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1 Introduction

1.1 Definition. A prime number is a positive integer greater than 1 such that the only positive factors of it are 1
and itself. Let π(x) denote the number of primes less than or equal to x .

Basic Question: How are the primes distributed amoung the integers? How does π(x) grow with x?
Let pn denote the nth prime. Is there a polynomial f ∈ Z[x] such that f (n) = pn? Clearly no, as if q is

prime and q| f (n) then q| f (n+ kq) for all k ∈ N. This observation shows further that any polynomial that takes
only prime values on the integers must be constant. There are examples of polynomials whose initial values are
surprisingly often prime. For example, Euler noticed that n2+n+41 is prime for n= 0, . . . , 39, and by translation,
(n− 40)2 + (n− 40) + 41 is prime for n = 0, . . . , 79. This is related to the fact that Q(

p
−163) has class number

1. In the 70’s Matijasevic proved Hilbert’s 10th problem, and in the process was able to prove that there is a
polynomial f ∈ Z[a, b, c, . . . , z] such that the positive values in f (N26) is exactly the set of primes. In 1977 he
showed that 10 variables suffices.

Can we find a non-constant polynomial f ∈ Z[x] such that f (n) is prime infinitely often? Clearly yes,
f (x) = x + k works for any k ∈ Z. Dirichlet showed that for coprime k,` ∈ N there are infinitely many primes
of the form kn+ `. Is x2 + 1 prime infinitely often? Almost surely yes, but the best result known to date is that
n2+1 is a product of two primes for infinitely many n. There is no polynomial of degree greater than one in one
variable known to take prime values infinitely often. If instead we consider polynomials of two variables we can
go further. Friedlander and Iwaniec (1998) proved that there are infinitely many primes of the form n2 +m4. In
(2001) Heath Brown proved there are infinitely many primes of the form n3 + 2m3.

Let the Möbius function µ : N→ {−1, 0,1} be defined by

µ(n) =







1 if n= 1

(−1)k if n is squarefree and k is the number of distinct prime factors of n
0 otherwise

In 1971, Gandhi proved that if Qn := p1 . . . pn, where pi is the ith prime, then pn+1 is the unique integer which
satisfies the inequality

1< 2pn+1






−

1

2
+
∑

d|Qn

µ(d)

2d − 1






< 2

(S. Golmab, American Mathematical Monthly, 1974, p. 752-754)
Recall Wilson’s Theorem, that an integer n> 1 is prime if and only if n|(n− 1)!+ 1. Thus, for x > 1,

π(x) =
∑

2≤ j≤x

��

( j− 1)!+ 1

j

�

−
�

( j− 1)!
j

��

where [·] is the greatest integer function. This estimate is not particularily useful, as n! is extremely large
compared to n.
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1.2 Theorem (Euclid). There are infinitely many primes.

PROOF: Assume not. If p1, . . . , pn are all of the primes, then p1 . . . pn+1 has no prime factors. This is a contradic-
tion. �

Notice that we can extract a bound for π(x) from Euclid’s proof. By an easy induction we can prove that
pn ≤ 22n

for all n. Indeed, p1 = 2 ≤ 221
, and pn+1 ≤ p1 . . . pn ≤ 22+···+2n

+ 1 = 22n+1−2 + 1 ≤ 22n+1
. Therefore for

x > 1, π(x) satisfies 22π(x) ≤ x < 22π(x)+1
. Taking logarithms, log2(log2 x)− 1< π(x).

2 Elementary Approximations of π(x)

Fermat numbers are integers of the form 22n
+1, n≥ 0. He observed that Fn := 22n

+1 is prime for n= 0,1, 2,3, 4.
He conjectured that this would always be the case. Almost certainly he was absolutely wrong. 641 divides F5,
and Fn is known to be composite for n= 5,6, . . . , 32.

2.1 Theorem (Pólya). For any integers n, m with 1≤ n< m, gcd(Fn, Fm) = 1.

PROOF: Let us put m= n+ k. Observe that the polynomial x2k
− 1 is divisible by x + 1 in Z[x]. In particular,

x2k
− 1

x + 1
= x2k−1 − x2k−2 + · · · − 1

If we take x = 22n
then we get Fn|Fm − 2. The result follows since no Fermat number is even. �

As an immediate consequence of this, pn ≤ 22n
+ 1. Also note that for x > 1,

2π(x) ≥
∏

p≤x

�

1−
1

p

�−1

=
∏

p≤x

�

1+
1

p
+

1

p2 + · · ·
�

≥
∑

n≤x

1

n
≥
∫ x

1

du

u
= log x

Thus π(x)≥ log log x
log2

.

2.2 Theorem. Let x ∈ Z, x ≥ 2. Then

π(x)≥
1

2 log2
log x and pn ≤ 4n

PROOF: Let p1, . . . , pk be the primes less than or equal to x . For any n ∈ Z with 1≤ n≤ x we may write n= n2
1m

where n1 ∈ N and m is square-free. Then m = pε1
1 . . . pεk

k where εi ∈ {0, 1}. Thus there are at most 2k possible
choices for m. Since 1 ≤ n ≤ x , we see that there are at most

p
x choices for n1. Thus there are at most 2kpx

numbers between 1 and x , which implies that x ≤ 2kpx and hence
p

x ≤ 2k. Whence 1
2 log2

log x ≤ k = π(x).
Taking x = pn gives k = n and

p
pn ≤ 2n, so pn ≤ 4n. �

Let p be a prime and n ∈ N. What is the power of p that divides n!? Clearly it is

∞
∑

i=1

�

n

pi

�

=
[logp n]
∑

i=1

�

n

pi

�
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2.3 Theorem. Let x ≥ 2. Then
3 log2

8

x

log x
< π(x)< 6 log 2

x

log x

PROOF: For each prime p, let rp denote the unique integer for which prp ≤ 2n < prp+1. Then the power of p
dividing

�2n
n

�

is
rp
∑

k=1

�

2n

pk

�

− 2
�

n

pk

�

which is less that or equal to rp, since each term in the sum is either 0 or 1. Therefore
�2n

n

�

divides
∏

p≤2n prp .

Hence 2n ≤
�2n

n

�

≤ (2n)π(2n), so n log2≤ π(2n) log(2n) and we get that

log 2

2

2n

log(2n)
≤ π(2n)

Given x , choose n so that 2n ≤ x < 2n+ 2, so π(x) ≥ log 2
2

2n
log(2n)

. Suppose x > 6. Then 2n > 3
4

x and, since y
log y

is increasing for y > 6, we have 3 log 2
8

x
log x

< π(x). The result follows for 2≤ x ≤ 6 as may be checked.

For the upper bound, observe that
∏

n<p≤2n p divides
�2n

n

�

. Hence nπ(2n)−π(n) ≤
∏

n<p≤2n p ≤
�2n

n

�

≤ 4n, so
π(2n) log n−π(n) log n≤ 2n log 2. Thus

π(2n) log n−π(n) log
n

2
≤ (2 log 2)n+π(n) log2≤ (3 log 2)n

If n= 2k, 2k−1, . . . 4 then we get a telescoping collection of inequalities

π(2k+1) log2k −π(2k) log2k−1 ≤ (3 log2)2k

π(2k) log 2k−1 −π(2k−1) log2k−2 ≤ (3 log2)2k−1

...

π(8) log 4−π(4) log2≤ (3 log 2)4

Adding gives π(2k+1) log2k < (3 log 2)2k+1, hence π(2k+1) < 6 log2
�

2k

log 2k

�

. Therefore given x we choose k so

that 2k ≤ x < 2k+1. Whence

π(x)≤ π(2k+1)< 6 log 2

�

2k

log2k

�

< 6 log 2
�

x

log x

�

for x > 4. Checking the result for 2≤ x ≤ 4 completes the proof. �

3 Bertrand’s Postulate

In 1845 Bertrand found that for 1 ≤ n ≤ 106 there was always a prime between n and 2n. He postulated that
this always occurs. In 1850 Chebyshev proved it true for all n ≥ 1. Note that this is not trivial, in that it doesn’t
occur for free just because π(x) ≈ x

log x
. Take S to be the set containing [23n, 23n+1] for each n. Then S does not

have this property, and it is quite a bit more dense than the set of primes.
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3.1 Theorem. For all n ∈ N,
∏

p≤n

p < 4n

PROOF: By induction on n. Clearly the theorem holds for n = 1,2. Suppose that the theorem holds for k =
1, . . . , n−1, with n≥ 3. Observe that we may restrict our attention to odd n, since if n is even then it is not prime
and

∏

p≤n pn =
∏

p≤n−1 pn. Take n = 2m+ 1 where m ∈ N. Note that every prime p with m+ 2 ≤ p ≤ 2m+ 1

divides
�2m+1

m

�

, so
∏

m+2≤p≤2m+1 p divides
�2m+1

m

�

. It follows that

∏

p≤2m+1

p ≤
�

2m+ 1

m

�

∏

p≤m+1

p ≤
�

2m+ 1

m

�

4m+1 ≤ 4m4m+1 = 42m+1

since
�2m+1

m

�

=
�2m+1

m+1

�

and they both occur in the binomial expansion of (1+ 1)2m+1. �

Notation. If p is a prime and n is an integer and pa | n but pa+1 - n then we abbreviate this by pa‖n.

3.2 Lemma. If n≥ 3 and p is a prime with 2
3
n< p ≤ n then p -

�2n
n

�

.

PROOF: Since n ≥ 3 we see that p is odd. The only multiples of p with p ≤ 2n are p and 2p. Thus p‖n! and
p2‖(2n)!. Hence p -

�2n
n

�

. �

3.3 Theorem (Bertrand’s Postulate). For any n ∈ N there is a prime p with n< p ≤ 2n.

PROOF: The result holds for n = 1,2, 3. We argue by contradiction. Suppose that result is false for some integer
n ≥ 4. By Lemma 3.2 there is no prime larger than 2

3
n which divides

�2n
n

�

. Let p be a prime with p ≤ 2
3
n and let

ap be the number such that pap‖
�2n

n

�

. As in the proof of Theorem 2.3 we see that ap ≤ rp, where rp is that integer
for which prp ≤ 2n< prp+1. Thus

�

2n

n

�

≤
∏

p≤ 2
3

n

pap and so
�

2n

n

�

≤ (2n)t
∏

p≤ 2
3

n

p

where t is number of primes p ≤ 2
3
n for which ap ≥ 2. Since pap ≤ 2n we see that t ≤

p
2n. Therefore

�

2n

n

�

≤ (2n)
p

2n
∏

p≤ 2
3

n

p ≤ (2n)
p

2n4
2
3

n by Theorem 3.1

But
�2n

n

�

> 4n

2n+1
. Thus 4n

2n+1
< (2n)

p
2n4

2
3

n, so

4
n
3 < (2n)

p
2n(2n+ 1)< (2n)

p
2n+2

We can now check that the result holds when 4≤ n≤ 16, so assume that n> 16. Taking logarithms,

log4

3
n< (

p
2n+ 2) log2n< 2

p
n log2n< 2

p
n log n

5
4 <

5

2

p
n log n

Hence
p

n
log n

< 15
2 log 4

, and
p

n
log n

is increasing for n > e2. Furthermore,
p

1600
log1600

= 5.421 . . . > 15
2 log 4

, so n < 1600. But
2,3, 5,7, 13,23, 43,83, 163,317, 557,1109, 2207 are all prime and so the result follows. �
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The obvious question to ask now is whether we can do better. Baker and Harman proved that there is a
positive number C such that for x > C there is a prime in the interval [x , x + x0.535]. This is the best result
known so far. Assuming the Riemann Hypothesis we can replace 0.535 with 1

2
+ ε. In 1930, Cramer conjectured

that

lim sup
n→∞

pn+1 − pn

(log pn)2
= 1

He arrived at this conjecture by probabilistic reasoning. We expect that pn+1 − pn = 2 for infinitely many n. This
is known as the twin primes conjecture. The best result known on small gaps is due to Maier in 1985. He proved
that pn+1 − pn < (0.248 . . .) log pn for infinitely many positive integers n.

