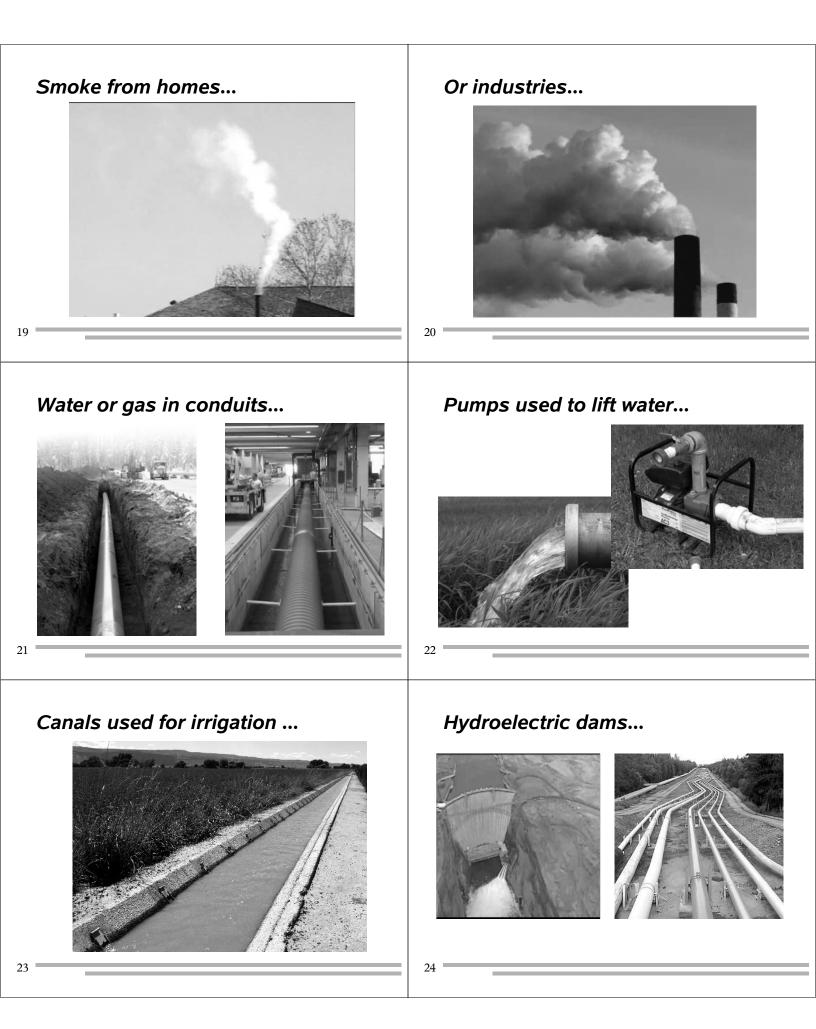

Chapter 1 - INTRODUCTION	Scope of Fluid Mechanics (1)
Image: Figure 1 to the second state of the sec	 Fluids: gases and liquids, water and air most prevalent in daily experience Examples: Flow in pipes and channels Flow in pipes and channels Air resistance or drag Projectile motion Jets, shock waves Lubrication Irrigation Sedimentation Meteorology
 • Used in the design of: • Water supply system • Dam spillways • Shock absorbers, brakes • Ships, submarines • Ships, submarines • Aircrafts, rockets • Windmills, turbines • Sperings • Sour fiballs • Race cars • Surf boards 	<section-header><section-header><section-header><section-header><section-header><image/><image/></section-header></section-header></section-header></section-header></section-header>
As fish habitat	For reptile habitat



Fload control dams... Fluid mechanics tries to explain fluids and their motions Fluid sand their motions Image: Strate of the mechanics of liquids and gases Science of the mechanics of liquids and gases Steince of the mechanics of liquids and gases

- More complicated subject, however, since in fluids separate elements are more difficult to distinguish
- We'll solve problems of fluids on the surface of the Earth, within reasonable ranges of pressure and temperature.

