on walls. On the other hand, in 3-D flows, closed streamlines
are the exception rather than the rule. Computationally, one’s difficulties are com-
pounded by the order-of-magnitude increase in the number of grid points that are
required for a given spatial resolution and by the increase in the number of vari-
ables and in the complexity of the equations to be solved. Experimentally, the
problem manifests itself in the need to accurately describe a fluctuating 3-D field,
with little or no symmetry, over the whole cavity. Moreover, there is the difficulty
that important flow structures may suddenly appear as the parameters are changed,
which can easily be missed if one is not alert. Once the flow becomes turbulent,
there are formidable problems in data acquisition, storage, and handling, no matter
what technique of investigation is used. We believe that the experience that will
be gained in dealing with cavity flows over the next few years will yield strategies
to handle unsteady 3-D fields in other branches of fluid mechanics.

Stokes Flow

The considerable difficulties posed by 3-D flow fields are already manifest in
Stokes flow, where supposedly simple, linear equations hold. The equations that
govern the flow field are ¹•u 4 0, ¹p 4 ¹2u. As pointed out earlier, we now
no longer have a convenient scalar stream function. It is indicative that we still
do not have an analytical or semi-analytical Stokes flow solution for the 3-D flow
in a rectangular parallelepiped of the type shown in Figure 1c! If one tries to
obtain suitable eigenfunctions from separable solutions to the equations, as was
done in the 2-D case, one soon runs into difficulties. These appear to be connected
with the new corners that are introduced by the existence of the cavity end walls.
It turns out that the natural extension of the 2-D rectangular cavity is to a circular
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FLUID MECHANICS IN THE DRIVEN CAVITY 107

cylinder, rather than a parallelepiped. We therefore consider creeping flow in a
cylindrical container generated by the uniform motion of the bottom end wall
(Figure 1b) (Shankar 1997). These results are important because they are the only
analytical or semianalytical solutions available for a 3-D cavity field.

Flow in a Cylindrical Cavity Let lengths be normalized by the cylinder radius
and velocities by the uniform speed of the bottom wall. Let v (r, h, z) 4 e1kz

{ƒr(r, h), ƒh (r, h), ƒz (r, h)} be velocity vector eigenfunctions that satisfy the
governing equations and the side wall conditions (v 4 0) on r 4 1. It can be
shown that, although the h dependences are trigonometric, the radial ones are
mixtures of Bessel functions of integer order. It can also be shown that there is a
complex sequence {ln} of eigenvalues k as in the 2-D case and a real sequence
{ kn}, as well. If we now write the velocity field in the cylindrical can as u 4
(anvn, the unknown coefficients an can be found by a least-squares procedure
applied to the boundary conditions on the top and bottom end walls of the cylinder
in a manner identical to that followed in the 2-D case.

Figure 8 shows the streamline patterns in the symmetry plane in cylinders of
height 1, 2, 4, and 10, which can be compared to those shown in Figure 3 for the
2-D case. Note that the characteristic length here is the radius of the cylinder and
that, in the figure, only one half of the cylinder is shown; the fields are all sym-
metric about the planes h 4 p/2 and h 4 0. As discussed earlier, the spacing
and decay in intensity of the PEs in deep cavities are determined by the principal
eigenvalue l1 ' 2.586 ` 1.123i. The PE streamlines look very similar to what
were found earlier, at least in the plane h 4 0. But as Figure 9 shows, the corner
eddies are very different in nature. Whereas in two dimensions the centers of
these eddies are always elliptic points, in three dimensions they can be foci in
the plane of symmetry. This can be seen clearly in Figure 9b, in which the stream-
lines, emanating from the focus on the other side, stream into the focus shown in
the figure; note that this would be impossible in two dimensions. Figure 9 also
shows the nature of the 3-D streamlines away from the plane of symmetry and
the strong azimuthal circulation near the top of the cylinder; the corner eddy is
here a truly 3-D object. It may be mentioned that computations show the existence
of weaker and smaller second-corner eddies. This is another open problem: what
can be said of corner eddies in three dimensions? See Sano & Hasimoto (1980)
and Shankar (1998b) for some results on this problem.

Three-dimensionality also significantly affects the nature of the corner-eddy
merger process that leads to the formation of new primary eddies. It can be seen
from Figure 8 that there is one PE when h 4 2, but there are two when h 4 4.
We therefore expect the merger process to take place between these two heights.
Starting from h 4 3.1, Figure 10 shows the details of this process. Initially there
are streamlines flowing into the focus, but soon after, when h 4 3.15, a limit
surface S1 exists towards which both the external streamlines and the streamlines
from the focus flow. When h 4 3.161 first contact along the top of the can takes
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108 SHANKAR n DESHPANDE

Figure 8 Streamlines in a cylindrical container generated by the motion of the bottom
end wall. Views are of the plane h 4 0 for containers of heights 1, 2, 4, and 10. Only one
half of the symmetry plane is shown in each case. (From Shankar 1997.)

place between the two foci; the limit surface now no longer exists, with all the
streamlines flowing out of this focus to the other one along the top of the can.
Furthermore, this structure lifts off and metamorphosizes to the second PE with
the simultaneous growth of the second corner eddy. Figure 10d shows some 3-D
streamlines in the neighborhood of the limit surface, whereas Figure 10e shows
some interesting streamlines in the merged region. Note how strong 3-D effects
are in these situations.