Can one prove that there are large gaps infinitely often? In 1935, Erdös proved that there is a positive number
c such that, for infinitely many positive integers n, pn+1− pn > c log n log log pn

(log log log pn)2
. In 1938, Rankin added a factor

of log log log log pn. Erdös offered $10,000 USD for any proof which showed one could replace the constant c by
any function tending to infinity with n.

4 Asymtotic Analysis

Notation. Let f , g : N→ R and suppose that g > 0. We write f = O(g) whenever there are c1, c2 > 0 such that if
x > c1 then | f (x)|< c2 g(x). We write f = o(g) if limx→∞

f (x)
g(x)
= 0 We write f ∼ g, pronouced “ f is asymtotic to

g” if limx→∞
f (x)
g(x)
= 1

Recall that one of the aims of this course is to prove the Prime Number Theorem, which states that

π(x)∼
x

log x

or, equivalently π(x) = x
log x
+ o( x

log x
). Let ε > 0. Notice that

(1+ ε)x
log x + log(1+ ε)

=
(1+ ε)x

log x
�

1+ log(1+ε)
log x

� = (1+ ε)
x

log x
+O

�

x

(log x)2

�

= (1+ ε)
x

log x
+ o
�

x

log x

�

since 1− y + y2 > 1
1+y

> 1− y for all |y|< 1. Then

π((1+ ε)x)−π(x) =
(1+ ε)x

log(1+ ε)x
−

x

log x
+ o
�

x

log x

�

=
εx

log x
+ o
�

x

log x

�

This says that the number of primes between x and (1+ ε)x is about εx
log x

, which is a much stronger result than

Bertrand’s Postulate. Taking ε = 1 we have π(2x)−π(x) = x
log x
+ o( x

log x
). This seems to suggest that π is linear,

but this is not the case.
For any integer n, let

Λ(n) :=

¨

log p if n is a positive power of p
0 otherwise

We define
θ(x) :=

∑

p≤x

log p

and
Ψ(x) :=

∑

pm≤x

log p =
∑

n≤x

Λ(x)
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Observe that Ψ(x) =
∑

p≤x

h

log x
log p

i

log p. Notice that θ(x) =
∑

p≤x log p ≤ x log x and thus

Ψ(x) = θ(x) + θ(
p

x) + θ( 3
p

x) + · · ·+ θ( k
p

x) where k =
�

log x

log2

�

≤ θ(x) +
p

x log x + · · ·+ k
p

x log x

≤ θ(x) + (
p

x log x)
log x

log 2

= θ(x) +O(
p

x(log x)2)

By Theorem 2.3, there is a c1 > 0 such that θ(x) < c1 x for x ≥ 2, since θ(x) =
∑

p≤x log x ≤ π(x) log x .
Therefore there is a c2 > 0 such that Ψ(x)< c2 x for x ≥ 2. Furthermore, the proof of Theorem 2.3 shows

n log2= log 2n ≤ log
�

2n

n

�

≤
∑

p≤2n

�

log2n

log p

�

log p =Ψ(2n)

for n ∈ N. Therefore there is a c3 > 0 such that Ψ(x) > c3 x for x ≥ 2. As a consequence of this there is a c4 > 0
such that θ(x)> c4 x for x ≥ 2.

4.1 Theorem.

π(x) log x ∼ θ(x)∼ψ(x)

PROOF: θ(x) ∼ ψ(x) since θ(x) ≥ c4 x for x ≥ 2 and Ψ(x) = θ(x) + O(
p

x(log x)2). It remains to show that
π(x) log x ∼ θ(x). Clearly π(x)≥ θ(x)

log x
. Let 1> δ > 0. Then

θ(x)≥
∑

x1−δ<p≤x

log p

≥
∑

x1−δ<p≤x

(1−δ) log x

≥ (π(x)−π(x1−δ))(1−δ) log x

≥ (π(x)− x1−δ)(1−δ) log x

θ(x) + x1−δ(1−δ) log x ≥ (1−δ)π(x) log x

Therefore

1≤
π(x) log x

θ(x)
≤

1

1−δ

�

1+
(1−δ)x1−δ log x

θ(x)

�

≤
1

1−δ
+

x1−δ log x

θ(x)

Since θ(x)> c4 x for x ≥ 2 we see that

1≤
π(x) log x

θ(x)
≤

1

1−δ
+

log x

c4 xδ

Given ε > 0, choose δ > 0 so that 1
1−δ < 1+ ε

2
and choose x0(ε,δ) so that for x > x0(ε,δ),

log x
c4 x
< ε

2
. Then

1≤
π(x) log x

θ(x)
≤ 1+ ε

and the result follows. �
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4.2 Lemma (Abel’s summation Formula). Let (an)∞n=1 be a sequence of complex numbers and let f be a con-
tinuously differentiable function from {x ∈ R | x ≥ 1} to C. For each x ∈ R we define A(x) =

∑

n≤x an. Then

∑

n≤x

an f (n) = A(x) f (x)−
∫ x

1

A(u) f ′(u)du

PROOF: Put N = [x]. Then

∑

n≤x

an f (n) =
N
∑

i=1

ai f (i)

= A(1) f (1) +
N
∑

i=2

(A(i)− A(i− 1)) f (i)

=
N−1
∑

i=1

A(i)( f (i)− f (i+ 1)) + A(N) f (N)

= A(N) f (N)−
N−1
∑

i=1

∫ i+1

i

A(u) f ′(u)du

Therefore
∑

n≤x

an f (n) = A(N) f (N)−
∫ N

1

A(u) f ′(u)du

but
∫ x

N
A(u) f ′(u)du= A(x) f (x)− A(N) f (N), and the result follows. �

4.3 Definition. Euler’s constant γ is defined by

γ := 1−
∫ ∞

1

u− [u]
u2 du≈ 0.5772 . . .

Open Question: Is γ irrational?
4.4 Theorem.

∑

n≤x

1

n
= log x + γ+O

�

1

x

�

PROOF: By Lemma 4.2. We take f (x) = 1
x

and an = 1 for each n. Then A(x) = [x], and thus

∑

n≤x

1

n
= [x]

1

x
+

∫ x

1

[u]
u2 du

=
x − (x − [x])

x
+

∫ x

1

u− (u− [u])
u2 du

= 1+O
�

1

x

�

+

∫ x

1

du

u
−
∫ x

1

u− [u]
u2 du

= log x + γ+

∫ ∞

x

u− [u]
u2 du+O

�

1

x

�

= log x + γ+O
�

1

x

�

�



ASYMTOTIC ANALYSIS 9

4.5 Theorem.

∑

n≤x

Λ(n)
n
= log x +O(1)

PROOF: Take an = 1 and f (x) = log x in Lemma 4.2. Then

∑

n≤x

log n= [x] log x −
∫ x

1

[u]
u

du

= (x − (x − [x])) log x −
∫ x

1

u− ([u]− u)
u

du

= x log x +O(log x)− (x − 1) +

∫ x

1

[u]− u

u
du

= x log x − x +O(log x) +O

�
∫ x

1

1

u
du

�

= x log x − x +O(log x)

Note that log[x]!=
∑

n≤x log n, so this is a weak form of Stirling’s formula. But

log[x]!=
∑

p≤x

��

x

p

�

+
�

x

p2

�

+ · · ·
�

log p

=
∑

p≤x

�

h

log x
log p

i

∑

m=1

�

x

pm

�

�

log p

=
∑

p≤x

� x

n

�

Λ(n)

=
∑

n≤x

� x

n
−
� x

n
−
� x

n

���

Λ(n)

= x
∑

n≤x

x
Λ(n)

n
−O (Ψ(x))

= x
∑

n≤x

x
Λ(n)

n
−O (x)

Thus from the first equation,

x log x − x +O(log x) = x
∑

n≤x

Λ(n)
n
−O(x)

x log x +O(x) = x
∑

n≤x

Λ(n)
n

log x +O(1) =
∑

n≤x

Λ(n)
n

�



10 ANALYTIC NUMBER THEORY

4.6 Theorem.
∑

p≤x

log p

p
= log x +O(1)

PROOF:

∑

n≤x

Λ(n)
n
−
∑

p≤x

log p

p
=
∑

pm≤x
m≥2

log p

pm

Thus by Theorem 4.5 it suffices to show that the right hand side is O(1). But 1
p2 +

1
p3 + · · ·=

1
p(p−1)

and so

∑

pm≤x
m≥2

log p

pm ≤
∑

2≤n≤x

log n

n(n− 1)
≤
∞
∑

n=2

log n

n(n− 1)
<∞

and the result follows. �

4.7 Theorem. There is a number B1 such that

∑

p≤x

1

p
= log log x + B1 + o(1)

PROOF: Take

an =

(

log p
p

if n= p

0 otherwise

and f (x) = 1
log x

. By Lemma 4.2

∑

p≤x

1

p
=
�

∑

p≤x

log p

p

�

1

log x
+

∫ x

1

�

∑

p≤u

log p

p

�

1

u(log u)2
du

= 1+O
�

1

log x

�

+

∫ x

2

A(u)
u(log u)2

du by Theorem 4.6

= 1+O
�

1

log x

�

+

∫ x

2

log u+τ(u)
u(log u)2

du where τ(u) = O(1), by Lemma 4.2

= 1+O
�

1

log x

�

+

∫ x

2

1

u log u
du+

∫ x

2

τ(u)
u(log u)2

du

= log log x + 1− log log 2+O
�

1

log x

�

+

∫ x

2

τ(u)
u(log u)2

du

= log log x + B1 −
∫ ∞

x

τ(u)
u(log u)2

du+O
�

1

log x

�

B1 := 1− log log 2+

∫ ∞

2

τ(u)
u(log u)2

du

= log log x + B1 + o(1) �

B1 can be calculated to about 0.261447 . . . It can be shown that B1 = γ+
∑

p

�

log
�

1− 1
p

�

+ 1
p

�

.
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5 Riemann’s Zeta Function

The Riemann zeta function, ζ(s) is a function of a complex variable s. It is defined for ℜ(s)> 1 by

ζ(s) =
∞
∑

n=1

1

ns

Since
∑∞

n=1
1
ns is uniformly convergent on compact subsets of {z ∈ C | ℜ(z) > 1} we deduce that ζ(s) is an

analytic function on ℜ(s)> 1. We also note that ζ(s)may be represented by an Euler product in the same region.
Observe that

∏

p

�

1−
1

ps

�−1

=
∏

p

�

1+
1

ps +
1

p2s +
1

p3s + · · ·
�

=
∞
∑

n=1

1

ns

by the Fundemental Theorem of Arithmetic. Since ζ(s) is represented by a convergent infinite product for
ℜ(s)> 1, we conclude that ζ(s) 6= 0 for ℜ(s)> 1.

Notation. For the remainder of this section, s denotes a complex number and we put s = σ+ i t, with σ, t ∈ R.

5.1 Theorem. ζ(s) can be analytically continued to ℜ(s) > 0, with the exception of a simple pole at s = 1 with
residue 1.

PROOF: Let s ∈ C with ℜ(s)> 1. We apply Abel summation with an = 1 and f (x) = 1
x s . Then

∑

n≤y

1

ns =
[y]
y s + s

∫ y

1

[u]
us+1 du

Letting y →∞ we find that

ζ(s) = s

∫ ∞

1

[u]
us+1 du

= s

∫ ∞

1

u− (u− [u])
us+1 du

= s

∫ ∞

1

1

us du− s

∫ ∞

1

u− [u]
us+1 du

=
s

s− 1
− s

∫ ∞

1

u− [u]
us+1 du

The first term in the sum is analytic on C, except at the point s = 1 where it has a simple pole of residue 1. The
integral in the second term is uniformly convergent on compact subsets of ℜ(s) > 0. Furthermore, it represents
an analytic function on ℜ(s)> 0. Thus ζ(s) may be analytically continued to ℜ(s)> 0, with the exception of the
simple pole at s = 1. �

ζ(s) can be analytically continued to all of C, except for s = 1. There is a functional eqution which relates the
behavior of ζ(s) with the behavior of ζ(1− s). The region {s ∈ C | 0 ≤ ℜ(s) ≤ 1} is known as the critical strip,
and information on the zeroes of ζ(s) in the critical strip can be translated into information on the distribution
of prime numbers. We shall deduce the prime number theorem from the fact that ζ(s) is not zero for ℜ(s) = 1.

