MATH32012: Commutative Algebra

Solutions to Exercises for Section 6

(Spring 2009) Exercises 4, 5 and 6 are the ones to try.

1. For what values of $a=0,1,2,3,4$ is $\mathbb{Z}_{5}[X] /\left\langle X^{2}+a\right\rangle$ a field?

Solution: Equivalently, for what values of $a=0,1,2,3,4$ is $X^{2}+a$ irreducible in $\mathbb{Z}_{5}[X]$? Equivalently, since the polynomial is quadratic, for what values of a does $X^{2}+a$ have a root; equivalently, for what values of a is $-a$ a square in \mathbb{Z}_{5} ? So we just compute the squares in $\mathbb{Z}_{5}: 0^{2}=0,1^{2}=1,2^{2}=4,3^{2}=4,4^{2}=1$ (so, in fact in \mathbb{Z}_{5}, a is a square iff $-a$ is a square). So $\mathbb{Z}_{5}[X] /\left\langle X^{2}+a\right\rangle$ is a field iff $a=2$ or $a=3$.
2. Find a canonical form for the elements of the ring $R=\mathbb{Z}_{2}[X] /\left\langle X^{2}+1\right\rangle$ (that is, write down all possible remainders with respect to $\left.X^{2}+1\right)$.
Noting that in $\mathbb{Z}_{2}[X] /\left\langle X^{2}+1\right\rangle$ we have $\alpha^{2}=1$ where $\alpha=X+\left\langle X^{2}+1\right\rangle$ is the image of $X \in \mathbb{Z}_{2}[X]$ in R, draw up the addition and multiplication tables for the ring R.

Is R a domain? a field?
Is $\left\langle X^{2}+1\right\rangle$ a prime ideal? a maximal ideal? if neither, what is its radical?
Solution: The possible remainders of polynomials when divided by $X^{2}+1$ are: $0,1, X, X+1$. So the factor ring $\mathbb{Z}_{2}[X] /\left\langle X^{2}+1\right\rangle$ has four elements - the images of these - which we may write as $0,1, \alpha, \alpha+1$ (having written α for the image $\left.X+\left\langle X^{2}+1\right\rangle\right)$. The addition and multiplication tables are as follows.

+	0	1	α	$\alpha+1$	\times	0	1	α	$\alpha+1$
0	0	1	α	$\alpha+1$	0	0	0	0	0
1	1	0	$\alpha+1$	α	1	0	1	α	$\alpha+1$
α	α	$\alpha+1$	0	1	α	0	α	1	$\alpha+1$
$\alpha+1$	$\alpha+1$	α	1	0	$\alpha+1$	0	$\alpha+1$	$\alpha+1$	0

This ring R is not a domain (so certainly not a field) since it contains a zero-divisor, namely $\alpha+1$. So, by $4.17,\left\langle X^{2}+1\right\rangle$ is not a prime ideal (hence, by 4.18 , not a maximal ideal). This reflects that fact that $X^{2}+1$ is reducible, being $(X+1)^{2}$. Clearly $X+1$ is in $\sqrt{\left\langle X^{2}+1\right\rangle}$ (since its square is in $\left\langle X^{2}+1\right\rangle$) and $\langle X+1\rangle$ is a prime ideal so it follows that $\sqrt{\left\langle X^{2}+1\right\rangle}=\langle X+1\rangle$.
3. Let $f=X^{2}+X+2 \in \mathbb{Z}_{3}[X]$. Check that f is irreducible, hence that $K=\mathbb{Z}_{3}[X] /\langle f\rangle$ is a field. Set $\alpha=X+\langle f\rangle$ and list all the elements of K. Identify each of α^{-2} and $\left(\alpha^{2}+1\right)(2 \alpha+1)$ as one of the elements on your list. Determine whether or not $Y^{2}+1 \in K[Y]$ is reducible or irreducible.
Solution: Since f has degree ≤ 3, it is enough to check for roots: $f(0)=2$, $f(1)=1, f(2)=2$, so f has not root, hence is irreducible. By Kronecker's Theorem a basis for K over \mathbb{Z}_{3} is $\{1, \alpha\}$ and so the elements of K are: $0,1,2$, $\alpha, \alpha+1, \alpha+2,2 \alpha, 2 \alpha+1,2 \alpha+2$.

We have $\alpha^{2}+\alpha+2=0$, so $\alpha(\alpha+1)=1$, hence $\alpha^{-1}=\alpha+1$. Therefore $\alpha^{-2}=(\alpha+1)^{2}=\alpha^{2}+2 \alpha+1=-\alpha-2+2 \alpha+1=\alpha-1=\alpha+2$. We have $\alpha^{2}=2 \alpha+1$ and use this to simplify $\left(\alpha^{2}+1\right)(2 \alpha+1)=(2 \alpha+2)(2 \alpha+1)=$ $\alpha^{2}+1=2 \alpha$.

The last part is asking whether there is a root of $Y^{2}+1=0$ in K; that is, is there an element of K whose square is $-1(=2)$? One possibility is just to start checking, squaring the elements of K in turn, to see if 2 is a square in K. Alternatively, take a typical element $a \alpha+b$, square it and rearrange, to get $\left(2 a^{2}+2 a b\right) \alpha+\left(a^{2}+b^{2}\right)$ which, if equal to 2 , gives $a(a+b)=0$ and $a^{2}+b^{2}=2$, so either $a=0$ (since a, b come from the domain \mathbb{Z}_{3}) and then $b^{2}=1$ - which has no solution in \mathbb{Z}_{3}, or $a=2 b$ and then $2 a^{2}=2$, giving $a=1, b=2$ or $a=2, b=1$, that is, $a \alpha+b=\alpha+2$ or $2 \alpha+1$. We check $(Y-(\alpha+2))(Y-(2 \alpha+1))=\cdots=Y^{2}+1$, showing that $Y^{2}+1$ is reducible.
4. Write down a non-constant polynomial in $\mathbb{Z}_{5}[X]$ which has no root in \mathbb{Z}_{5}.