The analysis outlined above can be used to analyze flows in the cylinder gen-
erated by more general boundary conditions on the end walls. When symmetry
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FLUID MECHANICS IN THE DRIVEN CAVITY 109

Figure 9 Geometry as in Figure 8 for h 4 2. (a) 3-D streamlines; (b) details of the
corner eddy in the plane of symmetry. (From Shankar 1997.)

about the plane h 4 p/2 is broken, very few, if any, of the streamlines are closed
(Shankar 1998a).

Steady and Unsteady Laminar Flows: Eddies and
Nonuniqueness

The Rectangular Cavity It must now be clear that when even the Stokes flow
limit poses such problems in 3-D, we have little choice but to resort to compu-
tational and experimental techniques to analyze flows at arbitrary Reynolds num-
bers. Below we deal only with the cavity of uniform rectangular section as shown
in Figure 1c and most often where the section is square ($ 4 1); we are not
aware of any other 3-D geometries for which any results have been obtained.

To simplify matters later, let us define some terms and notation for the cavity
geometry shown in Figure 1c. The length scale here is the cavity width Ly in the
direction of the moving lid (i.e., ,y 4 1); $ and ! are the dimensionless depth
and lateral span, respectively. Thus for the simplest configuration the field
depends on the three nondimensional parameters $, !, and Re. Almost all of the
published work deals with the cavity of square section $ 4 1. Sticking to tra-
dition, we call (Figure 1c) the 3-D corner eddy bounded by the downstream side
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Figure 10 Details of the growth and merger of the corner eddy with increasing cylinder height. (a) h 4 3.1; (b,d) h 4 3.15; (c) h 4
3.16; (e) h 4 3.235. (From Shankar 1997.)
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FLUID MECHANICS IN THE DRIVEN CAVITY 111

wall and the bottom wall the downstream secondary eddy (DSE); we call the
corresponding eddy between the upstream side wall and the bottom the upstream
secondary eddy (USE); and we call the eddy near the top of the upstream wall
the upper eddy (UE). The longitudinal vortices bounded by the end walls and the
bottom and the end walls and the lid are called end-wall vortices (EWVs). To
prevent confusion, all of these have been sketched in the figure. Also shown are
sections of certain longitudinal vortices, that is, ones whose axes lie approxi-
mately in the streamwise (y) direction, called Taylor-Goertler–like (TGL) vorti-
ces. Taken together with the PE in the cavity, we have a rich collection of
structures that need to be understood. Although, not much is known about 3-D
corner eddies, one would have to keep open the possibility of an infinite sequence
of such eddies near the corners. Finally, mention must be made of the starting
vortex that develops in the neighborhood of the corner bounded by the down-
stream side wall and the moving lid. This transient vortex, generated at the impul-
sive start of the motion, results from the sudden stripping off of the fluid adjacent
to the lid by the downstream side wall; it plays no role once the field settles to
its asymptotic state.

It might help to summarize in advance the changes that take place, for example,
in a square cavity of span 3, as Re increases. For low Reynolds numbers (e.g. ,
10), the field is qualitatively very similar to that found in Stokes flow with the
DSE and USE as secondary flows (with hardly any EWV, if any) in addition to
the PE; in the center plane (z 4 !/2), streamlines look similar to those found in
2-D flows, but there are topological differences. Soon after, the lower EWV begins
to be evident in the flow, even though very little change occurs in the center plane.
As Re increases, initially there are no obvious structural changes, but the asym-
metry about y 4 1/2 keeps increasing as do the sizes of the DSE and USE;
because the flows are steady, there is symmetry about the mid-plane z 4 !/2.
At Re ; 1000, the flow field becomes unsteady with, naturally, loss of symmetry
about the mid-plane. Either at this point or soon afterwards, the TGL vortices
appear in pairs, taking part in a slow spanwise motion. With further increases in
Re, the number of TGL vortex pairs in the cavity increases, and at some stage
the UE appears. Finally transition to turbulence in portions of the field takes place
at Re ' 6000, with most of the field exhibiting turbulent characteristics when Re
4 10,000. Similar changes take place for cavities of different spans, but naturally
the Res at which they take place are different.

Velocity Profiles and Particle Trajectories It is only natural to expect the field
near the midplane of a cavity of large aspect ratio to be very similar to the field
in a 2-D cavity at the same Re. But one should be aware, because of the unavoid-
able spanwise flow in a 3-D cavity, that the two fields, no matter how similar in
appearance, are topologically quite different. Thus in the mid-plane of a 3-D
cavity the stagnation points, other than saddles, are usually foci, whereas they are
elliptic points in two dimensions. It turns out, however, that the differences are
even more significant. The ways in which the horizontal and vertical velocity
profiles along the symmetry axes of the mid-plane z 4 !/2 change with Re are
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112 SHANKAR n DESHPANDE

Figure 11 Comparison of computed velocity profiles at the mid-sectional plane of a
rectangular cavity of span ! 4 3 with the results of 2-D computations. •, – – –, 2-D
computations; ––––, 3-D computation. (a) Re 4 10; (b) Re 4 100; (c) Re 4 400; (d) Re
4 1000. Y-axis is along span; see figure 13. (From Chiang et al 1998. Reproduced with
permission of John Wiley & Sons Ltd.)

shown in Figure 11 for a square cavity of span 3; also shown are the corresponding
2-D profiles. At Re 4 10 (Figure 11a), the 2-D and 3-D results are almost coin-
cident; this means that for low Res the end walls have almost no effect on the
mid-plane field. With increasing Re (Figures 11b–11d), we find boundary layers
beginning to form on all the walls and increasing discrepancy between the 2-D
and 3-D profiles; because the end walls tend to act as a brake on the fluid, the 3-
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FLUID MECHANICS IN THE DRIVEN CAVITY 113

Figure 12 Comparison of velocity profiles at the mid-sectional plane of a cubic cavity
with 2-D results; Re 4 1000. M, 3-D computation; ––––, 2-D computation. (From Ku et
al 1987.)