5.2 Conjecture (Riemann Hypothesis). All of the zeroes of ζ(s) in the critical strip satisfy ℜ(s) = 1
2
.
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5.3 Theorem. ζ(s) is non-zero for ℜ(s)≥ 1.

PROOF: We have already seen from the Euler product representation of ζ(s) that ζ(s) 6= 0 for ℜ(s) > 1. Thus we
may restrict our attention to ℜ(s) = 1. If ℜ(s)> 1 then we have

ζ(s) =
∏

p

�

1−
1

ps

�−1

Recall s = σ+ i t, and for σ > 1 we have

log∗ ζ(σ+ i t) =−
∑

p

log
�

1−
1

pσ+i t

�

where log indicates the principal branch and log∗ indicates some branch of the logarithm. By the power series
expansion for log,

log∗ ζ(σ+ i t) =−
∑

p

∞
∑

n=1

p−n(σ+i t)

n

Recall for z ∈ C \ {0} we can write z = |z|eiθ for some 0≤ θ < 2π and log z = log |z|+ iθ +2kπi for some k ∈ Z.
So ℜ(log z) = log |z|. Observe that p−int = e−int log p = cos(−nt log p) + i sin(−nt log p). Therefore

log |ζ(σ+ i t)|=
∑

p

∞
∑

n=1

p−nσ

n
cos(nt log p)

Note that 0≤ 2(1+ cosθ)2 = 2+ 4 cosθ + 2cos2 θ = 3+ 4cosθ + cos 2θ . Thus

∑

p

∞
∑

n=1

p−nσ

n
(3+ 4cos(nt log p) + cos2(nt log p))≥ 0

and so
3 log |ζ(σ)|+ 4 log |ζ(σ+ i t)|+ log |ζ(σ+ i2t)| ≥ 0

which implies
|ζ(σ)|3|ζ(σ+ i t)|4|ζ(σ+ i2t)| ≥ 1

Suppose that 1+ i t0 is a zero of ζ(s). Since ζ(s) has a pole at s = 1, we see that t0 6= 0. Then there exist positive
numbers c1, c2 and c3 such that:

1. |ζ(σ)(σ− 1)| ≤ c1 for σ ∈ (1, 2], since the pole at s = 1 is simple.
2. |ζ(σ+ i t0)(σ− 1)−1| ≤ c2 for σ ∈ (1, 2], since 1+ i t0 is a zero of ζ(s).
3. |ζ(σ+ i2t0)| ≤ c3 for σ ∈ (1,2], since the only pole of ζ(s) for ℜ(s)> 0 is s = 1.

Thus
|ζ(σ)(σ− 1)|3|ζ(σ+ i t0)(σ− 1)−1|4|ζ(σ+ i2t0)| ≤ c3

1 c4
2 c3

and hence
1≤ |ζ(σ)|3|ζ(σ+ i t)|4|ζ(σ+ i2t)| ≤ c3

1 c4
2 c3|σ− 1|

for every σ ∈ (1, 2], a contradiction. Therefore ζ(s) has no zeros for ℜ(s)≥ 1. �

5.4 Theorem (D.J. Newman). Suppose that an ∈ C with |an| ≤ 1 for n ∈ N. The series
∑∞

n=1
an

ns converges to an
analytic function F(s) for ℜ(s)> 1. If F(s) can be analytically continued to ℜ(s)≥ 1 then the series converges to
F(s) for ℜ(s)≥ 1,
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PROOF: Let ω ∈ C with ℜ(ω) = 1. Then F(z+ω) is analytic for ℜ(z)≥ 0. Let R> 1 and choose δ = δ(R)≤ 1 so
that F(z +ω) is analytic on the region {x ∈ C | ℜ(z) ≥ −δ, |z| ≤ R}. This region is compact, so let M = M(R,δ)
be the maximum value of F(z +ω) on this region. Let Γ be the contour obtained by traversing the boundry of
the region in a counterclockwise direction. Let A be the part of Γ in the right half plane and let B be the rest of
Γ. By Cauchy’s residue theorem,

2πiF(ω) =

∫

Γ

F(z+ω)
1

z
dz =

∫

Γ

F(z+ω)N z
�

1

z
+

z

R2

�

dz

Note that on A, F(z +ω) is represented by the series
∑∞

n=1
an

nz+ω and we split the series into two parts. Let N ∈ N
and put SN (z+ω) =

∑N
n=1

an

nz+ω and RN (z+ω) = F(z+ω)− SN (z+ω). Again by Cauchy’s residue theorem,

2πiSN (ω) =

∫

|z|=R

SN (z+ω)
1

z
dz =

∫

|z|=R

SN (z+ω)N
z
�

1

z
+

z

R2

�

dz

Let C be the contour |z|= R traversed in the counterclockwise direction and let A be the open right semicircle of
radius R, so that C = A∪−A∪ {iR} ∪ {−iR}.

2πiSN (ω) =

∫

A

SN (z+ω)N
z
�

1

z
+

z

R2

�

dz+

∫

−A

SN (z+ω)N
z
�

1

z
+

z

R2

�

dz

=

∫

A

(SN (z+ω)N
z + SN (ω− z)N−z)

�

1

z
+

z

R2

�

dz

Thus 2πi(F(ω)− SN (ω)) =
∫

B
F(z+ω)N z

�

1
z
+ z

R2

�

dz+
∫

A
(RN (z+ω)N z − SN (ω− z)N−z)

�

1
z
+ z

R2

�

dz.

We will now prove that SN (ω)→ F(ω) as N →∞. Note that for z = x + i y ,

1. If z ∈ A we have 1
z
+ z

R2 =
z
zz
+ z

R2 =
z+z
R2 =

2x
R2 .

2. |R(z+ω)| ≤
∑∞

n=N+1
1

nx+1 ≤
∫∞

N
1

ux+1 du= 1
xN x .

3. |SN (ω− z)| ≤
∑N

n=1 nx−1 ≤ N x−1 +
∫ N

0
ux−1du= N x−1 + N x

x
= N x

�

1
N
+ 1

x

�

.

Therefore

�

�

�

�

�

∫

A

(RN (z+ω)N
z − SN (ω− z)N−z)

�

1

z
+

z

R2

�

dz

�

�

�

�

�

≤
∫

A

�
�

�

�

�

1

x

�

�

�

�

+

�

�

�

�

1

N
+

1

x

�

�

�

�

�

�

�

�

2x

R2

�

�

�

�

�

dz

≤
∫

A

4

R2 +
2

NR
dz

≤ πR
�

4

R2 +
2

NR

�

=
4π

R
+

2π

N
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And
�

�

�

�

�

∫

B

F(z+ω)N z
�

1

z
+

z

R2

�

dz

�

�

�

�

�

≤
∫

B

|F(z+ω)||N z |
�

�

�

�

1

z
+

z

R2

�

�

�

�

dz

≤
∫

B

MN x

�

�

�

�

1

z
+

z

R2

�

�

�

�

dz

≤
∫ R

−R

MNδ
2

δ
d y + 2

∫ 0

−δ
MN x 2x

R2 (2d x)

≤
4RM

δNδ
+

8M

R2

∫ 0

−δ
|x |N x d x

≤
4RM

δNδ
+

8M

R2

1

log N

Since, on the line segment ℜ(z) = δ, |z| ≤ R, we have | 1
z
+ z

R2 | ≤
1
δ
(1+ 1

R
)≤ 2

δ
. Therefore

|2πi(F(ω)− SN (ω))| ≤
4π

R
+

2π

N
+

4RM

δNδ
+

8M

R2 log N

which goes to zero for any fixed R as N →∞. �

6 Proof of the Prime Number Theorem

Recall the Möbius function defined by

µ(n) =







1 if n= 1

(−1)k if n is squarefree and k is the number of distinct prime factors of n
0 otherwise

6.1 Lemma.

∑

k|n

µ(k) =

¨

1 if n= 1

0 if n> 1

PROOF: Plainly,
∑

k|1µ(k) = µ(1) = 1. Suppose that n has r distinct prime factors p1, . . . , pr . Then

∑

k|n

µ(k) =
∑

k|p1...pr

= 1− r +
�

r

2

�

−
r

3
+ · · ·+ (−1)r = (1− 1)r = 0

�

6.2 Theorem (Möbius Inversion).

1. Let f : R+→ C and define F : R+→ C by F(x) =
∑

n≤x f ( x
n
). Then

f (x) =
∑

n≤x

µ(n)F
� x

n

�
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2. Let f : Z+→ C and define F : Z+→ C by F(n) =
∑

d|n f (d) =
∑

d|n f ( n
d
). Then

f (n) =
∑

d|n

µ(d)F
� n

d

�

PROOF: By Lemma 6.1,

f (x) =
∑

n≤x

�

∑

k|n

µ(k)
�

f
� x

n

�

∑

kl≤x

µ(k) f
� x

kl

�

=
∑

k≤x

µ(k)
�

∑

l≤ x
k

f
� x

kl

�

�

=
∑

k≤x

µ(k)F
� x

k

�

For the second part,

f (n) =
∑

c|n

�

∑

d| n
c

µ(d)
�

f (c) =
∑

cd|n

µ(d) f (c) =
∑

d|n

µ(d)
∑

c| n
d

f (c) =
∑

d|n

µ(d)F
� n

d

�

�

6.3 Theorem.
∞
∑

n=1

µ(n)
n
= 0

PROOF: For ℜ(s)> 1,
∑∞

n=1
µ(n)

ns represents an analytic function. But note that for ℜ(s)> 1,

∞
∑

n=1

µ(n)
ns =

∏

p

�

1−
1

ps

�

=
1

ζ(s)

By Theorems 5.1 and 5.3, (s− 1)ζ(s) is a non-zero analytic function for ℜ(s) ≥ 1. Hence 1
(s−1)ζ(s)

is analytic and

non-zero for ℜ(s) ≥ 1, so 1
ζ(s)

is analytic and non-zero for ℜ(s) ≥ 1, s 6= 1. Thus by Newman’s theorem, 1
ζ(s)

is

represented by
∑∞

n=1
µ(n)

ns for ℜ(s)≥ 1. In particular, since lims→1
1
ζ(s)
= 0 we see that

∑∞
n=1

µ(n)
ns = 0. �

6.4 Theorem.
∑

n≤x

µ(n) = o(x)

PROOF: We apply Abel summation with an =
µ(n)

n
and f (x) = x . Then A(u) =

∑

n≤u
µ(n)

n
= o(1) by Theorem 6.3.

Thus
∑

n≤x

µ(n) = A(x)x −
∫ x

1

A(u)du= o(x)− o(x) = o(x)
�

6.5 Definition. For any n ∈ N let d(n) denote the number of postive divisors of n.

6.6 Theorem.
n
∑

m=1

d(m) =
n
∑

m=1

� n

m

�

= n log n+ (2γ− 1)n+O(
p

n)

where γ is Euler’s constant.
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PROOF: Consider the hyperbola x y = n, and let Dn be the region with x ≥ 0, y ≥ 0, and x y ≤ n. The integer
points (a, b) in Dn correspond to the divisors of ab ≤ n. Thus

∑n
m=1 d(m) =

∑n
m=1

�

n
m

�

. It remains to evaluate
∑n

m=1

�

n
m

�

. Notice that the number of integer points in the region Dn that lie above the line y = x is the same
as the number of points below. Thus

n
∑

m=1

d(n) = [
p

n]+2
[
p

n]
∑

m=1

� n

m

�

−[m] = O(
p

n)+2
[
p

n]
∑

m=1

� n

m
−m

�

+O(
p

n) = 2n
[
p

n]
∑

m=1

1

m
−[
p

n]([
p

n]+1)+O(
p

n)

By Theorem 4.4,
∑[
p

n]
m=1

1
m
= log[

p
n] + γ+O( 1p

n
), so

2n
[
p

n]
∑

m=1

1

m
− [
p

n]([
p

n] + 1) +O(
p

n) = 2n log(
p

n− {
p

n}) + 2γn+O(
p

n)− (
p

n− {
p

n})(
p

n+ 1− {
p

n})

= 2n log(
p

n− {
p

n}) + (2γ− 1)n+O(
p

n)

= n log n+ (2γ− 1)n+O(
p

n)

Fill in the detail. �
6.7 Theorem (Prime Number Theorem).

