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Motion Gradient Vector Flow: An External Force for
Tracking Rolling Leukocytes With Shape and Size

Constrained Active Contours
Nilanjan Ray*, Member, IEEE and Scott T. Acton, Senior Member, IEEE

Abstract—Recording rolling leukocyte velocities from intravital
microscopic video imagery is a critical task in inflammation
research and drug validation. Since manual tracking is excessively
time consuming, an automated method is desired. This paper illus-
trates an active contour based automated tracking method, where
we propose a novel external force to guide the active contour that
takes the hemodynamic flow direction into account. The construc-
tion of the proposed force field, referred to as motion gradient
vector flow (MGVF), is accomplished by minimizing an energy
functional involving the motion direction, and the image gradient
magnitude. The tracking experiments demonstrate that MGVF
can be used to track both slow- and fast-rolling leukocytes, thus
extending the capture range of previously designed cell tracking
techniques.

Index Terms—Active contour, anisotropic diffusion, gradient
vector flow, intravital m, leukocyte rolling velocity.

I. INTRODUCTION

B IOMEDICAL research groups studying inflammation
need reliable automated methods for tracking rolling

leukocytes from intravital (observed in living animal) micro-
scopic video, because rolling velocity is a principal indication
of the inflammatory response [22], and manual methods of
tracking require tens of hours of user interactive image pro-
cessing per intravital experiment. Fig. 1 shows six successive
video frames of the microscopic observations in a postcapilary
vennule of the cremaster muscle [18] of a mouse. The figure
shows the microvessel and the round shaped leukocytes rolling
in the bloodstream. The hurdles in the way of automated
tracking of these rolling leukocytes can be enumerated: 1)
Leukocytes roll within a moving “background” (platelets,
plasma, erythrocytes, inactivated leukocytes, etc.). These addi-
tional components lead to severe clutter. 2) Leukocytes slowly
deform in shape as they roll along a venule, so the objects to
be tracked here are not rigid, but deformable. 3) Breathing
movements of the living subject introduce jitter in the video
making the automated tracking process more difficult and
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requiring video registration. 4) Changes in transillumination,
cells moving in and out of the focal plane, and breathing move-
ments of the living subject lead to contrast changes (bright cells
versus dark cells).

Whereas cell tracking in vitro (in a flow chamber, for ex-
ample) is feasible with centroid based [9], [12] and correlation
based [4], [10], [15], [17], [26], and more recently with active
contour based methods [32], the experiments show that centroid
and correlation based methods are not well equipped for the in
vivo equipped for the in vivo (observed within living animal)
leukocyte tracking problem [14]. Being a relatively nascent
field of research, there exist only a few attempts at automated
tracking of leukocytes from intravital video microscopy –
centroid and correlation based adaptive template matching
techniques [1], [3], [14], leukocyte trace detection by spa-
tiotemporal image formation [25], shape and size constrained
active contour based method [22]. It has been demonstrated
that the shape and size constrained active contours governed
by gradient vector flow (GVF) [31] type external forces are
superior in automated rolling leukocyte tracking to the afore-
mentioned methods in terms of localization and the fraction of
frames tracked successfully [14].

However, we find that the effectiveness of GVF force in
conjunction with shape and size constrained active contour
decreases with decreasing temporal resolution of the intravital
videos. And the tracker described in [22] has a greater tendency
to lose fast rolling cells that have interframe displacements
greater than one cell radius. When interframe leukocyte dis-
placement is large, [22] proposes to utilize a Dirichlet boundary
condition in order to compute GVF type external force for
active contour evolution. This boundary condition essentially
biases the direction of vector diffusion away from the initial
contour [23]. We note that in order to apply this method one
needs to know a priori whether the interframe leukocyte
displacement exceeds a leukocyte radius, because when the
leukocyte displacement is less than a cell radius, GVF compu-
tation with the Dirichlet boundary condition does not yield the
desired result [20]. Alternatively, depending on some criterion,
such as average edge magnitude computed over the length of
the contour, two active contours can be used in conjunction –
one contour computed with the Dirichlet boundary condition
and another without the Dirichlet boundary condition.