D velocities tend to be smaller than the corresponding 2-D values. The fact that
the discrepancy increases with Re is somewhat counterintuitive, because one
might expect that, with decreasing viscosity and thinner boundary layers, the
braking action would be less! This point is dealt with a little later. As the span
! is decreased, we would expect the end walls to have a greater effect. That this
is indeed so is shown in Figure 12, in which the mid-plane differences are seen
to be far larger when the cavity is cubical (! 4 $ 4 1).

The 3-D nature of these flow fields is best illustrated by the typical particle
tracks shown over half the cavity in Figure 13. Although the flow at Re 4 1500
is mildly unsteady, the tracks shown are very similar to those that would be seen
in steady flows at lower Re. Note in particular how, in Figure 13a, a particle
starting from just above the bottom plane makes three circuits in the PE before
entering the EWV at the end wall, then spirals along the central axis of the cavity
to the center plane, and then spirals outwards near this plane before being engulfed
in the DSE. This is one of the most important characteristics of three-dimension-
ality—unlike in two dimensions, the whole cavity is connected! Another feature
to be noted is that, in general, the spanwise flow is from the mid-plane to the end
walls inside the DSE and the USE and is, to satisfy continuity, in the opposite
direction in the core of the PE. With this knowledge of 3-D particle tracks (which
are also streamlines in steady flow), we are in a better position to appreciate the
projected fields shown in Figure 14. Each frame includes three planes on which
the projections of certain nearby streamlines are shown; of course, by symmetry
the lines shown on the mid-plane z 4 !/2 are the streamlines themselves. These
figures clearly show (a) how three-dimensionality modifies the fields near the
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Figure 13 Three-dimensional particle paths in a lid-driven rectangular cavity. Only a half of the cavity is shown, with the mid-plane to
the left in each case. ! 4 3; Re 4 1500. (From Chiang et al 1996. Reproduced with permission of John Wiley & Sons Ltd.)
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FLUID MECHANICS IN THE DRIVEN CAVITY 115

(a) (b) (c)

Figure 14 The projections of the streamlines onto the end walls, side walls, and mid-
planes of the lid-driven cubic cavity. The lid moves in the y direction. (a) Re 4 100; (b)
Re 4 400; (c) Re 4 1000. (From Iwatsu et al 1989.)

mid-plane and the end walls and near the plane y 4 1/2 and the side walls, (b)
how the build up of the central recirculation with Re is connected with the stronger
swirl near the end walls, and (c) how, while the lower EWVs appear at moderately
low Re and seem to span the width of the cavity, the upper EWVs appear later
and do not span the whole width. Note also, as pointed out earlier, that, unlike in
two dimensions, stagnation points other than saddles are usually foci rather than
elliptic centers; moreover, streamlines are usually not closed.

We return to the somewhat puzzling fact that the center-plane velocity profiles
are coincident with their 2-D counterparts at low rather than high Re. The expla-
nation lies in Figure 15, which shows the effect of Re on the projections of the
streamlines through the plane y 4 0.525 on that plane. At Re 4 1 (Figure 15a),
the spanwise velocities are negligible, and the EWVs can hardly be resolved,
even if present; although not shown here, at Re 4 10, there are significant span-
wise motions near the bottom and top walls but still no discernable EWVs. When
Re 4 50 (Figure 15b), the lower EWV is clearly evident, whereas it is only at
Re 4 ;100 (Figure 15c) that the upper EWV can be identified. These panels
clearly show that the spanwise flow, which is negligible at low Re, becomes
increasingly important as Re increases. Thus the boundary-layer effect and this
3-D effect are in competition as Re increases, and the latter effect ultimately
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Figure 15 Projections of the streamlines onto the plane y 4 0.525, showing the development of the end wall vortices with increasing
Reynolds number. (a) Re 4 1; (b) Re 4 50; (c) Re 4 100. (From Chiang et al 1998. Reproduced with permission of John Wiley & Sons
Ltd.)
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FLUID MECHANICS IN THE DRIVEN CAVITY 117

dominates; in fact, to such an extent that, although there is no spanwise flow mid-
plane, the velocity profiles there deviate from the corresponding 2-D profiles.

