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FLUID MECHANICS

DENSITY, SPECIFIC VOLUME, SPECIFIC 
WEIGHT, AND SPECIFIC GRAVITY
The definitions of density, specific volume, specific weight, 
and specific gravity follow:
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also SG = γ/γw = ρ/ρw , where
t = density (also mass density),
∆m = mass of infinitesimal volume,
∆V = volume of infinitesimal object considered,
γ = specific	weight,
 = ρg,
∆W = weight of an infinitesimal volume,
SG = specific	gravity, 

wt  = mass density of water at standard conditions 
= 1,000 kg/m3 (62.43 lbm/ft3), and

γω = specific weight of water at standard conditions,
 = 9,810 N/m3 (62.4 lbf/ft3), and
 = 9,810 kg/(m2·s2).

STRESS, PRESSURE, AND VISCOSITY
Stress is defined as

/ ,F A1 limit where
A 0

=x D D
"D

] g

1x] g = surface stress vector at point 1,
∆F = force acting on infinitesimal area ∆A, and
∆A = infinitesimal area at point 1.
  τn = – P
  τt = µ(dv/dy) (one-dimensional; i.e., y), where
τn and τt  = the normal and tangential stress components at  

 point 1,
P = the pressure at point 1,
µ = absolute dynamic viscosity of the fluid
  N·s/m2 [lbm/(ft-sec)],
dv = differential velocity,
dy = differential distance, normal to boundary.
v = velocity at boundary condition, and
y = normal distance, measured from boundary.
  v = µ/ρ, where
υ = kinematic viscosity; m2/s (ft2/sec).

For a thin Newtonian fluid film and a linear velocity profile,
  v(y) = vy/δ; dv/dy = v/δ, where
v = velocity of plate on film and
δ =  thickness of fluid film.
For a power law (non-Newtonian) fluid
  τt = K (dv/dy)n, where
K = consistency index, and
n = power law index.
  n < 1 ≡ pseudo plastic
  n > 1 ≡ dilatant

SURFACE TENSION AND CAPILLARITY
Surface tension σ is the force per unit contact length

σ = F/L, where
σ = surface tension, force/length,
F = surface force at the interface, and
L = length of interface.
The capillary rise h is approximated by

h = 4σ cos β/(γd), where
h = the height of the liquid in the vertical tube,
σ = the surface tension,
β = the angle made by the liquid with the wetted tube   

 wall,
γ = specific weight of the liquid, and
d = the diameter of the capillary tube.

THE PRESSURE FIELD IN A STATIC LIQUID
♦

The difference in pressure between two different points is
P2 – P1 = –γ (z2 – z1) = –γh = –ρgh

For a simple manometer,
Po = P2 + γ2z2 – γ1z1

Absolute pressure = atmospheric pressure + gage pressure 
reading

Absolute pressure = atmospheric pressure – vacuum gage 
pressure reading

♦ Bober, W. & R.A. Kenyon, Fluid Mechanics, Wiley, New York, 1980. Diagrams reprinted by permission 
of William Bober & Richard A. Kenyon.
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FORCES ON SUBMERGED SURFACES AND THE 
CENTER OF PRESSURE
♦

The pressure on a point at a distance Z′ below the surface is
p = po + γZ′, for Z′ ≥ 0

If the tank were open to the atmosphere, the effects of po could 
be ignored.
The coordinates of the center of pressure (CP) are

y* = (γI yc
 zc

 sinα)/(pc A) and

z* = (γI yc
sinα )/(pc A), where

y* = the y-distance from the centroid (C) of area (A) to the  
 center of pressure,

z* = the z-distance from the centroid (C) of area (A) to the  
 center of pressure,

I yc
 and I yc

 zc
 = the moment and product of inertia of the area,

pc = the pressure at the centroid of area (A), and
Zc = the slant distance from the water surface to the   

 centroid (C) of area (A).