Unlike our previous tracking proposal in [22], the new
external force, motion gradient vector flow (MGVF) proposed
here, does not need to know in advance whether the interframe
leukocyte displacement is small (interframe displacement less
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Fig. 1. (a)–(f) 1st , 4th, 7th, 10th, 13th and 16th frame of an intravital video
sequence showing rolling leukocytes in a mouse venule.

than one cell radius) or large (interframe displacement between
one cell radius and one cell diameter). The impact of MGVF is
shown to be twofold: 1) for fixed frame rates, MGVF facilitates
tracking of fast as well as slow rolling leukocytes; 2) for slow
rolling leukocytes, if frame rate is decreased, MGVF can
achieve the same, if not better, tracking performance of GVF
at the original frame rate. MGVF and GVF tracking involve
about the same computational cost per video frame; thus, at a
low temporal resolution, MGVF is more attractive in terms of
computational cost.

While GVF and MGVF methods are based on edge (gradient)
information of the leukocytes, an alternative approach will be
to utilize region based information such as the intensity profile
inside and/or outside of the leukocyte. Such methods have been
popular in general image segmentation [7], [29]. Chakraborty et
al. utilize an integrated edge and region based information for
image segmentation [6]. However, note from Fig. 2(a) that the
image intensity inside a leukocyte varies widely. And as men-
tioned before, note also that a leukocyte may appear dark or
bright. The blood flow and the presence of muscle striations con-
tribute to the inhomogeneity of the intensity profile inside and
outside of the leukocyte in the intravital imagery [see Fig. 2(a)].
The gradient magnitude image in Fig. 2(b) shows that leuko-
cyte edges are prominent with round/elliptic shapes. When the
leukocytes appear as dark, we observe that the intensity profile
inside the leukocyte closely resembles that of the exterior. In
such cases, an annular structure (often broken in appearance)
separates inside and outside the leukocyte. These visual cues
suggest that region based active contour methods may not be an
ideal choice for the problem at hand. And we thus rely on edge
based information for leukocyte tracking and put forth a new
method (MGVF).

Before introducing MGVF, let us first describe the basic cell
tracking framework used in [22].

Algorithm 1
1) Leukocyte detection: To initiate this

algorithm, a leukocyte on the first
frame is detected either manually or
automatically as in [21], and then
shape-size constrained contour evo-
lution is performed to delineate the
leukocyte.

2) Tracking: From the second frame on-
wards, for each frame execute steps
2a) and 2b):

a) Initial active contour placement:
The final contour delineating the

Fig. 2. (a) Leukocytes, (b) gradient magnitude of the leukocyte image.
Leukocytes are seen to appear as dark or bright in the intravital microscopic
videos. Gray level varies widely inside a leukocyte. Leukocyte edges are more
prominent than homogeneity of intensity inside leukocytes.

Fig. 3. (a) A rolling leukocyte, (b) success of GVF active contour, (c) failure of
GVF active contour. White and black contours, respectively, represent initial and
final contours, and gray contours represent the active contour evolution process.

leukocyte from the previous frame
is placed over the current video
frame.

b) Active contour evolution: Starting
from the initial active contour,
a shape-size constrained contour
evolution is performed on the cur-
rent video frame to delineate the
displaced rolling leukocyte.

For a fixed frame rate, higher rolling velocity leads to greater
displacement of the contour. Fig. 3(a) shows a rolling leuko-
cyte. Fig. 3(b) shows the evolution of a shape-size constrained
active contour governed by GVF. In this case, the active con-
tour is successful in capturing the leukocyte since the frame-to-
frame displacement is small. Fig. 3(c) shows the same leukocyte
with a different initial contour that is displaced farther from the
leukocyte; such a situation in the aforementioned tracking algo-
rithm (Algorithm 1) arises when the leukocyte rolling velocity
is high. In this case we observe that the GVF active contour fails
to capture the leukocyte. One potential remedy is to advance the
initial contour in the blood flow direction before contour evolu-
tion. The distance, with which the contour is to be advanced, has
to be estimated. Such estimation is nontrivial since it is not un-
common that a single leukocyte shows a complex trait of slow
and fast movements (microbursts) as it interacts with the en-
dothelium [16]. Moreover, jitter and excessive clutter in the in-
travital video also contribute to the difficulty of estimating the
subsequent leukocyte position. It should also be noted that step
2b) of Algorithm 1 implicitly assumes that the leukocytes are
not occluding one another.