π(x)∼
x

log x

PROOF: By Theorem 4.1 it suffices to show that ψ(x)∼ x . Put

F(x) =
∑

n≤x

�

ψ

� x

n

�

−
� x

n

�

+ 2γ
�

By Möbius inversion, Theorem 6.2,ψ(x)−[x]+2γ=
∑

n≤x µ(n)F(
x
n
), and so it suffices to show that

∑

n≤x µ(n)F(
x
n
) =

o(x). Now
∑

n≤x

ψ

� x

n

�

=
∑

n≤x

∑

m≤ x
n

Λ(m)

=
∑

m≤x

Λ(m)
∑

m≤ x
m

1

=
∑

m≤x

Λ(m)
� x

m

�

=
∑

p≤x

(log p)
��

x

p

�

+
�

x

p2

�

+ · · ·
�

= log([x]!) = x log x − x +O(log x)

By Theorem 6.6,
∑

n≤x

�

[x]
n

�

= [x] log[x] + (2γ− 1)[x] +O(
p

x)

Notice that
∑

n≤x

�

[x]
n

�

≤
∑

n≤x

� x

n

�

≤
∑

n≤x+1

�

[x] + 1

n

�
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Therefore
∑

n≤x

�

x
n

�

= x log x + (2γ− 1)x +O(
p

x), and so F(x) =
∑

n≤x

�

ψ
�

x
n

�

−
�

x
n

�

+ 2γ
�

= O(
p

x). Let
c > 0 be such that |F(x)|< c

p
x for all x ≥ 1. Let t ≥ 2 be a real number. Then

�

�

�

�

∑

n≤ x
t

µ(n)F
� x

n

�

�

�

�

�

≤
∑

n≤ x
t

�

�

�

�

F
� x

n

�

�

�

�

�

≤
∑

n≤ x
t

c

Ç

x

n
≤ c
p

x
∑

n≤ x
t

1
p

n
≤ x
p

x

Ç

x

t
= c

x
p

t

Since F is a step function with jumps only at integer points, F(x) = F([x]) for all x ≥ 1. We see that

∑

x
t
<n≤x

µ(n)F
� x

n

�

= F(1)
∑

x
2
<n≤x

µ(n) + F(2)
∑

x
3
<n≤ x

2

µ(n) + · · ·+ F([t])
∑

x
t
<n≤ x

[t]

µ(n)

Therefore
�

�

�

�

∑

x
t
<n≤x

µ(n)F
� x

n

�

�

�

�

�

≤ (|F(1) + · · ·+ |F([t])|)
�
�

�

�

�

∑

x
2
<n≤x

µ(n)

�

�

�

�

+ · · ·+
�

�

�

�

∑

x
t
<n≤ x

[t]

µ(n)

�

�

�

�

�

≤ (|F(1) + · · ·+ |F([t])|)o(x)

since
∑

n≤x µ(n) = o(x). Given ε > 0 choose t so large that cp
t
< ε

2
and then take x sufficiently large that

|
∑

x
t
<n≤x µ(n)F

�

x
n

�

|< ε

2
x , so that |

∑

n≤x µ(n)F
�

x
n

�

|< εx . The proof is complete. �

Li(x) =
∫ x

2
du

log u
is a better approximation to π(x) than x

log x
. In fact, π(x) = Li(x)+O(x exp(−c(log x)

3
5 )) has

been proved. Littlewood proved that there are c1, c2 > 0 such that for infinitely many integers x , π(x)− Li(x) >
c1

p
x

log x
log log log x and Li(x)− π(x) > c2

p
x

log x
log log log x . Initial calculation suggests that Li(x) > π(x) for all

x . Skewes in 1955 showed that there exists x0 for which π(x0) > Li(x0) with x0 < 101010964

. In 1966 Lehmann
lowered the bound to 101166. Probably Li(x)> π(x) for x < 1020.

7 Generalizing π(x)

7.1 Definition. For any positive integer n, let Ω(n) denote the number of prime factors of n, counted with
multiplicity. Let ω(n) denote the number of distinct prime factors of n. For each k ∈ Z let τk(x) denote the
number of positive integers n ≤ x with Ω(n) = k. Let πk(x) denote the number of positive integers n ≤ x for
which Ω(n) =ω(n) = k.

Note that π(x) = π1(x) = τ1(x).

7.2 Theorem (Landau, 1900). Let k ∈ N. Then

πk(x)∼ τk(x)∼
1

(k− 1)!
x

log x
(log log x)k−1

PROOF: We’ll prove the result by induction on k. The case k = 1 is the Prime Number Theorem. We introduce
the functions Lk(x), Πk(x), and θk(x), which are defined by

Lk(x) =
∑∗

p1···pk≤x

1

p1 · · · pk
Πk(x) =

∑∗

p1···pk≤x

1 Θk(x) =
∑∗

p1···pk≤x

log(p1 · · · pk)
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The star indicates that the sum is taken over all k-tuples (p1, · · · , pk) of primes with p1 · · · pk ≤ x . Observe that
more than one such k-tuple may be associated with the same product. For each integer n let cn = cn(k) denote
the number of k-tuples whose product is n. Thus if Ω(n) =ω(n) = k then cn = k! since n is a product of k distinct
primes. Similarily, if Ω(n) = k then cn ≤ k!, and if Ω(n) 6= k then cn = 0. It follows that Πk(x) =

∑

n≤x cn and
θk(x) =

∑

n≤x cn log n. Further observe that

k!πk(x)≤ Πk(x)≤ k!τk(x)

For k ≥ 2, the number of integers n≤ x for which Ω(n) = k and ω(n) 6= k is τk(x)−πk(x). In particular,

τk(x)−πk(x)≤
∑∗

p1···pk≤x
pi=p j for some
(i, j) with i 6= j

1≤
�

k

2

�

∑∗

q1···qk−1≤x

1=
�

k

2

�

Πk−1(x)

Thus it suffices to show that Πk(x) ∼ k x
log x
(log log x)k−1. For fixed k ≥ 2, apply Abel summation with an = cn

and f (x) = log x . Then

Θk(x) =
∑

n≤x

cn log n=
�

∑

n≤x

cn

�

log x −
∫ x

1

∑

n≤u cn

u
du

= Πk(x) log x −
∫ x

1

Πk(u)
u

du

= Πk(x) log x +O(x) since Πk(u)≤ k!u

Observe that Θ1(x) = θ(x), and so by Theorem 4.1 and the Prime Number Theorem, Θ1(x) ∼ x . We shall now
assume that k ≥ 2 and that Θ j(x)∼ j x(log log x) j−1 for 1≤ j < k. This is our induction hypothesis.

By Theorem 4.7,
∑

p≤x
1
p
∼ log log x . Since

�

∑

p≤x
1
k

1

p

�k

≤ Lk(x)≤
�

∑

p≤x

1

p

�k

we get that Lk(x)∼ (log log x)k. We can write Θk and Lk in terms of Θk−1 and Lk−1, respectively:

(k− 1)Θk(x) =
∑∗

p1···pk≤x

(k− 1) log(p1 · · · pk)

=
∑∗

p1···pk≤x

log(p1 · · · pk−1) + log(p1 · · · pk−2pk) + · · ·+ log(p2 · · · pk)

= k
∑∗

p1···pk≤x

log(p2 · · · pk)

= k
∑

p1≤x

Θ
�

x

p1

�

and

Lk(x) =
∑∗

p1···pk≤x

1

p1 · · · pk
=
∑

p1≤x

1

p1
Lk−1

�

x

p1

�
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By our induction hypothesis, Θk−1(x)− (k − 1)x Lk−2(x) = o(x(log log x)k−2). Given any ε > 0, there is x0 =
x0(k,ε) such that |Θk−1(x)− (k− 1)x Lk−2(x)| < εx(log log x)k−2 for all x > x0. Let c be such that |Θk−1(x)−
(k− 1)x Lk−2(x)|< c for all x ≤ x0. Then

|Θk(x)− kx Lk−1(x)|=
k

k− 1

�

�

�

�

∑

p≤x

Θk−1

�

x

p

�

− (k− 1)
x

p
Lk−2

�

x

p

�
�

�

�

�

≤ 2
∑

p≤x

�

�

�

�

Θk−1

�

x

p

�

− (k− 1)
x

p
Lk−2

�

x

p

�
�

�

�

�

≤ 2
∑

x
x0
<p≤x

c+ 2
∑

p≤ x
x0

ε
x

p

�

log log
x

p

�k−2

≤ 2xc+ 2εx(log log x)k−2
∑

p≤ x
x0

1

p

≤ 2xc+ 4εx(log log x)k−1 by Theorem 4.7

≤ 5εx(log log x)k−1 for x sufficiently large

Since ε > 0 was arbitrary, this completes the proof by induction. �

7.3 Theorem.

∑

n≤x

ω(n) = x log log x + B1 x +O
�

x

log x

�

∑

n≤x

Ω(n) = x log log x + B2 x + o(x)

where B2 = B1 +
∑

p
1

p(p−1)
.

PROOF: See online notes. �

Let N ∈ N and let A ⊆ {1, . . . , N}. Plainly, |A|
N

is a measure of the density or thickness of A in {1, . . . , N}. We
extend this notion to subsets A of N. For each integer N we denote by A(N) the set A∩ {1, . . . , N}. We define the
upper density of A, denoted d(A), by lim supN→∞

|A(N)|
N

. The lower density of A, d(A), is defined as lim infN→∞
|A(N)|

N
.

If d(A) = d(A) then we put d(A) to be this quantity and say that A has asymtotic density d(A).

7.4 Example. 1. Note that the even integers have density 1
2
.

2. Put A = {n ∈ N | 102k−1 ≤ n < 102k, k = 1, 2, . . .}. Note that A(102k−1)
102k−1 ≤ 102k−2

102k−1 =
1

10
, while A(102k)

102k ≥
102k−102k−1

102k = 9
10

. Hence A does not have an asymtotic density.

Let f , F : N→ R. We say that f has normal order F if for each ε > 0 the set A(ε) = {n ∈ N | (1− ε)F(n) <
f (n)< (1+ ε)F(n)} has density 1. Note that if we put B(ε) = N \ A(ε) then d(B(ε)) = 0.

7.5 Example. 1. Let f (x) = π(x) and F(x) = x
log x

. By the Prime Number Theorem, π(x) has normal order
x

log x
.

2. For any function f , it has normal order of itself.
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7.6 Theorem (Turan). Let δ > 0. The number of integers n≤ x for which

|ω(n)− log log n|> (log log n)
1
2
+δ

is o(x) and the number of integers n≤ x for which

|Ω(n)− log log n|> (log log n)
1
2
+δ

is o(x).

PROOF: This proof is incomplete. �

7.7 Theorem. Let ε > 0. Then
2(1−ε) log log n < d(n)< 2(1+ε) log log n

on a set of postive integers with asymtotic density one.

PROOF: Exercise. �

8 Law of Quadratic Reciprocity

8.1 Definition. For any n ∈ N, let ϕ(n) denote the number of invertible equivalence classes in the ring Z/nZ. ϕ
is known as Euler’s totient function.