27

Scope of Fluid Mechanics (5)

- Classical hydrodynamics and hydraulics are now combined into FLUID MECHANICS
- Modern Fluid Mechanics:
 - Combines mathematical principles with experimental data
 - Experimental data used to verify or complement theory or mathematical analysis
- Computational Fluid Dynamics (CDF)
 - Numerical solutions using computers
 - Methods:Finite differences
- * finite elements* analytic elements
- Boundary elements

Historical development (1)

- Deals with ideal frictionless fluids

- Mathematical subject

- Experimental science

- Deals with real fluids

• Classical hydraulics:

- Ancient civilizations: irrigation, ships
- Ancient Rome: aqueducts, baths (4th century B.C.)
- Ancient Greece: Archimedes buoyancy (3rd century B.C.)
- Leonardo (1452-1519): experiments, research on waves, jets, eddies, streamlining, flying

30

Historical development (3)
• Prandtl (1904): proposes idea of the boundary layer
 Flow fields of low-viscosity fluids divided into two zones: A thin, viscosity-dominated layer near solid surfaces An effectively inviscid outer zone away from boundaries
 Explains paradoxes Allow analysis of more complex flows
 20th century: hydraulic systems, oil explorations, structures, irrigation, computer applications
The Book (Finnerman & Franzini) - 1
 Inside covers: conversion factors, temperature tables, S.I. prefixes, important quantities Table of Contents Appendix A – data on material properties Appendix B – information on equations Appendix C – brief description of software Appendix D – examples of software solvers Appendix E – references on fluid mechanics Appendix F – answers to exercises in the book Alphabetical Index
34
The Book (Finnerman & Franzini) - 3
Only by working many problems can you truly understand the basic principles and how to apply them.

How to master assigned Material	Steps in solving problems (1)
• Study material to be covered <i>before</i> it is covered in class	a) Read and ponder problem statement, identify simplest approach
 Study sample problems until you can solve them "closed book" 	b) Summarize info to be used (given and obtained elsewhere), and quantities to be found
	c) Draw neat figure(s), fully labelled
• Do enough of the drill Exercises, answer unseen	d) State all assumptions
 Do the homework Problems you have been assigned 	e) Reference all principles, equations, tables, etc. to be used
37	38
Steps in solving problems (2)	<i>Precision in numerical answers (see step h, above)</i>
f) Solve as far as possible algebraically before inserting numbers	• Should not be more precise (as %) than that of the
g) Check dimensions for consistency	least precise inserted value
 h) Insert numerical values at last possible stage using consistent units. Evaluate to appropriate precision. 	• Common rule is to report results to 3 significant figures, or four figures if they begin with a "1", which yields a maximum error of 5%
i) Check answer for reasonableness and accuracy.	
j) Check that assumptions used are satisfied or appropriate. Note limitations that apply.	• Do not round off values in your calculator, only do so when presenting your answer
39	40
More on problem solving (1)	More on problem solving (2)

- Master simpler problems, then tackle advanced ones.
- Practice working problems "closed book" with time limits
- Form a study group early on in the course quiz each other about

 - Category a problem falls intoProcedures that should be used in solution
- Know how and when to use the material learned
- Seek and build understanding of applications of your knowledge

- Techniques to be used:
 - For most problems: algebra, trial-and-error methods, graphical methods, calculus methods
 - Also: computer and experimental techniques
- Repetitive numerical evaluations using computers
- Programmable calculators for root solving

Dimensions and units (1) Real-world problem solving • Units needed to properly express a physical • Many real-world problem are not like in the quantity textbook • Develop ability to *recognize* problems and to clearly *define* (or formulate) them, before analysis • Systems to be used: • Experience helps in determining best method of - S.I. (Systeme Internationale d'Unites) • Adopted in 1960 solution among many available • Used by nearly every major country, except the U.S. • In real world problems: • Likely to be adopted by the U.S. in the near future - Numerical results not the ultimate goal - B.G. (British Gravitational system) - Results need to be interpreted in terms of physical • Used in the technical literature for years problem • Preferred system in the U.S. - Recommendations must be made for action 43 44

Dimensions and units (2)

- Basic dimensions used in fluid mechanics:
 - Length (L)
 - Mass (M)
 - Time (T)
 - Temperature (θ)
- Dimensions of acceleration: [a] = LT⁻²
- Newton's 2^{nd} law: $F = [m][a] = MLT^{-2}$
- Only 3 of the four basic units can be assigned arbitrarily, the fourth becoming a *derived* unit
- 45

47

Dimensions and units (4)

