
Institute of Geography - School of GeoSciences - University of Edinburgh

MSc in Geographical Information Science 2008

Awarded with Distinction

Part 2: Supporting Document

Thematic Mapping Engine

Bjørn Sandvik

This document is available from thematicmapping.org under a Creative Commons Attribution-

Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

Thematic Mapping Engine Bjørn Sandvik

 2

Table of contents

1. Introduction 5

2. The Thematic Mapping Engine 7

2.1 Requirements ...7
2.3 The TME web Interface ...8

2.3.1 User guide ...9
2.3.2 How the web interface works ...10

2.4 TME Application Programming Interface (API)...13
2.4.1 TME DataConnector class ..14
2.4.2 TME ThematicMap class..15

3. Data preparation 17

3.1 Using open data..17
3.2 UN statistics ...17
3.3 World borders dataset ..18
3.4 International country codes..20

4. Database 21

4.1 Uploading spatial data..21
4.2 Uploading statistical data...22
4.3 Querying and transforming spatial data...23

5. Thematic mapping techniques for KML 26

5.1 The KML styling mechanism ..26
5.2 Mathematical scaling of point symbols ...26
5.3 Proportional symbols ...28

5.3.1 Proportional image icons ..28
5.3.2 Drawing regular polygons...29
5.3.3 Proportional 3-D Collada objects..31

5.4 Chart maps ...34
5.5 Bar maps ..35
5.6 Choropleth maps ..36
5.7 Prism maps...37
5.8 Temporal maps...38
5.9 Map tiles...39

5.9.1 GDAL2Tiles ...39
5.9.2 KML super-overlay...40

5.10 Map colours ...41
5.11 Map legend...42

5.11.1 Creating colour legends with GD ...43
5.12 File compression ..44

6. The thematic mapping website 45

7. References 48

Thematic Mapping Engine Bjørn Sandvik

 3

List of figures

Figure 1: The interfaces of the Thematic Mapping Engine. ..7
Figure 2: The web interface of the Thematic Mapping Engine8
Figure 3: Prism map shown with the Google Earth Plug-in.10
Figure 4: The plug-in is currently not supporting the KML time primitives...............10
Figure 5: AJAX based communication between web browser and web server...........11
Figure 6: TME web server infrastructure...12
Figure 7: TME Application Programming Interface (API) ...13
Figure 8: Choropleth map in Google Earth..14
Figure 9: Choropleth map in Google Maps. ..14
Figure 11: The world borders Shapefile ..18
Figure 12: World borders Shapefile: The resolution of the original dataset................19
Figure 13: World borders Shapefile: After removing island polygons........................19
Figure 14: World borders Shapefile: After simplifying borders..................................19
Figure 15: Entity-Relationship (ER) diagram showing the database structure............21
Figure 16: KML winding order..24
Figure 17: Comparsion of 2-D and 3-D symbols...27
Figure 18: GDP per capita with 1-D bars, 2-D circles and 3-D spheres......................27
Figure 19: The KML icon images used to make proportional symbols28
Figure 20: Proportional symbol map in Google Earth...29
Figure 21: Proportional symbol map in Microsoft Virtual Earth.29
Figure 22: Scaling error in Google Earth...29
Figure 23: Various regular polygons ...30
Figure 24: Regular polygons in Google Maps. ..31
Figure 25: Regular polygons in Google Earth. ..31
Figure 26: How an object should be positioned in Google SketchUp.........................32
Figure 27: The Tape Measure Tool in Google SketchUp..32
Figure 28: The Paint Bucket tool in Google SketchUp ...32
Figure 29: Collada objects available in the Thematic Mapping Engine......................33
Figure 30: Population in Southeast Asia visualised with 3-D domes..........................33
Figure 31: Population in Southeast Asia visualised with 3-D humans........................33
Figure 32: Pie chart showing age distribution. ..34
Figure 33: World population visualised with scaled pie charts in Goole Earth...........34
Figure 34: World population visualised with scaled pie charts in Goole Maps34
Figure 35: Bar map in Google Earth..35
Figure 36: Bar map in Google Earth (variable diameter) ..35
Figure 37: The polygon hole problem ...37
Figure 38: The Google Earth time animation. ...39
Figure 40: Map tiles in Google Earth ..40
Figure 41: The RGB colour cube...41
Figure 42: Choropleh map showing life expectancy by using equal intervals43
Figure 43: Choropleh map showing life expectancy by using qunatiles43
Figure 44: Colour legend generated by the GD library ...43
Figure 46: Number of visitors to thematicmapping.org website47

Thematic Mapping Engine Bjørn Sandvik

 4

List of tables

Table 1: Elements of TME web interface ..9
Table 2: UNdata indicators ..18
Table 3: KML style elements...26
Table 4: Number of map tiles for increasing zoom levels ...39
Table 5: Number of visits to thematicmapping.org ...47

Thematic Mapping Engine Bjørn Sandvik

 5

1. Introduction

The aim of this research is to determine whether Keyhole Markup Language (KML)
can be used for thematic mapping. As a proof-of-concept, the work culminates in the
implementation of a fully functioning open source application, the Thematic Mapping
Engine1.

The term neogeography is commonly applied to the set of technologies and
techniques presented in this document. Neogeography combines the complex
techniques of cartography and GIS and places them within the reach of users and
developers (Turner, 2006; Walsh, 2008; Davis, 2007).

“Every now and again a web based service comes along that takes our breath away,
Bjørn Sandvik's Thematic Mapping Engine is one of those services. (…) His Thematic
Mapping Engine enables you to visualise global statistics on Google Earth in a way that
only a few years ago would have been a showstopper using high end tools such as ESRI's
ArcGlobe.”

Dr Andrew Hudson-Smith, Digital Urban 1 July 20082

The Thematic Mapping Engine was developed using open source software, and it is
released as an open source project. The goal was to develop a low-cost solution
suitable for non-profits and public benefit organisations. The application also
demonstrates what it is possible to achieve using open source tools, open standards
and datasets in the public domain.

Cartography and GIS have both emerged as major capabilities on the web. Distributed
maps are different from traditional static maps in that they link information from
various sources and provide a user-defined environment (Crampton, 2001).

“Mapping should proceed thorough multiple, competing visualisations which are not
created by a cartographer and transmitted to the user but made on the spot by the user
acting as his or her own cartographer.”

Jeremy W. Crampton (2001:236)

Such mapping environments are now easier to create with recent advances in web
technologies and standards. The user can, to a large extent, determine what
information is to be displayed and in what context. This project aimed to provide data,
visualisation tools and a cartographic toolbox to the user in a web-based interface.

A step-wise approach was chosen in order to meet this aim:

1. Data preparation

The first step involved finding appropriate statistical and spatial data that
could be combined and used for thematic mapping. The data had to be
gathered from various sources and stored in a database.

1 http://thematicmapping.org/engine
2 http://digitalurban.blogspot.com/2008/07/google-earth-thematic-mapping-engine.html

Thematic Mapping Engine Bjørn Sandvik

 6

2. Thematic mapping with KML
A scripting language (PHP) was used to query the database and transform the
result into KML documents representing various thematic mapping
techniques.

3. Thematic Mapping Engine
The Thematic Mapping Engine was developed to demonstrate how these
techniques could be utilised in a web application.

4. Evaluation
The various techniques were evaluated after gaining feedback from people
using the Thematic Mapping Engine.

The methods of thematic mapping are well described in the cartographic literature,
but it was hard to find books and journal articles describing the use of KML and
geobrowsers for this purpose. There is a lot of development going on, but little has so
far been described in the academic literature. The focus was therefore shifted towards
the “blogosphere”3. Blogs are now widely used among “geeks” and professionals
alike, to present their own work and perspectives and to comment on other people’s
work. Bloggers actively review and comment on the latest trends and developments,
and this turned out to be a valuable information source for this project.

A dedicated website4 was established to present the various thematic mapping
techniques to a wider audience. This website became popular in the blogosphere, and
it was also featured by the United Nations and Google. A lot of valuable feedback was
received as a result of this publicity.

This document is divided into five sections. The Thematic Mapping Engine is
described in the first section. The second and third section describes how spatial and
statistical data were collected, optimised, stored and retrieved. The forth section
describes in detail the thematic mapping techniques introduced in the Research Paper
(Sandvik, 2008), using code samples from the Thematic Mapping Engine. The last
section shows how the thematicmapping.org website was used to exchange ideas with
a wider community.

3 Blogosphere is a collective term encompassing blogs and their interconnections.
4 http://thematicmapping.org

Thematic Mapping Engine Bjørn Sandvik

 7

2. The Thematic Mapping Engine

The Research Paper explains how Keyhole Markup Language (KML) and
geobrowsers can be used for thematic mapping (Sandvik, 2008). The experiments
show that KML has a great potential for thematic mapping, even though the
techniques are complicated to use for non-programmers. By embedding the
techniques in a Thematic Mapping Engine, it was possible to hide this complexity.
TME allows the user to create thematic maps through an easy to use web interface, or
by writing a few lines of code.

Figure 1: The interfaces of the Thematic Mapping Engine.

Figure 1 shows how the Thematic Mapping Engine works on a high level. The engine
takes statistical data (attributes), spatial features and thematic mapping parameters as
input and returns a KML/KMZ file. This file can be viewed in Google Earth, or other
geobrowsers supporting the KML standard. TME can be accessed from a web
interface (section 2.3) or from a PHP script (section 2.4).

2.1 Requirements

The Thematic Mapping Engine requires the following software (all are open source
and available free of charge):

• PHP (Version 5)
PHP is a computer scripting language originally designed for producing
dynamic web pages5.

• MySQL (Version 5)
MySQL is a relational database management system (RDBMS), especially
popular for web applications6.

5 http://www.php.net
6 http://www.mysql.com

Thematic Mapping
Parameters

Thematic
Mapping
Engine

KML/KMZ

Web
Interface

PHP API

Thematic Mapping Engine Bjørn Sandvik

 8

• Apache HTTP Server
The Apache HTTP Server is an open source web server, developed and
maintained by the Apache Software Foundation7.

Both Linux and the Windows operating systems can be used. This software
combination is often referred to as the LAMP8 or WAMP9 stack. This software
combination is popular because of its low acquisition costs and because of the
ubiquity of its components. It is the standard software package installed on many web
servers (Kay, 2006).

The easiest option is to use a hosting provider whereby this software is pre-installed
on the web server. The Thematic Mapping Engine was successfully installed using a
web hosting solution from Bluehost10. The software stack can also be installed on a
PC by using the XAMPP11 distribution. XAMPP is an easy to install Apache
distribution containing MySQL, PHP and Perl. Only the XAMPP Windows
distribution has been tested.

The TME web interface requires the Ext JS JavaScript library. To be able to preview
thematic maps in the web browser, the Google Earth Plug-in is required. These
components can be installed from the following web sites:

• Ext JS (Version 2.1): http://extjs.com/products/extjs

• Google Earth Plug-in: http://code.google.com/apis/earth

2.3 The TME web Interface

With the TME web interface, thematic maps
can be created in a web browser, without a
single line of code. This is achieved through
an interactive web form where the user can
select between statistical indicators and
various thematic mapping techniques.
Mapping parameters, like the colour and size,
can be readily changed. The form returns a
KMZ file which can be visualised directly in
the web browser using the new Google Earth
plug-in, or downloaded to a computer.

