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Abstract — This paper proposes a novel approach for 

an optimal multi-objective optimization for VLSI 

implementation of Artificial Neural Network (ANN) 

which is area-power-speed efficient and has high 

degree of accuracy and dynamic range. 

A VLSI implementation of feed forward neural 

network  in floating point arithmetic IEEE-754 single 

precision 32 bit format  is presented that makes the 

use of digital weights and digital multiplier based on 

bit serial architecture. 

Simulation results with 45 nm & 90 nm tech file on 

Synopsis Design Vision Tool, Aldec’s Active HDL 

tool, Altera’s Quartus tool & MATLAB showed that 

the bit serial architecture (TYPE III) based multiplier 

implementation and use of floating point arithmetic 

(IEEE -754 Single Precision format) in ANN 

realization may provide a good multi-objective 

solution for VLSI implementation of ANN. 
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serial architecture (type III) based multiplier, array 
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1. INTRODUCTION  
Multi-objective optimization can be defined as a 

technique which involves minimizing or maximizing 

multiple objective functions subjects to a set of 

constraints. 

In conventional approach for VLSI implementation of 

digital circuits, there is always a tradeoff between area, 

power and speed i.e. optimizing the circuit for speed 

increases the area overhead in design and vice versa 
[1,2]. Optimizing one parameter affects the other as seen 

in equation below:- 

                                 

*L dd
d

C V
T

I                          (1.1) 

So, the objective of this research work is come to up with 

a step by step an optimal multi-objective approach for 

VLSI implementation of artificial feed  neural network 

(NN) wherein all constraints viz. area, speed and power 
can be optimized simultaneously as well as the design 

should have high degree of precision and should provide 

dynamic weight reconfigurability. 

 

 

 

2. ARTIFICIAL NEURAL NETWORK 
ANN is an information-processing system wherein 

neurons process information [3].  

An artificial neuron forms the basic unit of artificial 

neural networks. The basic elements of an artificial 

neurons are (1) a set of input nodes, indexed by, say, 1, 2, 

... N, that receives the corresponding input signal or 

pattern vector, say x=( P1, P2, ... , PN)T ; (2) a set of 

synaptic connections whose strengths are represented by 
a set of weights, here denoted by w=(w1,w2,...wI)T ; and 

(3) an activation function ‗a‘ that relates the total 

synaptic input to the output (activation) of the neuron. 

The main components of an artificial neuron are 

illustrated in Figure 2.1. 

The total synaptic input, a, to the neuron is given by the 

inner product of the input and weight vectors: 
N

j j

j=1

a= W P ;  (2.1) 

where we assume that the threshold of the activation is 

incorporated in the weight vector. The output activation, 
y, is given by 

                               y=f(a);                                     (2.2)                

 

 

 

 

 

 

 

 

 

 
Fig.2.1:  Structural diagram of simple neuron 

 

The multi-layer perceptron (MLP) or muti-layer artificial 

neural network (MNN) is a feed forward neural network 

consisting of an input layer of nodes, followed by two or 

more layers of perceptrons, the last of which is the output 

layer. The layers between the input layer and output layer 

are referred to as hidden layers. MLPs have been applied 

successfully to many complex real-world problems 

consisting of non-linear decision boundaries. Three-layer 

MLPs have been sufficient for most of these applications 
[3, 4] and its block diagram representation is shown in 

figure 2.2. 
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Fig.2.2:  Block diagram representation of three- 

layered MNN 

 

3. DESIGN ISSUES 
1. Data Representation: An important issue during 
hardware implementation of neural network is to strike a 

balance between the need for reasonable precision and 

cost associated with in logic overhead with increased 

precision [5]. So selection of proper arithmetic scheme 

viz. fixed point arithmetic scheme or floating point 

arithmetic is important. 

- The fixed point arithmetic scheme will be 

advantageous in application where degree of 

precision is not important and thus in such 

application it may provide a good multi-objective 

solution for optimizing cost of hardware and speed 

simultaneously. But  fixed point arithmetic scheme 
does not provide a better option for dynamic weight 

re-configurability because as input changes,  data 

bus size and hence the entire logic need to 

reconfigured every time as the number of bits used to 

represent weights are varied in order to enhance the 

precision and accuracy of system. Moreover, weights 

need to be processed first (i.e. truncated and rounded 

off) before applying to system and hence thereby 

increasing the simulation time. 