• Weight,

W = mg

- g =gravitational acceleration
- On the surface of Earth

 $g = 32.2 \, ft/s^2 = 9.81 \, m/s^2$

• Weights of unit mass

```
- BG units: W = mg = (1 \text{ slug})(32.2 \text{ ft/s}^2) = 32.2 \text{ lb}
```

- SI units: $W = mg = (1 \text{ kg})(9.81 \text{ m/s}^2) = 9.81 \text{ N}$

Dimensions and units (3)

Commonly used units in SI and BG

Dimension	BG unit	SI unit
Length (L)	foot (ft)	meter, metre (m)
Mass (M)	slug (=lb sec ² /ft)	kilogram (kg)
Time (T)	second (sec)	second (s)
Force (F)	pound (lb)	newton (n) (=kg m/s ²)
Temperature (θ)		
Absolute	Rankine (°R)	Kelvin (K)
Ordinary	Fahrenheit (°F)	Celsius (°C)

See other dimensions and units in page 8

46

Example P1.1 – Weight calculation

Gravity on the surface of the moon (g_m) is 1/6 that of Earth, i.e., $g_m = g/6$. What is the weight, in *newtons*, of m = 2.5 kg of water on Earth, and on the surface of the moon?

On Earth, $W = mg = (2.5 \text{ kg})(9.81 \text{ m/s}^2) = 24.53 \text{ N}$

On the moon, $W_m = mg_m = mg/6 = (2.5 \text{ kg})(9.81 \text{ m/s}^2)/6 = 4.087 \text{ N}$

Dimensions and units (5)	Dimensions and units (6)
Other systems of units used:	Popular usage in Europe and other countries
 English Engineering (EE) - inconsistent M (pound mass, <i>lbm</i>), F (pound force, <i>lbf</i>) MKS (m-kg-s) metric - inconsistent M (kg mass, <i>kgm</i>), F (kg force, <i>kgf</i>) Cgs (cm-g-s) metric - consistent M (g), F(dyne = g cm/s²) 1 dyne = 10⁻⁵ N, a very small quantity 	 A "kilo" of sugar or other produce, represents a mass of 1 kg A "kilo", therefore, represents a weight of 9.81 N A pound of weight has a mass of about 0.4536 kg Thus, the conversion factor for popular usage is 1.00/0.4536 = 2.205 lb/kgf In engineering, reserve <i>kg</i> for mass only, and <i>N</i> for force only
Unit abbreviations (1)	Unit abbreviations (2)
 Abbreviations kg = kilogram lb = pound(s), not lbs Time units: s, min, h, d, y (S.I.) Sec, min, hr, day, yr (B.G.) Non-standard abbreviations fps = feet per second gpm = gallons per minute cfs, or cusecs = cubic feet per second cumecs = cubic meters per second 	 Abbreviations Acres, tons, slugs abbreviated [Although, Ac = acres] Units named after people: Upper case when abbreviated: N, J, Pa Lower case when spelled out: newton, joule, pascal Use L for liter (to avoid confusing l with I) S.I. absolute temperature is in K (kelvin) not °K 1 British or imperial gallon = 1.2 U.S. Gallon (±0.1%) When not specified, assume U.S. gallons
Derived quantities (1)	Derived quantities (2)
 Basic dimensions: mass (M), length (L), time (T) Velocity = Length / Time Acceleration = Velocity / Time = Length / Time² Discharge = Volume / Time Force = Mass × Acceleration Pressure = Force / Area (also Stress) Work = Force × Length (also Energy, Torque) Power = Work / Time = Force × Velocity Angular Velocity = Angle / Time Angular Acceleration = Angular Velocity / Time 	 Basic dimensions: force (M), length (L), time (T) Velocity = Length / Time Acceleration = Velocity / Time = Length / Time² Discharge = Volume / Time Mass = Force / Acceleration Pressure = Force / Area (also Stress) Work = Force × Length (also Energy, Torque) Power = Work / Time = Force × Velocity Angular Velocity = Angle / Time Angular Acceleration = Angular Velocity / Time

Basic units for derived quantities

Derived quantity	B.G.	S.I.
Velocity	ft/sec = fps	m/s
Acceleration	ft/sec ²	m/s ²
Discharge	$ft^3/s = cfs$	<i>m³/s</i>
Mass	slug = lb sec ² / ft	kg
Force	lb	$N = kg m/s^2$
Pressure	lb/ft² = psf	$Pa = N/m^2$
Work	lb ft	J = N m
Power	lb ft/sec	W = J/s
Angular velocity	rad/sec	rad/s
Angular acceleration	rad/sec ²	rad/s ²

55

Example P1.3 – Pressure, Work, Power

• A force *F* = 40 *N* is applied on an area of *A* = 2 m^2 , what is the average pressure *p* on the area?

$$p = F/A = (40 N)/(2 m^2) = 80 Pa$$

• If the force *F* = 40 *N* moves a mass a distance *x* = 2 *m* in a time *t* = 10 *s*, what is the work developed and the corresponding power?