The web interface supports all major web
browsers, including Internet Explorer 6+,
Firefox 1.5+, Safari 3+ and Opera 9+. The
Google Earth plug-in currently only supports
web browsers on the Windows operating
system.

7 http://www.apache.org
8 LAMP is an acronym for Linux, Apache, MySQL and PHP.
9 WAMP is an acronym for Windows, Apache, MySQL and PHP.
10 http://www.bluehost.com
11 http://www.apachefriends.org/en/xampp.html

Figure 2: The web interface of the
Thematic Mapping Engine

Thematic Mapping Engine Bjørn Sandvik

 9

2.3.1 User guide

This guide explains how to use the web interface to create a thematic map.

Table 1: Elements of TME web interface

Select the statistical indicator and one of the
years available.

Select one of the thematic mapping
techniques (Choropleth, Prism, Bar,
Proportional symbol)

Prism map: Maximum height (in metres) of
the prisms can be changed.

Bar map: Maximum height (in metres) and
bar radius can be changed.

Proportional symbol: Select symbol type
(Image, Regular polygon or 3-D object) and
symbol shape. Maximum size can be changed.

Choose colour scale or single colour map.

The colour scale can be unclassed or classed
(equal intervals or quantiles). The number of
classes can be changed (2-9 classes).

Select Time series or Time slider to visualise
statistics for all available years.

Select information elements that should be
displayed on the map.

The default title, description and source of the
map can be changed.

Click the Preview button to view map in the
web browser (requires Google Earth plug-in)
or the Download button to download the
KMZ file.

Thematic Mapping Engine Bjørn Sandvik

 10

2.3.2 How the web interface works

The TME web interface can be characterised as a Rich Internet Application (RIA), a
web application that has the features and functionality of traditional desktop
applications (Loosley, 2006). In a traditional web application, all processing is done
on the web server and a new web page is downloaded each time the user clicks. RIAs
transfer the processing necessary for the user interface to the web browser, but keep
the bulk of the data back on the web server.

The web interface was developed using HTML, JavaScript, Ext JS, Google Earth API
and AJAX12 techniques. By combining these technologies, it was possible to create a
responsive user experience.

Ext JS is a cross-browser JavaScript library
for building desktop-like web applications.
Ext is dual licensed under the General
Public License (GPL), which TME uses,
and a commercial license. By using Ext JS,
it was possible to build interactive form
elements which responded to various
events initialised by the user or the
program flow. The validity check of the
user inputs is performed in the web
browser and not on the server. Ext JS also
controls the AJAX based communication
between the web browser and the web
server.

AJAX is a group of interrelated web
development techniques used for creating
interactive web applications. By using
AJAX, it is possible to retrieve data from
the web server asynchronously in the
background without interfering with the
display and behaviour of the existing web
page. Despite its name, XML is not
required as the data-interchange format.
TME uses the JSON13 encoding to transfer
data from the web server to the web
browser, as it is more readily generated and
parsed by programming languages.

In May 2008, Google launched the Google
Earth Plug-in together with a free
JavaScript API (Rademacher, 2008). This
made it possible to embed Google Earth in
a web interface, instead of having to switch
between two applications (the web browser and Google Earth).

12 AJAX is an acronym for Asynchronous JavaScript and XML.
13 JSON is an acronym for JavaScript Object Notation.

Figure 3: Prism map shown with the Google
Earth Plug-in.

Figure 4: The plug-in is currently not
supporting the KML time primitives. All
prisms are rendered on top of each other,
regardless of the time specified.

Thematic Mapping Engine Bjørn Sandvik

 11

Figure 5: AJAX based communication between web browser and web server.

Figure 5 shows the communication occurring between the web browser and the web
server when the user is creating a thematic map:

1. When the web interface is loaded by the web browser, an AJAX request is
automatically fired to the web browser14. The browser is asking for a list of all
available statistical indicators, and this list is returned by the web server. This
information is added to the first drop-down box in the web form.

2. When the user selects one of the indicators in the list, a new request is sent,

asking for a list of years where data is provided. The years are added to the
second drop-down box.

3. The third request is sent when the user clicks the Preview or Download button.

All of the map parameters, representing the choices made by the user, are then
transferred to the web server. The parameters are used to generate a KML
document, which are zipped into a KMZ file and stored on the server. A
reference (URL) to the KMZ file is returned to the browser.

4. If the Preview button was clicked, the KMZ file is automatically loaded by the

Google Earth Plug-in. If the Download button was clicked, a link to a KMZ
file is displayed. The user can download the file by clicking on this link.

14 This happens to be the same web browser as the web interface was loaded from, but it could also be a
different web server.

Apache

MySQL

PHP

Web server

HTML / JavaScript

Ext JS

Google Earth API

Web browser 1. Get list of indicators

2. Get list of available years

3. Make KML/KMZ document

4. Download KML/KMZ file

Thematic Mapping Engine Bjørn Sandvik

 12

Figure 6: TME web server infrastructure

Figure 6 shows how the requests from the web browser are handled by the web server.
All communication goes through a single PHP script. This Form Handler script
makes use of two additional PHP classes:

• MySQL Data Connector class
This class retrieves data from the MySQL database (indicators, years or data
used to make a thematic map). This class is further explained in section 2.4.1.

• Thematic Mapping class
The data from the MySQL Data Connector class are passed on to this class,
together with the map parameters sent from the web browser. This information
is used to generate the KML document. This class is further explained in
section 2.4.2.

Thematic
Mapping
Engine

MySQL

Data Connector

Form

Handler

MySQL Database File Server

Web server

Web browser

KML/KMZ files

Thematic Mapping Engine Bjørn Sandvik

 13

2.4 TME Application Programming Interface (API)

The Thematic Mapping Engine can also be used as an application programming
interface (API). This allows thematic maps to be created with a few lines of PHP
code. Existing or new applications can use this API to add thematic mapping
functionality.

Figure 7: TME Application Programming Interface (API). The Form Handler script is here replaced by
a custom PHP script.

The TME API works by including the two classes introduced above in a PHP
application. This is the code required to create a choropleth map:

Create a new data connector objects, and use this object to retrieve a multidimensional
array.

Build an array of mapping parameters.

The two classes are included in line 1 and 2. A new dataConnector object is created
from the DataConnector class (line 4). The getDataStore method is called to retrieve
the data required to create a thematic map (line 5). The parameters refer to the
indicator id, year and a region code. The region code is used only to select the values
and features from one continental region (e.g. Africa)15. All map parameters are added

15 Region codes are from United Nations Statistical Division:
http://unstats.un.org/unsd/methods/m49/m49regin.htm

01 include ('TME_MySQL_DataConnector.php');
02 include ('TME_Engine.php');
03
04 $dataConnector = new DataConnector();
05 $dataStore = $dataConnector->getDataStore(68, 2005, 0);
06
07 $parameters = array('mapType' => 'choropleth',
08 'indicator' => 68,
09 'year' => 2005,
10 'classification' => 'equal');
11
12 $map = new ThematicMap($dataStore, $parameters);
13 $file = $map->getKML();

Thematic
Mapping
Engine

MySQL

Data Connector

PHP

Application

MySQL Database File Server

Web server

KML/KMZ files

Thematic Mapping Engine Bjørn Sandvik

 14

to an array16 (line 7-10). A new map object is created from the ThematicMap class by
adding the data array and the map parameters (line 12). Finally, a reference (URL) to
the KMZ file is retrieved by calling the getKML method of the map object.

Figure 8: The KMZ file, returned from the PHP
script above, displayed in Google Earth.

Figure 9: The same KMZ file displayed in
Google Maps.

All valid map parameters are listed in appendix C1. An additional example for
proportional symbol maps is included in appendix C2.

2.4.1 TME DataConnector class

The object-oriented programming (OOP) features introduced in PHP 5 were used to
create an application that could be readily extended (Ullman, 2007). All queries to the
MySQL database are kept in a separate class (TME_MySQL_DataConnector.php). A
different database can be used by adding a new PHP data connector class17.

The DataConnector class contains three methods:

• getIndicators ()
This method returns a list of the statistical indicators in the database.

• getIndicatorYears ($indicatorID)
This method returns a list of available years for one indicator.

• getDataStore ($indicatorID, $year, $region)
This method retrieves the spatial features and statistical values required to
create a thematic map. The data is returned in a multidimensional array:

16 A data structure that associates values with keys is also called a hash table.
17 Instead of creating a class interacting with a MySQL database, one could make one that interacts
with a non-specific database. By using the OOP principles of inheritance and overriding, a more
particular class for MySQL could be defined. This approach would enforce new data classes to
implement the same functionality as the general class.

Thematic Mapping Engine Bjørn Sandvik

 15

The spatial features (e.g. countries) and the statistical values are kept separately in the
array, as not all features have values, and not all values have associated features.
Name, longitude, latitude and geometry (i.e. border) is added for each feature.
Various metadata are added, together with the statistical values.

2.4.2 TME ThematicMap class

The multidimensional array retrieved from the DataConnector class is passed on to
the ThematicMap class together with the mapping parameters. Figure 10 shows a flow
chart of how the KML document is created when the getKML method is called.

Firstly, the shared styles are defined. The shared styles will be different for each
thematic mapping technique. An exception is choropleth and prism maps, which have
the same shared styles. There are two for-each loops. The outermost loop runs
through each of the years. A new KML Folder element is added for each year. The
inner loop runs throughout all the features (e.g. countries) present in the data store. A
KML Placemark element is added for each feature. Within this element, feature
specific styles and the feature itself are added. How this is done for each thematic
mapping technique is explained in section 5.

This is a simplified view, as there are many more conditions for handling all the map
parameters.

dataStore => Array
 [features] => Array
 [feature id] => Array
 [name] => name
 [lon] => longitude
 [lat] => latitude
 [wkt] => WKT geometry
 [...]
 [indicators]
 [indicator id]
 [name]
 [description]
 [source]
 [decimals]
 [max]
 [min]
 [values] => Array
 [2005] => Array
 [feature id] => value
 [...]
 [...]
 [years] => Array
 [...]

Thematic Mapping Engine Bjørn Sandvik

 16

Add KML
header

Technique

Choropleth
Prism (5.6)

Bar
(5.5)

Image
(5.3.1)

Polygon
(5.3.2)

Collada
(5.3.3)

Type

For each
year

For each
feature

Technique

Choropleth
(5.6)

Bar
(5.5)

Image
(5.3.1)

Polygon
(5.3.2)

Collada
(5.3.3)

Type

Prism
(5.7)

Add
shared
style

Add
shared
style

Add
shared
style

Add
shared
style

Colourise
Collada
object(s)

Add style
and

feature

Add style
and

feature

Add style
and

feature

Add style
and

feature

Add style
and

feature

Add link to
Collada
object

Add map
title and
legend

<Folder>

<Placemark>

</Placemark>

</Folder>

<kml>

</kml>

Symbol (5.3)

Symbol (5.3)

Figure 10: Flow chart
showing how a KML
document is created.
The numbers refer to
the sections in which
each technique is
described.