8.2 Theorem (Euler). Let a and n be positvie integers with gcd(a, n) = 1. Then

aϕ(n) ≡ 1 (mod n)

PROOF: Let c1, . . . , cϕ(n) be all of the intvertible elements modulo n. Then since a is invertible, the collection
ac1, . . . , acϕ(n) is also all of the invertible elements modulo n. Therefore c1 · · · cϕ(n) ≡ (ac1) · · · (acϕ(n) (mod n), so
aϕ(n) ≡ 1 (mod n). �

The special case of Euler’s Theorem where n is prime is known as Fermat’s Little Theorem.

8.3 Theorem (Wilson). If p is prime then (p− 1)!≡−1 (mod p).

PROOF: By Fermat’s Little Theorem x p−1 − 1 factors as (x − 1) · · · (x − (p − 1)) in (Z/pZ)[x]. Therefore, by
comparing constant coefficients, −1≡ (−1)p−1(p− 1)! (mod p). The result follows. �

Wilson’s Theorem was conjectured by Wilson (1741-1793). He communicated the conjecture to Waring
(1734-1798), who pbulished it in 1770. Shortly afterwards, Lagrange gave the first proof. In fact, Leibniz had
conjectured the result in 1682. Here is a proof due to Stern in 1860. For |x |< 1,

log
�

1

1− x

�

=− log(1− x) = x +
x2

2
+

x3

3
+ · · ·

and so

exp

�

x +
x2

2
+

x3

3
+ · · ·

�

=
1

1− x
= 1+ x + x2 + · · ·
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But

exp

�

x +
x2

2
+

x3

3
+ · · ·

�

= exp(x)exp

�

x2

2

�

exp

�

x3

3

�

· · ·

= 1+ x +
�

1

2!
+

1

2

�

x2 +
�

1

3!
+

1

2
+

1

3

�

x3 + · · ·+
�

1

p!
+ · · ·+

1

p

�

x p + · · ·

In particular, the coefficient of x p can be written 1
p!
+ r

s
+ 1

p
, where r

s
is in lowest terms and s is coprime with p.

Comparing coefficients in the power series shows that

1=
1

p!
+

r

s
+

1

p

s− r =
s

p!
+

s

p

(s− r)(p− 1)!=
s((p− 1)!+ 1)

p

Now (s− r)(p− 1)! is an integer, so p | s((p− 1)!+ 1). But gcd(s, p) = 1, so p | (p− 1)!+ 1, as required.

8.4 Definition. Let p be a prime and a an integer coprime with p. The Legendre symbol is defined to be

�

a

p

�

=

¨

1 if x2 ≡ a (mod p) has a solution

−1 otherwise

If ( a
p
) = 1 then we say that a is a quadratic residue modulo p, otherwise we say that a is a quadratic nonresidue

modulo p.

8.5 Theorem (Euler’s Criterion). Let p be an odd prime and let a be an integer coprime with p. Then

a
p−1

2 ≡ (
a

p
) (mod p)

PROOF: The congruence x2 ≡ a (mod p) has a most 2 solutions modulo p since Z/pZ is a field. Suppose that it
has a solution x = b. Then

a
p−1

2 ≡ b
p−1

2 ≡ 1≡ (
a

p
) (mod p)

On the other hand, suppose that there is no such solution. We may partition Z/pZ into pairs (r, s) such that
rs ≡ a (mod p). Then by Wilson’s Theorem, −1≡ (p− 1)!= a

p−1
2 (mod p), as required. �

Let us extend the definition of the Legendre symbol ( a
p
) to include the case where p | a. In this case, define

( a
p
) = 0.

8.6 Theorem. Let p be an odd prime and let a and b be integers. Then
�

a

p

��

b

p

�

=
�

ab

p

�

and (−1
p
) = (−1)

p(p−1)
2 .
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PROOF: The second part holds by Euler’s Criterion since (−1)p = −1. If p | ab then the first part clearly holds.
Suppose that p - ab. By Euler’s Criterion

�

ab

p

�

≡ (ab)
p−1

2 ≡ a
p−1

2 b
p−1

2 ≡
�

a

p

��

b

p

�

(mod p)

Since p is an odd prime and the Legendre symbols take on values in {1,−1}, the result follows. �

8.7 Theorem (Gauß Lemma). Let p be an odd prime and a an integer coprime with p. Let µ be the number of
integers from a, 2a, . . . , p−1

2
a whose residue modulo p of least absolute value is negative. Then ( a

p
) = (−1)µ.

PROOF: Replace the numbers a, 2a, . . . , p−1
2

a be their residues of least absolute value, say by r1, . . . , r p−1
2
−µ and

−s1, . . . ,−sµ, where the ri ’s and s j ’s are positive. Plainly, the ri ’s are all distinct and the s j ’s are all distinct.
Suppose that ri = s j for some i and j. Then m1a ≡ ri (mod p) and m2 ≡ s j (mod p) for distinct integers
1 ≤ m1, m2 ≤

p−1
2

. But then (m1 +m2)a ≡ 0 (mod p), and since p - a, p | m1 +m2. But 2 ≤ m1 +m2 ≤ p− 1, a

contradiction. Therefore the ri ’s and s j ’s are all distinct, so they are a rearrangement of the numbers 1, . . . , p−1
2

.

Accordingly, a(2a) · · · ( p−1
2

a) ≡ ( p−1
2
)!(−1)µ (mod p), so a

p−1
2 ≡ (−1)µ (mod p). Then ( a

p
) = (−1)µ by Euler’s

Criterion. �

8.8 Corollary. Let p be an odd prime. Then ( 2
p
) = (−1)

p2−1
8 .

PROOF: By Gauß’ Lemma, ( 2
p
) = (−1)µ, where µ is the number of the first p−1

2
multiples of 2 which lie in

the range [ p
2
, p − 1]. We now check what happens when p ≡ 1,3, 5,7 (mod 8) in turn. If p = 8k + 1 then

µ = p−1
2
− [ p

4
] = 2k. If p = 8k+ 3 or 8k+ 5 then by the same formula µ = 2k+ 1. Finally, if p = 8k+ 7 then

µ= 2k+ 2. The result follows. �

8.9 Proposition. Let p be an odd prime and a an integer coprime with 2p. Then ( a
p
) = (−1)t where t =

∑

p−1
2

j=1

h

ja
p

i

.

PROOF: We let r1, . . . , r p−1
2
−µ and −s1, . . . ,−sµ, as before, be the residues of least absolute value modulo p of the

integers a, 2a, . . . , p−1
2

a, where the ri ’s and s j ’s are positive. Notice that if 1 ≤ j ≤ p−1
2

then ja = p[ ja
p
] + ` j ,

where 0≤ ` j < p. So ` j is either rk for some 1≤ k ≤ p−1
2
−µ or is it p− sk for some 1≤ k ≤ µ. Thus

p−1
2
∑

j=1

ja =

p−1
2
∑

j=1

p
�

ja

p

�

+ ` j = p

p−1
2
∑

j=1

�

ja

p

�

+

p−1
2
∑

j=1

` j

But

p−1
2
∑

j=1

` j = r1 + · · ·+ r p−1
2
−µ + pµ− (s1 + · · ·+ sµ)

= (r1 + · · ·+ r p−1
2
−µ + s1 + · · ·+ sµ) + pµ− 2(s1 + · · ·+ sµ)

= (1+ 2+ · · ·+
p− 1

2
) + pµ− 2(s1 + · · ·+ sµ)
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Therefore

p−1
2
∑

j=1

ja−

p−1
2
∑

j=1

j = p

p−1
2
∑

j=1

�

ja

p

�

+ pµ− 2(s1 + · · ·+ sµ)

(a− 1)
p−1

2
p+1

2

2
= p

p−1
2
∑

j=1

�

ja

p

�

+ pµ− 2(s1 + · · ·+ sµ)

Since a is odd, a− 1 is even, so 0≡ pµ+ p
∑

p−1
2

j=1[
ja
p
] (mod 2), so µ≡

∑

p−1
2

j=1[
ja
p
] (mod 2), as required. �

8.10 Theorem (Law of Quadratic Reciprocity). If p and q are distinct primes then
�

p

q

��

q

p

�

= (−1)(
p−1

2
)( q−1

2
)

Euler stated the law. Legendre attempted to prove it. Gauß gave 8 proofs.

PROOF: By Gauß’ Lemma, ( q
p
) = (−1)µ and ( p

q
) = (−1)ν , where µ and ν are the number of integers from

{q, 2q, . . . , p−1
2

q} and {p, 2p, . . . , q−1
2

p}, respectively, whose residue modulo p and q, respectively, of least absolute

value is negative. It suffices to show that µ+ ν ≡ ( p−1
2
)( q−1

2
) (mod 2). Given x with 1 ≤ x ≤ p−1

2
, let y be such

that − p
2
< qx − p y < p

2
. Notice that − 1

2
− q

p
x <−y < 1

2
− q

p
x , so y is uniquely determined. Then qx − p y is the

residue of qx modulo p of least absolute value. y is non-negative, and if y = 0 then there is no contribution to
µ since qx ≥ 0. Further, if x = p−1

2
then

y <
q

p
x +

1

2
=

q

2

�

p− 1

p

�

+
1

2

Therefore y ≤ q−1
2

since it is an integer. It follows that µ corresponds to the number of combinations of x and y

from the sequences 1,2, . . . , p−1
2

and 1,2, . . . , q−1
2

, repectively, such that − p
2
< qx − p y < 0. Similarily, ν is the

number of combinations such that − q
2
< p y − qx < 0. For any pair (x , y) with 1 ≤ x ≤ p−1

2
and 1 ≤ y ≤ q−1

2
,

either p y − qx < − q
2

or p y − qx > p
2
. Let ρ be the number of pairs for which the former holds and λ be the

number of pairs for which the latter holds. Then
�

p− 1

2

��

q− 1

2

�

= µ+ ν +ρ+λ

As x and y run through their respective domains, x ′ = p+1
2
− x and y ′ = q+1

2
− y fun through the same domains,

but in reverse order. Notice that p y − qx > p
2

if and only if p y ′ − qx ′ = p−q
2
− (p y − qx) < − q

2
. By symmetry,

p y − qx < − q
2

if and only if p y ′ − qx ′ > p
2
. Therefore λ = ρ and so µ+ ν ≡ ( p−1

2
)( q−1

2
) (mod 2), and the result

is proven. �

8.11 Example. Let k ∈ N. The equation y2 = x3 + k is known as Mordell’s equation. Here we are looking for
solutions in integers x and y . There are only finitely many solutions in the integers for any fixed k. In general,
it is not easy to find all solutions However, in about 1970, Harold Stark proved that for each ε > 0 there exists a
positive number c(ε)> 0, such that if (x , y) is a solution in the integers, then |x |, |y|< ec(ε)k1+ε

.
For some k, all solutions can be found by congruence considerations. For example, consider the equation

y2 = x3 + 45. Note that if x is even then y2 ≡ 45 (mod 8), so y2 ≡ 5 (mod 8), which is not possible. Thus
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it y2 = x3 + 45 has a solution in the integers then x is odd. We consider the four possiblilties x ≡ 1, 3,5, 7
(mod 8). Suppose that x ≡ 1 (mod 8) or x ≡ 5 (mod 8). Then x3 ≡ 1 (mod 4) and so y2 ≡ 2 (mod 4), which
is impossible. Suppose now that x ≡ 7 (mod 8). We have y2 − 18 = x3 + 27 = (x + 3)(x2 − 3x + 9). We claim
that there is a prime p ≡±3 (mod 8) such that p | x2− 3x + 9. This is so since if all primes dividing x2− 3x + 9
were congruent to ±1 modulo 8 then x2−3x+9 would also be equivalent to ±1 modulo 8, which it is not. Now
consider the equation modulo p. We find that y2 ≡ 18 (mod p), or equivalently, ( 18

p
) = 1. But ( 18

p
) = ( 2·32

p
) =

( 2
p
) = −1, a contradiction. Therefore x ≡ 3 (mod 8). Note that y2 − 2 · 62 = x3 − 27 = (x − 3)(x2 + 3x + 9).