 $W = F \cdot x = (40 \text{ N})(2 \text{ m}) = 80 \text{ J}$ P = W/t = (80 J)/(10 s) = 8 W

57

Example P1.4 – Pressure, work, power

• A force F = 4000 N is applied on an area of $A = 20 m^2$, what is the average pressure *p* on the area?

 $p = F/A = (4000 N)/(20 m^2) = 80000 Pa = 80 kPa$

• If the force *F* = 4000 *N* moves a mass a distance *x* = 2000 *m* in a time *t* = 10 *s*, what is the work developed and the corresponding power?

 $W = F \cdot x = (4000 \text{ N})(2000 \text{ m}) = 8 \ 000 \ 000 \ J = 8 \ MJ$ $P = W/t = (8 \ 000 \ 000 \ J)/(10 \ s) = 800 \ 000 \ W$ $= 800 \ kW = 0.8 \ MW$

Example P1.2 – Mass, force, pressure

• A mass *m* = 2.5 *kg* is subject to an acceleration of *a* = 4 *m*/s². What is the force applied to the mass?

$$F = ma = (2.5 \text{ kg})(4 \text{ m/s}^2) = 10 \text{ N}$$

• A force *F* = 20 *lb* produces an acceleration of *a* = 2 *ft/s*², determine the mass *m*?

$$m = F/a = (20 \ lb)/(2 \ ft/s^2) = 10 \ slugs$$

• Determine the pressure *p* produced by a force *F* = 10 *lb* on an area *A* = 5 *ft*²:

$$P = F/A = (10 \ lb)/(5 \ ft^2) = 2 \ psf$$

56

Unit prefixes in S.I.

Factor	Prefix	Symbol
10 ⁹	giga	G
10 ⁶	mega	М
10 ³	kilo	k
10-2	centi	С
10 ⁻³	milli	m
10-6	micro	μ
10-9	nano	n

58

Other units (B.G.)

- Length: 1 in = 1/12 ft, 1 mi = 5280 ft, 1 yd = 3 ft
- Area: $1 \text{ Acre} = 43 560.17 \text{ ft}^2$
- Volume: 1 gallon (U.S.) = 0.1337 ft³ 1 acre-ft = 43 560.17 ft³
- Velocity: *1 mph* = *1.467 fps*
- Pressure: 1 psi [lb/in²] = 144 psf, 1 in Hg = 70.73 psf, 1 ft $H_20 = 62.37$ psf
- Energy: $1 BTU = 778.17 lb \times ft$
- Power: $1 hp = 550 lb \times ft / s$