- The floating point arithmetic scheme (IEEE 754-

Single precision format (32 bit) or Double precision 
format (64 bit)) offers the greatest amount of 

dynamic range and eliminates the need of processing 

the weights ,and thereby making it good choice for 

neural network based applications where high degree 

of precision is desired. But the hardware 

implementation for floating point arithmetic is 

costlier and the speed of processing is low due to 

double calculations i.e., separate calculation for 

mantissa and exponent.  

2. Analog versus Digital Neural network 

- The computational density of chip is defined as 
amount of computation per unit silicon. The 

computational density of analog neural network is 10 

to 100 times greater than that of digital neural 

network because complex non-linear operations such 

as multiply, divide and tangent can be implemented 

with handful of transistors in a analog network in 

comparison to digital network which requires 
hundreds of transistor or even thousands of transistor 

to perform the same operation. Thus, precision of 

analog neural network is directly proportional to area 

of the chip.  

- The speed of analog neural network is inversely 

proportional to area of chip. Smaller the area of chip 

less will be the time taken by signal to propagate to 

output or from one circuit component to other. 

Moreover, the parasitic capacitance will also be less 

and thereby further enhancing the speed of the 

circuit. 

- The power consumption of analog circuit is directly 
proportional to the speed at which circuit operates. A 

large percentage of power consumed is dissipated as 

heat during normal operation of the circuit. For given 

speed and circuit architecture, efficiency of power 

dissipation decreases with the area of chip but this 

will be accompanied by degradation in the precision 

of circuit 

- One common approach to reduce power requirement 

of analog circuit is to reduce operating voltages. 

However the immediate effect will be reduce 

dynamic range of all signals in circuits and hence 
affecting the precision of circuit. 

- Digital neural network are inherently robust for 

effects such as substrate noise, power supply 

variation, radiation, matching, noise, drift, mobility 

reduction and so on.  In analog networks, these 

effects can be minimized but at the cost of increased 

power consumption and area of circuit. 

- An analog network must be full custom design. 

Digital Designs are flexible since it allows software 

control and arbitrary level of precision (low to high, 

and fixed or floating point). They can be generated 

from logic description of its function.  
- Loading of digital weights is easy in comparison to 

loading of analog weights since no feedback is 

required. 

- Analog neural networks are harder to scale with new 

processes and require total redesign. Digital neural 

networks scale easily with new processes and require 

no redesign. 

Above conclusions drawn from (6, 7, 8, 9) suggest that 

analog neural networks are suitable for classification 

problems where minimum power consumption is main 

design constraint i.e. single objective optimization goal 
and digital neural networks may be suitable for 

classification problems where design constraints are 

precision, area, power and speed i.e. multi-objective 

optimization. 

3. Multiplier Unit  

Neural network processing comprises a large number of 

multiplications operations (equation 2.1). Thus, the 

performance of digital neural network on large extent 

depends on how the multipliers are realized in digital 

neural network. A key design issue in efficient realization 

of multiplier block will be trade-off between precision, 
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area, speed and power consumption of the circuit [1, 2, 
10, and 11]. MCM (Multiple Constant Multiplication) 

approach may not be suitable in digital neural network 

because here requirement is that weight needs to be 

fixed. So, dynamic weight adjustment will not be 

possible because it may require redesigning entire block 

[1, 2]. 
 

4. DESIGN APPROACH FOR OPTIMIZATION 
To realize multi-objective optimized i.e. high degree of 

precision, area-speed-power optimized VLSI 

implementation for ANN following approaches were 

selected: 
- Floating point arithmetic scheme (IEEE 754-single 

precision (32 bit) format to have high degree of 

precision. 

-  Digital neural network may enable in realizing the 

multi-objective optimization goal. 

- Array multiplier or multiplier unit based on bit 

serial architecture or digit serial architecture 

(Type 3) (14, 15). Block schematic of multiplier unit 

based on bit serial architecture and digit serial 

architecture are shown in figure 4.1, 4.2& 4.3 

respectively. 
 