♦

If the free surface is open to the atmosphere, then
po = 0 and pc = γZc sinα.

y* = Iyc
 zc 

/(AZc) and z* = Iyc
 /(AZc)

pp

pp

The force on a rectangular plate can be computed as
F = [p1Av + (p2 – p1) Av /2]i + Vf γ f j, where

F = force on the plate,
p1 = pressure at the top edge of the plate area,
p2 = pressure at the bottom edge of the plate area,
Av = vertical projection of the plate area,
Vf  = volume of column of fluid above plate, and

γf = specific weight of the fluid.

ARCHIMEDES PRINCIPLE AND BUOYANCY
1. The buoyant force exerted on a submerged or floating 

body is equal to the weight of the fluid displaced by the 
body.

2. A floating body displaces a weight of fluid equal to its 
own weight; i.e., a floating body is in equilibrium.

The center of buoyancy is located at the centroid of the 
displaced fluid volume.

In the case of a body lying at the interface of two immiscible 
fluids, the buoyant force equals the sum of the weights of the 
fluids displaced by the body.

ONE-DIMENSIONAL FLOWS
The Continuity Equation 
So long as the flow Q is continuous, the continuity equation, 
as applied to one-dimensional flows, states that the flow 
passing two points (1 and 2) in a stream is equal at each point, 
A1v1 = A2v2.

Q = Av
mo  = ρQ = ρAv, where

Q = volumetric flow rate,
mo  = mass flow rate,
A = cross section of area of flow,
v = average flow velocity, and
ρ = the fluid density.

For steady, one-dimensional flow, mo  is a constant. If, in 
addition, the density is constant, then Q is constant.

♦ Bober, W. & R.A. Kenyon, Fluid Mechanics, Wiley, New York, 1980. Diagrams reprinted by permission 
of William Bober & Richard A. Kenyon.
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The Field Equation is derived when the energy equation is 
applied to one-dimensional flows. Assuming no friction losses 
and that no pump or turbine exists between sections 1 and 2 in 
the system,

or

, where
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P1, P2 = pressure at sections 1 and 2,
v1, v2 = average velocity of the fluid at the sections,
z1, z2 = the vertical distance from a datum to the sections  

 (the potential energy),
γ = the specific weight of the fluid (ρg), and
g = the acceleration of gravity.

FLUID FLOW
The velocity distribution for laminar flow in circular tubes 
or between planes is

,r R
r1v v wheremax

2

= -] bg l= G

r = the distance (m) from the centerline,
R = the radius (m) of the tube or half the distance between  

 the parallel planes,
v = the local velocity (m/s) at r, and
vmax = the velocity (m/s) at the centerline of the duct.
vmax = 1.18v, for fully turbulent flow 
vmax = 2v, for circular tubes in laminar flow and
vmax = 1.5v, for parallel planes in laminar flow, where
v  = the average velocity (m/s) in the duct.

The shear stress distribution is

,R
r where

w
=x

x

τ and τw are the shear stresses at radii r and R respectively.

The drag force FD on objects immersed in a large body of 
flowing fluid or objects moving through a stagnant fluid is

,F
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2
v
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CD = the drag	coefficient,
v = the velocity (m/s) of the flowing fluid or moving   

 object, and
A = the projected area (m2) of blunt objects such as   

 spheres, ellipsoids, disks, and plates, cylinders,   
 ellipses, and air foils with axes perpendicular to the  
 flow.

For flat plates placed parallel with the flow
CD = 1.33/Re0.5 (104 < Re < 5 × 105)
CD = 0.031/Re1/7 (106 < Re < 109)
The characteristic length in the Reynolds Number (Re) is the 
length of the plate parallel with the flow. For blunt objects, the 
characteristic length is the largest linear dimension (diameter 
of cylinder, sphere, disk, etc.) which is perpendicular to the 
flow.

AERODYNAMICS
Airfoil Theory
The lift force on an airfoil is given by

F
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CL = the lift coefficient
v = velocity (m/s) of the undisturbed fluid and
AP = the projected area of the airfoil as seen from above  

  (plan area). This same area is used in defining the drag  
  coefficient for an airfoil.

