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CHAPTER 8 
 
 

DIMENSIONAL ANALYSIS 
 

 
8.1 INTRODUCTION 

 
Dimensional analysis is one of the most important mathematical tools in the study of 

fluid mechanics. It is a mathematical technique, which makes use of the study of dimensions 
as an aid to the solution of many engineering problems. The main advantage of a dimensional 
analysis of a problem is that it reduces the number of variables in the problem by combining 
dimensional variables to form non-dimensional parameters. 

 
By far the simplest and most desirable method in the analysis of any fluid problem is 

that of direct mathematical solution. But, most problems in fluid mechanics such complex 
phenomena that direct mathematical solution is limited to a few special cases. Especially for 
turbulent flow, there are so many variables involved in the differential equation of fluid 
motion that a direct mathematical solution is simply out of question. In these problems 
dimensional analysis can be used in obtaining a functional relationship among the various 
variables involved in terms of non-dimensional parameters. 

 
Dimensional analysis has been found useful in both analytical and experimental work 

in the study of fluid mechanics. Some of the uses are listed: 
 
1) Checking the dimensional homogeneity of any equation of fluid motion. 
2) Deriving fluid mechanics equations expressed in terms of non-dimensional 

parameters to show the relative significance of each parameter. 
3) Planning tests and presenting experimental results in a systematic manner. 
4) Analyzing complex flow phenomena by use of scale models (model similitude). 
 

 
8.2 DIMENSIONS AND DIMENSIONAL HOMOGENEITY 

 
Scientific reasoning in fluid mechanics is based quantitatively on concepts of such 

physical phenomena as length, time, velocity, acceleration, force, mass, momentum, energy, 
viscosity, and many other arbitrarily chosen entities, to each of which a unit of measurement 
has been assigned. For the purpose of obtaining a numerical solution, we adopt for 
computation the quantities in SI or MKS units. In a more general sense, however, it is 
desirable to adopt a consistent dimensional system composed of the smallest number of 
dimensions in terms of which all the physical entities may be expressed. The fundamental 
dimensions of mechanics are length [L], time [T], mass [M], and force [F], related by 
Newton’s second law of motion, F = ma.  
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Dimensionally, the law may also be written as, 
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Which indicates that when three of the dimensions are known, the fourth may be 

expressed in the terms of the other three. Hence three independent dimensions are sufficient 
for any physical phenomenon encountered in Newtonian mechanics. They are usually chosen 
as either [MLT] (mass, length, time) or [FLT] (force, length, time). For example, the specific 
mass (ρ) may be expressed either as [M/L3]or as [FT2/L4], and a fluid pressure (p), which is 
commonly expressed as force per unit area [F/L2] may also be expressed as [ML/T2] using the 
(mass, length, time) system. A summary of some of the entities frequently used in fluid 
mechanics together with their dimensions in both systems is given in Table 8.1. 

 
TABLE 8.1 

 ENTITIES COMMONLY USED IN FLUID MECHANICS  
AND THEIR DIMENSIONS 

 
Entity MLT System FLT System
 
Length (L) L L 
Area (A) L2 L2

Volume (V) L3 L3

Time (t) T T 
Velocity (v) LT-1 LT-1

Acceleration (a) LT-2 LT-2

Force (F) and weight (W) MLT-2 F 
Specific weight (γ) ML-2T-2 FL-3

Mass (m) M FL-1T-2

Specific mass (ρ) ML-3 FL-4T2

Pressure (p) and stress (τ) ML-1T-2 FL-2

Energy (E) and work ML2T-2 FL 
Momentum (mv) MLT-1 FT 
Power (P) ML2T-3 FLT-1

Dynamic viscosity (μ) ML-1T-1 FL-2T 
Kinematic viscosity (υ) L2T-1 L2T-1

 
With the selection of three independent dimensions –either [MLT] or [FLT]- it is 

possible to express all physical entities of fluid mechanics. An equation which expresses the 
physical phenomena of fluid motion must be both algebraically correct and dimensionally 
homogenous. A dimensionally homogenous equation has the unique characteristic of being 
independent of units chosen for measurement. 