Since x ≡ 3 (mod 8), x2+3x +9≡ 3 (mod 8). As before, we see that x2+3x +9 is divisible by a prime p ≡±3
(mod 8). It follows that y2 = x3 + 45 has no integer solutions.

8.12 Example. How does 9997 factor? We could just factor it, but we’re mad keen to use the Law of Quadratic
Reciprocity. Notice that 9997 = 1002 − 3. By the Law of Quadratic Reciprocity, if p is odd and p | 9997 then
1002 ≡ 3 (mod p), so

1=
�

3

p

�

=
� p

3

�

(−1)
p−1

2

If p ≡ 1 (mod 12) then ( p
3
)(−1)

p−1
2 = ( 1

3
) = 1. If p ≡ 5 (mod 12) then ( p

3
)(−1)

p−1
2 = −1, so this case is

impossible. If p ≡ 7 (mod 12) then ( p
3
)(−1)

p−1
2 = −1, and if p ≡ 11 (mod 1)2 then ( p

3
)(−1)

p−1
2 = 1. Therefore

if p | 9997 then p ≡ ±1 (mod 1)2. We now test 11, 13,. . . In fact, 9997 = 13 · 769. The same argument shows
that the primes dividing 769 are ±1 modulo 12. Clearly

p
769 < 30, so we need only check 11, 13, 23, none of

which work. Therefore 769 is prime.

9 Dirichlet’s Theorem

For any pair of integers a and b not both zero, we can find, by means of the Euclidean algorithm, integers x and
y for which ax + b y = gcd(a, b).

9.1 Theorem (Chinese Remainder Theorem). Let m1, . . . , mt be pairwise coprime positive integers. Let m =
m1 · · ·mt and b1, . . . , bt be any integers. The simlutaneous congruences

x ≡ b1 (mod m1)
...

x ≡ bt (mod mt)

have a unique solution modulo m.

PROOF: Let ni =
m
mi

for 1≤ i ≤ t. Then note that gcd(ni , mi) = 1, so there are integers ri , si such that rimi+sini =
1. Thus sini ≡ 1 (mod mi). Put ei = sini and notice that biei ≡ bi (mod mi). But ni ≡ 0 (mod m j) for j 6= i, so
biei ≡ 0 (mod m j) for j 6= i. Let x = b1e1 + · · ·+ bt et , a solution to the simultaneous congruences.

Suppose that x0 and x1 are solutions to the simultaneous congruences. Then x0 ≡ x1 (mod mi) for i =
1, . . . , t. Since the mi ’s are coprime, m1 · · ·mt | x0 − x1. In particular, x0 ≡ x1 (mod m). �

9.2 Theorem. Let m1, . . . , mt be pairwise coprime positive integers. Let m = m1 · · ·mt . The ring Z/mZ is
isomorphic to Z/m1Z× · · · ×Z/mtZ and the group (Z/mZ)∗ is isomorphic to (Z/m1Z)∗ × · · · × (Z/mtZ)∗.

PROOF: Let ψ : Z → Z/m1Z× · · · × Z/mtZ : n 7→ (n+m1Z, . . . , n+mtZ). ψ is a ring homomorphism. By the
Chinese Remainder Theorem, ψ is onto. kerψ = {n ∈ Z : m1 · · ·mt | n} = mZ. The First Isomorphism Theorem
gives us the first result.
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Let λ : (Z/mZ)∗→ (Z/m1Z)∗×· · ·× (Z/mtZ)∗ : (n+mZ) 7→ (n+m1Z, . . . , n+mtZ). Then λ is a well defined
group homomorphism. By the Chinese Remainder Theorem λ is an isomorphism. �

9.3 Corollary. Let m1, . . . , mt be pairwise coprime positive integers. Let m= m1 · · ·mt . Then

ϕ(m) = ϕ(m1) · · ·ϕ(mt)

PROOF: ϕ(m) = |(Z/mZ)∗|. �

9.4 Corollary. Let m ∈ N. Then

ϕ(m) = m
∏

p|m

�

1−
1

p

�

9.5 Theorem.
n
∑

j=1

ϕ( j) =
3

π2 n2 +O(n log n)

PROOF:
n
∑

j=1

ϕ( j) =
n
∑

j=1

j
∏

p| j

�

1−
1

p

�

=
n
∑

j=1

j
∑

d| j

µ(d)
d

=
∑

d ′d≤n

d ′µ(d)

=
n
∑

d=1

µ(d)

�

n
d

�

∑

d ′=1

d ′

=
n
∑

d=1

µ(d)

�

n
d

�

(
�

n
d

�

+ 1)

2

=
1

2

n
∑

d=1

µ(d)
� n

d

�2

+µ(d)
� n

d

�

=
1

2

n
∑

d=1

µ(d)
n2

d2 +O(n) +
1

2

n
∑

d=1

µ(d)
n

d
+O(n)

=
n2

2

n
∑

d=1

µ(d)
1

d2 +O(n log n)

=
n2

2

∞
∑

d=1

µ(d)
1

d2 −
n2

2

∞
∑

d=n+1

µ(d)
1

d2 +O(n log n)

=
n2

2
ζ(2)−1 +O(n log n)

=
3

π2 n2 +O(n log n) �
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If p is an odd prime and ` ∈ N then (Z/p`Z)∗ is cyclic. To prove this we’ll need some preliminary results.
Notice that the result does not hold if p = 2, as (Z/8Z)∗ has order four but all of its elements have order 1 or 2.

9.6 Proposition. Let p be a prime and ` a positive integer. If a ≡ b (mod p`) then ap ≡ bp (mod p`+1).

PROOF: Since a ≡ b (mod p`) there is c such that a = b+ cp`. Then

ap = (b+ cp`)p = bp +
�

p

1

�

bp−1cp` +
�

p

2

�

bp−1(cp`)2 + · · ·+ (cp`)p

This implies that ab ≡ bp (mod p`+1). �

9.7 Proposition. If p is an odd prime and `≥ 2 is an integer then for any integer a,

(1+ ap)p
`−2
≡ 1+ ap`−1 (mod p`)

PROOF: By induction on `. The result holds for `= 2, so suppose it holds for some `≥ 2. We have

(1+ ap)p
`−2
≡ 1+ ap`−1 (mod p`)

and so by Proposition 9.6,
(1+ ap)p

`−1
≡ (1+ ap`−1)p (mod p`+1)

But

(1+ ap`−1)p = 1+
�

p

1

�

ap`−1 +
�

p

2

�

(ap`−1)2 + · · ·+ (ap`−1)p ≡ 1+ ap` (mod p`+1)

and the result is proved since p2`−1 divides each term in the sum except for the first two. �

9.8 Proposition. Let ` ∈ N. If p is an odd prime and a is an integer coprime with p then the order of 1+ap+p`Z
in (Z/p`)∗ is p`−1.

PROOF: The result is immediate if `= 1, so suppose that `≥ 2. By Proposition 9.7,

(1+ ap)p
`−2
≡ 1+ ap`−1 6≡ 0 (mod p`)

and by Proposition 9.6
(1+ ap)p

`−1
≡ (1+ ap`−1)p (mod p`+1)

so (1+ ap)p
`−1
≡ 1 (mod p`). Therefore 1+ ap has order p`−1. �

9.9 Theorem. Let ` be a positive integer and let p be an odd prime. Then (Z/p`Z)∗ is a cyclic group.

PROOF: The cardinality of (Z/p`Z)∗ is ϕ(p`) = p`−1(p− 1), so it suffices to find an integer of order p`−1(p− 1)
modulo p`. Let g be a primitive root modulo p. We have g p−1 ≡ 1 (mod p), so either g p−1 ≡ 1+ ap (mod p2)
for some a coprime with p, or g p−1 ≡ 1 (mod p2). In that latter case,

(g + p)p−1 = g p−1 +
p− 1

1
g p−2p+ · · ·+ pp−1

so (g+ p)p−1 ≡ 1+(p−1)g p−2p (mod p2). Note that (p−1)g p−2 is copirme with p, so either g p−1 or (g+ p)p−1

is congruent to 1+ ap (mod p2) with a coprime with p. Without lose of generality, we may suppose that g p−1 ≡
1+ ap (mod p2). We claim that g generates (Z/p`Z)∗. Suppose that g has order m. Then m | (p − 1)p`−1, so
m= dps with d | p−1 and 0≤ s ≤ `−1. Thus gdps

≡ 1 (mod p`), which implies that gdps
≡ 1 (mod p), so gd ≡ 1

(mod p) by Fermat’s Little Theorem. Since g is a primitive root, p− 1 | d, so d = p− 1. Thus m= (p− 1)ps. But
g p−1 ≡ 1+ ap (mod p2), thus (g p−1)p

t
≡ 1+ apt+1 (mod pt+2) by Proposition 9.8. Therefore s = `− 1 and the

result follows. �
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9.10 Theorem. If `≤ 2 then (Z/2`Z)∗ is cyclic. If `≥ 3 then (Z/2`Z)∗ ∼= Z/2Z×Z/2`−2Z. Finally, if `≥ 3 then
(Z/2`Z)∗ = {(−1)a5b + 2`Z | 0≤ a ≤ 1,0≤ b < 2`−2}.

PROOF: Plainly, (Z/2Z)∗ is cyclic if `= 1 or 2. Suppose that `≥ 3. We claim that for `≥ 3,

52`−3
≡ 1+ 2`−1 (mod 2`)

The result holds for `= 3 by inspection. Suppose that the equation holds for some `≥ 3. Then there is an integer
k so that 52`−3

= 1+ 2`−1 + k2` Squaring both sides,

52`−2
= (1+ 2`−1 + k2`)2 = 1+ 2` + k2`+1 + · · ·

Therefore [52`−2
≡ 1+2` (mod 2`+1), and the claim follows by indution. It follows that the order of 5 in (Z/2`Z)∗

is 2`−2. Next we claim that the elements (−1)a5b, with 0 ≤ a ≤ 1, 0 ≤ b < 2`−2 are all distinct modulo 2`.
Suppose that (−1)a15b1 ≡ (−1)a25b2 (mod 2`). Since ` ≥ 3, (−1)a15b1 ≡ (−1)a25b2 (mod 4), so (−1)a1 ≡ (−1)a2

(mod 4), so a1 = a2. It follows that b1 = b2 since 5b1−b2 ≡ 1 (mod 2`) and |b1− b2|< 2`−2. These 2`−1 elements
are all distinct in (Z/2`Z)∗, which has order 2`−1. Therefore (Z/2`Z)∗ = {(−1)a5b + 2`Z | 0 ≤ a ≤ 1, 0 ≤ b <
2`−2}. It is now clear that (Z/2`Z)∗ ∼= Z/2Z×Z/2`−2Z. �

9.11 Theorem. The only positive integers m for which primitive roots exist modulo m are 1, 2, 4 and those
integers off the form p` or 2p`, with p an odd prime and ` a postive integer.

PROOF: Let m > 1 be an integer. Then let m = 2`0 p`1
1 · · · p

`k
k , where `i ≥ 0 and the pi are odd primes. m has a

primitive root if and only if (Z/mZ)∗ is cyclic. By the Chinese Remainder Theorem,

(Z/mZ)∗ ∼= (Z/2`0Z)∗ × (Z/p`1
1 Z)

∗ × · · · × (Z/p`k
k Z)

∗

Now (Z/p`i
i Z)

∗ is cyclic of order (pi − 1)p`i−1
i and (Z/2`0Z)∗ is cyclic if `0 = 1 or 2, and is ismorphic to Z/2Z×

Z/2`0−2Z for `0 > 2. Put λ(m) = lcm(b,ϕ(p`1
1 ), . . . ,ϕ(p`k

k )), where b = ϕ(2`0) if `0 = 1 or 2 and b = ϕ(2`0 )
2
) if

`0 > 2. The order of an element of (Z/mZ)∗ divides λ(m). The order of (Z/mZ)∗ is ϕ(m). Since 2 | pi − 1, we
see that λ(m) < ϕ(m) whenever m is divisible by more than one odd prime or by a power of 2 larger than 4.
Further, λ(m) < ϕ(m) if 22 | m and m is divisible by an odd prime. The remaining cases are m = 1, 2, 4, p`, and
2p`. In each case the corresponding (Z/mZ)∗ is cyclic. �

The function λ(m) given in the proof is known as the universal exponent of m. The proof above gives us the
proof of the following theorem as well. Note that since λ(m) | ϕ(m), Theorem 9.12 is a strengthening of Euler’s
Theorem.