Example P1.5 – Various B.G. Units (1)	Example P1.5 – Various B.G. Units (2)
 A steel pipe has a diameter D = 6 in. What is the diameter in ft? D = 6 in = (6 in)(1/12 ft/in) = 0.5 ft The area of a reservoir is given as A = 2.5 acres. What is the area in ft2? A = 2.5 acres = (2.5 acres)(43560.17 ft²/acres) = 108 900.43 ft² 	 What is the volume of a 5-gallon container in ft³? V = 5 gal = (5 gal)(0.1337 ft³/gal) = 0.669 ft³ The volume of a reservoir is given as V = 1.2 acre-ft. What is the reservoir volume in ft³? V = 1.2 acre-ft = (1.2 acre-ft)(43 560.17 ft³/acre-ft) = 52272.20 ft³
Example P1.5 - Various B.G. Units (3) • A tire manometer reads 40 psi of pressure. What is the pressure in pounds per square foot (psf)? p = 40 psi = (40 psi)(144 psf/psi) = 5760 psf • A barometer reads an atmospheric pressure of 28 inches of mercury (28 inHg). What is the atmospheric pressure in psf? p = 28 inHg = (28 inHg)(70.73 psf/inHg) = 1980.44 psf	Example P1.5 – Various B.G. Units (4) • A piezometric tube shows a pressure of 20 meters of water $(p = 20 ftH_2 0)$. What is the pressure in psf? $p = 20 ftH_2 0 = (20 ftH_2 0)(62.37 psf/ftH_2 0) = 1247.4 psf$ • During a short period of operation a heater produces an output of 300 BTUs (British thermal unit). What is the heat produced in 1b ft? $W = 300 BTU = (300 BTU)(778.17 1b ft/BTU)= 233 451 1b ft$
Example P1.5 – Various B.G. Units (5)	Other units (S.I.)
 A machine is able to develop a power of 500 hp (horse power). What is the power of this machine in lb ft/s? P = 500 hp = (500 hp)(550 lb ft/(s hp)) = 275 000 lb ft/s 	 Area: 1 ha = 10⁴ m² Volume: 1 L = 10⁻³ m³ = 10³ cc Mass: 1 g = 10⁻³ kg Pressure: 1 atm = 101.325 kPa, 1 bar = 10⁵ Pa, 1 mmHg = 133.32 Pa, 1 mH₂0 = 9.810 kPa Energy: 1 cal = 4.186 J, 1 erg = 1 dyne× cm = 10⁻⁷ J, 1 kW× h = 3.6×10⁶ J Angular velocity: 1 rpm = 0.1047 rad/s (both systems)

Example P1.6 – Various S.I. units (1)	Example P1.6 – Various S.I. units (2)
 The area of a small basin is reported to be A = 0.5 ha. What is the area in m²? A = 0.5 ha = (0.5 ha)(104 m²/ha) = 5 103 m² The volume of a tank is V = 40000 L. What is the tank's volume in m³? V = 40000 L = (40000 L)(10 -3 m³/L) = 40 m³ 	 he volume of a small container is V = 0.3 L. What is the volume in cc (cubic centimeters)? V = 0.3 L = (0.3 L)(103 cc/L) = 300 cc Convert the following pressures to Pa or kPa: p₁ = 0.6 atm = (0.6 atm)(101.325 kPa/atm) = 60.80 kPa p₂ = 0.02 bar = (0.02 bar)(105 Pa/bar) = 2.1 Pa
Example P1.6 – Various S.I. units (3)	Example P1.6 – Various S.I. units (4)
 Convert the following pressures to Pa or kPa: p₃ = 100 mmHg = (100 mmHg)(133.32 Pa/mmHg) = 133 320 Pa = 133.32 kPa = 0.133 MPa p₄ = 2.5 mH20 = (2.5 mH20)(9.810 kPa) = 24.525 kPa 	 Determine the energy in Joules contained in 2000 <i>calories</i>. <i>E</i> = 2000 <i>cal</i> = (2000 <i>cal</i>)(4.186 J/cal) = 8372 J If a refrigerator uses 0.05 kW-h during a period of operation, what is the energy consumed in <i>joules</i>? <i>E</i> = 0.05 kW-h = (0.05 kW-h)(3.6 106 J) = 180 000 J = 180 kJ = 0.18 MJ
Example P1.6 – Various S.I. units (5) • If a pump operates at 400 rpm, what is the equivalent angular velocity in rad/s? • $\omega = 400 \text{ rpm} = (400 \text{ rpm})(0.1047 \text{ rad/(s rpm)})$ = 41.88 rad/s	 Selected conversion factors (BG-SI) Length: 1 ft = 0.3048 m, 1 mi = 1.609 km Area: 1 acre = 0.4047 ha Volume: 1 gal = 3.786 L, 1 acre-ft = 1233.49 m³ Discharge: 1 gpm = 6.309×10⁻⁵ m³/s Mass: 1 slug = 14.594 kg Force: 1 lb = 4.448 N Work: 1 lb ft = 1.356 J, 1 BTU = 1055.06 J, 1 BTU = 252 cal Power: 1 lb ft/s = 1.356 W, 1 hp = 745.70 W