Thematic Mapping Engine Bjørn Sandvik

 17

3. Data preparation

Due to special interest and availability, international statistics were used for the
thematic mapping experiments. Three types of data were gathered: a spatial dataset
containing world borders, statistical data from the United Nations, and international
country codes. The latter was used to link statistical values to the spatial features.
Although this is principally global data, the techniques developed here are scale-
independent.

3.1 Using open data

Since KML is an open, human-readable format, it was required to use data provided
under open and non-restrictive licensing terms. The following requirements had to be
met:

• Access for all. Anyone with an internet connection should be able to access the
mapping examples. The terms of use of the Google mapping technology also
states that “your service must be freely accessible to end users”18.

• Using vector data. Many data licenses do not readily permit use in an open
interface as data providers are concerned about backward engineering. Using
an open standard like KML would violate such licensing terms.

• Allow redistribution. Many data providers forbid redistribution of their data,
which is basically what this project is doing by using KML and publicly
available geobrowsers.

An important goal of this project was also to show the benefits of using public domain
(“open”) data.

3.2 UN statistics

UNdata19 is a new internet-based data service which offers free access to a wide range
of global statistics through a single entry point. The database service is offered by the
United Nations Statistics Division (UNSD). UNdata enables users to access a large
number of UN databases, either by browsing the data series, or through a keyword
search. The non-restrictive licensing terms made this data service an ideal source for
this project.

The following statistical indicators were downloaded from UNdata in an XML
format:

18 http://code.google.com/apis/maps/terms.html
19 http://data.un.org

Thematic Mapping Engine Bjørn Sandvik

 18

Table 2: UNdata indicators

Indicator Years

AIDS estimated deaths, aged 0-49 2001 - 2005
Children under five mortality rate 1960 - 2005
CO2 emissions 1980 - 2004
CO2 emissions per capita 1980 - 2004
GDP per capita 1975 - 2006
Infant mortality rate (0-1 year) 1960 - 2005
Internet users 1990 - 2005
Internet users per 100 population 1990 - 2005
Life expectancy at birth (both sexes) 1950 - 2045
Life expectancy (females) 1950 - 2045
Life expectancy (males) 1950 - 2045
Mobile phone subscribers 1980 - 2004
Mobile phone subscribers per 100 inhabitants 1980 - 2006
Patent applications 1984 - 2002
Percentage aged 0-14 1950 - 2050
Percentage aged 15-59 1950 - 2050
Percentage aged 60 or over 1950 - 2050
Population 1950 - 2050
Tuberculosis death rate 1990 - 2005

The table shows the long time series for some of the indicators - up to 100 years,
including projections. The XML format did not include metadata like indicator name
and description, and this information had to be copied manually.

3.3 World borders dataset

A world borders dataset was needed for choropleth mapping and to calculate the
positions (centroids) of the proportional symbols. Ideally, border data and country
statistics should be from the same source, to ensure that the areas are identical. The
United Nations International Boundaries Project20 offers a 1:1 and 1:15 million-scale
dataset, which reflects the cartography practice of the UN Cartographic Section.
Unfortunately, this dataset is only accessible to the UN community, due to sensitivity
linked to international boundaries.

A world borders Shapefile
meeting the above
requirements was downloaded
from the Mapping Hacks
website21. This dataset was
originally derived by Schyler
Erle from public domain
sources.

Various changes were made to
make the dataset more suitable
for thematic mapping (all
changes are listed in appendix A):

20 http://boundaries.ungiwg.org
21 http://mappinghacks.com/data

Figure 11: The world borders Shapefile displayed with an
Equirectangular (Plate Carrée) projection.

Thematic Mapping Engine Bjørn Sandvik

 19

• Added geographic coordinate system: GCS_WGS_198422
• Polygons representing one country/area were merged into one feature.
• Various feature changes to make the dataset more compatible with the ISO

3611-1 country codes used by the United Nations.
• Region and sub-region codes from the UN Statistical Division were added.
• Longitude/latitude values for each country were added.

Generalisation is the process of reducing
the information content of maps due to
scale change, map purpose, intended
audience, and/or technical constraints
(Slocum et al. 2005). When doing thematic
mapping on the web, it is important to limit
the amount of data transferred between the
server and the mapping client. In addition,
modern web browsers are only capable of
displaying low-resolution vector data.

The original world borders dataset
consisted of 3775 polygons. By deleting
“small” island polygons, this number was
reduced to 463. This was done manually to
avoid the deletion of valid island states.
Figure 12 and 13 show the effect on the
Caribbean. All countries in the region are
still represented.

The remaining polygons were simplified
using the Simplify Polygon tool in the
ArcToolbox. The polygon simplification
algorithm (POINT_REMOVE) keeps the
so-called critical points that depict the
essential shape of the polygon and removes
all other points. The tolerance, that
determines the degree of simplification,
was set to 0.3 decimals degrees. Figure 14
shows the effect of the simplification
algorithm. Even though the borders are
greatly simplified, the main country shapes
are preserved.

To be able to generate proportional symbol
maps, a latitude/longitude position was
needed for each country. GeoDa23 was used
to compute the centroids of each country.
The positions had to be manually adjusted

22 The reference system used by KML is based on geographic coordinates (latitude and longitude) in
WGS84 (World Geodetic System, 1984). This is the only reference system currently supported by
KML (Wilson, 2008).
23 https://www.geoda.uiuc.edu

Figure 12: The resolution of the original dataset.

Figure 13: After removing island polygons.

Figure 14: After simplifying borders.

Thematic Mapping Engine Bjørn Sandvik

 20

due to the uneven shape of many countries. The longitude/latitude values were added
by inserting two extra columns in the attribute table. Appendix A lists all of the
attribute columns in the world borders Shapefile.

3.4 International country codes

A common identifier was needed to be able to link the statistical values to spatial
features. The original world borders dataset contained FIPS codes, while UNdata uses
ISO 3166-1.

Codes for the Representation of Countries (ISO 3166-1)24 is maintained by the
International Organisation for Standardisation (ISO). The standard includes two- and
three-character alphabetic codes (alpha-2 and alpha-3) and three-digit numerical
codes (numeric-3). Countries, Dependencies, Areas of Special Sovereignty, and Their
Principal Administrative Divisions (FIPS 10)25 is maintained by the United States
National Geospatial-Intelligence Agency, and intended for general use throughout the
US Government. The country codes were downloaded from the World Factbook26 and
checked against the listing from UN Statistical Division27.

All ISO 3166-1 country codes (alpha-2, alpha-3 and numeric-3) and the FIPS codes
(when applicable) were added to the attribute table of the world borders Shapefile.
Only ISO 3166-1 numeric-3 was used for this project, but the other codes make it
easier to link in other data sources if this project were to be extended.

24 http://www.iso.org/iso/country_codes.htm
25 http://www.itl.nist.gov/fipspubs/fip10-4.htm
26 https://www.cia.gov/library/publications/the-world-factbook/appendix/appendix-d.html
27 http://unstats.un.org/unsd/methods/m49/m49alpha.htm

Thematic Mapping Engine Bjørn Sandvik

 21

4. Database

The world borders dataset and statistics from UNdata were stored in a MySQL28
database. MySQL was chosen more because of its availability than its spatial
capabilities. MySQL has limited support for spatial data, but it was sufficient for this
project. An alternative would be to use the PostgreSQL29 database with the PostGIS30
spatial extension, but this would exclude many potential users since PostGIS is
seldom pre-installed by hosting providers.

Figure 15: Entity-Relationship (ER) diagram showing the database structure. All table columns are listed

in appendix B.

Figure 15 shows an Entity-Relationship (ER) diagram of the database structure. One
indicator can have several indicator values, and one country (feature) can have several
indicator values. All indicator values are therefore kept in a separate table, with
indicator id and country id as foreign keys.

4.1 Uploading spatial data

The GDAL/OGR library31 was used to upload the world borders Shapefile to the
MySQL database. This library contains the ogr2ogr utility program which converts
simple features data between various file and database formats. The following
command was used to upload the features (including the attribute table):

The country borders were stored in the database using the MultiPolygon datatype
(MySQL, 2008). This datatype was needed because many countries consist of several
polygons (i.e. land areas/islands). Some of the polygons are complex (i.e. contains

28 http://www.mysql.com
29 http://www.postgresql.org
30 http://postgis.refractions.net
31Geospatial Data Abstraction Library (GDAL/OGR) is a cross platform translator library for raster and
vector geospatial data formats that is released under an X/MIT style open source license by the Open
Source Geospatial Foundation (OSGeo). http://www.gdal.org

Indicator

Indicator
values

Country
(spatial)

Geometry
columns

Spatial ref.
system

M

1

M 1

M

ogr2ogr –f MySQL MySQL:myDatabase, user=root,password=myPassword
TM_WORLD_BORDERS_SIMPL-0.1.shp –nln Country –nlt MULTIPOLYGON –
update –overwrite –lco GEOMETRY_NAME=geom

1

Thematic Mapping Engine Bjørn Sandvik

 22

holes) because of enclaves. The longitude/latitude position for each country was
stored in two table columns. An alternative would be to use a spatial datatype
(GEOMETRY POINT). The above command also created two extra tables
(geometry_columns and spatial_ref_system). These tables are required according to
the OpenGIS Simple Features Implementation Specification for SQL (OGC, 1999;
Butler, 2006).

4.2 Uploading statistical data

The statistical indicators were downloaded from UNdata in an XML format, and
uploaded to the MySQL database through a tailored PHP script:

The script above reads and parses an XML file. Since it was impossible to download
indicator metadata from UNdata, this information had to be entered manually in
phpMyAdmin32.

32 http://www.phpmyadmin.net

// Check if file exists
if (file_exists($file)) {
 // Load XML file
 $xml = simplexml_load_file($file);

 // Loop through all records
 foreach ($xml->data->record as $record) {
 // Loop through all fields in a record
 foreach ($record->field as $field) {
 // Store field values
 switch ($field['name']) {
 case 'Variable Code':
 case 'Series Code':
 $indicator = (int)$field;
 break;
 case 'Country or Area Code':
 $country = (int)$field;
 break;
 case 'Year':
 case 'Year(s)':
 $year = (int)$field;
 break;
 case 'Value':
 $value = (float)$field;
 break;
 }
 }
 // Add record to database table
 $sql = "INSERT INTO indicator_values
 (indicator, country, year, value)
 VALUES ($indicator, $country, $year, $value);";

 if (@mysqli_query($dbc, $sql) === TRUE)
 {
 printf("Query: $sql\n");
 }
 }
} else { exit("Failed to open $file."); }

Thematic Mapping Engine Bjørn Sandvik

 23

SELECT AsText(geom) FROM `country_simpl` WHERE un=380

4.3 Querying and transforming spatial data

MySQL stores spatial data in an internal geometry format (MySQL, 2008). The data
can only be retrieved in this internal format or as Well-Known Text (WKT) or Well-
Known Binary (WKB) representations (OGC, 1999). WKT/WKB predates the
Geographical Markup Language (GML), which is now a more commonly used
format.