The lift coefficient can be approximated by the equation
CL = 2πk1sin(α + β) which is valid for small values of α  

  and β.
k1 = a constant of proportionality
α = angle of attack (angle between chord of airfoil and   

 direction of flow)
β = negative of angle of attack for zero lift.

The drag coefficient may be approximated by
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CD∞ = infinite span drag coefficient
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The aerodynamic moment is given by
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where the moment is taken about the front quarter point of the 
airfoil.
CM = moment coefficient
Ap = plan area
c = chord length
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Reynolds Number
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ρ = the mass density,
D = the diameter of the pipe, dimension of the fluid
  streamline, or characteristic length.
µ = the dynamic viscosity,
y = the kinematic viscosity,
Re = the Reynolds number (Newtonian fluid),
Re′ = the Reynolds number (Power law fluid), and
K and n are defined in the Stress, Pressure, and Viscosity 
section.

The critical Reynolds number (Re)c is defined to be the 
minimum Reynolds number at which a flow will turn 
turbulent.

Flow through a pipe is generally characterized as laminar 
for Re < 2,100 and fully turbulent for Re > 10,000, and 
transitional flow for 2,100 < Re < 10,000.

Hydraulic Gradient (Grade Line)
The hydraulic gradient (grade line) is defined as an imaginary 
line above a pipe so that the vertical distance from the pipe 
axis to the line represents the pressure head at that point. If a 
row of piezometers were placed at intervals along the pipe, the 
grade line would join the water levels in the piezometer water 
columns.

Energy Line (Bernoulli Equation)
The Bernoulli equation states that the sum of the pressure, 
velocity, and elevation heads is constant. The energy line is 
this sum or the “total head line” above a horizontal datum. The 
difference between the hydraulic grade line and the energy 
line is the v2/2g term.

STEADY, INCOMPRESSIBLE FLOW IN CONDUITS 
AND PIPES
The energy equation for incompressible flow is
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hf  = the head loss, considered a friction effect, and all   
 remaining terms are defined above.

If the cross-sectional area and the elevation of the pipe are the 
same at both sections (1 and 2), then z1 = z2 and v1 = v2.
The pressure drop p1 – p2 is given by the following:

p1 – p2 = γ hf  = ρghf

COMPRESSIBLE FLOW
See MECHANICAL ENGINEERING section.

The Darcy-Weisbach equation is

,h f D
L

g2
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2
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f = f(Re, e/D), the Moody or Darcy friction factor,
D = diameter of the pipe,
L = length over which the pressure drop occurs,
e = roughness factor for the pipe, and all other symbols  

 are defined as before.
An alternative formulation employed by chemical engineers is 
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A chart that gives f versus Re for various values of e/D, known 
as a Moody or Stanton diagram, is available at the end of this 
section.

Friction Factor for Laminar Flow
The equation for Q in terms of the pressure drop ∆pf is the 
Hagen-Poiseuille equation. This relation is valid only for flow 
in the laminar region.
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Flow in Noncircular Conduits
Analysis of flow in conduits having a noncircular cross section 
uses the hydraulic diameter DH, or the hydraulic radius RH, as 
follows

R
D
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H
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Minor Losses in Pipe Fittings, Contractions, and 
Expansions
Head losses also occur as the fluid flows through pipe 
fittings (i.e., elbows, valves, couplings, etc.) and sudden pipe 
contractions and expansions.
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Specific fittings have characteristic values of C, which will 
be provided in the problem statement. A generally accepted 
nominal value for head loss in well-streamlined gradual 
contractions is

hf, fitting = 0.04 v2/ 2g
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The head loss at either an entrance or exit of a pipe from or to 
a reservoir is also given by the hf, fitting equation. Values for C 
for various cases are shown as follows.
♦

PUMP POWER EQUATION

/ / ,W Q h Q gh where= =c h t ho

Q = volumetric flow (m3/s or cfs),
h = head (m or ft) the fluid has to be lifted,
η = efficiency, and
Wo  = power (watts or ft-lbf/sec).