Poincaré Sections A characteristic feature of 3-D streamlines has already been
pointed out—that in general they do not close, not even in mid-plane. Conse-
quently, one may expect that, even in steady flows with considerable symmetry
in the driving conditions, individual particles in the fluid may move in apparently
complicated paths over a considerable portion of the cavity. Whereas particle
paths such as those shown in Figure 13 are illustrative of this facet of the motion,
another way of examining this issue is to look at Poincaré sections, as shown in
Figure 16. These have been obtained (Ishii & Iwatsu 1989) by tracking a number
of particles in a cubic cavity and marking with a point each time a particle path
intersects the plane y 4 1/2; thus, each frame in the figure shows the points at
which the streamlines generated by a number of distinct tracer particles have
intersected this plane many times. We see in Figure 16a, at Re 4 100, four distinct
patches; the two upper patches correspond to motion into the plane, whereas the
lower ones correspond to motion out of the plane; for particles started symmet-
rically and in synchronization, the two left patches should be identical to the two
right patches because the motion is symmetric about the mid-plane. Note that
each patch contains a central point immediately surrounded by a set of five points
that seem to lie on some closed curve; these points are further surrounded by four
sets of points each apparently lying on a well-defined closed curve; finally all of
these are surrounded by a large number of points lying apparently at random in
an annular region. What is very interesting is that these sections strongly suggest
the existence of closed streamlines that lie on tori; the single point in a patch is
of period 1, the set of 5 points in a patch of period 5, and so on. The outermost
annular ring suggests a motion that is not on a torus and is probably not periodic
at all (i.e. the streamline is not closed). The situation is far more complicated at
Re 4 200, where possible islands of closed streamlines of more complex shape
are again surrounded by regions of possibly nonperiodic orbits. The complexity
increases until, at Re 4 400, it is hard to visualize any closed orbits (streamlines).
It must be emphasized (a) that no numerical technique can ever be used with
certainty to pick closed orbits, (b) that these flows are steady, laminar flows, and
(c) that the apparently chaotic behavior (sometimes called Lagrangian chaos) of
the tracer particles is caused, not by the nonlinearity of the N-S equations, but by
that of the (Lagrangian) particle path equations. This cannot happen in steady, 2-
D flow, because, even though the equations are still nonlinear, the system is
integrable.

Taylor-Goertler–Like Vortices With an increase of Reynolds number, at some
stage, depending on the aspect ratio !, two new features appear, longitudinal
vortices and the upstream upper eddy; the latter appears later, after the flow has
become unsteady, and both seem to remain well into transition to turbulence and
later. The longitudinal vortices (see Figure 17), whose axes lie along the primary-
flow direction, were first identified in their experiments and named Taylor-
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118 SHANKAR n DESHPANDE

Figure 16 Poincaré sections of streamlines in the plane y 4 0.5. (a) Re 4 100; (b) Re
4 200; (c) Re 4 300; (d) Re 4 400. (From Ishii & Iwatsu 1989.)

Goertler–like (TGL) vortices by Koseff & Street (1984a,b,c). The rationale for
the name is that these vortices bear a strong resemblance to the longitudinal
vortices that arise from centrifugal instability in flows along concavely curved
walls. The analogy is somewhat imperfect here because the concavely curved
separation surface between the PE and the DSE is not a solid wall; however, there
is experimental evidence that this surface is indeed the source of instability. For
a a linear-stability analysis based on 3-D perturbations to 2-D base flows, see
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FLUID MECHANICS IN THE DRIVEN CAVITY 119

Figure 17 Flow visualization of Taylor-Goertler–like (TGL) vortices. Views from the
downstream side wall of TGL vortex pairs along the bottom wall. $ 4 1; ! 4 3. (a) Re
4 3300; (b) Re 4 6000. (From Rhee et al 1984.)

Ramanan & Homsy (1994). Aidun et al (1991) have identified the stages by which
the TGL vortices appear for ! 4 3. The flow is steady up to around Re 4 825;
a little beyond, small amplitude, time-periodic waves appear on the DSE. Pairs
of vortices, generated near the mid-plane, move towards the end planes with a
corkscrewing motion. With increasing Re, there is a slight decrease in the period
of the oscillations ('3 s) until, at Re 4 1000, there is a second transition in
which the boundary between the DSE and the PE becomes irregular, with the
wave motion traveling towards the end walls featuring discrete vertical spikes.
According to the authors these spikes grow crowns at their tops, giving them a
mushroomlike appearance, and these shapes are what are seen at the side walls,
as in Figure 17, and are identified as TGL vortex pairs. The unsteady, longitudinal
nature of these formations in a cubical cavity at Re 4 4000 has also been verified
in the computations of Iwatsu et al (1989). It seems to be generally agreed that
the number of pairs of TGL vortices, which is six soon after inception for ! 4
3, increases with Re, being 8 at Re 4 3000 and 11 at Re 4 6000 (Koseff &
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120 SHANKAR n DESHPANDE

Street 1984a). These interesting structures seem to persist even after the flow has
become turbulent.

A brief word of caution regarding so-called ‘‘separation surfaces’’ is in order
here. In 2-D, the primary eddies and secondary eddies are, in steady flow, isolated
from one another by separation surfaces; fluid particles cannot cross these sur-
faces, and, as a consequence, there is no mixing between the various eddy struc-
tures. This does not hold in 3-D, as can be seen clearly, for example, from Figure
13. Fluid particles can move from structure to structure, in a sense globalizing
the flow, and so the nature of the ‘‘separation surfaces’’ in the fluid is very much
more complex and is not easy to define. The reader should also be aware that, in
some of the literature, closed streamlines, clearly defined ‘‘separation surfaces,’’
etc, are sometimes sketched (as in Figure 1c), which are likely to be erroneous.
These errors arise out of a desire to understand, in simple 2-D terms, genuinely
complex 3-D flows.

Some indication of the quantitative differences between 2-D cavity flows and
the mid-plane fields in 3-D cavities is given in Figure 18. As far as the DSE size
is concerned, it is seen that, whereas for a cavity with ! 4 3 the growth trend
with Re is similar to that found from 2-D computations, if ! 4 1 then even the
trend is wrong. But, even with ! 4 3, the mean velocity profiles along the
symmetry axes at mid-plane are very different from the computed 2-D profiles
(Figure 18b). As explained earlier, the drag of the end walls tends to act as a
brake, and so the peaks are smaller in 3-D. At first sight it may appear surprising
that even a span of three is inadequate to ensure 2-D flow at the mid-plane. But
on reflection it is clear that, the braking effect of the end walls aside, the very
existence of the TGL vortices for sufficiently large Re and ! implies that it is
virtually impossible to obtain a truly 2-D flow in such cavities, no matter how
large ! is and no matter how far away the end walls are. This fact has been
stressed by the Stanford group.