By using the AsText function, MySQL retrieves geometry in WKT format. This SQL
query returns the simplified border of Italy:

Result:

Since the WKT and KML formats are very different, it was not straightforward to
achieve a conversion of complex polygons. This function was made for the
conversion:

MULTIPOLYGON(((15.528889 38.13694,15.081388 36.649162,12.422222
37.796104,13.316666 38.21833,15.528889 38.13694)),((9.513332
41.14666,9.5691660000002 39.150551,8.406944 38.958611,8.192499
40.913605,9.513332 41.14666)),((12.127777 47.001663,13.718655
46.526611,13.383055 46.297218,13.716944 45.596107,12.281387
45.468048,12.368332 44.246666,13.621666 43.553886,14.739721
42.085548,16.141941 41.914162,15.932499 41.47805,18.512218
40.136665,18.349442 39.791939,16.913609 40.445549,16.486664
39.767494,17.169167 38.963333,16.062496 37.924164,15.631666
38.011665,16.2225 38.910828,15.666666 40.03083,11.098888
42.393051,10.107498 44.0075,8.7488880000001 44.429161,7.528055
43.788605,7.662222 44.17083,6.9763880000001 44.284164,6.61976
45.110138,7.1277770000001 45.257774,7.038054 45.931938,7.855742
45.919052,8.4363880000001 46.463333,9.036665 45.837776,9.2819440000001
46.495827,10.129999 46.227219,10.471235 46.871353,12.127777
47.001663),(12.459166 43.896111,12.509998 43.986938,12.415798
43.957954,12.459166 43.896111),(12.445090330889
41.903117521785,12.456660170954 41.901426024699,12.451653339581
41.907989033391,12.445090330889 41.903117521785)))

public function wkt2kml($wkt) {

 // Change coordinate format
 $wkt = preg_replace("/([0-9\.\-]+) ([0-9\.\-]+),*/e",
 "round('$1',2).','.round('$2',2).',0 '",
 $wkt);

 $wkt = substr($wkt, 15); // Remove 'MULTIPOLYGON((('
 $wkt = substr($wkt, 0, -3); // Remove ')))'
 $polygons = explode(')),((', $wkt); // Find all polygons
 $kml = '<MultiGeometry>;

 foreach ($polygons as $polygon) {
 $kml .= '<Polygon>';
 $boundary = explode('),(', $polygon); // Find all polygon boundaries
 $kml .= '<outerBoundaryIs>'
 . '<LinearRing>'
 . '<coordinates>'
 . self::kmlReverseCoordinates($boundary[0])
 . '</coordinates>'

Thematic Mapping Engine Bjørn Sandvik

 24

The coordinates returned from the MySQL database had 6 or more decimal points.
This is far more than needed, and does not reflect the precision of the simplified
borders. The function above reduces the number of decimal points to 2.

When the KML polygons were used to create a 3-D prism map (see section 5.7), the
prisms were not shaded properly (figure 16). The reason for this turned out to be the
clockwise orientation of the polygon vertices (winding order). 3-D implementations
of KML use the vertex winding order to determine the direction in which it faces33.
This is necessary to display the correct lighting on curved surfaces. For the prisms to
be displayed properly, the vertex order had to be anti-clockwise.

Figure 16: The left image shows a prism map rendered in Google Earth, where the polygon vertices are in a

clockwise order. In the right-hand image, the vertex order is counter-clockwise, and the polygons are properly
shaded.

33 http://bbs.keyhole.com/ubb/showflat.php/Cat/0/Number/166922

 . '</coordinates>'
 . '</LinearRing>'
 . '</outerBoundaryIs>';

 for ($i=1; $i < count($boundary); $i++) { // If inner boundaries
 $kml .= '<innerBoundaryIs>'
 . '<LinearRing>'
 . '<coordinates>'
 . self::kmlReverseCoordinates($boundary[$i])
 . '</coordinates>'
 . '</LinearRing>'
 . '</innerBoundaryIs>';
 }
 $kml .= '</Polygon>';
 }
 $kml .= '</MultiGeometry>';

 return $kml;
 }
 }
}

Thematic Mapping Engine Bjørn Sandvik

 25

The vertex order was corrected by adding this PHP function:

The above wkt2kml function returns this KML structure representing the Italian
border:

This method of representing geometry is based on GML 2.1.2 (Lake, 2005).

KML <MultiGeometry>
 <Polygon>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 15.53,38.14,0 13.32,38.22,0 12.42,37.8,0 15.08,36.65,0
 15.53,38.14,0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 <Polygon>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 9.51,41.15,0 8.19,40.91,0 8.41,38.96,0 9.57,39.15,0
 9.51,41.15,0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 <Polygon>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 12.13,47,0 10.47,46.87,0 10.13,46.23,0 9.28,46.5,0 9.04,45.84,0
 8.44,46.46,0 7.86,45.92,0 7.04,45.93,0 7.13,45.26,0
 6.62,45.11,0 6.98,44.28,0 7.66,44.17,0 7.53,43.79,0
 8.75,44.43,0 10.11,44.01,0 11.1,42.39,0 15.67,40.03,0
 16.22,38.91,0 15.63,38.01,0 16.06,37.92,0 17.17,38.96,0
 16.49,39.77,0 16.91,40.45,0 18.35,39.79,0 18.51,40.14,0
 15.93,41.48,0 16.14,41.91,0 14.74,42.09,0 13.62,43.55,0
 12.37,44.25,0 12.28,45.47,0 13.72,45.6,0 13.38,46.3,0
 13.72,46.53,0 12.13,47,0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 <innerBoundaryIs>
 <LinearRing>
 <coordinates>
 12.46,43.9,0 12.42,43.96,0 12.51,43.99,0 12.46,43.9,0
 </coordinates>
 </LinearRing>
 </innerBoundaryIs>
 <innerBoundaryIs>
 <LinearRing>
 <coordinates>
 12.45,41.9,0 12.45,41.91,0 12.46,41.9,0 12.45,41.9,0
 </coordinates>
 </LinearRing>
 </innerBoundaryIs>
 </Polygon>
</MultiGeometry>

function kmlReverseCoordinates($coordinates) {
 $coordinates = explode(" ", $coordinates);
 $coordinates = array_reverse($coordinates);
 $coordinates = implode(" ", $coordinates);
 return $coordinates;
}

Thematic Mapping Engine Bjørn Sandvik

 26

5. Thematic mapping techniques for KML

This section describes how the KML standard was utilised for thematic mapping. The
techniques introduced in the Research Paper are here described in detail.

5.1 The KML styling mechanism

In KML, features and geometries are specified along with their styles. KML does not
support more flexible mechanisms, such as Cascading Style Sheets (CSS) or OpenGIS
Symbology Encoding, which separates content from style. A KML Style element can
contain the substyle elements listed in table 3 (Google, 2008a):

Table 3: KML style elements and the thematic mapping techniques where they are used.

Style element Thematic mapping technique

IconStyle Scaled image icons (5.3.1)
PolyStyle Scaled regular polygons (5.3.2), choropleth (5.6) and prism (5.7)

maps
LineStyle Not in use (could be used for flow maps)
ListStyle Temporal maps (5.8)
BalloonStyle All maps
LabelStyle All maps

Styles can be shared (i.e. defined once and used by several features) or inline (i.e.
specified inside the feature that uses them).

5.2 Mathematical scaling of point symbols

Mathematical scaling sizes the point symbols in direct proportion to the data (Slocum
et al., 2005). If a data value is 10 times that of another, the height, area or volume of
the corresponding point symbol will be 10 times as large. Below are the formulae
used for calculating the symbol sizes. These equations could not be embedded in a
KML document, so the mathematical scaling had to be performed by a PHP script.

1-dimensional symbols (height)
Equation symbolSize = (value / maxValue) * maxSize
PHP $symbolSize = ($value / $maxValue) * $maxSize

This is how the height of the bars or prisms are calculated.

2-dimensional symbols (area)
Equation symbolSize = power(value / maxValue; 1/2) * maxSize
PHP $symbolSize = ($value / $maxValue) * $maxSize

This is how the proportional images and regular polygons (e.g. circle, square) are
scaled. 2-D symbols use areas as the mean of expression and thereby a square root of
the value.

Thematic Mapping Engine Bjørn Sandvik

 27

3-dimensional symbols (volume)

Equation symbolSize = power(value / maxValue; 1/3) * maxSize
PHP symbolSize = pow($value / $maxValue, 1/3) * $maxSize

This is how the 3D Collada objects (e.g. cube, sphere) is scaled. 3-D objects use
volume as the mean of expression to show the cube root of the value.

It is one degree harder for the viewer to assess the relative size of 3-dimensional
symbols compared to 2-dimensional ones (see figure 17), which again are harder to
compare that 1-dimensional symbols.

Figure 17: Comparsion of the circle and sphere radius for the same mapped parameter. Credit: Dominik

Mikiewicz

Figure 18: These three images show GDP per capita in 2006 (UNdata) using bars (1-D), circles (2-D) and

spheres (3-D). Proportional symbols are not dependant on the size of the spatial unit associated with its
attribute. A small country will have the same visual appearance as a big country if their respective
attribute values are the same.

People tend to underestimate the size of larger symbols, and an alternative to
mathematical scaling is perceptual scaling (Slocum et al. 2005). The underestimation
is here taken into account when constructing the formula. The visual appearance
could also be improved by using a logarithmic scale.

Thematic Mapping Engine Bjørn Sandvik

 28

<Style id='sharedStyle'>
 <IconStyle>
 <Icon>
 <href>files/symbol.png</href>
 </Icon>
 </IconStyle>
<Style>

<Placemark>
 <name>China</name>
 <Snippet>1,312,978,855 (2005)</Snippet>
 <styleUrl>#sharedStyle</styleUrl>
 <Style>
 <IconStyle>
 <color>e50066ff</color>
 <scale>7</scale>
 </IconStyle>
 </Style>
 <Point>
 <coordinates>106.514,33.42,0</coordinates>
 </Point>
</Placemark>

5.3 Proportional symbols

This section describes in detail three different ways of making proportional symbols
in KML.

5.3.1 Proportional image icons

KML icons are used to visualise various point data,
and custom icons can be added by referencing an
image stored on the local file system or a remote web
server.

Two symbols, a circle and a square, were created
using Adobe Photoshop Elements. A shadow effect
was added to give the icons a slightly 3-D
appearance. The symbols are white on a transparent
background, and saved as PNG files. An image size
of 200 x 200 px seems appropriate when the image is
scaled proportional to an attribute value.

KML icon images can be scaled and colourised by
using the IconStyle element. Only one image is
thereby needed to create symbols in different colours
and sizes. This reduces the total file size and
improves the performance. The symbol image is
referenced in a shared style:

The colour can also be specified in the shared style if only one colour is used. If the
colour varies, it needs to be defined as an inline style for each feature, together with
the scaling factor:

Figure 19: The KML icon images

used to make proportional symbols.

KML

KML

Thematic Mapping Engine Bjørn Sandvik

 29

When a KML Point element is contained by a Placemark element, the point itself
determines the position of the Placemark’s image icon (Google, 2008a). This is
achieved by defining the longitude, latitude and (optional) altitude within the
coordinates element.

