
MATH32012: Commutative Algebra

Solutions to Exercises for Section 6

(Spring 2009) Exercises 4, 5 and 6 are the ones to try.

1. For what values of a = 0, 1, 2, 3, 4 is Z5[X]/〈X2 + a〉 a field?

Solution: Equivalently, for what values of a = 0, 1, 2, 3, 4 is X2 + a irreducible
in Z5[X]? Equivalently, since the polynomial is quadratic, for what values of a
does X2 +a have a root; equivalently, for what values of a is −a a square in Z5?
So we just compute the squares in Z5: 02 = 0, 12 = 1, 22 = 4, 32 = 4, 42 = 1
(so, in fact in Z5, a is a square iff −a is a square). So Z5[X]/〈X2 + a〉 is a field
iff a = 2 or a = 3.

2. Find a canonical form for the elements of the ring R = Z2[X]/〈X2 +1〉 (that
is, write down all possible remainders with respect to X2 + 1).
Noting that in Z2[X]/〈X2 + 1〉 we have α2 = 1 where α = X + 〈X2 + 1〉 is the
image of X ∈ Z2[X] in R, draw up the addition and multiplication tables for
the ring R.

Is R a domain? a field?
Is 〈X2 + 1〉 a prime ideal? a maximal ideal? if neither, what is its radical?

Solution: The possible remainders of polynomials when divided by X2 +1 are:
0, 1, X, X +1. So the factor ring Z2[X]/〈X2 +1〉 has four elements - the images
of these - which we may write as 0, 1, α, α + 1 (having written α for the image
X + 〈X2 + 1〉). The addition and multiplication tables are as follows.

+ 0 1 α α + 1 × 0 1 α α + 1
0 0 1 α α + 1 0 0 0 0 0
1 1 0 α + 1 α 1 0 1 α α + 1
α α α + 1 0 1 α 0 α 1 α + 1

α + 1 α + 1 α 1 0 α + 1 0 α + 1 α + 1 0

This ring R is not a domain (so certainly not a field) since it contains a
zero-divisor, namely α + 1. So, by 4.17, 〈X2 + 1〉 is not a prime ideal (hence,
by 4.18, not a maximal ideal). This reflects that fact that X2 + 1 is reducible,
being (X + 1)2. Clearly X + 1 is in

√

〈X2 + 1〉 (since its square is in 〈X2 + 1〉)
and 〈X + 1〉 is a prime ideal so it follows that

√

〈X2 + 1〉 = 〈X + 1〉.
3. Let f = X2 + X + 2 ∈ Z3[X]. Check that f is irreducible, hence that
K = Z3[X]/〈f〉 is a field. Set α = X + 〈f〉 and list all the elements of K.
Identify each of α−2 and (α2 + 1)(2α + 1) as one of the elements on your list.
Determine whether or not Y 2 + 1 ∈ K[Y ] is reducible or irreducible.

Solution: Since f has degree ≤ 3, it is enough to check for roots: f(0) = 2,
f(1) = 1, f(2) = 2, so f has not root, hence is irreducible. By Kronecker’s
Theorem a basis for K over Z3 is {1, α} and so the elements of K are: 0, 1, 2,
α, α + 1, α + 2, 2α, 2α + 1, 2α + 2.
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We have α2 + α + 2 = 0, so α(α + 1) = 1, hence α−1 = α + 1. Therefore
α−2 = (α + 1)2 = α2 + 2α + 1 = −α − 2 + 2α + 1 = α − 1 = α + 2. We have
α2 = 2α + 1 and use this to simplify (α2 + 1)(2α + 1) = (2α + 2)(2α + 1) =
α2 + 1 = 2α.

The last part is asking whether there is a root of Y 2 + 1 = 0 in K; that
is, is there an element of K whose square is −1(= 2)? One possibility is just
to start checking, squaring the elements of K in turn, to see if 2 is a square
in K. Alternatively, take a typical element aα + b, square it and rearrange,
to get (2a2 + 2ab)α + (a2 + b2) which, if equal to 2, gives a(a + b) = 0 and
a2 + b2 = 2, so either a = 0 (since a, b come from the domain Z3) and then
b2 = 1 - which has no solution in Z3, or a = 2b and then 2a2 = 2, giving
a = 1, b = 2 or a = 2, b = 1, that is, aα + b = α + 2 or 2α + 1. We check
(Y − (α + 2))(Y − (2α + 1)) = · · · = Y 2 + 1, showing that Y 2 + 1 is reducible.