 

 

 

 

 

 

 

 

 

 

 
Fig.4.1: An example of 4×4 Array multiplier 

 

Bit - serial arithmetic and communication is efficient for 

computational processes, allowing good communication 

within and between VLSI chips and tightly pipelined 

arithmetic structures. It is ideal for neural networks as it 

minimizes the interconnect requirement by eliminating 

multi - wire busses [16]. 

Comparative analysis of multiplier (N*N) with respect to 

multiplicand data size ‗A‖ & multiplier data size of N=8 

in both cases are shown in table 4.1. 

 
Fig.4.2: Bit-serial type-III multiplier with word-length of 

4 bits 

 

 
Fig.4.3: Digit Cell for type-III multiplier 

 

Table (4.1): Comparison of Multipliers 

Parameters 

Type of Multipliers 8 × 8 bit 

MUL1 

(Array) 
MUL2 (Digit) 

MUL3 (Bit 

Serial) 

G1  N
2
=64

 
W*(D*D)=32 N=8 

G2  N(N-1)=12 2*(N/W)=8 N=8 

Pipelining  Absent Present Present 

Speed Low 
Best due to 

unfolding 

concept 

Better 

Area High 
Better than array 

multiplier 
Optimum 

Dynamic 

Power 

Dissipation 

Moderate 

Higher than bit 

serial 

architecture due 

to unfolding 

concept 

Optimum 

 

Where description of notations G1, G2 used in above 

table is as follows:  

- G1 => approximate number of AND gates required 

for partial product implementation.  

- G2 => approximate number of Full Adders required. 
- Digit size D=N/W=4. No. of folding W=2. 

Comparative analysis suggests that bit serial architecture 

(Type III) provides better trade off to realize multi-

objective optimization approach for VLSI 

Implementation of digital neural network. 

i. Criteria for FPGA selection  & high 

performance: 

- Any FPGA is suited to bit serial design. The first 

consideration is whether there are sufficient logic 

elements and I/O resources to support the design. 

Most bit serial designs have a very low routing 

complexity, so the routing resources are not an issue.  
- The entire design should be synchronous, including 

the sets and resets.  
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- Use hierarchy in the design.  
- Add pipeline registers to break up long delays. 

-  

V. DESIGN & IMPLEMENTATION 
In our work, we had designed and implemented VLSI 

digital ANN viz. ANN using array multiplier approach 

(fnn1test1) & ANN using multiplier approach based on 

bit serial architecture (Type III) (bsfnn1_test1).  
The experimental setup flow used in this research work is 

as follows: 

Step I: IMPLEMENTATION IN MATLAB: The data 

that used in this project was acquired from University of 

California, Irvine (UCI Machine Learning Repository). 

The first objective of this study was to determine whether 

an Iris flower is of versicolour, virginica or setosa. And 

also to identify the fit training settings for building 

classification model for Iris. The attributes information is 

given in Table 5.1.  

 
Table 3.1: Description of attributes 

After observing data set it was observed that only two 

attributes viz. petal length and petal width were sufficient 

to classify whether an Iris flower is of versicolour, 

virginica or setosa. Thus, by reducing dimension of input 

data set we were able to optimize the simulation runtime 

considerably in MATLAB.  

To ensure a correct comparison of different types of 

neural networks, the division of input data into training, 

validation and test sets is performed by independent part 

of code and the division result is stored. The partitioning 

of input data is performed randomly with a certain ratio 
of input entities to be stored as training set, validation set 

and test set. The experimental settings  for this done in 

MATLAB to classify data using neural toolbox is shown 

in figure 4.1 and 4.2 respectively and result i.e. trained 

graphs  obtained  showing 100 % fit is shown in figure 

5.1, 5.2 and 5.3 respectively. 

 
Fig.5.1: Neural net specification in of MATLAB 

 

Trained graph of iris data indicates type of iris. The plot 

describes the attribute and classes with target and 

distribution the iris data. Basically the training purpose is 

to identify the fit training settings for model. 