9.12 Theorem. Let m be a positive integer and let a be coprime with m. Then aλ(m) ≡ 1 (mod m).

Question: What is the smallest postive integer a such that a is a primitive root modulo p? Burgess proved
that a < c(ε)p

1
4
+ε, where c(ε) is a positive number which depends on ε.

9.13 Theorem. If p is a prime of the form 4q+ 1, where q is an odd prime, then 2 is a primitive root modulo p.

PROOF: First notice that p ≡ 5 (mod 8). Let t be the order of 2 in (Z/pZ)∗. Then t | p− 1 = 4q, so t = 1, 2, or
4, or q, 2q, or 4q. But p = 13 or p ≥ 29, so t 6= 1, 2, or 4. It is enough to show that 22q 6≡ 1 (mod p) to conclude
that t has order 4q and hence that 2 is a primitive root modulo p. Note that

22q = 2
p−1

2 ≡
�

2

p

�

(mod p)

by Euler’s Criterion. Since p ≡ 5 (mod 8), ( 2
p
) =−1 and the result follows. �
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9.14 Theorem. Let n be a positive integer. There are infinitely many primes p with p ≡ 1 (mod n).

PROOF: Let a > 2 be an integer. We define the nth cyclotomic polynomial by

Φn(x) :=
n
∏

j=1
( j,n)=1

(x − ζ j
n)

where ζn = e
2πi
n . Then Φn(x) ∈ Z[x] and Φn has degree ϕ(n). Further, xn − 1 =

∏

d|nΦd(x). If p is a prime that
divides Φn(a) then p ≡ 1 (mod n) or p | n. To see this, note that if p | Φn(a) then p | an − 1. If p - ad − 1 for any
proper divisor d of n then n is the order of a modulo p. Hence n | p− 1, so p ≡ 1 (mod n). Suppose now that
p | ad − 1 for some proper divisor d of n. Since p | Φn(a), we see that p | an−1

ad−1
. Observe that

an = (1+ (ad − 1))
n
d = 1+

n

d
(ad − 1) +

� n
d

2

�

(ad − 1)2 + · · ·

so
an − 1

ad − 1
=

n

d
+
� n

d

2

�

(ad − 1) ++
� n

d

3

�

(ad − 1)2 + · · ·

But this implies that p | n
d
, so p | n.

Observe that if p | Φn(na) then p - n, so p ≡ 1 (mod n). Suppose there are only finitely many primes
congruent to 1 modulo n, say p1, . . . , pk. Then Φn(np1 · · · pka) is only composed of primes congruent to 1 modulo
n and is coprime with p1, . . . , pk. Thus |Φn(np1 · · · pka)|= 1 for all a, which is a contradiction. �

9.1 Characters

In order to prove that for each pair of coprime integers a and b with b > 0 that there are infinitely many primes
congruent to a modulo b we need to introduce characters.

9.15 Definition. Let G be a finite Abelian group. A character of G is a homomorphism χ : G → C∗. The set of
characters of G is called the dual group of G, denoted bG.

The dual group truely is a group under pointwise multiplication. The identity element is the trivial homomor-
phism. Observe that χ(G) ⊆ T, and in fact χ(G) is a collection of |G|th roots of unity, since χ(g)|G| = χ(g |G|) =
χ(1) = 1, for all g ∈ G.

9.16 Theorem. Let G be a finite Abelian group. Then

1. |G|= |bG|.
2. G and bG are isomorphic.

3.
∑

χ∈bG χ(g) =

¨

|G| if g = e
0 otherwise

4.
∑

g∈G χ(g) =

¨

|G| if χ = 1

0 otherwise

PROOF: Recall that since G is a finite Abelian group it is a direct product of cyclic groups. In particular, there are
elements g1, . . . , gr ∈ G and positive integers h1, . . . , hr such that every element g ∈ G has a unique representation
of the form g = g t1

1 · · · g
t r
r , where 0≤ t i < hi for i = 1, . . . , r. Note that |G|= h1 · · ·hr . Here g0

1 · · · g
0
r is the identity

of the group and gi has order hi for i = 1, . . . , r. A character χ ∈ bG is completely determined by its action on
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gi , for i = 1, . . . , r. But (χ(gi))hi = χ(ghi
i ) = χ(e) = 1, so χ(gi) is an hth

i root of unity. Accordingly, there are
at most h1 · · ·hr different characters. But there are at least that many different characters since if ωi is an hth

i
root of unity then the map χ(g) = χ(g t1

1 · · · g
t r
r ) = (χ(g1))t1 · · · (χ(gr))t r = ωt1

1 · · ·ω
t r
r is a character of G. Thus

|G| = |bG|. Define ϕ : G → bG by ϕ(g) = ϕ(g t1
1 · · · g

t r
r ) = χ

t1
1 · · ·χ

t r
r , where χi : G → C∗ : gi 7→ e

2πi
hi and χi(g j) = 1

for i 6= j. Then ϕ is a group isomorphism.
Clear

∑

χ∈bG χ(e) = |bG| = |G| =
∑

g∈G 1(g). Suppose that g 6= e. Then there is χ1 ∈ bG such that χ1(g) 6= 1.
Futher, the map χ 7→ χ1χ is a bijection. Therefore

∑

χ∈bG

χ(g) =
∑

χ∈bG

χ1(g)χ(g) = χ1(g)
∑

χ∈bG

χ(g)

so
∑

χ∈bG χ(g) = 0 since χ1(g) 6= 1. The proof for the last part is analogous. �

We shall be interested in characters associated with the group (Z/kZ)∗, for k ∈ N. Suppose that χ is a
character of (Z/kZ)∗. We associate to χ a map χ : Z→ C, defined by

χ(n) =

¨

χ([n]) if gcd(k, n) = 1

0 otherwise

The map χ is known as a character modulo k. For any character χ of (Z/kZ)∗, we can define the character χ of

(Z/kZ)∗ by χ([n]) = χ([n]). Notice that χχ = 1, so χ is the inverse of χ in the group Û(Z/kZ)∗.

9.17 Theorem. Let χ be a character modulo k.

1. If gcd(k, n) = 1 then χ(n) is a ϕ(k)th root of unity.

2. χ(nm) = χ(n)χ(m) for all n, m ∈ Z, so χ is completely multiplicative.

3. χ is periodic, with smallest period k.

4.
∑k

n=1χ(k) =

¨

ϕ(k) if χ = 1

0 otherwise

5.
∑

χ∈cZk
χ(n) =

¨

ϕ(k) if n≡ 1 (mod k)
0 otherwise

6. Let χ ′ be a character modulo k. Then
∑k

n=1χ
′χ(n) =

¨

ϕ(k) if χ ′ = χ
0 otherwise

7.
∑

χ∈cZk
χ(m)χ(n) =

¨

ϕ(k) if m≡ n (mod k) and gcd(m, k) = 1

0 otherwise

PROOF: Trivial, given Theorem 9.16. �

We have seen by the Chinese Remainder Theorem that the study of characters modulo k reduces to the study
of characters modulo pa for p prime and a ∈ N. First suppose that p is odd. Let g be a primitive root modulo pa.
Suppose that gcd(n, p) = 1. Then there is a unique integer 1 ≤ v ≤ ϕ(pa) such that g v ≡ n (mod pa). For each
integer 1≤ b ≤ ϕ(pa) we define the character

χ b(n) =

(

exp
�

2πivb
ϕ(pa)

�

if gcd(b, p) = 1

0 otherwise
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We thus have ϕ(pa) such characters and so we have the complete collection. It remains to consider the characters
modulo 2a with a ∈ N. If a = 1 then the only character is the principal character χ0, where χ0(n) = (n mod 2).
If a = 2 then we have the additional character

χ1(n) =







1 if n≡ 1 (mod 4)
−1 if n≡ 3 (mod 4)
0 if n≡ 0 (mod 2)

If a ≥ 3 then (Z/2aZ)∗ is not cyclic. We’ve shown that if n ≡ 1 (mod 2) then there are unique integers x and y
such that n ≡ (−1)x5y (mod 2a) with 0 ≤ x ≤ 1 and 0 ≤ y < 2a−2. For each pair (b1, b2), with 0 ≤ b1 ≤ 1 and
0≤ b2 < 2a−2, we define the character

χ(b1,b2) =

(

exp
�

πi x b1 +
πi y b2

2a−3

�

if n≡ 1 (mod 2)

0 if n≡ 0 (mod 2)

This gives all of the ϕ(2a) = 2a−1 characters modulo 2a. To get an explicit description of the group of characters
modulo k for k composite, we just factor k into prime powers and take the product of the associated characters
for each prime power.

9.18 Definition. Let k ∈ N and let χ be a character modulo k. We define the function L(s,χ) for s ∈ C with
ℜ(s)> 1 by

L(s,χ) =
∞
∑

n=1

χ(n)
ns

L(s,χ) is known as a Dirichlet L function.

The series
∑∞

n=1
χ(n)

ns is uniformly convergent on compact subsets of ℜ(s) > 1 and so it defines an analytic
function for ℜ(s) > 1. Since χ is completely multiplicative, L(s,χ) has an Euler product representation for
ℜ(s)> 1 given by

L(s,χ) =
∏

p

�

1−
χ(p)

ps

�−1

9.19 Theorem. Let k be a postive integer and let χ be a character modulo k. The function L(s,χ) can be
analytically continued to ℜ(s)> 0, with the exception of the case where χ is the principal character, where there
is a simple pole at s = 1 of residue ϕ(k)

k
.

PROOF: Let Aχ(x) =
∑

n≤x χ(n) and let f (x) = 1
x s . Note that

Aχ(x) =

(

ϕ(k)
�

x
k

�

+ R0
χ0
(x) if χ = χ0

Rχ(x) otherwise

with |R0
χ0
(x)| ≤ ϕ(k) and |Rχ(x)| ≤ ϕ(k) by Theorem 9.17. In the principal case, Aχ0

(x) = ϕ(k) x
k
+ Rχ0

(x) with
|Rχ0
(x)| ≤ 2ϕ(k). By Abel summation,

∑

n≤x

χ0(n)
ns =

ϕ(k)
k

x1−s +
Rχ0
(x)

x s + s

∫ x

1

Aχ0
(u)

us+1 du

=
ϕ(k)

k
x1−s +

Rχ0
(x)

x s + s
ϕ(k)

k

u1−s

1− s

�x

1
+ s

∫ x

1

Aχ0
(u)

us+1 du

=
ϕ(k)

k

�

x1−s +
s

s− 1
x1−s −

s

1− s

�

+
Rχ0
(x)

x s + s

∫ x

1

Aχ0
(u)

us+1 du
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If χ 6= χ0 then again by Abel summation,

∑

n≤x

χ(n)
ns =

Rχ(x)

x s + s

∫ x

1

Rχ(u)

us+1 du

Letting x →∞ we find that for ℜ(s)> 1,

∞
∑

n=1

χ0(n)
ns =

ϕ(k)
k

s

s− 1
+ s

∫ ∞

1

Rχ0
(u)

us+1 du and
∞
∑

n=1

χ(n)
ns = s

∫ ∞

1

Rχ(u)

us+1 du

for χ 6= χ0. Note that the right hand sides of both of these expressions converge to an analytic function for
ℜ(s)> 0. The result follows. �

9.20 Definition. Let (λn)∞n=1 be a strictly increasing sequence of positive real numbers. Let (an)∞n=1 be a sequence
of complex numbers. The Dirichlet series associated to (λn)∞n=1 with coefficient sequence (an)∞n=1 is the series
∑∞

n=1 ane−λnz for z ∈ C.