4. Write down a non-constant polynomial in Z5[X] which has no root in Z5.

Solution: One possibility is to write down a polynomial of which every element
is a root, so X(X − 1)(X − 2)(X − 3)(X − 4), and then add 1: the value of each
element of Z5 on X(X − 1)(X − 2)(X − 3)(X − 4) + 1 is 0 + 1 = 1.

There are plenty of other examples. For instance, there is some quadratic
polynomial in Z5[X] with no root in Z5 (because there are 25 different polyno-
mials of the form X2 + aX + b but there are only 5 linear polynomials X − c,
hence only 15 different polynomials which are of the form (X − c)(X − d) (10
with c 6= d and 5 with c = d), leaving 10 monic irreducible quadratic monic
polynomials. So just trying one at random will have a good chance of working
(the most natural(?) one to try first, namely X2 + X + 1, indeed has no root)
and is certainly quicker than listing all 15 monic reducible quadratics then writ-
ing down one not on this list. An alternative is to make a little table with the
5 possible values of X and, underneath, the corresponding values of X2 - that
makes spotting a combination X2 + aX + b which never gives 0 quite easy.

5. Show that
√

2−
√

3 is an algebraic number by finding a non-zero polynomial
with rational coefficients of which it is a root.

Solution: (
√

2 −
√

3)2 = 2 − 2
√

2
√

3 + 3 so, writing a =
√

2 −
√

3, we have
a2 = 5 − 2

√
2
√

3, hence a2 − 5 = −2
√

2
√

3, so (a2 − 5)2 = 24. Expanding, we
obtain a4− 10a2 + 25 = 24, so

√
2−

√
3 is a root of X4− 10X2 + 1, hence is an

algebraic number.

6. Show that each of (i) 1 + 21/3 and (ii) 21/3 + 31/3 is an algebraic number by
finding a non-zero polynomial with rational coefficients of which it is a root.

Solution: (i) Set a = 1 + 21/3; then a3 = 1 + 3 · 21/3 + 3 · 22/3 + 2, giving
a3 = 3 + 3(a− 1) + 3(a− 1)2. So 1 + 21/3 is a root of X3 −X2 + X − 1, hence
is an algebraic number.
(ii) Set a = 1 + 21/3; then a3 = 2 + 3 · 22/331/3 + 3 · 21/332/3 + 3 = 5 + 3(21/3 +
31/3)21/331/3, that is, a3 = 5 + 3a21/331/3. Rearrange and cube: (a3 − 5)3 =
27a36 which you can simplify if you really want to. [This gives a degree 9
polynomial of which a is a root; perhaps there is one of lower degree but I didn’t
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check - and the question does not ask for the best/lowest-degree polynomial
satisfied by a.]

7. Let F be the field with 4 elements which is obtained from Z2 by adding a
root α of the polynomial X2 +X +1. How many monic irreducible polynomials
of degree 2 are there in F[X]? Find one of them.

Solution: A monic polynomial of degree 2 has the form X2 + aX + b where
a, b ∈ {0, 1, α, α + 1} (where, note, α2 = α + 1). There are 4 choices of each of
a, b, so 16 such polynomials in all. Those which are reducible must have the
form (X − c)(X − d): there are 4 × 3/2 = 6 of these with c 6= d and 4 with
c = d. So there are 10 reducible monic polynomials of degree 2, leaving 6 monic
irreducible polynomials of degree 2.

To find one of these irreducible polynomials, you could compute the 10
reducible ones and then take a polynomial not on the list, but that looks a little
tedious, so you could just choose one at random, and check (then take another
if your first choice proves to be reducible, etc.). Or we can say: let’s find values
of a and b such that X2 +aX +b = (X−c)(X−d) has no solution, that is, such
that a = c + d, b = cd has no solution. There are quite a few possibilities there,
so let’s make the guess that there is an irreducible polynomial with constant
coefficient 1, that is b = 1, so a = c + c−1. But the only values of c + c−1 with
c ∈ L are: 1+1 = 0, α+(α+1) = 1 - so that worked: choosing b = 1 and a = α
(or a = α + 1) gives the irreducible polynomial X2 + αX + 1 (which might well
have been the first one you’d try under the “choose one at random” method).
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