 
Equ. (8.1) demonstrates that a dimensionally homogenous equation may be 

transformed to a non-dimensional form because of the mutual dependence of fundamental 
dimensions. Although it is always possible to reduce dimensionally homogenous equation to a 
non-dimensional form, the main difficulty in a complicated flow problem is in setting up the 
correct equation of motion. Therefore, a special mathematical method called dimensional 
analysis is required to determine the functional relationship among all the variables involved 
in any complex phenomenon, in terms of non-dimensional parameters. 
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8.3 DIMENSIONAL ANALYSIS 
 

The fact that a complete physical equation must be dimensionally homogenous and is, 
therefore, reducible to a functional equation among non-dimensional parameters forms the 
basis for the theory of dimensional analysis. 

 
8.3.1 Statement of Assumptions 

 
The procedure of dimensional analysis makes use of the following assumptions: 

 
1) It is possible to select m independent fundamental units (in mechanics, m=3, i.e., 

length, time, mass or force). 
2) There exist n quantities involved in a phenomenon whose dimensional formulae 

may be expressed in terms of m fundamental units. 
3) The dimensional quantity A0 can be related to the independent dimensional 

quantities A1, A2, ......, An-1 by, 
 

( ) 121
1211210 ......,.....,, −
−− == ny

n
yy

n AAKAAAAFA                (8.2) 
 

Where K is a non-dimensional constant, and y1, y2,.....,yn-1 are integer            
components. 

4) Equ. (8.2) is independent of the type of units chosen and is dimensionally 
homogenous, i.e., the quantities occurring on both sides of the equation must 
have the same dimension. 

 
EXAMPLE 8.1: Consider the problem of a freely falling body near the surface of the 

earth. If x, w, g, and t represent the distance measured from the initial height, the weight of 
the body, the gravitational acceleration, and time, respectively, find a relation for x as a 
function of w, g, and t. 

 
SOLUTION: Using the fundamental units of force F, length L, and time T, we note 

that the four physical quantities, A0=x, A1=w, A2=g, and A3=t, involve three fundamental 
units; hence, m=3 and n=4 in assumptions (1) and (2). By assumption (3) we assume a 
relation of the form: 

 
( ) 321,, yyy tgKwtgwFx ==         (a) 

 
Where K is an arbitrary non-dimensional constant. 

 
Let [⋅] denote “dimensions of a quantity”. Then the relation above can be written 

(using assumption (4)) as, 
 
[ ] [ ] [ ] [ ] 321 yyy tgwx =  

or 
( ) ( ) ( ) 3221321 22010 yyyyyyy TLFTLTFTLF +−− ==  

 
 
 
 

Prof. Dr. Atıl BULU 132



Equating like exponents, we obtain 
 

2

1

1:
0:

yL
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=
=

 

3220: yyT +−=    or   22 23 == yy  
 

Therefore, Equ. (a) becomes 
 

210 tgKwx =  
or 

2Kgtx =  
 

According to the elementary mechanics we have x=gt2/2. The constant K in this case 
is ½, which cannot be obtained from dimensional analysis. 

 
EXAMPLE 8.2: Consider the problem of computing the drag force on a body moving 

through a fluid. Let D, ρ, μ, l, and V be drag force, specific mass of the fluid, dynamic 
viscosity of the fluid, body reference length, and body velocity, respectively. 

 
SOLUTION: For this problem m=3, n=5, A0=D, A1=ρ, A2=μ, A3=l, and A4=V. Thus, 

according to Equ (8.2), we have  
 

( ) 4321,,, yyyy VlKVlFD μρμρ ==          (a) 
or 
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Equating like exponents, we obtain 
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In this case we have three equations and four unknowns. Hence, we can only solve for 

three of the unknowns in terms of the fourth unknown (a one-parameter family of solutions 
exists). For example, solving for y1, y3 and y4 in terms of y2, one obtains 
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The required solution is 
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If the Reynolds number is denoted by Re=ρVl/μ, dynamic pressure by q=ρV2/2, and 

area by A=l2, we have 
 

( )
qACqAKD Dy ==

2Re
2  

where 

( ) 2Re
2

yD
KC =  

 
Theoretical considerations show that for laminar flow 

 

328.12 =K        and      
2
1

2 =y  

 
8.3.2 Buckingham-π (Pi) Theorem 

 
It is seen from the preceding examples that m fundamental units and n physical 

quantities lead to a system of m linear algebraic equations with n unknowns of the form 
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or, in matrix form, 

 
bAy =                          (8.4) 

where 
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A is referred to as the coefficient matrix of order m×n, and y and b are of order n×1 
and m×1 respectively. 