 
Fig.5.2: Neural network specification in nn traintool of 

MATLAB 

No Physical 

Attribute 

Features 

1. sepal length Used as Input 

2. sepal width Used as Input 

3. Petal length Used as Input 

4. Petal width Used as Input 

5. Target Used as Output: 

 Setosa 

 Versicolou 

 Virginica 

 

 

 



 Current Trends in Technology and Science  

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015) 
  

Copyright © 2015 CTTS.IN, All right reserved 

519 

 
Fig.5.3: Trained graph showing 100% fit 

 

STEP II : IMPLEMENTATION in VHDL: The 

weights of stage 1(fw11, fw22) and stage 2 (fw33) (refer 

fig 3.2) obtained from this trained graph were first 
converted into IEEE 754 single precession 32 bit binary 

format in MATLAB and were used in stage 1 and stage 2 

of VLSI implementation of neural network shown in 

figure (5.4).  

ANN in this research work uses three layer feed forward 

neural network architecture which has two input neuron, 

fifteen hidden neuron and one output neuron. Inputs to 

the ANN are a 32 bit number in IEEE-754 single 

precision format, represent attributes petal length and 

petal width of iris flower and output is 32 bit number in 

IEEE-754 single precision format, represent a prediction 
to which category flower belongs. 

The flow the input data in generalized block schematic 

structure of IEEE 754 single precision multiplier block 

used is shown in figure (5.5).  

 

 
  Fig.5.4: RTL view of VLSI Implementation of neural 

network 

 

 
 

Fig.5.5: Generalized block schematic structure of 

IEEE 754 single precision multiplier block 
 

Unpack block unpacks incoming data (31 down to 0) into 

three parts viz. sign bit (MSB  31st bit), exponent (30 

down to 23) and mantissa (22 down to 0).  This blocks 

maps 23 bit mantissa into 32 bit by appending zeros at 

LSBs. 

Packfp block packs final result of multiplication obtained 

after normalization & rounding i.e. its mantissa, exponent 

and sign bit into IEEE -754 single precision formats. 

Unpackfp and packfp block also checks the exponent and 

mantissa part of  inputs for the following conditions 
(underflow (de-normalized number), overflow, infinity 

and not a number (NaN) to find the 32 bit input data and 

hence output (via FPpack block & logic block to predict 

nature of output) is a valid IEEE 754 single precision 

floating point number [12, 13]. 

 

Table 5.1: Table listing conditions to check nature of 

input 

  Number     sign     exponent   
 mantissa 

  

normalized number     0/1     01 to FE   
  any 

value   

De-normalized 

number (underflow)  
  0/1     00   

  any 

value   

 zero     0/1     00     0   

 infinity  (Overflow)   0/1     FF     0   

NaN i.e Not a Number 

(inf*0 or inf/inf or 0/0 

form) 

   FF   
  any value 

but  not 0  
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The IEEE 754 standard partially solves the problem of 
underflow by using de-normalized representations in 

which a de-normalized representation is characterized by 

an exponent code being all 0's, interpreted as having the 

whole part of the significand being an implied 0 instead 

of an implied 1[12]. 

 
Fig.5.6: Flowchart representing logic used in program to 

check for underflow condition 

 

Multiplier block performs the multiplication of two input 

data (mantissa) coming from unpackFP0 & unpackFP1 

block and generates mantissa part of final output.  

Output data bus of multiplier blocks implementated with 

array multiplier logic 32bit×32bit (figure 4.1) was of 64 

bit and total partial product inferred were 64. Output data 

bus of multiplier block implemented with bit serial logic 

(figure 4.2)  was 24 bit and number of AND gates 
inferred to implement partial product were 24. 

Exponent adder blocks add exponent parts of respective 

exponent parts of input A and B to generate exponent of 

output Z. 

The RTL view of ANN using array multiplier and ANN 

using bit serial architecture (Type III) based multipliers 

are shown in figure 5.7 & 5.8 respectively. 

FPnormalize block checks whether 23 bit mantissa‘s 

MSB bit is one or zero. If it is one then mantissa is in de-

normalized form and FPnormalize block converts de-

normalized mantissa into normalized form. 

     The FPround block performs the function of rounding.  

 
Fig.5.7: RTL view of ANN using array multiplier 

 

 
Fig.5.8: RTL view of ANN using bit serial architecture 

(Type III) based multiplier 

 

Floating-point numbers are coded as "sign/magnitude", 

reversing the sign-bit inverses the sign. Consequently the 

same operator performs as well addition or subtraction 

according to the two operand's signs.  