For additonal information on pumps refer to the 
MECHANICAL ENGINEERING section of this handbook.

COMPRESSIBLE FLOW
See the MECHANICAL ENGINEERING section 
for compressible flow and machinery associated with 
compressible flow (compressors, turbines, fans).

THE IMPULSE-MOMENTUM PRINCIPLE
The resultant force in a given direction acting on the fluid 
equals the rate of change of momentum of the fluid.

ΣF = Q2ρ2v2 – Q1ρ1v1, where

ΣF = the resultant of all external forces acting on the   
 control volume,

Q1ρ1v1 = the rate of momentum of the fluid flow entering the  
 control volume in the same direction of the force,  
 and

Q2ρ2v2 = the rate of momentum of the fluid flow leaving the  
 control volume in the same direction of the force.

Pipe Bends, Enlargements, and Contractions
The force exerted by a flowing fluid on a bend, enlargement, 
or contraction in a pipe line may be computed using the 
impulse-momentum principle.
·

p1A1 – p2A2cos α – Fx = Qρ (v2cos α – v1)
Fy – W – p2A2sin α = Qρ (v2sin α – 0), where

F = the force exerted by the bend on the fluid (the force 
exerted by the fluid on the bend is equal in magnitude and 
opposite in sign), Fx and Fy are the x-component and  
y-component of the force,

v

v
v
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v v

v

v
v
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p = the internal pressure in the pipe line,
A = the cross-sectional area of the pipe line,
W = the weight of the fluid,
v = the velocity of the fluid flow,
α = the angle the pipe bend makes with the horizontal,
ρ = the density of the fluid, and
Q = the quantity of fluid flow.

Jet Propulsion
·

F = Qρ(v2 – 0)
F = 2γhA2, where

F = the propulsive force,
γ = the specific weight of the fluid,
h = the height of the fluid above the outlet,
A2 = the area of the nozzle tip,
Q = A2 gh2 , and
v2 = gh2 .

Deflectors and Blades
Fixed Blade
·

– Fx = Qρ(v2cos α – v1)
Fy = Qρ(v2sin α – 0)

Moving Blade
·

– Fx = Qρ(v2x – v1x)
 = – Qρ(v1 – v)(1 – cos α)
Fy = Qρ(v2y – v1y)
 = + Qρ(v1 – v) sin α, where

v = the velocity of the blade.

♦ Bober, W. & R.A. Kenyon, Fluid Mechanics, Wiley, New York, 1980. Diagram 
reprinted by permission of William Bober & Richard A. Kenyon. 

· Vennard, J.K., Elementary Fluid Mechanics, 6th ed., J.K. Vennard, 1954. 
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Impulse Turbine
·
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MULTIPATH PIPELINE PROBLEMS
·

The same head loss occurs in each branch as in the 
combination of the two. The following equations may be 
solved simultaneously for vA and vB:
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The flow Q can be divided into QA and QB when the pipe
characteristics are known.

OPEN-CHANNEL FLOW AND/OR PIPE FLOW
Manning’s Equation

v = (k/n)R2/3S1/2, where
k = 1 for SI units,
k = 1.486 for USCS units,
v = velocity (m/s, ft/sec),
n = roughness coefficient,
R = hydraulic radius (m, ft), and
S = slope of energy grade line (m/m, ft/ft).
Also see Hydraulic Elements Graph for Circular Sewers in the 
CIVIL ENGINEERING section.
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Hazen-Williams Equation
v = k1CR0.63S0.54, where

C = roughness coefficient,
k1 = 0.849 for SI units, and
k1 = 1.318 for USCS units.
Other terms defined as above.

WEIR FORMULAS
See the CIVIL ENGINEERING section.