 
The matrix A in Equ. (8.4) is rectangular and the largest determinant that can be 

formed will have the order n or m, whichever is smaller. If any matrix C has at least one 
determinant of order r, which is different from zero, and nonzero determinant of order greater 
than r, then the matrix is said to be of rank r, i.e., 

 
( ) rCR =         (8.5) 

 
In order to determine the condition for the solution of the linear system of Equ. (8.3) it 

is convenient to define the rank of the augmented matrix B. The matrix B is defined as 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

mmnmm

n

n

b

baaa

baaa
baaa

AB

.......
.........................

.......
.......

21

222221

111211

                   (8.6) 

 
For the solution of the linear system in Equ. (8.3), three possible cases arise: 

 
1) R (A)<R (B): No solution exists, 
2) R(A)=R(B)= r = n: A unique solution exits, 
3) R (A)=R (B)=r<n: An infinite number of solutions with (n-r) arbitrary unknowns 

exist. 
 

Example 8.2 falls in case (3) where 
 
( ) ( ) 43 =<== nBRAR    and   ( ) ( ) 134 =−=− rn  

 
an arbitrary unknown exits. 
 

The mathematical reasoning above leads to the following Pi theorem due to 
Buckingham. 

 
Let n quantities A1, A2,…..,An be involved in a phenomenon, and their dimensional 

formulae be described by (m<n) fundamental units. Let the rank of the augmented matrix B 
be R (B)= r ≤ m. Then the relation 

 
( 0,.....,, 211 =nAAAF )                        (8.7) 

 
is equivalent to the relation 

 
( ) 0,.....,, 212 =−rnF πππ                     (8.8) 

Where π1, π2,…..,πn-r are dimensionless power products of A1, A2,…..,An taken r+1 at a time. 
 

Thus, the Pi theorem allows one to take n quantities and find the minimum number of 
non-dimensionless parameter, π1, π2,….., πn-r associated with these n quantities. 
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8.3.2.1 Determination of Minimum Number of π Terms 
In order to apply the Buckingham π Theorem to a given physical problem the 

following procedure should be used: 
 

Step 1. Given n quantities involving m fundamental units, set up the augmented 
matrix B by constructing a table with the quantities on the horizontal axis and the 
fundamental units on the vertical axis. Under each quantity list a column of numbers, which 
represent the powers of each fundamental units that makes up its dimensions. For example, 

 
 ρ p d Q 

F 1 1 0 1 
L -4 -2 1 3 
T 2 0 0 -1 

 
Where ρ, p, d, and Q are the specific mass, pressure, diameter, and discharge, 

respectively. The resulting array of numbers represents the augmented matrix B in 
Buckingham’s π Theorem, i.e., 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−=

1002
3124
0011

B  

 
The matrix B is sometimes referred to as dimensional matrix. 

 
Step 2. Having constructed matrix B, find its rank. From step1, since 

 

01
002
024
011

≠=−−  

 
and no larger nonzero determinant exists, then 

 
( ) rBR == 3  

 
Step3. Having determined the number of π dimensionless (n-r) terms, following rules 

are used to combine the variables to form π terms. 
 
a) From the independent variables select certain variables to use as repeating 

variables, which will appear in more than π term. The repeating variables should 
contain all the dimensions used in the problem and be quantities, which are likely 
to have substantial effect on the dependent variable. 

b) Combine the repeating variables with remaining variables to form the required 
number of independent dimensionless π terms. 

c) The dependent variable should appear in one group only. 
d) A variable that is expected to have a minor influence should appear in one group 

only. 
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Define π1 as a power product of r of the n quantities raised to arbitrary integer 
exponents and any one of the excluded (n-r) quantities, i.e., 

 
1211

11211 ..... += r
y
r

yy AAAA rπ  
 

Step 4. Define π2, π3,....., πn-r as power products of the same r quantities used in step 3 
raised to arbitrary integer exponents but a different excluded quantity for each π term, i.e., 
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Step 5. Carry out dimensional analysis on each π term to evaluate the exponents. 