Floating-point addition progresses in 4 steps:  

- Mantissa alignment if A and B exponents are 

different,  

- Addition/subtraction of the aligned mantissas,  

- Renormalization of the mantissas sum S if not 
already normalized 

- Rounding of sum S'.  

The floating point adder block diagram used is shown in 

figure 5.9. The major entities in this block diagram are 

bigfp_fps, absdiff1 blockdecsel1 block, barrel_shift_R 

block, intadd23 block, readadj_mj block and expadder1 

block respectively. Each block description is as follows:- 

1. bigfp_fps block :- The function of this block is to 

find  the largest and smallest number as shown in 

figure5.10. Logic used to find the largest and 

smallest number assuming data is of 4 bit  is as 

follows:- 

 

 

 

http://users-tima.imag.fr/cis/guyot/Cours/Oparithm/english/Adspec.htm#sigabs
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Fig 5.9: RTL view of floating point adder 

 

- Let given numbers are A=0101 and B=1000 where 

first bit i.e. A (3) & B (3) represents sign bit of given 

number. 

- bigtemp  <= FP_A when (not(FP_A(3))&FP_A(2 

downto 0)) > (not(FP_B(3))&FP_B(3 downto 0)) else 

FP_B;  

- smalltemp  <=   FP_A when 

(not(FP_A(3))&FP_A(2 downto 0)) < 
(not(FP_B(3))&FP_B(2 downto 0)) else  FP_B; 

- big_op    <=   smalltemp    when   (FP_A(3) 

and FP_B(3)) > '0' else bigtemp ;   

- small_op   <=  bigtemp      when   (FP_A(3) 

and FP_B(3)) > '0'  else smalltemp ;  

- The result of program will be big_op <=A & 

small_op <=B. 

 

 
 Fig 5.10: Flow graph for logic used in bigfp_fps block 

 

2. absdiff1 block :- This block find  the larger  of the 

two exponent and outputs the absolute value of the 

exponent difference as shown in figure 5.11. 

 

 
Fig 5.11: Flow graph for logic used in absdiff1 block 

 

3. decsel1 block: -  This block outputs the information 
by how many bit smaller mantissa should be shifted 

be shifted depending on input coming from output of 

absdiff1 block. The "implicit bit" is added, totaling 

24 bits. 

4. barrel_shift_R block:- This block shifts the smaller 

operand mantissa (small_op (23 down to 0)) towards 

right by number coming from output of decsel1 

block. 

5.  intadd23 block:- This block computes the addition 

of two floating point numbers (24 bit) using 2s-

complement arithmetic and result obtained is of 25 

bits.(figure 5.11). Here, if addsub= ‗0‘, the two 
numbers are added, else the subtraction is performed 

using 2s-complement arithmetic.  

 
     Fig 5.11: Flow graph for logic used in intadd23 block 

 

6. readj_m1 block :-  This block checks 25 bit  result 

i.e. mantissa of intadd23 block and performs 
following three tasks viz. : 

- It checks each bit of mantissa from MSB part for ‗1‘ 

and outputs that bit position at output i.e. onethloc 

and thus the exponent is computed from the result of 

addition block. If for example man1(22)= ‗1‘, then 

 

 

 

 



 Current Trends in Technology and Science  

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015) 
  

Copyright © 2015 CTTS.IN, All right reserved 

522 

onethloc = ―00000001‖ or  man1(0)= ‗1‘, then 
onethloc = ―00010111‖ else onethloc = ―00011000‖. 

- It readjusts the mantissa block.  

- It outputs addsub =0 if man1(24 and 23 )= '0' else 

addsub = ‗1‘. 

7. expadder1 block: - This blocks performs the 

addition of exponents viz. big_op number exponent 

exp1 (7 down to 0) and exponent obtained from 

readj_m1 block val(7 down to 0). If addsub= ‗0‘, the 

two numbers are added, else the subtraction is 

performed using 2s-complement arithmetic.   