Т

	\mathbf{F}_{1}
Example P1.7 – BG to SI conversions (1)	Example P1.7 – BG to SI conversions (2)
• A pipeline is measured to be <i>300 ft</i> in length. What is the pipe length in m?	• The volume of a small container is <i>V</i> = <i>12.5 gal</i> . What is the container's volume in liters?
L = 300 ft = (300 ft)(0.3048 m/ft) = 91.44 m	V = 12.5 gal = (12.5 gal)(3.786 L/gal) = 47.33 L
• The area of a small pond is measured to be 2.3 <i>acres</i> . What is the pond area in hectares?	• The volume of a reservoir is <i>3.5 acre-ft</i> . What is the reservoir volume in cubic meters?
$A = 2.3 \ acres = (2.3 \ acres)(0.4047 \ ha/acre)$ = 0.9381 ha	$V = 3.5 \ acre-ft = (3.5 \ acre-ft)(1233.49 \ m^3/acre-ft)$ = 4317.49 m ³
73	74
Example P1.7 – BG to SI conversions (3)	Example P1.7 – BG to SI conversions (4)
• A pipeline carries a discharge $Q = 5$ gpm. What is the pipeline discharge in $m3/s$?	• The force applied by water flowing under a sluice gate on the gate is measured to be <i>F</i> = 145 <i>lb</i> . What is the force on the gate in <i>newtons</i> ?
$Q = 5 gpm = (5 gpm)(6.309 \times 10^{-5} m^{3}/(s gpm))$ = 0.0003155 m ³ /s	$F = 145 \ lb = (145 \ lb)(4.448 \ N/lb) = 644.96 \ N$
• The mass of a given volume of water is measured to be <i>m</i> = 4.5 <i>slugs</i> . What will this mass be in <i>kg</i> ?	• The potential energy of a water mass is measured to be <i>E</i> = 236 <i>lb ft</i> . What is this energy in <i>J</i> ?
$m = 4.5 \ slugs = (4.5 \ slugs)(14.594 \ kg/slug)$ = 65.673 kg	$E = 236 \ lb \ ft = (236 \ lb \ ft)(1.356 \ J/(lb \ ft)) \\= 320.02 \ J$
75	76
Example P1.7 – BG to SI conversions (5)	Example P1.7 – BG to SI conversions (6)
• The heat transferred through an industrial process is measured to be $q = 2000 BTU$. What is the amount of heat in <i>J</i> ?	• The power developed by a pump is <i>P</i> = 150 <i>lb ft/s</i> . What is the pump's power in <i>watts</i> ?
q = 2000 BTU = (2000 BTU)(1055.06 J/BTU)	$P = 150 \ lb \ ft/s = (150 \ lb \ ft/s)(1.356 \ W \ s/(lb \ ft))$ = 203.4 W = 0.203 kW
 = 2 110 120 J = 2 110.12 kJ = 2.11 MJ • How many calories are there in 2000 BTU? 	• If a turbine's power is rated to be <i>P</i> = 500 hp, what is the turbine's power in <i>watts</i> ?
q = 2000 BTU = (2000 BTU)(252 cal/BTU) = 504 000 cal = 504 kcal	P = 500 hp = (500 hp)(745.7 W/hp) = 372 850 W = 372.85 kW = 0.373 MW
77	78

Selected conversion factors (SI-BG)	Example P1.8 – SI to BG conversions (1)
 Length: 1 m = 3.28 ft, 1 km = 0.621 mi Area: 1 ha = 2.47 acre Volume: 1 L = 0.264 gallon, 1 m³ = 9.107×10⁻⁴ acre-ft Discharge: 1 m³/s = 15 850.32 gpm Mass: 1 kg = 6.852×10⁻² slug Force: 1 N = 0.225 lb Work: 1 J = 0.738 lb-ft = 9.478×10⁻⁴ BTU, 1 cal = 3.968×10⁻³ BTU, 1 kW-h = 3412.14 BTU Power: 1 W = 0.7375 lb ft/s, 1 W = 1.34×10⁻³ hp 	 A large aqueduct is built with a length of 3.5 km. What is this length in miles? L = 3.5 km = (3.5 km)(0.621 mi/km) = 2.1735 mi A crop area A = 2.5 ha is to be irrigated. What is the area in acres? A = 2.5 ha = (2.5 ha)(2.47 acre/ha) = 6.175 acre
Example P1.8 – SI to BG conversions (2)	Example P1.8 – SI to BG conversions (3)
• You collect a volume of 25 <i>L</i> for a test. What is this volume in <i>gallons</i> ?	• How many slugs are there in a mass of <i>18 kg</i> ?
V = 25 L = (25 L)(0.264 gal/L) = 6.6 gal	$m = 18 \text{ kg} = (18 \text{ kg})(6.852 \times 10^{-2} \text{ slug/kg})$ = 1.233 slug
• A canal carries a flow $Q = 0.02 m^3/\text{s}$. What is this flow in gallons per minute? $Q = 5.6 m^3/\text{s} = (0.02 m^3/\text{s})(15 850.32 \text{gpm} \cdot \text{s}/m^3)$ $= 317.00 \text{gpm}$	 The shear force on a segment of a channel is measured to be 250 N. What is this force in <i>pounds?</i> F = 250 N = (250 N)(0.225 lb/N) = 56.25 lb
81	82
Example P1.8 – SI to BG conversions (4)	Common temperature scales
• If you use 0.5 KW-h of energy, how much energy did you use in <i>BTU</i> ?	0 32 212 → °F - 32 → °F
$W = 0.5 \ kW-h = (0.5 \ Kw-h)(3412.14 \ BTU/KW-h)$ = 1706.7 BTU	0 100 °C
• If a turbine is rated for a power <i>P</i> = 1.5 <i>kW</i> , how many <i>hp</i> s is the rating power?	**************************************
$P = 1.5 \ kW = (1500 \ W)(1.34 \times 10^{-3} \ hp) = 2.01 \ hp$	$\frac{^{\circ}F - 32}{^{\circ}C} = \frac{180}{100} = \frac{5}{9}$
83	84