The drawback of this method is that the map is, so far, only viewable in Google Earth.
Other geobrowsers are unable properly to scale and colourise the icon images (see
figure 21).

Figure 20: Proportional symbol map in
Google Earth showing the relative population
in each country of the world.

Figure 21: The same KML file shown in Microsoft
Virtual Earth. The image icons are not scaled or
colourised.

When comparing the results from
the Google Earth plug-in with the
Google Earth desktop program, there
is a noticeable difference: the icons
are much bigger in the plug-in. The
reason is different viewport sizes,
and it can be considered as a Google
Earth bug. There are two different
ways of adjusting the size of the
planet in Google Earth. The left-
hand visualisation in figure 22
shows the earth in a zoomed out view. The circle images are scaled properly. The
other way of changing the size of the planet is by adjusting the Google Earth window.
The problem is that the circle images maintain their size while the planet shrinks or
expands. The KML Icon element is here used in a way that was probably not
intended.

5.3.2 Drawing regular polygons

KML has no built-in support for regular polygons so these have to be generated by
calculating the longitude/latitude location for each vertex of the polygon.

A PHP function from the Google Earth Community forum34 was modified for this
purpose. The modified function generates a KML polygon from a set of parameters:
longitude, latitude, radius, number of vertices and (optional) altitude. This is, of

34 http://bbs.keyhole.com/ubb/showflat.php?Cat=&Board=SupportKML&Number=166379

Figure 22: Proportional image icons in Google Earth.
The circles on the right planet are not properly scaled.

Thematic Mapping Engine Bjørn Sandvik

 30

<Style id='sharedStyle'>
 <PolyStyle>
 <fill>1</fill>
 <outline>1</outline>
 </PolyStyle>
 <LineStyle>
 <color>cc000000</color>
 </LineStyle>
</Style>

course, a complicated way of making regular polygons. Part of the function is shown
below:

Figure 23: Various regular polygons. n refers to the number of vertices.

The polygon style (fill and outline) is specified in a shared style:

The fill colour is specified for each feature, since the regular polygons can be
colourised according to a statistical value:

KML

function kmlSymbolCalculator($longitude, $latitude, $radius, $vertices,
 $altitude) {
 $EARTH_RADIUS_EQUATOR = 6378140.0;
 $RADIAN = 180 / pi();
 $long = $longitude / $RADIAN;
 $lat = $latitude / $RADIAN;
 $f = 1/298.257;
 $e = 0.08181922;

 for ($bearing = 45; $bearing <= 405; $bearing += 360/$vertices) {
 $b = $bearing / $RADIAN;
 $R = $EARTH_RADIUS_EQUATOR * (1 - $e * $e) / pow((1 - $e*$e *
 pow(sin($lat),2)), 1.5);
 $psi = $distance/$R;
 $phi = pi()/2 - $lat;
 $arccos = cos($psi) * cos($phi) + sin($psi) * sin($phi) * cos($b);
 $latA = (pi()/2 - acos($arccos)) * $RADIAN;
 $arcsin = sin($b) * sin($psi) / sin($phi);
 $longA = ($long - asin($arcsin)) * $RADIAN;
 (...)
 }

 (...)
 return $kml;
}

Thematic Mapping Engine Bjørn Sandvik

 31

<Placemark>
 <name>China</name>
 <Snippet>1,312,978,855 (2005)</Snippet>
 <styleUrl>#sharedStyle</styleUrl>
 <Style>
 <PolyStyle>
 <color>e50066ff</color>
 </PolyStyle>
 </Style>
 <Polygon>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 102.77,36.48,0 102.77,30.24,0 110.26,30.24,0
 110.26,36.48,0 102.77,36.48,0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
</Placemark>

The Polygon element includes the coordinates of the vertices in the polygon,
calculated by the kmlSymbolCalculator function above.

Figure 24: Showing regular polygons in Google Maps.

Figure 25: The polygons are skewed when

visualised on a 3-D globe.

5.3.3 Proportional 3-D Collada objects

One unique feature to KML is the ability to embed 3-D models or objects into the
KML file (Turner, 2006). The 3-D objects used in this project were downloaded from
3D Warehouse35, an online repository for 3D models. The objects were edited in
Google SketchUp36 to make them more suitable for thematic mapping:

1. Each object was positioned so that the green and red lines were touching the
bottom of the object. These lines mark the ground when the object is rendered.
The blue line marks the latitude/longitude position where the object will be
placed, and should bisect the object (figure 26).

2. The objects from 3D Warehouse had various scales. The Tape Measure Tools
was used to apply a similar scale to all objects (figure 27).

3. A default colour was added (figure 28).

35 http://sketchup.google.com/3dwarehouse
36 http://sketchup.google.com

KML

Thematic Mapping Engine Bjørn Sandvik

 32

<Placemark>
 <name>China</name>
 <Snippet>1,312,978,855 (2005)</Snippet>
 <Model>
 <Link>
 <href>files/object.dae</href>
 </Link>
 <altitudeMode>absolute</altitudeMode>
 <Location>
 <longitude>106.514</longitude>
 <latitude>33.42</latitude>
 <altitude>0</altitude>
 </Location>
 <Scale>
 <x>140000</x>
 <y>140000</y>
 <z>140000</z>
 </Scale>
 </Model>
</Placemark>

Figure 26: How an object
should be positioned in Google
SketchUp.

Figure 27: Use the Tape Measure

Tool to change the scale of the
object.

Figure 28: Use the Paint Bucket
tool to add a default colour to
the object. Click on the Create
Material icon to select a colour.

The KML Model element specifies the location, orientation and scale of a Collada
object. It is impossible to attach any styles to the Model element, which makes it
harder to use the feature for thematic mapping.

The Link element specifies the Collada object to load. The Location element specifies
the coordinates of the object’s origin in latitude, longitude and altitude. The Scale
element scales the object along the x, y and z axes in the object’s coordinate space. As
for bars, the z (height) dimension could represent a different statistical indicator than
the x/y dimension. Collada objects can also be placed on top of each other by
specifying an increasing altitude value (e.g. to create stacked bars).

Since it is impossible to colourise Collada objects in KML, this needs to be done in
the Collada file itself. This PHP script shows how this can be achieved:

KML

Thematic Mapping Engine Bjørn Sandvik

 33

After the Collada text file is read into the memory, the default colour is replaced.
Each object is stored using a different filename which can be referenced by the Model
element.

Cube Sphere Dome Human Mobile

Figure 29: Collada objects available in the Thematic Mapping Engine. All objects were downloaded
from 3D Warehouse. The human body is made by Snah and the mobile phone is made by Mikeyjm.

Figure 30: Population (2005) in Southeast Asia
visualised with 3-D domes.

Figure 31: Same indicator, but different Collada
object.

foreach($this->classColours as $class => $classColour){
 $colladaColour = self::rgb2collada($classColour);

 // Read collada model
 $filename = "files/$this->symbolShape.dae";
 $handle = fopen($filename, "r");
 $collada = fread($handle, filesize($filename));
 fclose($handle);

 // Search and replace colour
 $pos = strpos($collada, '<effect id="material0-effect" ...>');
 $pos = strpos($collada, "<diffuse>", $pos);
 $pos = strpos($collada, "<color>", $pos);
 $collada = substr_replace($collada, $colladaColour, $pos+7, 28);

 // Add collada object to kmz archieve
 $zip->addFromString("files/object$class.dae", $collada);
} }

Thematic Mapping Engine Bjørn Sandvik

 34

<Placemark>
 <name>China</name>
 <Snippet>1,312,978,855 (2005)</Snippet>
 <Style>
 <IconStyle>
 <scale>7</scale>
 <Icon>

 <href>http://chart.apis.google.com/chart?cht=p(...)</href>

 </Icon>

 </IconStyle>
 </Style>
 <Point>
 <coordinates>106.514,33.42,0</coordinates>
 </Point>
</Placemark>

5.4 Chart maps

Google Chart API37 allows chart generation
by embedding data and formatting
parameters in a URL. The API returns a
PNG image of the chart, which can be
included on a web page or overlaid onto a
map.

The following URL will return the image in
figure 32:

http://chart.apis.google.com/chart?cht=p&chd=t:20,45,5&chs=300x150&ch
l=0-14%20years%7C15-59%20years%7C60%20and%20over

The URL contains the information needed to generate the pie chart. URLs like this
can be specified within the IconStyle element as long as it returns a valid image file:

The chart image itself can also be scaled to represent a statistical value (e.g. the total
population).

Figure 33: World population (2005) visualised
with scaled pie charts. The size of the charts is
proportional to the total population of a country,
while the pie shows the age distribution.

Figure 34: Same KMZ file visualised with
Google Maps. The charts are loaded properly, but
not scaled according to the population value.

37 http://chart.apis.google.com

Figure 32: Pie chart showing age
distribution.

KML

Thematic Mapping Engine Bjørn Sandvik

 35

<Placemark>
 <name>China</name>
 <Snippet>1,312,978,855 (2005)</Snippet>
 <styleUrl>#sharedStyle</styleUrl>
 <Style>
 <PolyStyle>
 <color>e50066ff</color>
 </PolyStyle>
 </Style>
 <Polygon>
 <extrude>1</extrude>

 <altitudeMode>absolute</altitudeMode>

 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 102.77,36.48,2000000 102.77,30.24,2000000

 110.26,30.24,2000000 110.26,36.48,2000000
 102.77,36.48,2000000
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
</Placemark>

5.5 Bar maps

The regular polygons described above can be turned into bars by adding an altitude
value for each coordinate tuple (vertex). Altitude values are in metres above sea level,
and should be directly proportional to the statistical value.

The extrude and altitudeMode elements are needed to create a 3-D bar. The extrude
element specifies that the polygon is connected to the ground. When the altitudeMode
is absolute, the altitude of each coordinate tuple is relative to sea level, regardless of
the actual elevation of the terrain beneath the element. When bars are rendered on top
of a 3-D landscape, the relativeToGround attribute should be used.

Figure 35: The height and colour of the bars
represents Internet users per 100 people, and
clearly visualises the digital divide in the world.
Each country has the same visual appearance
regardless of its population size.

Figure 36: The bar diameter here represents the
population of each country, while the bar height
and colour still represent the proportion of
internet users.

KML

Thematic Mapping Engine Bjørn Sandvik

 36

<Style id='sharedStyle'>
 <PolyStyle>"
 <fill>1</fill>
 <outline>1</outline>
 </PolyStyle>
 <LineStyle>
 <color>cc000000</color>
 </LineStyle>
</Style>

<Placemark>
 <name>China</name>
 <Snippet>1,312,978,855 (2005)</Snippet>
 <styleUrl>#sharedStyle</styleUrl>
 <Style>
 <PolyStyle>
 <color>DC0066FF</color>
 </PolyStyle>
 </Style>
 <MultiGeometry>
 <Polygon>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 110.72,20.06,0 109.26,19.9,0 108.63,19.28,0
 108.69,18.51,0 110.05,18.38,0 111.03,19.64,0 (...)
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 <Polygon>
 (...)
 </Polygon>
 </MultiGeometry>
</Placemark>

5.6 Choropleth maps

The thematic mapping techniques presented so far are all using the longitude/latitude
position (centroid) for each feature. A choropleth map requires the geometry
representing the border of the feature (e.g. country). Section 4.3 describes how KML
polygons are created from geometry stored in a MySQL database.