Solution Multiplicity The uniqueness of steady flows is almost an article of
faith for most of us; for a given geometry and forcing, the field must be unique.
Cavity flows provide interesting counter examples to shake this belief! Aidun et
al (1991) have found that, in a lid-driven cavity (! 4 3), if the lid suddenly
decelerates the flow from Re ' 2000 to Re ' 500, the original PE state may or
may not recover. In its place steady cellular patterns may stabilize. Aidun et al
(1991) have identified three other states, having 2, 3, and 4 cells, all symmetric
about the mid-plane, whose end views (as seen from the downstream side wall)
are shown in Figure 19a. Thus, although for Re r 0 there is a unique (Stokes)
flow field, for sufficiently large Re the field obtained by Reynolds number con-
tinuation from this is apparently not unique. Aidun et al point out a possible
technological implication in the coating industry. It is known that short-dwell
coaters (Figure 1a) do not always behave the same way under identical operating
conditions; they suggest that this may be caused by the multiplicity of the per-
missible flow states. Three-dimensional computational confirmation of these mul-
tiple solutions is as yet unavailable. Kuhlmann et al (1997) provide another
example of multiple solutions. The geometry considered is a rectangular cavity
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(a) (b)

Figure 18 Comparison of experimental data for a lid-driven cavity ($ 4 1), with the results of 2-D computations. (a) Downstream eddy
size as a function of Reynolds number. ., ! 4 3; ,, ! 4 1. Experimental, •, 2-D computations. (b) Velocity profiles in the symmetry
plane, Re 4 3200. D, Experimental (! 4 3); ––––, 2-D computations. (From Koseff & Street 1984a,c.)
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(b) 

Figure 19 Stable multiple solutions in driven cavity flow. (a) Flow visualizations from the downstream side wall of two-cell, three-cell,
and four-cell steady states (from Aidun et al 1991); (b) shear stress x ; Re in a double lid-driven cavity, indicating two stable states between
Re(01) 4 234.3 and Re(0`) 4 427. (From Kuhlmann et al 1997)
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FLUID MECHANICS IN THE DRIVEN CAVITY 123

with a pair of opposite walls moving at the same speed in opposite directions. As
might be expected, the basic state (called ‘‘two-vortex flow’’ by the authors) at
low Re consists of a pair of corotating vortices, attached one each to each moving
wall. Two-dimensional calculations (for $ 4 1.96), based on Reynolds number
continuation, show that, although this state does not exist beyond Re ' 427,
another 2-D solution state (called ‘‘cat’s-eye flow’’ by the authors) does exit. As
Figure 19b shows for 235 , Re , 427, there exist two solutions stable to 2-D
disturbances, and one that is unstable. The nice feature here is that Kuhlmann et
al were able to show in experimental (3-D) simulations of the field that both states
could be realized in the laboratory. As Re is gradually increased, the initial field
corresponds to the two-vortex flow state; at Re ' 232 there is a jump transition
to the cat’s-eye flow state. When Re is gradually reduced, the flow switches back
from the cat’s-eye to the two-vortex state at Re ' 224, exhibiting hysteresis and
solution multiplicity. A full 3-D simulation of this field too would be of interest.

Transitional and Turbulent Flows as Deduced from
Experiments and Direct Numerical Simulations

Although most fluid dynamicists believe that turbulence is contained in the N-S
equations, strong computational evidence to support this belief has until recently
been lacking. One of the most valuable results of research in the area of driven
cavity flows has been the generation of such evidence. As pointed out earlier, the
simple geometry and unambiguous boundary conditions facilitate the direct, reli-
able comparison of experimental data with DNS. The importance of this feature
for turbulent flows can only grow in the future as simulations at higher Re become
feasible.

As with any other 3-D flow, once Re is sufficiently high the flow in a cavity
will become transitional and then evolve into turbulent flow. In this section we
consider only the lid-driven cavity of constant square section ($ 4 1) because
this is the only cavity for which detailed measurements and computations have
so far been carried out. A summary scenario valid for 1 # ! # 3 is as follows.
The fields are generally unsteady laminar flows for Re up to ;6000; transition,
meaning transition to turbulence, takes place in the range 6000 , Re , 8000,
and sufficient portions of the fields are turbulent by Re 4 10,000 for them to be
called turbulent flows. Attention needs to be drawn to certain features of transition
and turbulence in driven cavity flows that are somewhat special. First of all, the
fluid field is usually already unsteady with, for example, the TGL vortices before
transition to turbulence. Transition appears initially to take place in the region of
the DSE (Koseff & Street 1984a), while the rest of the field is still laminar. With
increasing Re, the flow becomes turbulent, perhaps first in the region of the DSE
and then gradually over most of the cavity. The fact that different parts of the
field, such as the regions close to the moving wall, near the DSE and USE, in the
core, etc, can be in different states (laminar, transitional, or soft or hard turbulent)
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124 SHANKAR n DESHPANDE

adds to the difficulty in understanding these complex flows. This is particularly
true at the lower Reynolds numbers that we are considering (Re # 10,000)