 
EXAMPLE 8.3: Rework Example 8.1 using the π theorem. 

 
SOLUTION: 
Step 1. With F, L, and T as the fundamental units, the dimensional matrix of the 

quantities w, g, t and x is, 
 

 W g t x 
F 1 0 0 0 
L 0 1 0 1 
T 0 -2 1 0 

 
Where  

⎥
⎥
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Step 2. Since 
 

02
020
110
001

≠=
−

 

 
and no larger nonzero determinant exists, then 

 
( ) rBR == 3  

 
Step 3. Arbitrarily select x, w, and g as the r = m= 3 base quantities. The number n-r 

of independent dimensional products that can be formed by the four quantities is therefore 1, 
i.e., 

tgwx yyy 131211
1 =π  
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Step 4.  Dimensional analysis gives, 
 

[ ] [ ] [ ] [ ] [ ]tgwx yyy 131211
1 =π  

or 
( ) ( ) ( ) ( )TLTFLTLF yyy 131211 2000 −=  

 
Which results in 

 

2
1

11 −=y , 012 =y , and 
2
1

13 =y  

Hence, 

x
gt 2

1 =π  

 
EXAMPLE 8.4: Rework Example 8.2 using the π theorem. 

 
SOLUTION: 
Step 1. With F, L and T as the fundamental units, the dimensional matrix of the 

quantities D, ρ, μ, l, and V is. 
 

 D ρ μ l V 
F 1 1 1 0 0 
L 0 -4 -2 1 1 
T 0 2 1 0 -1 

 
Where 
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Step2. Since 
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and no larger nonzero determinant exists, then 
 

( ) rBR == 3  
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Step 3. Select l, V, and ρ as the r=3 base quantities. By the π-Theorem (n-r),(5-3)=2 π 
terms exist.  

 

μρπ

ρπ
232221

131211

2

1
yyy

yyy

Vl

DVl

=

=
 

 
Step 4.  Dimensional analysis gives 

 
y11=-2,         y12=-2,        y13= -1 

 
y21=-1,        y22=-1,        y23=-1 

 
Hence, 

Vl
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D

ρ
μπ

ρ
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=

2

221

 

 
 

8.4 THE USE OF DIMENSIONLESS π-TERMS IN EXPERIMENTAL  
INVESTIGATIONS 

 
Dimensional analysis can be of assistance in experimental investigation by reducing 

the number of variables in the problem. The result of the analysis is to replace an unknown 
relation between n variables by a relationship between a smaller numbers, n-r, of 
dimensionless π-terms. Any reduction in the number of variables greatly reduces the labor of 
experimental investigation. For instance, a function of one variable can be plotted as a single 
curve constructed from a relatively small number of experimental observations, or the results 
can be represented as a single table, which might require just one page. 

 
A function of two variables will require a chart consisting of a family of curves, one 

for each value of the second variable, or, alternatively the information can be presented in the 
form of a book of tables. A function of three variables will require a set of charts or a shelf-
full of books of tables. 

 
As the number of variables increases, the number of observations to be taken grows so 

rapidly that the situation soon becomes impossible. Any reduction in the number of variables 
is extremely important. 

 
Considering, as an example, the resistance to flow through pipes, the shear stress or 

resistance R per unit area at the pipe wall when fluid of specific mass ρ and dynamic viscosity 
μ flows in a smooth pipe can be assumed to depend on the velocity of flow V and the pipe 
diameter D. Selecting a number of different fluids, we could obtain a set of curves relating 
frictional resistance (measured as R/ρV2) to velocity, as shown in Fig. 8.1. 
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Such a set of curves would be of limited value both for use and for obtaining a proper 
understanding of the problem. However, it can be shown by dimensional analysis that the 
relationship can be reduced to the form  
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or, using the Darcy resistance coefficient 22 VRf ρ= , 
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If the experimental points in Fig. 8.1 are used to construct a new graph of Log (f) 
against Log (Re) the separate sets of experimental data combine to give a single curve as 
shown in Fig. 8.2. For low values of Reynolds number, when flow is laminar, the slope of this 
graph is (-1) and f = 16/Re, while for turbulent flow at higher values of Reynolds number,      
f = 0.08(Re)-1/4. 
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