Example P1.9 – Common temperature scales	More temperature relations
• Determine the value for which both the Celsius (centigrade) and Fahrenheit scales have the same reading.	$^{o}C = (5/9)(^{o}F-32)$
	${}^{o}F = (9/5)({}^{o}C) + 32$
We try to find x such that ${}^{o}F = x$ and ${}^{o}C = x$ in	$K = {}^{o}C + 273$
$({}^{o}F-32)/{}^{o}C = 9/5$, i.e., $(x-32)/x = 9/5$, thus	${}^{o}R = {}^{o}F + 460$
$5x - 160 = 9x \Rightarrow -4x = 160 \Rightarrow x = -40$	$K = (5/9)(^{o}R)$
Thus, $-40^{\circ}F = -40^{\circ}C$ is the point where both scales read the same value.	$^{o}R = (9/5) K$
85	86
Example P1.10 – Temperature conversions	Unit conversions HP calculators(1)
$T = 68^{\circ}F \Rightarrow {}^{\circ}C = (5/9)({}^{\circ}F-32) = (5/9)(68-32) = 20^{\circ}C$	• Convert 350 hp to W: [→][UNITS][NXT][POWR][3][5][0][hp][1][W] [→][UNITS][TOOLS][CONVE]
$T = 25^{\circ}C \implies {}^{\circ}F = (9/5)({}^{\circ}C) + 32 = (9/5)(25) + 32 = 77^{\circ}F$	$350 \ hp = 260994.96 \ W$
$T = -20 \text{ oC} \Rightarrow K = {}^{\circ}C + 273 = -20 + 273 = 253 \text{ K}$	4
$T = -250 \ ^{\circ}F \Rightarrow ^{\circ}R = ^{\circ}F + 460 = -250 + 460 = 210 \ ^{\circ}R$	 Convert 25 acre-ft to m³: [→][UNITS][AREA][NXT][2][5][acre][NXT]
$T = 495 \ ^{\circ}R $ \blacktriangleright $K = (5/9)(^{\circ}R) = (5/9)(495) = 275 K$	[UNITS][LENG][1][ft][×][↔][UNITS][VOL] [1][m^3] [↔][UNITS][TOOLS][CONVE]
$T = 360 K \Rightarrow {}^{\circ}R = (9/5) K = (9/5)(360) = 648 {}^{\circ}R$	$25 \ acre-ft = 30837.17 \ m^3$
87	88
Unit conversions HP calculators(2)	Unit conversions TI 89 (1)
• Convert <i>150 kW-h</i> to <i>lb×ft</i> : [↦][UNITS][NXT][POWR][1][5][0][↦][-]	 Convert 350 hp to W: [HOME][3][5][0][2nd][UNITS]
[ALPHA][] [K][W][ENTER][UNITS][TIME]	Press $[\mathbf{V}]$ 13 times to highlight <i>Powerhp</i> [Enter] (selects <i>hp</i>) [Enter] (auto convert to <i>W</i>)
[1][h][×][NXT][UNITS][NXT][ENRG][1][ft×lb] [NXT][UNITS][TOOLS][CONVE]	
$150 kW-h = 398283560.61 ft \cdot lbf$	350 hp = 260995 W
	 Convert 25 acre-ft to m³: [HOME][2][5][2nd][UNITS][♥][♥][Enter][×][1]
<u>NOTES</u> : (1) Use of prefixes, e.g., <i>k</i> = kilo: [↔][-][ALPHA][∽][K]	$[2nd][UNITS][\mathbf{V}][V$
(2) The answer is given using <i>lbf</i> (pound-force), note that <i>lbf</i> (EE) = <i>lb</i> (BG).	$25 \ acre-ft = 30837. \ m^3$
89	90