Although we have no intention here of addressing the difficult question of how
one can decide whether the field at a point (or in the neighborhood of a point) is
turbulent, it might help nonspecialists to consider this issue. How does one decide
whether the velocity at a point is characteristic of a locally turbulent flow? The
position taken here is that, if the field is locally turbulent, (a) the velocity com-
ponent traces will have the appearance of being random, (b) the velocity com-
ponents will not be highly correlated in time, (c) the power spectra of the signals
will have that characteristic of turbulent fields (low-frequency peak and an inertial
subrange followed by a high-frequency dissipation range). Figure 20 shows two
sets of experimentally obtained unsteady u and v time traces at two Reynolds
numbers. At Re 4 3200 (Figure 20a), although both signals display large vari-
ations, the signal lengths are insufficient to even casually determine ‘‘random-
ness’’; it is obvious that u and v are strongly correlated, and this indicates a
nonturbulent field, which the spectrum (not shown here) corroborates. On the
other hand, at Re 4 10,000 (Figure 20b), both signals have a noisy, random
appearance; they do not appear to be well correlated, which calculations confirm;
and the spectra do turn out to be characteristic of turbulent flows. We therefore
conclude that the point under consideration is in a turbulent field.

A minor but interesting issue is the source of the large amplitude fluctuations
seen in Figure 20a. Prasad & Koseff (1989) point out that these are caused by
the to and fro ‘‘meanderings’’ of the two pairs of TGL vortices that are at the
bottom of the cubic cavity; the period is approximately 3 min. It should be pointed
out that, computationally, (a) Perng & Street (1989) resolved nonstationary TGL
vortices for Re 4 3200, but their assumption of symmetry about the mid-plane
can be criticized; (b) Iwatsu et al (1990) found two stationary pairs of TGL
vortices at Re 4 2000, whereas (c) the computations of Chiang et al (1996) for
Re 4 1500 and ! 4 3 show that the TGL vortices rise at midspan and drift to
the end walls. So it seems more likely that it is the drifting past of newly formed
TGL vortices, rather than the meandering of the same vortices, that causes the
excursions seen in the traces. It also appears that the TGL vortices continue to
be part of the field even after the transition process starts, and it is only after the
field becomes strongly turbulent that random momentum transport tends to
destroy these surprisingly rugged structures. One therefore expects to see a grad-
ual transition from a TGL-dominated to a turbulence-dominated field.

Turbulence in the Cubic Cavity For economy, we combine the description of
the time-averaged velocity field in a lid-driven cubic cavity at Re 4 10,000 with
the comparison of the results obtained for this geometry from experiments with
results from DNS (Deshpande & Shankar 1994a,b; Verstappen & Veldman 1994).
The experimental data were obtained (Prasad & Koseff 1989) by using a standard
laser-Doppler system in a belt-driven cavity; valuable experimental data for other
aspect ratios (! 4 0.5 and 3) are available in Prasad & Koseff (1989) and Koseff
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(a) (b)

Figure 20 Velocity-time traces at points close to the bottom wall of a lid-driven cavity flow. $ 4 ! 4 1. (a) Re 4 3200; (b) Re 4
10,000. (From Prasad & Koseff 1989.)

125

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

00
0.

32
:9

3-
13

6.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 N

A
T

IO
N

A
L

 A
E

R
O

SP
A

C
E

 L
A

B
S 

on
 0

8/
30

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



126 SHANKAR n DESHPANDE

Figure 21 The variation with Re of time-averaged velocity profiles on different center-
lines in a cubic cavity. Also shown are the experimental results for Re 4 3200 (V). (a)
Line y 4 z 4 0.5; (b) line x 4 z 4 0.5; (c) line x 4 y 4 0.5; (d) line x 4 y 4 0.5. (d
from Deshpande et al 1994; the rest are from Deshpande & Milton 1998.)

& Street (1984c). Regarding DNS, it must be remembered that no modeling
whatsoever is involved here, because the N-S equations are solved directly; if
there are no errors in discretization and if the solutions of the discretized equations
can be assumed to approximate the solutions of the N-S equations, only the
adequacy of the spatial and temporal resolution can be seriously questioned. We
return briefly to this issue later.

We begin by observing how the mean velocity components along the symmetry
axes in mid-plane (z 4 0.5) vary as the flow shifts from steady laminar to
unsteady laminar to turbulent flow (Figure 21); as usual, we write v 4 v̄ ` v8,
where v̄ and v8 are the mean and fluctuating parts of v etc. As might be expected,
near the lid the streamwise v̄ component displays a steadily thinner boundary
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FLUID MECHANICS IN THE DRIVEN CAVITY 127

Figure 22 Mean velocity profiles along the symmetry axes, mid-plane in a lid-driven
cubic cavity. Re 4 10,000. V, Experiments, Prasad & Koseff (1989); ––––, direct numer-
ical simulation results, Deshpande & Shankar (1994b); – – –, 2-D results, Ghia et al (1982).

layer as Re changes from 1000 to 10,000. But at the bottom wall, counterintui-
tively, the peak v̄ decreases with Re although it does move towards the wall as
expected. Although the decrease of the peak from 1000 to 3200 is principally
caused by 3-D effects, the decrease from 3200 to 10,000 is influenced consider-
ably by the turbulent nature of the flow; note that, in the turbulent flow, the core
is much more energetic, presumably owing to turbulent transport from the wall
layer. A similar behavior is seen for the downward ū component in Figure 21b.
The figure also shows the profiles obtained experimentally for Re 4 3200, which
compare well with the simulations for that Re. In Figure 21c,d are displayed the
mean components along the line normal to the mid-plane and passing through its
center. We would expect the steady laminar flow and the mean unsteady flows to
be symmetric about the mid-plane (z 4 0.5). The figures clearly bear this out for
Re 4 1000 and for the unsteady flow at Re 4 3200. For the turbulent flow at
Re 4 10,000, reasonable symmetry has been achieved for the spanwise w com-
ponent; but in Figure 21d the fact that ū has yet to achieve symmetry implies that
the length of the trace over which the averaging has been done is somewhat too
small. It is pointed out in Deshpande et al (1994) that the problem of achieving
this symmetry is even more severe for the turbulent stresses. On the positive side
one can look on this characteristic as one more possible check on the level of
reliability of the calculations.