The polygon style (fill and outline) is specified in a shared style:

The fill colour is specified for each feature, since the polygons are colourised
according to a statistical value:

The KML polygons are contained by a KML MultiGeometry element. Figure 8 and 9
show how choropleth maps are displayed in Google Earth and Google Maps.

KML

KML

Thematic Mapping Engine Bjørn Sandvik

 37

<Placemark>
 <name>China</name>
 <Snippet>1,312,978,855 (2005)</Snippet>
 <styleUrl>#sharedStyle</styleUrl>
 <Style>
 <PolyStyle>
 <color>DC0066FF</color>
 </PolyStyle>
 </Style>
 <MultiGeometry>
 <Polygon>
 <extrude>1</extrude>

 <altitudeMode>absolute</altitudeMode>

 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 110.72,20.06,2000000 109.26,19.9,2000000
 108.63,19.28,2000000 108.69,18.51,2000000
 110.05,18.38,2000000 111.03,19.64,2000000 (...)
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 <Polygon>
 (...)
 </Polygon>
 </MultiGeometry>
</Placemark>

5.7 Prism maps

As regular polygons can be turned into 3-D bars by adding an altitude value for each
coordinate tuple (section 5.5), irregular polygons can be turned into prisms.

The extrude and altitudeMode elements have to be specified for each polygon
contained by a MultiGeometry element. Figures 16 and 38 show examples of a prism
map displayed in Google Earth.

When 3-D prism maps are
rendered in Google Earth, holes
appear in the polygons
representing large countries with
low values on a statistical
indicator (i.e. those with a low
altitude value). KML has three
parameters for controlling the
behaviour of polygons; extrude,
tessellate and altitudeMode. By
setting altitudeMode to
clampToGround, the country
polygons follow the great circle.
The problem arises when the polygons are extruded by adding an altitude representing
a statistical value. Only the vertices of the polygon are extruded to the given altitude,

Figure 37: A hole in the polygon representing India.

KML

Thematic Mapping Engine Bjørn Sandvik

 38

<Folder>
 <name>Years</name>
 <open>1</open>
 <Folder>
 <name>2000</name>
 <visibility>1</visibility>
 <TimeSpan>

 <begin>2000-01-01</begin>

 <end>2004-12-31</end>

 </TimeSpan>

 <Placemark>
 <name>Afghanistan</name>
 (...)
 </Placemark>
 (...)
 </Folder>
 <Folder>
 (...)
 </Folder>
 (...)
</Folder>

and not the centre of the geometry. A new a clampToAltitude option in KML could
solve this problem.

There are some ways of solving this problem:

• Give all polygons a minimum altitude to support a "flat roof". This has to be a
high value for a country like Russia.

• Break up large polygons into smaller pieces.
• Add additional clampToGround polygons to "hide" the holes. This only works

with solid fills (no transparency).

5.8 Temporal maps

The importance of the time dimension has been the subject of considerable recent
debate within the fields of cartography and scientific visualisation (Harrower and
Fabrikant, 2008; Andrienko et al., 2005; Kraak and van de Vlag, 2007). The same
cardinal questions are often referred to (Andrienko et al., 2005): How to make
computers understand temporality and handle time-related information, and how can
computers support the visual exploration of spatio-temporal information? These
questions are tightly connected, as techniques used for graphical representation of
data have to correspond to characteristics of the data.

By using the time primitives in KML, one can create animated thematic maps
showing how a variable changes over time. The KML standard contains two time
elements (Wilson, 2008): TimeSpan represents an extent in time bounded by begin
and end dates, while TimeStamp represents a single moment in time. The time
elements are used to limit the display of features to given period of time or instant of
time. This is a relatively easy way to provide sophisticated map animations in a
geobrowser.

KML

Thematic Mapping Engine Bjørn Sandvik

 39

All shaded polygons representing one year of data are wrapped in a KML Folder
containing a TimeSpan element. Whenever a time element is specified in a KML file,
the geobrowsers automatically displays a time slider that corresponds to the beginning
and ending times in the file. The user can see the animation by using play button or
moving the slider itself.

Figure 38: This visualisation shows the declining infant mortality rate in Africa (1960, 1980 and
2005). The Google Earth time slider is located above the 3-D globe.

5.9 Map tiles

A map tile approach is based on a multi-
resolution image pyramid. The higher the
zoom level, the greater the frequency of tiles
required to cover any geographical area (see
figure 39 and table 4). This image pyramid
is a quadtree data structure, in which each
region is sub-divided into four quadrants,

each of which facilitates an increase in zoom
level (Gibin et al. 2008).

5.9.1 GDAL2Tiles

GDAL2Tiles38 is a command line
tool that allows the easy publishing
of raster maps on the Internet. The
raster image is converted into a
directory structure of small image
tiles which can be copied to a web
server. Each map tile image
generated by GDAL2Tiles is 256 x
256 pixels. Table 4 shows the
number of tiles that needs to be generated for each zoom level.

GDAL2Tiles is compatible with the Tile Map Service (TMS) Specification39. TMS has
been proposed as a standardised method whereby map tiles are requested by web
clients and how servers describe their holdings. TMS is not an official standard and is
currently managed by the Open Source Geospatial Foundation (OSGeo). The Open
Geospatial Consortium (OGC) has released a discussion paper (Pomakis 2007)
describing a tile map extension to the Web Map Service (WMS).

38 GDAL2Tiles is included in the GDAL library from the 1.5.0 release (http://www.gdal.org)
39 http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification

Level Image size Tiles Total tiles
1 512 x 256 2 x 1 2
2 1024 x 512 4 x 2 8
3 2048 x 1024 8 x 4 32
4 4096 x 2048 16 x 8 128
5 8192 x 4096 32 x 16 512
6 16384 x 8192 64 x 32 2048
7 32768 x 16384 128 x 64 8192

Figure 39: Multi-resolution image pyramid.
Credit: OSGeo.org

Table 4: Number of map tiles for increasing zoom levels.

Thematic Mapping Engine Bjørn Sandvik

 40

Tom Patterson’s Natural Earth II40 is here used to show how GDAL2Tiles can be used
to generate map tiles. The same method can be used for raster-based thematic maps
(Gibin, 2008).

If the supplied raster map uses the EPSG:4326 coordinate reference system (WGS84),
GDAL2Tiles generates a KML super-overlay (see below) in addition to the map tiles.
The map tiles were generated by using the following GDAL commands:

Gdal_translate was first used to georeference the raster map:

The image should now have the correct coordinate reference system (EPSG:4326),
but GDAL2Tiles was not generating the KML super-overlay before the gdalwarp
command was used:

The original raster map was 16,200 x 8,100 pixels. For this purpose, 5 zoom levels
would be sufficient. The map image was therefore reduced to 8192 x 4096 pixels (512
map tiles):

Finally, the GDAL2Tiles command was used to generate the map tiles and the KML
super-overlay:

5.9.2 KML super-overlay

A KML super-overlay is a hierarchy of
KML files that can be used to serve a large
set of images (Google, 2008b). Super-
overlays take advantage of KML network
links and their ability to determine whether a
given region is within view and whether its
projected size is appropriate for the view
area. If both conditions are true, the KML
file associated with the region is loaded.
This KML files includes a reference to the
map tile image. When the user is zooming or
panning a tile map in a geobrowser, only the
tiles not currently in the memory are requested from the server.

40 http://www.shadedrelief.com/natural2

Figure 40: The Natural Earth II map tiles loaded
as a KML super-overlay in Google Earth.

gdal_translate -a_srs EPSG:4326 -gcp 0 0 -180 90 -gcp 16200 0 180
90 -gcp 16200 8100 180 -90 NE2_modis3.jpg NE2_modis3.tif

gdalwarp -t_srs EPSG:4326 NE2_modis3.tif NE2_modis3_4326.tif

gdal_translate -outsize 8192 4096 NE2_modis3_4326.tif
NE2_modis3_4326_5.tif

gdal2tiles -title "Natural Earth II" -publishurl
http://www.thematicmapping.org/maptiles/ -v NE2_modis3_4326_5.tif
naturalearth

Thematic Mapping Engine Bjørn Sandvik

 41

5.10 Map colours

The use of colour plays an
important role in the
visualisation and analysis of
thematic map data, as it
facilitates the observation of
the patterns and
interrelationships. The various
colour models can broadly be
divided into two main
categories: perceptually-based
and display based (Atlas of
Canada, 2008). Perceptually
based models, such as HSB
(hue, saturation, brightness),
are organised in a way similar
to how humans perceive
colour in everyday life. In
display-based models, such as
RGB (red, green, blue), the
appearance of the colours produced depends on the settings of the display device.

In the RGB model, colours are specified based on the intensity of red, green, and blue
colour guns (Slocum et al. 2005). The range of intensities for the colour gun values
may be visualised as a cube with positions specified by x, y, z integer coordinates
(Robinson et al. 1995). These coordinates control the intensities of the red, green and
blue colour guns. The maximum integer value is usually 256, ranging from 0 to 255.
This gives 2563 or 16,777,216 possible colour combinations.

In the Thematic Mapping Engine, the start and end colours are given as six-digit
hexadecimal colour codes, which allows a colour value to be specified in a single
parameter value. The lowest statistical value is assigned with a start colour, and the
largest value is assigned with an end colour. The values between these have their
colours calculated by linear interpolation between these two colours. The red, green
and blue integer values are extracted from the hexadecimal colour codes. The colour
difference or range is calculated by subtracting the start red/green/blue integer from
the end red/green/blue integer (linear interpolation). The colour codes for all of the
intermediate statistical values can then be calculated.

A disadvantage of the RGB model is that equal steps in the RGB colour space do not
correspond to equal visual steps (Slocum et al. 2005). A colour value of 125,0,0 will
not appear to fall midway between 0,0,0 and 255,0,0.

KML represents colours in an OBGR format. This format represents each colour as a
32-bit hexadecimal number, with 8 bits each for opacity (transparency), blue, green
and red. The ordering of the colour values is different from the usual web colour
specification, which is RGB.

Figure 41: The RGB colour cube (after Robinson et al. 1995)

255,255,0
Yellow

255,255,255
White

0,255,0
Green

0,0,0
Black

0,0,255
Blue 255,0,255

Magenta

0,255,255
Cyan

255,0,0
Red

y

z

X

Thematic Mapping Engine Bjørn Sandvik

 42

5.11 Map legend

Map legends are important in thematic mapping, but KML/Google Earth has no build-
in legend support. The best way to add a map legend is to use the KML
ScreenOverlay element. This element only supports image overlays and not HTML
layers. This makes it harder to create a dynamic legend that changes with the data.

As symbol size varies with scale (zoom level), useful symbol legends are difficult to
create. An alternative method is to duplicate the symbology by supporting a colour
legend for all thematic mapping techniques, also for proportional symbol maps. The
colour legend informs the user about the range of values (min and max), and where
the different symbols are positioned in this range.