FLOW THROUGH A PACKED BED
A porous, fixed bed of solid particles can be characterized by
L = length of particle bed (m)
Dp = average particle diameter (m)
Φs = sphericity of particles, dimensionless (0–1)
ε = porosity or void fraction of the particle bed, 

dimensionless (0–1)
The Ergun equation can be used to estimate pressure loss 
through a packed bed under laminar and turbulent flow 
conditions.
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∆p = pressure loss across packed bed (Pa)
vo = superficial (flow through empty vessel)  
  fluid velocity s

mb l

ρ = fluid density 
m
kg

3d n

µ = fluid viscosity m s
kg
:

c m 

FLUID MEASUREMENTS
The Pitot Tube – From the stagnation pressure equation for 
an incompressible	fluid,

/ ,p p g p p2 2v wheres s0 0= - = -t c_ _ _i i i

v = the velocity of the fluid,
p0 = the stagnation pressure, and
ps = the static pressure of the fluid at the elevation where  

 the measurement is taken.
·

For a compressible	fluid, use the above incompressible fluid 
equation if the Mach number ≤ 0.3.

· Vennard, J.K., Elementary Fluid Mechanics, 6th ed., J.K. Vennard, 1954.
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MANOMETERS
♦

For a simple manometer,
p0 = p2 + γ2h2 – γ1h1 = p2 + g (ρ2 h2– ρ1 h1)
If h1 = h2 = h
p0 = p2 + (γ2 – γ1)h = p2 + (ρ2 – ρ1)gh

Note that the difference between the two densities is used.
Another device that works on the same principle as the 
manometer is the simple barometer.

patm = pA = pv + γh = pB + γh = pB + ρgh
♦

pv = vapor pressure of the barometer fluid
Venturi Meters
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Cv = the coefficient of velocity, and
γ = ρg.

The above equation is for incompressible	fluids.
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Orifices The cross-sectional area at the vena contracta A2 is 
characterized by a coefficient	of	contraction	Cc and given by 
Cc A.
·

Q CA g
p

z
p

z20
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2= + - -c c
d n

where C, the coefficient	of	the	meter	(orifice	coefficient), is 
given by

C
C A A

C C
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2
0 1

2
v=

- _ i

♦

For incompressible flow through a horizontal orifice meter 
installation

Q CA 20 1 2p p= -t_ i

Submerged Orifice operating under steady-flow conditions:
·

Q A C C A g h h

CA g h h
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h

in which the product of Cc and Cv is defined as the coefficient	
of discharge of the orifice.

♦ Bober, W. & R.A. Kenyon, Fluid Mechanics, Wiley, New York, 1980. Diagram 
reprinted by permission of William Bober & Richard A. Kenyon. 

· Vennard, J.K., Elementary Fluid Mechanics, 6th ed., J.K. Vennard, 1954.

00
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Orifice Discharging Freely into Atmosphere
·

Q CA gh20=

in which h is measured from the liquid surface to the centroid 
of the orifice opening.

DIMENSIONAL HOMOGENEITY AND 
DIMENSIONAL ANALYSIS
Equations that are in a form that do not depend on the 
fundamental units of measurement are called dimensionally 
homogeneous equations. A special form of the dimensionally 
homogeneous equation is one that involves only dimensionless 
groups of terms.
Buckingham’s Theorem: The number of independent 
dimensionless groups that may be employed to describe a 
phenomenon known to involve n variables is equal to the 
number (n – rr ), where rr  is the number of basic dimensions 
(i.e., M, L, T) needed to express the variables dimensionally.