 Unit conversions TI 89 (2) Convert 150 kW-h to lb×ft: 		Dimensions		Preferred units	
	Quantity	(M,L,T)	(F,L,T)	S.I.	E.S.
	Length (L)	L	L	т	ft
	Time (T)	Т	Т	s	S
[HOME][1][5][0][2nd][UNITS]	Mass (M)	М	FT ² L ⁻¹	kg	slug
	Area (A)	L ²	L ²	m²	ft²
Press $[\mathbf{\nabla}]$ 12 times to highlight <i>Energy</i> $[\mathbf{\blacktriangleright}]$	Volume (Vol)	L ³	L ³	m³	ft3
Press $[\mathbf{\nabla}]$ 7 times to highlight kWh [Enter][2nd][\mathbf{b}]	Velocity (V)	LT -1	LT -1	m/s	ft/s or fps
[2nd][UNITS]	Acceleration (a)	LT -2	LT -2	m/s²	ft/s²
	Discharge (Q)	L ³ T ⁻¹	L ³ T ⁻¹	<i>m³/s</i>	ft³/s or cf
Press $[\mathbf{\nabla}]$ 12 times to highlight <i>Energy</i> $[\mathbf{\blacktriangleright}]$	Kinematic viscosity (v)	L ² T ⁻¹	L ² T ⁻¹	<i>m²/s</i>	ft²/s
Press [▼] 7 times to highlight <i>_ftlb</i> [Enter]	Force (F)	MLT ⁻²	F	N	lb
	Pressure (p)	ML -1T -2	FL ⁻²	Pa	lb/ft ²
	Shear stress (τ)	ML ⁻¹ T ⁻²	FL ⁻²	Pa	lb/ft ²
$150 \text{ kW-h} = 3.98284 \text{ E8}_{ftlb} = 3.98284 \times 10^8 \text{ lb}\text{-}ft$	Density (p)	ML -3	FT ² L ⁻⁴	kg/m³	slug/ft³
	Specific weight (y)	ML-2T -2	FL -3	N/m³	lb/ft ³
	Energy/Work/Heat (E)	ML ² T ⁻²	FL	J	lb ft
Note: the symbol [2nd][]] is the <i>conversion operator</i>	Power (P)	ML ² T ⁻³	FLT ⁻¹	W	lb ft/s
	Dynamic viscosity (µ)	ML -1T -1	FTL -2	N s/m ²	lb s/ft ²

Example P1.11 - Dimensions

 Let *P* = pressure, *ρ* = density, V = velocity. Determine the dimensions of the quantity

$$C_{p} = \frac{P}{\frac{1}{2}\rho V^{2}}$$

 $[C_p] = [P]/([\rho][V]^2) = ML^{-1} T^{-2} / (ML^{-3} (LT^{-1})^2)$

 $= M^{1-1} L^{-1+3-2} T^{-2+2} = M^0 L^0 T^0 = dimensionless$

93

Example P1.12 – Dimensional homogeneity

• The theoretical equation for the discharge *Q* over a sharp-crested weir is given by

$$Q = (2/3) \cdot (2g)^{1/2} \cdot L \cdot H^{3/2}$$

where g = gravity, L = length, H = weir head. Check the equation for dimensional homogeneity.

With
$$[g] = LT^2$$
, $[L] = L$, $[H] = L$, we find

$$[Q] = 1 \cdot (1 \cdot L \cdot T^{-2})^{1/2} \cdot L \cdot L^{3/2} = L^{1/2 + 1 + 3/2} T^{(-2)(1/2)} = L^3 T^{-1}$$