9.21 Theorem. If the Dirichlet series f (z) =
∑∞

n=1 ane−λnz converges at z = z0 then it converges uniformly in the
region ℜ(z− z0)> 0 and |arg(z− z0)|< α, for any α < 2π.

PROOF: By replacing z by z − z0 and modifying the an’s, we may assume without loss of generality that z0 = 0.
Therefore

∑∞
n=1 an converges. In particular, for each ε > 0 there is N = N(ε) such that if `, m > N and we put

A`,m =
∑m

n=` an then |A`,m|< ε. Observe that

m
∑

n=`

ane−λnz =
m
∑

n=`

(A`,n − A`,n−1)e
−λnz = A`,me−λmz +

m−1
∑

n=`

A`,n(e
−λnz − e−λn+1z)

Thus for `, m> N ,
�

�

�

�

m
∑

n=`

ane−λnz

�

�

�

�

≤ ε
�

|e−λmz |+
m−1
∑

n=`

|e−λnz − e−λn+1z |
�

We may suppose that ℜ(z)> 0. Since λm ∈ R+ we see that |e−λmz | ≤ 1. Further,

|e−λnz − e−λn+1z |=
�

�

�

�

z

∫ λn+1

λn

e−tzd t

�

�

�

�

≤ |z|
∫ λn+1

λn

e−t x d t = |z|
�

−
e−t x

x

�λn+1

λn

�

≤
|z|
x
(e−λn x − e−λn+1 x)

where z = x + i y . Thus

�

�

�

�

m
∑

n=`

ane−λnz

�

�

�

�

≤ ε
�

1+
|z|
x

m−1
∑

n=`

(e−λn x − e−λn+1 x)
�

= ε
�

1+
|z|
x
(e−λ` x − e−λm x)

�

≤ 2ε
�

1+
|z|
x

�

If |z|
x
< k then the series converges uniformly. But |z|

x
< k implies that |arg(z)|< α for some α depending upon k.

The result now follows. �

If the Dirichlet series converges for z = z0 then it converges uniformly on compact subsets of ℜ(z) > ℜ(z0)
and so it defines an analytic funciton in this halfplane.

9.22 Theorem. Let f (z) =
∑∞

n=1 a−λnz
n be a Dirichlet series with an ≥ 0 for all n. Let σ0 ∈ R and suppose that

the series converges for z = σ0. If f is analytic in a neighbourhood of σ0 then there is ε > 0 such that the series
converges at σ0 − ε.
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Note by Theorem 9.21 that f converges for ℜ(z)> σ0, and we conclude that it converges for ℜ(z)> σ0− ε.

PROOF: By translating by σ0 we may assume without loss of generality that σ0 = 0. Since f is analytic ina
neighbourhood of 0 and by Theorem 9.21 is analytic for ℜ(z) > 0, there is an ε > 0 such that f is a analytic in
the disc |z− 1| ≤ 1+ 2ε. Consider the Taylor expansion of f in this disc. For ℜ(z)> 0,

f (m)(z) =
∞
∑

n=1

(−λn)
mane−λnz

for m≥ 0. Hence f (m)(1) =
∑∞

n=1(−λn)mane−λn . The Taylor series of f around 1 on |z− 1| ≤ 1+ 2ε is given by

f (z) =
∞
∑

m=0

f (m)(1)
m!

(z− 1)m =
∞
∑

m=0

∞
∑

n=1

(−λn)
mane−λn

(z− 1)m

m!

Thus, if we take z =−ε then

f (−ε) =
∞
∑

m=0

∞
∑

n=1

λm
n ane−λn

(1+ ε)m

m!

Observe that since an ≥ 0 we may change the order of summation. Thus

f (−ε) =
∞
∑

n=1

ane−λn

∞
∑

m=0

λm
n

(1+ ε)m

m!
=
∞
∑

n=1

ane−λn eλn(1+ε) =
∞
∑

n=1

ane−λn(−ε)

So the series representation holds in this disc. �

If we have a Dirichlet series
∑∞

n=1 ane−λnz defining a function f (z) with an ≥ 0 then the only obstruction to
the series representing is a pole σ1 of f on the real axis. The series will represent the function for all z with
ℜ(z)> σ1.

9.23 Theorem. Let k be a positive integer and let χ be a character modulo k. Then L(s,χ) is non-zero for
ℜ(s)> 1. Further, if χ is not the priniciple character then L(1,χ) 6= 0.

PROOF: L(s,χ) has a Euler product representation for ℜ(s) > 1 given by L(s,χ) =
∏

p(1 −
χ(p)

ps )−1, and so is
non-zero for ℜ(s)> 1.

Suppose first that χ is a complex character. Then χ is a character modulo k that is different from χ. From
the Euler product, for any character χ modulo k, we have for ℜ(s)> 1,

log∗ L(s,χ) =
∑

p

− log
�

1−
χ(p)

ps

�

where log denotes the principal branch of the logarithm and log∗ denotes some branch of the logarithm. Then

log∗ L(s,χ) =
∑

p

∞
∑

a=1

χ(p)a

apas

Let ` be an integer comprime with k. By Theorem 9.17

∑

χ∈cZk

χ(`) log∗ L(s,χ) =
∑

p

∞
∑

a=1

∑

χ∈cZk

χ(`)χ(p)a

apas = ϕ(k)
∑

p,a
pa≡` (k)

1

apas (1)
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In particular, we may take `= 1 in (1) and exponentiate to conclude that
∏

χ∈cZk
L(s,χ)≥ 1, for s ∈ R and s > 1.

Suppose that χ is a non-prinicipal character modulo k. Then χ 6= χ if χ is not a real character. If L(1,χ) = 0
then L(1,χ) = L(1,χ) = 0. Thus if χ is a complex character modulo k then there exist c1, c2, c3 > 0 such that for
s ∈ R with 1< s ≤ 2, we have

|L(s,χ0)| ≤
c1

s− 1
L(s,χ)L(s,χ) = |L(s,χ)|2 ≤ cs(s− 1)2 |L(s,χ)|< c3

for χ 6= χ0. Thus, for s ∈ R with 1< s ≤ 2,

1≤
�

�

�

�

∏

χ∈cZk

L(s,χ)

�

�

�

�

≤
c1

s− 1
c2(s− 1)2c3 ≤ c1c2c3(s− 1)

Letting s→ 1 we obtain a contradiction. Therefore if χ is a complex character then L(1,χ) 6= 0
Suppose now that χ is a real character with χ 6= χ0. We introduce the function g(s) defined for ℜ(s) > 1 by

g(s) = ζ(s)L(s,χ)
ζ(2s)

. By the Euler product representation for ζ and L, we see that for ℜ(s)> 1,

g(s) =
∏

p

�

1− 1
p2s

�

�

1− 1
ps

��

1− χ(p)
ps

�

=
∏

p

1+ 1
ps

1− χ(p)
ps

=
∏

p

�

1+
1

ps

� ∞
∑

a=0

(χ(p))a

pas

=
∏

p

� ∞
∑

a=0

χa(p)
pas

∞
∑

a=0

χa(p)

p(a+1)s

�

=
∏

p

�

1+
∞
∑

a=1

χa(p) +χa−1(p)
pas

�

Since χ is a real character, b(a, p) := χa(p)+χa−1(p) is either 0 or 2. Accordingly, g(s) =
∑∞

n=1
an

ns , where the an’s
are non-negative real numbers and where a1 = 1. Recall that χ is non-principal, so g(s) is analytic for ℜ(s) > 1
and if L(1,χ) = 0 then ζ(s)L(s,χ) is analytic for ℜ(s) > 0 since the simple pole of ζ at s = 1 is cancelled by the
zero. Therefore if L(1,χ) = 0 then g(s) is anaytic for ℜ(s) > 1

2
, since ζ(2s) is non-zero for ℜ(s) > 1

2
. We now

apply Theorems 9.21 and 9.22 to conclude that the series
∑∞

n=1
an

ns converges to g(s) for ℜ(s) > 1
2
. Since ζ(2s)

has a simple pole at s = 1
2
, we see that g(s) tends to 0 as s tends to 1

2
from above on the real line. But a1 = 1 and

so g(s) does not tend to 0 as s tends to 1
2

from above. Therefore L(1,χ) 6= 0. �

Proving that L(1,χ) 6= 0 is what is needed to prove that whenever ` is an integer coprime with k that there
are infinitely many primes p with p ≡ ` (mod k).

9.24 Theorem (Dirichlet’s Theorem). Let ` and k be coprime integers with k ≥ 2. The series
∑

p≡` (k)
1
p

is
divergent, and so in particular, there are infinitely many primes p with p ≡ ` (mod k).

PROOF: Recall from the proof of Theorem 9.23, that

1

ϕ(k)

∑

χ∈Zk

χ(`) log L(s,χ) =
∞
∑

a=1

∑

pa≡` (k)

1

apas
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We now define E(χ) by

E(χ) =

¨

1 if χ = χ0

0 otherwise

Note that as s tends to 1 from above on the real axis, (s − 1)E(χ)L(s,χ) is bounded. Therefore, on the interval
(1, 2), E(χ) log(s − 1) + log L(s,χ) is also bounded since L(1,χ) 6= 0. Therefore there is a positive number c1,
which depends on k, such that

�

�

�

�

1

ϕ(k)

∑

χ∈Zk

χ(`) log L(s,χ) +
1

ϕ(k)
log(s− 1)

�

�

�

�

< c1

for s ∈ (1,2). Accordingly,
�

�

�

�

∞
∑

a=1

∑

pa≡` (k)

1

apas +
1

ϕ(k)
log(s− 1)

�

�

�

�

< c1

for s ∈ (1,2). We have
∞
∑

a=1

∑

pa≡` (k)

1

apas =
∑

p≡` (k)

1

ps +
∞
∑

a=2

∑

pa≡` (k)

1

apas

Note that for s ∈ (1, 2)

∞
∑

a=2

∑

pa≡` (k)

1

apas ≤
∞
∑

a=2

∞
∑

n=2

1

anas

≤
∞
∑

a=2

∞
∑

n=2

1

2nas

≤
1

2

∞
∑

n=2

∞
∑

a=2

1

nas

≤
1

2

∞
∑

n=2

∞
∑

a=2

1

n2s

 

1

1− 1
n

!

≤
∞
∑

n=2

1

n2 <
π2

6

Thus
�

�

�

�

∑

p≡` (k)

1

ps +
1

ϕ(k)
log(s− 1)

�

�

�

�

< c1 +
π2

6

for s ∈ (1, 2). But as s tends to 1 from above on (1,2) we see that 1
ϕ(k)

log(s − 1) tends to −∞. Therefore
∑

p≡` (k)
1
p

diverges. �

Suppose that ` and k are coprime integers with k ≥ 2. Let π(x , k,`) denote the number of primes p with
p ≤ x for which p ≡ ` (mod k). Then it can be proved that

π(x , k,`)∼
1

ϕ(k)
x

log x
∼

1

ϕ(k)
Li(x)
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Let H be a positive real number. It can be proved that if k ≤ (log x)H then

π(x , k,`) =
Li(x)
ϕ(k)

+O(x exp(−a
p

log x))

for a a positive real number. On the other hand, with no constraint it can be shown that

π(x , k,`) =
Li

ϕ(k)
+O(

x

(log x)H
)

However, the big-O constants depend on H in an ineffective way. In other words, one cannot compute then in
general.

Given `1 and `2 coprime with k ≥ 2, with `1 6≡ `2 (mod k), we have π(x , k,`1) ∼ π(x , k,`2). Chebyshev
noted that for small x , π(x , 3, 1) < π(x , 3, 2) and π(x , 4, 1) < π(x , 4, 3). In 1957 Leech found the smallest x for
which π(x , 4, 1) exceeds π(x , 4, 3), and it is 26 861. Bays and Hudson found the smallest x such that π(x , 3, 1)
exceeds π(x , 3, 2), and it is 608 981813029.
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