 
Fig 5.12: Flow graph for logic used in expadder1 block 

 

VI. RESULTS & COMPARISON 
The code for of ANN using array multiplier and ANN 

using bit serial architecture (Type III) based multiplier 

were written in Aldec Active HDL tool and synthesized 

on Altera‘s Quartus tool and it was targeted on FPGA 

Cyclone 2, Device EP2C70F672C6. Later on code was 

also tested at Backend on Synopsis tool on 45 nm & 90 

nm tech file. FPGA implementation of ANN array 

multiplier & using bit serial architecture (Type III) based 

multiplier were clearly classifying iris data into 3 
categories: - output corresponding to counter‘s count 

value from 1 to 50 represented iris setosa, output 

corresponding to counter‘s count value from 51 to 96 

represented iris versicolour and output corresponding to 

counter‘s count value from 97 to 143 represented iris 

virginica. This was found to be matching with iris flower 

data set.  

The performance comparison of implemented ANN at 

frontend and backend VLSI design are given in table 6.1 

and 6.2 respectively and graphical representation of total 

cell area and total dynamic power dissipation are shown 
in figure 6.1 and 6.2 respectively. 

The experimental results at Backend VLSI design level 

indicates that ANN using bit serial architecture Type III 

based multiplier is better than ANN using array 
multiplier in  

- Total Cell area saving in 90 nm & in 45 nm: - 62.681 

% & 60.65 % respectively. 

- Total area saving in 90 nm & in 45 nm: - 63.86 % & 

60.65 % respectively. 

- Total dynamic power saving in 90 nm & in 45 nm: - 

53.81 % & 90.88 % respectively. 

 

Table 6.1: Performance comparison of implemented 

neural networks at frontend level 

Parameters 

32×32 bit 

NN using 

Array 

Multiplier 

NN using Bit serial 

architecture based 

(Type III) Multiplier 

Total Logic 

Elements 
63038 62725 

Embedded 

multipliers 
300/300 0/300 

Total dynamic 

power 

dissipation(mW) 

40.14 6 

Data arrival time 

tco(nsec) 
300.023 273.496 

 

Table 6.2: Performance comparison of implemented 

neural networks at backend level 
Parameters  90 nm  tech file 45 nm tech file (no 

Workload model) 

Array Bit Arra

y 

Bit 

Total Area 

nm
2
 

2333944 843437 -- -- 

Total cell 

area nm
2
 

2193638 818627 897092 353045 

Total 

dynamic 

power 

dissipation 

5.1803 

mW 

2.393 mW 148.468 

mW 

13.554 

mW 

Data arrival 

time nsec 

90.9 1.5 141.5 1.14 

The performance comparison of implemented multiplier 
at backend VLSI design is given in table 6.3 and 6.4 

respectively. 

 

Table 6.3: Performance comparison of implemented 

multipliers 32 × 32 bit at backend level 
Parameters   90 nm  tech file 45 nm tech file (no 

Workload model) 

Array  Bit  Array  Bit  

Total area 

nm
2
 

20677.4997

57 

 

5420.97173

6 

-- -- 

Total cell 

area (nm
2
) 

20007.0145

59 

5304.72962

6 

19676.34075

9 

2185.06077

1 

Total 

dynamic 

power 

dissipation(

mW) 

0.5913478 0.0275544    6.3856    0.0312965 

Data arrival 

time (nsec) 

19.89 4.19 1.93  1.34 

Table 6.4: Performance comparison of implemented 

multipliers 32 × 32 bit at backend level 
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Parameters of 

multiplier 32×32 bit 

Array 

Multiplier   

Bit Serial architecture 

based multiplier (Type III)  

Total Logic Elements 234 209 

Total dynamic power 

dissipation(mW) 

6.11 0.54 

Worst propagation 

delay 

41.604 21.495 

 

VII. CONCLUSIONS 
The realization of bit serial architecture Type III based 

multiplier implementated in floating point arithmetic 

provides a good trade off in realizing high end 

applications which is area-speed-power efficient with 

good precision and dynamic range. The bit serial 

architecture Type III based multiplier  approach suggested 

in this paper were found to be giving better performance 
than other promising findings available in literature [17, 

18, 19, 20, 21, 22, 23, 24, 25] .  Hence, the realization of 

ANN design using bit serial architecture Type III based 

multiplier implementated in floating point arithmetic 

(IEEE 754- single precision format) has presented a new 

approach for multi-objective optimization of VLSI 

implementation of neural network. It has also proven to 

be better alternative over ANN design using array 

multiplier.  

Future research work system by improvising adder unit 

block if possible and a full characterization of each 
design option at layout level. 
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