Solution: One possibility is to write down a polynomial of which every element is a root, so $X(X-1)(X-2)(X-3)(X-4)$, and then add 1: the value of each element of \mathbb{Z}_{5} on $X(X-1)(X-2)(X-3)(X-4)+1$ is $0+1=1$.

There are plenty of other examples. For instance, there is some quadratic polynomial in $\mathbb{Z}_{5}[X]$ with no root in \mathbb{Z}_{5} (because there are 25 different polynomials of the form $X^{2}+a X+b$ but there are only 5 linear polynomials $X-c$, hence only 15 different polynomials which are of the form $(X-c)(X-d)(10$ with $c \neq d$ and 5 with $c=d$), leaving 10 monic irreducible quadratic monic polynomials. So just trying one at random will have a good chance of working (the most natural(?) one to try first, namely $X^{2}+X+1$, indeed has no root) and is certainly quicker than listing all 15 monic reducible quadratics then writing down one not on this list. An alternative is to make a little table with the 5 possible values of X and, underneath, the corresponding values of X^{2} - that makes spotting a combination $X^{2}+a X+b$ which never gives 0 quite easy.
5. Show that $\sqrt{2}-\sqrt{3}$ is an algebraic number by finding a non-zero polynomial with rational coefficients of which it is a root.
Solution: $(\sqrt{2}-\sqrt{3})^{2}=2-2 \sqrt{2} \sqrt{3}+3$ so, writing $a=\sqrt{2}-\sqrt{3}$, we have $a^{2}=5-2 \sqrt{2} \sqrt{3}$, hence $a^{2}-5=-2 \sqrt{2} \sqrt{3}$, so $\left(a^{2}-5\right)^{2}=24$. Expanding, we obtain $a^{4}-10 a^{2}+25=24$, so $\sqrt{2}-\sqrt{3}$ is a root of $X^{4}-10 X^{2}+1$, hence is an algebraic number.
6. Show that each of (i) $1+2^{1 / 3}$ and (ii) $2^{1 / 3}+3^{1 / 3}$ is an algebraic number by finding a non-zero polynomial with rational coefficients of which it is a root.
Solution: (i) Set $a=1+2^{1 / 3}$; then $a^{3}=1+3 \cdot 2^{1 / 3}+3 \cdot 2^{2 / 3}+2$, giving $a^{3}=3+3(a-1)+3(a-1)^{2}$. So $1+2^{1 / 3}$ is a root of $X^{3}-X^{2}+X-1$, hence is an algebraic number.
(ii) Set $a=1+2^{1 / 3}$; then $a^{3}=2+3 \cdot 2^{2 / 3} 3^{1 / 3}+3 \cdot 2^{1 / 3} 3^{2 / 3}+3=5+3\left(2^{1 / 3}+\right.$ $\left.3^{1 / 3}\right) 2^{1 / 3} 3^{1 / 3}$, that is, $a^{3}=5+3 a 2^{1 / 3} 3^{1 / 3}$. Rearrange and cube: $\left(a^{3}-5\right)^{3}=$ $27 a^{3} 6$ which you can simplify if you really want to. [This gives a degree 9 polynomial of which a is a root; perhaps there is one of lower degree but I didn't
check - and the question does not ask for the best/lowest-degree polynomial satisfied by a.]
7. Let \mathbb{F} be the field with 4 elements which is obtained from \mathbb{Z}_{2} by adding a root α of the polynomial $X^{2}+X+1$. How many monic irreducible polynomials of degree 2 are there in $\mathbb{F}[X]$? Find one of them.
Solution: A monic polynomial of degree 2 has the form $X^{2}+a X+b$ where $a, b \in\{0,1, \alpha, \alpha+1\}$ (where, note, $\alpha^{2}=\alpha+1$). There are 4 choices of each of a, b, so 16 such polynomials in all. Those which are reducible must have the form $(X-c)(X-d)$: there are $4 \times 3 / 2=6$ of these with $c \neq d$ and 4 with $c=d$. So there are 10 reducible monic polynomials of degree 2 , leaving 6 monic irreducible polynomials of degree 2 .

To find one of these irreducible polynomials, you could compute the 10 reducible ones and then take a polynomial not on the list, but that looks a little tedious, so you could just choose one at random, and check (then take another if your first choice proves to be reducible, etc.). Or we can say: let's find values of a and b such that $X^{2}+a X+b=(X-c)(X-d)$ has no solution, that is, such that $a=c+d, b=c d$ has no solution. There are quite a few possibilities there, so let's make the guess that there is an irreducible polynomial with constant coefficient 1 , that is $b=1$, so $a=c+c^{-1}$. But the only values of $c+c^{-1}$ with $c \in L$ are: $1+1=0, \alpha+(\alpha+1)=1$ - so that worked: choosing $b=1$ and $a=\alpha$ (or $a=\alpha+1$) gives the irreducible polynomial $X^{2}+\alpha X+1$ (which might well have been the first one you'd try under the "choose one at random" method).