By using an unclassified scheme, a unique visual shade is assigned to each unique
data value. The colour scale can also be classed by using equal intervals or quantiles:

Equal intervals
Each colour class occupies an equal interval along the value range. This scheme is
easily interpreted by map readers, and is particularly useful for comparing a series of
maps (Krygier and Wood 2005). The data distribution is not taken into account, and
this classification may result in most data values falling into one of two classes, while
other classes have no values. The classes are calculated by this PHP code:

Quantiles

Quantile schemes place the same number of data values in each class. A quantile
classification is attractive because it always produces distinct map patterns: it will
never have empty classes, or classes with only a few or too many values (Krygier and
Wood 2005). The problem with this classification is that it often places similar values
in different classes or very different values in the same class. The classes are
calculated in this way:

$interval = ($this->maxValue - $this->minValue) / $numClasses;
for ($i = 0; $i < $numClasses; $i++) {
 $position = $this->minValue + ($interval * $i);
 $this->classBreaks[] = round($position, $this->precision);
}
$this->classBreaks[] = $this->maxValue;

$values = array_values($this->indicator['values'][$this->year]);
$numValues = count($values);
$classNum = $numValues / $numClasses; // Number in each class
for ($i = 0; $i < $numClasses; $i++) {
 $position = (int)($classNum * $i);
 $this->classBreaks[] = $values[$position];
}
$this->classBreaks[] = $values[$numValues-1];

Thematic Mapping Engine Bjørn Sandvik

 43

Figure 42: Choropleh map showing life
expectancy by using equal intervals.

Figure 43: A quantile classification gives a
different view.

5.11.1 Creating colour legends with GD

GD41 is an open source graphics library
for the dynamic creation of images by
programmers. The library is commonly
used to generate graphics on-the-fly in
web applications. TME uses the PHP-
GD42 binding, which is part of the
standard PHP installation. The legend
generation process can be generalised
into the following steps (based on
Coggeshall, 2004):

1. Create an legend “canvas” in
memory

2. Allocate legend colours
3. Draw the legend
4. Save the legend canvas as a

PNG image on the web server

This is performed by the getColourLegend method for the ThematicMap class. The
code listing shows that creating colour scales with GD is a complicated process.

The PNG legend image is included in the KMZ file (see section 5.12) and referenced
in the KML document as a ScreenOverlay:

41 http://www.libgd.org
42 http://php.net/gd

Figure 44: The colour legend is generated by the
GD library and referenced by the KML
ScreenOverlay element. The map title is added by
using the same method.

Thematic Mapping Engine Bjørn Sandvik

 44

<ScreenOverlay>
 <name>Legend</name>
 <Icon>
 <href>files/legend.png</href>
 </Icon>
 <overlayXY x='0.01' y='0.14' xunits='fraction' yunits='fraction'/>
 <screenXY x='0.01' y='0.14' xunits='fraction' yunits='fraction'/>
 <size x='-1' y='-1' xunits='pixels' yunits='pixels'/>
</ScreenOverlay>

The KML ScreenOverlay element specifies an image overlay to be displayed fixed to
the screen. Regardless of where the user navigates in the geobrowser, the screen
overlay remains in the same position. The position is determined by a point relative to
the image, specified by overlayXY, to a point relative to the screen, specified by
screenXY (Wilson, 2008). The size element determines the size of the ScreenOverlay.
A size value of -1 indicates the use of the native dimension of the image.

5.12 File compression

A series of files are often needed when a thematic map is created using KML: legend
image, icon image, 3-D Collada object and the KML file itself. The KML file can also
be very large when it contains a lot of features and complex geometries repeated for
several time steps. Fortunately, KML files, linked images and 3D objects can be
compressed into a single KMZ file. This makes file transfer easier, as only one file
needs to be transferred, and more efficient, due to the reduced file size.

The Thematic Mapping Engine uses PHP ZIP functions43 to create KMZ files.
Basically, a KMZ file has the same properties as any other ZIP file, except for the file
extension. By using the PHP ZIP functions, a new KMZ file can be created and the
various files added.

43 http://www.php.net/zip

KML

$file = "tmp/tme". time(). ".kmz";
$zip = new ZipArchive();
if ($zip->open($file, ZIPARCHIVE::CREATE)!==TRUE) {
 exit("cannot open <$file>\n");
}

// Add colour legend to KMZ archieve
if ($this->showLegend) {
 $zip->addFile(self::getColourLegend(), 'files/legend.png');
}

// Add kml to archieve
$zip->addFromString("doc.kml", $kml);

$zip->close();

Thematic Mapping Engine Bjørn Sandvik

 45

6. The thematic mapping website

A dedicated website44 was established for this
project. The website contains the Thematic
Mapping Engine, a blog, the World Borders
dataset and information about the project. The
website was created in the beginning of March
2008 and has been continuously updated. The
website turned out to be very popular and
attracted a lot of visitors.

The website made it possible to share ideas
with a wider community, and to receive
important feedback. Several enquires came
from developers who wanted to use the
Thematic Mapping Engine as a plug-in to
their mapping applications. The blog also
enabled me to get in touch with individuals
and organisations who are engaged in
similar issues.

This turned out to be a crucial way of
obtaining information and keeping up-to-
date with the latest developments and trends.
Blogs and wikis45 are now widely used among
“geeks” and professionals alike, to present their
own work and perspectives and to comment on
other people’s work. An increasing amount of the
information we now consume digitally is user
created (Hudson-Smith and Crooks, 2008).

It can, of course, be problematic to use these kinds
of information sources in academic research. It is
often hard to measure the credibility of those who
write and comment on blogs, and it is not good practice to add references to wikis
which might be edited by anyone at any time. This phenomenon has been described as
the “cult of the amateur” (Keen, 2007):

The Web 2.0 revolution has peddled the promise of bringing more truth to more people –
more depth of information, more global perspective, more unbiased opinion from
dispassionate observers. But this is all a smokescreen. What the Web 2.0 revolution is
really delivering is superficial observations of the world around us rather than deep
analysis, shrill opinion rather than considered judgment. The information business is
being transformed by the Internet into the sheer noise of a hundred million bloggers all
simultaneously talking about themselves.”

Andrew Keen (2007)
in The Cult of the Amateur: How Today’s Internet is Killing Our Culture

44 http://thematicmapping.org
45 A wiki is a collection of web pages designed to enable anyone who accesses it to contribute to or
modify its content.

Figure 45: Screenshots from the
thematicmapping.org website

Thematic Mapping Engine Bjørn Sandvik

 46

Even though Keen makes some valid points, more specialist and technical oriented
blogs, wikis and user forums are arguably a good source of information – in the
absence of books and journal articles.

Most of the thematic mapping techniques shown in this document were also presented
on the blog. Much feedback was received, which enabled me continually to evaluate
and improve my methods. Short reviews of the Thematic Mapping Engine were
published on popular GIS blogs:

“Periodically during the last three years since Google Earth was released, some talented
developer gets the Google Earth bug and develops a wave of cool stuff. Right now, the
guy with the most momentum is Bjørn Sandvik at the United Nations Association (UNA)
of Norway. He's written a flood of blog posts in the last few weeks at his Thematic
Mapping Blog with really innovative visualizations and applications of GIS technology
for Google Earth.”

Frank Taylor – Google Earth Blog 6 June 200846

“I always considered Google Earth to be a bit of a dead fish as far as cartographic
elements go, but Bjørn’s work shows that some truly amazing representations are
possible with a bit of work. If you haven’t checked this blog out, give it a read.”

Jason Birch – Random Notes 31 May 200847

“On his excellent Thematic Mapping blog (now part of my blog roll), Bjorn Sandvik has
been running a series on thematic mapping techniques in Google Earth. Examples have
included choropleth maps, bar charts, prism charts, Collada objects, map legends,
including examples of animated time series. If you’re into the techy part of this stuff, the
series is well worth a look for the ideas you’ll get from it, and the downloadable example
files. But for non-techy types, the prospect of learning how to do this might have been a
bit intimidating. Heck, I find it intimidating, and I know at least a little about this stuff.
But Bjorn has taken his examples to the next level, by creating an online tool that can
convert datasets to thematic Google Earth maps on the fly, the Thematic Mapping
Engine”

Leszek Pawlowicz, Free Geography Tools 2 June 200848

Most of the critical feedback was questioning the effectiveness of 3-D globe
visualisations. The criticisms were not directly related to KML, but aimed more
towards the use of 3-D visualisation in general. These issues are important, and a
response to these critics was published in a series of blog posts49. This feedback was
used to improve the visualisations created with the Thematic Mapping Engine.

46 http://www.gearthblog.com/blog/archives/2008/06/thematic_mapping_engine_plugin.html
47 http://www.jasonbirch.com/nodes/2008/05/31/186/thematic-mapping-blog-rules/
48 http://freegeographytools.com/2008/thematic-mapping-in-google-earth
49 http://blog.thematicmapping.org/2008_06_01_archive.html

Thematic Mapping Engine Bjørn Sandvik

 47

Figure 46: Number of visitors to thematicmapping.org website 9 March – 9 August 2008.

The thematicmapping.org website had more than
30,000 visits between 9 March and 9 August

200850. There was a sharp increase when the
Thematic Mapping Engine was launched on 1
June (see figure 46). The second highest number
occurred when TME was featured on the various
Google sites51. TME was also featured on the
UNdata start page for a month. Most of the
visitors came from the United States and United
Kingdom (see table 5).

2008 was a perfect time for this project, since
three incidents occurred during its evolution: the
UNdata portal was launched on 11 February
2008, providing instant access to a wealth of statistical data (UNdata, 2008); on 14
April, KML became an international standard of the Open Geospatial Consortium
(OGC) and the “first broadly accepted standard for the visualisation of geographic
information” (OGC, 2008); and, on 28 May, the Google Earth Browser Plug-in was
released (Rademacher, 2008), bringing the power of Google Earth to the Thematic
Mapping Engine.

50 Measured with Google Analytics (www.google.com/analytics)
51 Google Code (code.google.com), Google Earth API (code.google.com/apis/earth) and the KML
documentation page (code.google.com/apis/kml)

Country Visits

United States 10,523
United Kingdom 3,645
France 1,820
Spain 1,585
Canada 1,573
Germany 1,286
Italy 878
Brazil 849
Australia 848
Netherlands 680

Table 5: Number of visits from the top ten
countries (9/3 – 9/8 2008).

Thematic Mapping Engine Bjørn Sandvik

 48

7. References

Andrienko, N, Andrienko, G., Gatalsky, P., 2005, “Impact of Data and Task Characteristics on Design

of Spatio-Temporal Data Visualization Tools”, in Exploring Geovisualization, J. Dykes, A. M.
MacEachren, M.-J. Kraak (editors), Elsevier Ltd.

Atlas of Canada, 2008, “Colour Design and Tools”, National Resources Canada (NRCan). Available

online:
http://atlas.nrcan.gc.ca/site/english/learningresources/carto_corner/map_content_design_tools.ht
ml [Last accessed: 22 July 2008]

Butler, H., 2006, “MySQL Spatial support for OGR”, Hobu Inc., Available online:

http://hobu.biz/2006/02/12/mysql-spatial-support-for-ogr-2 [Last accessed: 12 August 2008]

Crampton, J. W., 2001, “Maps as social constructions: power, communication and visualization”,

Progress in Human Geography, 25(2), pp. 235-253

Davis, S., 2007, “GIS for Web Developers. Adding Where to Your Web Applications”, The Pragmatic

Programmers.