Coming to the comparison of the turbulent field obtained by DNS with that
obtained experimentally at Re 4 10,000, Figure 22 shows the components of the
mean velocity along the symmetry axes of the mid-plane. Although the stream-
wise components compare quite well over the whole range, the downward com-
ponents agree well everywhere except near the downstream side wall, where there
is a mismatch of peaks of almost 25%. Note that there is some indication that the
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128 SHANKAR n DESHPANDE

Figure 23 Turbulent stresses along the symmetry axes, mid-plane in a lid-driven cubic
cavity. Re 4 10,000. V Experiments, Prasad & Koseff (1989), –––– DNS results, Desh-
pande & Shankar (1994).

mean spanwise vorticity in the core is approximately uniform. Also shown in the
figure are the results of steady, laminar, 2-D computations that show that these
cannot reasonably simulate the mean turbulent field even at the cavity mid-plane;
the comparisons are not much better even with experimental results for a cavity
with ! 4 3. The comparisons of turbulent stresses are shown in Figure 23.
Although the quantitative agreement here is not as good as for the mean-velocity
components, the general qualitative agreement is encouraging; the agreement is
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Figure 24 Comparison of the computed and experimentally obtained v8 power spectra
at the point (0.966,0.5,0.5) in a cubic cavity. Re 4 10,000. (From Deshpande & Shankar
1994b.)

best for urms, in which even the peaks near the side walls are captured adequately.
The data reveal some interesting features of the turbulent field. The rms velocity
and the Reynolds stress are an order of magnitude larger near the downstream
wall than near the upstream wall, whereas the peak magnitudes near the bottom
wall appear to lie between those at the side walls. This seems to suggest that, in
this recirculating flow, the fluctuations are largest near the downstream side wall,
that they reduce in intensity along the bottom wall, and that they further reduce
in intensity in the generally accelerating flow in the neighborhood of the upstream
side wall; in fact, there could well be regions where relaminarization takes place.

It was pointed out earlier that one of the indicators for turbulence is the nature
of the power spectrum of the velocity components. Figure 24 shows the v8 power
spectra obtained experimentally and computationally at a point near the bottom
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wall, at mid-plane. It must be mentioned that there are technical difficulties, dis-
cussed in Deshpande & Shankar (1994a), in obtaining and comparing these spec-
tra, which stem from the finite length of the signal traces, the averaging procedures
used to smooth the highly oscillatory raw spectra, etc; we only briefly discuss
these points here, first noting that there is reasonable agreement between the two
spectra, in keeping with the agreement found earlier between the two fields at
mid-plane. Of greater interest is the fact that the characteristics of both spectra
are not in conflict with the expected characteristics of turbulent signals at high
Re: a flat low-frequency peak, an inertial subrange with a roughly 15/3rds slope,
followed by a rapid high frequency decay to the dissipation range. It is true that
the inertial subrange hardly spans a decade and that it would have been more
comforting if this range had been larger. Although there seems to be no doubt
about the flow being turbulent, we are probably dealing here with soft turbulence,
at an Re too low to fully mimic classical turbulence. There will be great interest
in extending these investigations to higher Re.

Kolmogorov Scales in the Cavity A notion that has proved to be useful in the
study of turbulence is that of the energy cascade. The turbulent fluctuations are
considered to be driven by the mean flow, with the energy being transferred,
principally by inviscid interactions, from large scales to small scales in the form
of a cascade, with dissipation occurring at the smallest scales, the so-called Kol-
mogorov scales. One of the advantages of DNS is that the detailed knowledge of
the field provides us an opportunity to examine where dissipation takes place and
how the Kolmogorov scales are distributed over the field. The dimensionless
dissipation function f(x, t) is given by f 4 [(]ui /]xj) ` (]uj /]xi)]2; the instan-
taneous dimensional total dissipation rate per unit mass will then be vf .2 2V /L0 y

Now f can be written as the sum of terms coming from the mean velocity com-
ponents (fm), the fluctuating components (ff ), and the interaction of the two
(fmf ). Because the time average of fmf is zero, the time average of f, is givenf
by . The time traces of f at four depths along the vertical centerf 4 f ` fm f

line in the mid-plane of the cavity are shown in Figure 25. We note (a) at x '
0.02, the point closest to the moving lid, both the dissipation and the amplitude
of its fluctuations are large; (b) at the next point (x ' 0.07), close by, both the
mean and the amplitude of the fluctuations have dropped sharply, but the fre-
quency of the oscillations has increased perceptably; (c) at the point close to the
primary vortex center (Figure 25c), there are prolonged periods of low dissipation
followed by periods of activity, at levels at times higher than at the previous point;
and (d) at the bottommost point, the intermittency has disappeared whereas the
peaks have increased. Deshpande & Milton (1998) point out that most of the
contribution to the time-average dissipation comes from rather than fromf fƒ

; that is, it is the fluctuations that contribute mainly to the mean dissipation.fm

This result is known to be true for turbulent flows at high Re, away from the
walls, but it is interesting to find that it holds even at Re 4 10,000. Thus even
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Figure 25 Time traces of the total dissipation function f on the line y 4 z 4 0.5, at
different x values. Re 4 10,000. (From Deshpande & Milton 1998.)

at this low Re, the turbulent cavity flow displays an important feature character-
istic of high Re turbulent flows.