· Vennard, J.K., Elementary Fluid Mechanics, 6th ed., J.K. Vennard, 1954.
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SIMILITUDE
In order to use a model to simulate the conditions of the 
prototype, the model must be geometrically, kinematically, 
and dynamically similar to the prototype system.
To obtain dynamic similarity between two flow pictures, all 
independent force ratios that can be written must be the same 
in both the model and the prototype. Thus, dynamic similarity 
between two flow pictures (when all possible forces are 
acting) is expressed in the five simultaneous equations below.
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where 
the subscripts p and m stand for prototype and model 
respectively, and
FI = inertia force,
FP = pressure force,
FV = viscous force,
FG = gravity force,
FE = elastic force,
FT = surface tension force,
Re = Reynolds number,
We = Weber number,
Ca = Cauchy number,
Fr = Froude number,
l = characteristic length,
v = velocity,
ρ = density,
σ = surface tension,
Ev = bulk modulus,
µ = dynamic viscosity,
p = pressure, and
g = acceleration of gravity.
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PROPERTIES OF WATER  (SI METRIC UNITS)f
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0 9.805  999.8 0.001781 0.000001785  0.61 
5 9.807  1000.0 0.001518 0.000001518  0.87 
10 9.804  999.7 0.001307 0.000001306  1.23 
15 9.798  999.1 0.001139 0.000001139  1.70 
20 9.789  998.2 0.001002 0.000001003  2.34 
25 9.777  997.0 0.000890 0.000000893  3.17 
30 9.764  995.7 0.000798 0.000000800  4.24 
40 9.730  992.2 0.000653 0.000000658  7.38 
50 9.689  988.0 0.000547 0.000000553  12.33 
60 9.642  983.2 0.000466 0.000000474  19.92 
70 9.589  977.8 0.000404 0.000000413  31.16 
80 9.530  971.8 0.000354 0.000000364  47.34 
90 9.466  965.3 0.000315 0.000000326  70.10 
100 9.399  958.4 0.000282 0.000000294  101.33 

�

PROPERTIES OF WATER (ENGLISH UNITS) 

Temperature 
(°F)

Specific Weight 
γ

(lb/ft3)

Mass Density 
ρ

(lb • sec 2/ft4)

Absolute Dynamic Viscosity
µ

(× 10 –5 lb • sec/ft 2)

Kinematic Viscosity
υ

(× 10 –5 ft2/sec)

Vapor Pressure 
pv

(psi)

 90.0 139.1 647.3 049.1 24.26 23

 21.0 466.1 922.3 049 .1 34.26 04

 81.0 014.1 537.2 049.1 14.26 05

 62.0 712.1 953.2 839.1 73.26 06

 63.0 950.1 050.2 639.1 03.26 07

 15.0 039.0 997.1 439.1 22.26 08

 07.0 628.0 595.1 139.1 11.26 09

 59.0 937.0 424.1 729.1 00.26 001

 42.1 766.0 482.1 329.1 68.16 011

 96.1 906.0 861.1 819.1 17.16 021

 22.2 855.0 960.1 319.1 55.16 031

 98.2 415.0 189.0 809.1 83.16 041

 27.3 674.0 509.0 209.1 02.16 051

 47.4 244.0 838.0 698.1 00.16 061

 99.5 314.0 087.0 098.1 08.06 071

 15.7 583.0 627.0 388.1 85.06 081

 43.9 263.0 876.0 678.1 63.06 091

 25.11 143.0 736.0 868.1 21.06 002

 70.41 913.0 395.0 068.1 38.95 212

aFrom "Hydraulic Models,"ASCE Manual of Engineering Practice, No. 25, ASCE, 1942. 
eFrom J.H. Keenan and F.G. Keyes, Thermodynamic Properties of Steam, John Wiley & Sons, 1936.   
fCompiled from many sources including those indicated: Handbook of Chemistry and Physics, 54th ed., 
The CRC Press, 1973, and Handbook of Tables for Applied Engineering Science, The Chemical Rubber Co., 1970.    
Vennard, J.K. and Robert L. Street, Elementary Fluid Mechanics, 6th ed., Wiley, New York, 1982. 

�
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MOODY (STANTON) DIAGRAM

Material e (ft) e (mm)
Riveted steel 10.003–0.03 0.9–9.0
Concrete 0.001–0.01 0.3–3.0
Cast iron 0.00085 0.25
Galvanized iron 0.0005 0.15
Commercial steel or wrought iron 0.00015 0.046
Drawn tubing 0.000005 0.0015

=
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From ASHRAE (The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
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