Gibin, M., Singleton, A., Milton, R., Mateos, P., Longley, P., 2008, “An Exploratory Cartographic

Visualisation of London thorough the Google Maps API”, Applied Spatial Analysis and Policy
(2008) 1:85-97, Springer Netherlands

Google, 2008a, “KML Reference”, Google Code. Available online:

http://code.google.com/apis/kml/documentation/kmlreference.html [Last accessed: 13 June
2008]

Google, 2008b, “KML 2.1 Tutorial”, Google Code. Available online:

http://code.google.com/apis/kml/documentation/kml_21tutorial.html [Last accessed: 10 August
2008]

Harrower, M., Fabrikant, S., 2008, “The Role of Map Animation for Geographic Visualization”. Book
chapter in Dodge, M., McDerby, M. and Turner, M., 2008, “Geographic Visualization:
Concepts, Tools and Applications”, Wiley

Hudson-Smith, A., Crooks, A., 2008, “The Renaissance of Geographic information: Neogeography,
Gaming and Second Life”, Centre for Advanced Spatial Analysis (CASA), University College
London. Available online: http://www.casa.ucl.ac.uk/working_papers/paper142.pdf [Last
accessed: 6. August 2008]

Kay, R., 2006, “Quick Study: LAMP”, Computerworld. Available online:

http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=2636
11 [Last accessed: 10 August 2008]

Keen, A., 2007, “The Cult of the Amateur: How Today’s Internet is Killing Our Culture”, Doubleday

Business.

Kraak, M.-J., van de Vlag, D.E, 2007, “Understanding Spatiotemporal Patterns: Visual Ordering of

Space and Time”, Cartographica, Volume 42, Number 2, University of Toronto Press

Krygier, J., Wood, D., 2005, “Making Maps: A Visual Guide to Map Design for GIS”, The Guilford

Press

Lake, R., 2005, “GML and KML Syntax”, Galdos Systems Inc. Available online:

http://www.galdosinc.com/archives/183 [Last accessed: 8 August 2008]

Thematic Mapping Engine Bjørn Sandvik

 49

Loosley, C., 2006, “Rich Internet Applications: Design, Measurement, and Management Challenges”,
Keynote Systems. Available online:
http://www.keynote.com/docs/whitepapers/RichInternet_5.pdf [Last accessed 4: August 2008]

MySQL, 2008, “MySQL 5.0 Reference Manual”, MySQL. Available online:

http://dev.mysql.com/doc/refman/5.0/en/spatial-extensions.html [Last accessed: 12 August
2008]

OGC, 2008, “OGC Approves KML as Open Standard”, Geospatial Press Releases. Available online:

http://geospatialpr.com/2008/04/14/ogc-approves-kml-as-open-standard/ [Last accessed: 5
August 2008]

OGC, 1999, “OpenGIS Simple Feature Specification For SQL”, Revision 1.1, Open GIS Consortium

Inc. Available online: http://portal.opengeospatial.org/files/?artifact_id=829 [Last accessed: 30
July 2008]

Pomakis, K., 2007, “OpenGIS Tiled WMS Discussion Paper”, OGC 07-057r2, version: 0.3.0, Open

Geospatial Consortium Inc. Available online:
http://portal.opengeospatial.org/files/?artifact_id=23206 [Last accessed: 4 August 2008]

Rademacher, P., 2008, “Google Earth, meet the browser”, Google Lat Long Blog. Available online:

http://google-latlong.blogspot.com/2008/05/google-earth-meet-browser.html [Last accessed: 3
August 2008]

Sandvik, B., 2008, “Research Paper: Using KML for Thematic Mapping”, MSc GIS Dissertation,
University of Edinburgh

Slocum, T. A., McMaster, R. B., Kessler, F. C., Howard, H. H., 2005, “Thematic Cartography and
Geographic Visualization”, Second Edition, Person Education Inc.

Turner, A. J., 2006, “Introduction to Neogeography”, O’Reilly Short Cuts, O’Reilly Media Inc.

Ullman, L., 2007, “PHP 5 Advanced. Extend your PHP skills the fast, efficient way”, Peachpit Press

UNdata, 2008, “UNdata - a data access system to UN databases”, United Nations. Available online:
http://data.un.org/wiki/aboutus.ashx [Last accessed: 8 August 2008]

Walsh, J., 2008, “The Beginning an End of Neogeography”, GEOconnexion International Magazine,
April 2008. Available online: http://www.geoconnexion.com/uploads/neogeography_intv7i4.pdf
[Last accessed: 8 August 2008]

Wilson, T., 2008, “OGC KML 2.2.0”, Document #07-147r2, Open Geospatial Consortium. Available

online: http://www.opengeospatial.org/standards/kml/ Last accessed: 5 May 2008

Appendix

Appendix

Appendix A – World Borders Dataset ...51
Appendix B – MySQL database tables ..52
Appendix C - Thematic Mapping Engine API ..53

C1: TME API Parameters ..53
C2: Proportional symbol map ..54

Thematic Mapping Engine Bjørn Sandvik

 51

Appendix A – World Borders Dataset

Provided by Bjorn Sandvik, thematicmapping.org

Use this dataset with care, as several of the borders are disputed.

The original shapefile (world_borders.zip, 3.2 MB) was downloaded from the
Mapping Hacks website: http://www.mappinghacks.com/data/

The dataset was derived by Schuyler Erle from public domain sources.
Sean Gilles did some clean up and made some enhancements.

COLUMN TYPE DESCRIPTION

Shape Polygon Country/area border as polygon(s)
FIPS String(2) FIPS 10-4 Country Code
ISO2 String(2) ISO 3166-1 Alpha-2 Country Code
ISO3 String(3) ISO 3166-1 Alpha-3 Country Code
UN Short Integer(3) ISO 3166-1 Numeric-3 Country Code
NAME String(50) Name of country/area
AREA Long Integer(7) Land area, FAO Statistics (2002)
POP2005 Double(10,0) Population, World Population Prospects 2005
REGION Short Integer(3) Macro geographical (continental region),

UN Statistics
SUBREGION Short Integer(3) Geographical sub-region, UN Statistics
LON FLOAT (7,3) Longitude
LAT FLOAT (6,3) Latitude

CHANGELOG VERSION 0.1 - 13 March 2008

- Polygons representing each country were merged into one feature
- Åland Islands was extracted from Finland
- Hong Kong was extracted from China
- Holy See (Vatican City) was added
- Gaza Strip and West Bank was merged into "Occupied Palestinean Territory"
- Saint-Barthelemy was extracted from Netherlands Antilles
- Saint-Martin (Frensh part) was extracted from Guadeloupe
- Svalbard and Jan Mayen was merged into "Svalbard and Jan Mayen Islands"
- Timor-Leste was extracted from Indonesia
- Juan De Nova Island was merged with "French Southern & Antarctic Land"
- Baker Island, Howland Island, Jarvis Island, Johnston Atoll, Midway
 Islands and Wake Island was merged into "United States Minor Outlying
 Islands"
- Glorioso Islands, Parcel Islands, Spartly Islands was removed (almost
 uninhabited and missing ISO-3611-1 code)
- Added ISO-3611-1 codes (alpha-2, alpha-3, numeric-3). Source:
 https://www.cia.gov/library/publications/the-world-
factbook/appendix/appendix-d.html
 http://unstats.un.org/unsd/methods/m49/m49alpha.htm
 http://www.fysh.org/~katie/development/geography.txt
- AREA column has been replaced with data from UNdata: Land area, 1000
 hectares, 2002, FAO Statistics
- POPULATION column (POP2005) has been replaced with data from UNdata:
 Population, 2005, Medium variant, World Population Prospects: The 2006
 Revision
- Added region and sub-region codes from UN Statistics Division. Source:
 http://unstats.un.org/unsd/methods/m49/m49regin.htm
- Added LAT, LONG values for each country

Thematic Mapping Engine Bjørn Sandvik

 52

Appendix B – MySQL database tables

Table: indicator

Field Type Index

id smallint(6) PRIMARY
name text
description text
source text
precision tinyint(4)

Table: indicator_values

Field Type Index

indicator smallint(5)
country smallint(3)
year varchar(4)

PRIMARY

value double INDEX

Table: country

Field Type Index

OGR_FID smallint(3) PRIMARY
uncode smallint(3) UNIQUE
iso2 varchar(2)
iso3 varchar(3)
fips varchar(2)
name varchar(50)
border geometry INDEX
lon double(8,3)
lat double(8,3)
region smallint(3)
subregion smallint(3)

Table: geometry_columns

Field Type Index

F_TABLE_CATALOG varchar(256)
F_TABLE_SCHEMA varchar(256)
F_TABLE_NAME varchar(256)
F_GEOMETRY_COLUMN varchar(256)
COORD_DIMENSION int(11)
SRID int(11)
TYPE varchar(256)

Table: spatial_ref_system

Field Type Index

SRID int(11)
AUTH_NAME varchar(256)
AUTH_SRID int(11)
SRTEXT varchar(256)

Thematic Mapping Engine Bjørn Sandvik

 53

Appendix C - Thematic Mapping Engine API

C1: TME API Parameters

This table includes all valid parameters for the TME API.

Parameter Allowed values Default value

barSize 50000
classification unclassed

equal
quantile

unclassed

colour FF6600
colourType scale

single
scale

endColour FF6600
indicator
mapDescription From dataStore
mapSource From dataStore
mapTitle From dataStore
mapType choropleth

prism
bar
symbol

choropleth

maxHeight 2000000
noDataColour CCCCCC
numClasses 5
opacity 90
showLegend true / false true
showNames true / false false
showTitle true / false true
showValues true / false false
startColour FFFF99
symbolMaxSize 5
symbolShape Varies
symbolType image

polygon
collada

timeType year
series
slider

year

year

M = Mandatory parameter / O = Optional parameter

Thematic Mapping Engine Bjørn Sandvik

 54

C2: Proportional symbol map

Required and optional parameters for proportional symbol maps.

Required parameters:

• indicator

• mapType (symbol)

• symbolType (image / polygon / collada)

• symbolShape (circle / square)

• symbolMaxSize

• year

Optional parameters:

• classification (unclassed / equal / quantile)

• colour

• colourType (scale / single)

• endColour

• mapDescription

• mapSource

• mapTitle

• numClasses (2-9)

• showLegend (true / false)

• showNames (true / false)

• showTitle (true / false)

• showValues (true / false)

• startColour

• opacity (0-100)

• timeType (year / series / slider)

Quantile classification is only valid when timeType = ‘year’.

Example:

$dataStore = $dataConnector->getDataStore(12, 2005, 0);

$parameters = array('mapType' => 'symbol',
 'symbolType' => 'image',
 'symbolShape' => 'circle',
 'symbolMaxSize' => 10,
 'indicator' => 12,
 'year' => 2005
);

$map = new ThematicMap($dataStore, $parameters);
$file = $map->getKML();