The Kolmogorov microscales are the smallest scales supported in a turbulent
flow. Apart from its fundamental importance, a knowledge of the actual distri-
bution of these scales in the field will help, despite certain philosophical and
logical problems, in planning further direct numerical simulations and estimating
the adequacy of the resolution obtained. The Kolmogorov microscales depend on
the rate of dissipation and the kinematic viscosity. Let e 4 /Re be the dimen-fƒ

sionless dissipation rate, and let gk be the Kolmogorov length scale nondimen-
sionalized by Ly, the cavity width. Then, for example, gk 4 (1/eRe3)0.25 4

Re2)0.25. It must be noted that, because nine velocity derivatives need to be(1/f
evaluated, it is very difficult to experimentally determine gk even at a few points
in the field. The power of DNS can be seen here, because it can be used to
determine the distribution of e and gk over the whole domain. Figure 26 shows
the distribution of gk along the vertical and horizontal lines of symmetry on five
z planes. The distributions are roughly similar in the four planes other than the
one closest to the end wall (z ' 0.006). In these four planes, gk is smaller at the
walls than near the primary vortex center, the smaller value indicating a higher
rate of dissipation and turbulence activity. The profiles near the end walls are
more uniform, with corresponding indications for dissipation and turbulence
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132 SHANKAR n DESHPANDE

Figure 26 Profiles of the Kolmogorov length scale gk in different z planes. (a) Along
the line y 4 0.5; (b) along the line x 4 0.5. (From Deshpande & Milton 1998.)

activity. We also observe that, away from the end walls, there are large gradients
in gk near the lid and the downstream side wall. It is also found, not surprisingly,
that turbulence activity is more vigorous near the DSE than near the USE.

Some words of caution regarding the above Kolmogorov scale calculations
and some comments regarding DNS are appropriate here. First, gk comes from a
scaling argument, and in its evaluation from e the constant of proportionality is
bound to remain unknown. It is generally believed that, to simulate a turbulent
flow directly, the Kolmogorov scales have to be resolved. It should be kept in
mind, however, that these scales are evaluated by summing nine velocity deriv-
atives and averaging over time, and hence they are a representation of the smallest
scales at a particular point in a stationary turbulent flow, in a statistical sense only.
Thus spatial scales smaller than gk are bound to occur at this point for some
shorter durations. It is generally believed (Reynolds 1990) that the number of
grid points required scales with Re9/4; hence, for given computing power there is
an upper limit to the Reynolds number that can be achieved. Many DNS calcu-
lations, for example the ones cited here, seem to be reasonably good (in the sense
shown above) even though they do not resolve the smallest scales. This is prob-
ably because the smallest scales are not dynamically very important as far as the
overall field is concerned. We describe an analogy of sorts: in 2-D cavity flows,
we are unable to resolve the infinite sequence of corner eddies, sometimes not
more than one, yet we still get reasonable results for the overall field. This is not
to deny the importance of fine grids in simulation or the existence of the high Re
limit; the point is that, perhaps, while being careful, one need not be too conser-
vative. The grid resolution and the averaging time required depend on the quantity
of interest (mean velocity, rms values, shear stresses, or higher moments). The
distribution of gk in the cavity also indicates the difficulty of selecting a good
grid for a 3-D simulation; unstructured grids may be advantageous in this regard.
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Finally, as an interesting exercise we compare the exact value of dissipation
computed above with that obtained by an inviscid estimate from GI Taylor. In
this estimate the dissipation is equal to Au3/l (Tennekes & Lumley 1972, p. 20),
where u is the characteristic velocity of fluctuation, l is an integral length scale,
and A is a constant of proportionality. Taking u to be the average of the three rms
values and l 4 ly 4 1, if we now compare this inviscid estimate with the exact
value of the dissipation, we can estimate A. If the inviscid estimate is reasonable,
we should find little variation in A, and with luck it may even be close to 1. This
interesting comparison was made by Deshpande & Milton (1998), who find that
the inviscid estimate is quite good over the bulk of the flow, away from the walls
and the DSE.

Many other investigations are possible with DNS. For example, it is possible
to show that the initial state of the fluid in the cavity does not influence the final
turbulent state (Milton & Deshpande 1996), to put bounds on when transition
takes place, etc. Work has already been initiated (Zang et al 1993, Jordan & Ragab
1994) in using 3-D cavity flows to study and improve LES models. But these
matters would take us too far afield.

CONCLUSION

Over the past nearly four decades the study of driven cavity flows has lead to
insights into various aspects of fluid mechanics, some of them counter intuitive
and at times controversial. It may be noted from the literature cited that the pace
of work in the field has accelerated in recent years, principally because of the
possibilities opened up by DNS. In our opinion this growth is going to continue
because of the importance, both theoretical and practical, of being able to analyze
and understand complex, 3-D turbulent flows. A bottleneck that we do see is the
paucity of experimental data that are available. Extending the work of the Stanford
group to map a greater part of the field and to higher Reynolds numbers is a
matter of real importance. Although there are still many issues at lower Reynolds
numbers that are important and of interest, the understanding of high-Reynolds-
number flows is paramount. We expect DNS to play an increasingly important
role in this endeavor.
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