Instead of moving the initial active contour via a prediction
mechanism such as the Kalman filter [14], in our approach, we
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introduce a new active contour external force that can accom-
modate both the fast and the slowly rolling leukocytes simul-
taneously. The basic GVF mechanism uses the gradient of an
image edge map and diffuses the gradients so that a boundary
can be captured if the initial contour is not placed directly in
the neighborhood of the desired boundary. The effect of GVF is
that the vectors “point” the active contour in the direction of the
closest major boundary; these vectors are used as the active con-
tour external force. In MGVF, we follow this approach and bias
the diffusion of these vectors in the direction of flow. In other
words, if the diffusion of the GVF vectors is favored more in the
direction of blood flow, then, even if the initial contour lags be-
hind the leukocyte center, it will sense the gradient magnitude
slope and will recover the leukocyte shape.

Before detailing MGVF in Section III, we first summarize the
necessary background for the shape and size constrained active
contours and the standard GVF technique.

II. BACKGROUND

A. Shape-Size Constrained Active Contour

Since rolling leukocytes appear as slightly deformed circles
in the intravital video frames, a natural choice for delineating
the leukocyte boundary is to utilize a shape and size constrained
active contour with a suitable external force such as GVF [22].
In this paper, we adopt the same notion of shape and size con-
straints and express the active contour as a parametric curve via
a reference point, , and the polar coordinates ,
so that the Cartesian coordinates of the contour points become:

. Such a radial active contour
is depicted in Fig. 4. We want this active contour to be collocated
with positions of high gradient magnitude in the image, and not
to deviate significantly from a circular shape of a desired ra-
dius, which can be obtained a priori from the known leukocyte
radius ( ) and the spatial resolution of the video.
The active contour achieves the goal of delineating a leukocyte
by minimizing the following energy functional:

(1)

where

(2)

(3)

and

(4)

with as the length of the active contour

(5)

Fig. 4. Radial active contour.

Equation (1) represents a multicomponent energy functional,
where is the additive inverse of the edge strength summed
along the active contour and is normalized by the length of the
contour. The function appearing in (2) is an image edge po-
tential surface. Thus, the minimum edge energy is attained when
the active contour is residing on the ridges of the edge potential
surface. The energy component is the constraint on the
shape and size of a leukocyte. Assuming an approximately cir-
cular shape for the leukocyte, accounts for the deviations
of its radial distances from the desired radius, . In this
formulation we assume -axis to be perpendicular to the direc-
tion of the leukocyte rolling; the position constraint pre-
vents large deviation of the active contour from the estimated
direction of leukocyte rolling. In Section III-C we present a
method to estimate the leukocyte motion direction.

The energy functional (1) contains three components with
nonnegative weights and expressing the importance
of the respective energy components in the functional. Param-
eter selection can be accomplished by the minimax [11] ap-
proach using a set of training sequences [20].

By way of variational calculus [8], the gradient descent equa-
tions for minimizing (1) are obtained as

(6)

(7)

(8)

where

(9)

(10)

and

(11)
As described in steps 2a) and 2b) of Algorithm 1, starting

from an initial contour ( , , and ), we employ the gradient
descent (6)–(8) iteratively to obtain a new active contour con-
figuration that minimizes (1) locally and delineates a leukocyte
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in the process. The iterative gradient descent computation is re-
ferred to as active contour evolution [Step 2b)] of Algorithm 1.

Section II-B briefly reviews GVF and establishes the tech-
nical background for the proposed external force MGVF.

B. Gradient Vector Flow

The gradient descent (8) includes the terms and
, which are the and the -components of the edge

force that attracts the active contour toward image edges.
In our previous work [22], we have reported that instead of
using the edge potential force, , the use of GVF [31]
in conjunction with the shape and size constrained active
contour highly enhances the performance of tracking rolling
leukocytes. To understand the supremacy of GVF over the edge
potential force, let us imagine that the initial active contour is
located away from the cell boundary and resides in a perfectly
homogeneous region in an image. Using the traditional edge
potential force leads to failure in such a case, because inside
the homogeneous region, the image gradient magnitude would
be zero and, consequently, there will be no edge-force acting
on the active contour. Thus, being unable to sense the external
force and being guided only by the internal force, the active
contour may not move toward the desired edge. To alleviate this
problem, Xu and Prince construct a force field by diffusing the
edge-force, away from edges to the homogeneous regions, at
the same time keeping the constructed field as close as possible
to the edge-force near the edges. They achieve this goal through
the minimization of the energy functional [31], as shown in (12)
at the bottom of the page, where is a nonnegative parameter
expressing the degree of smoothness of the field , is the
edge potential: , with as the image under consider-
ation. Interpretation of (12) is straightforward – the first term in
the integrand keeps the field, , smooth, while the second
term forces the vectors to resemble the original edge-force
near the edges (i.e., where the edge potential strength is high).
Variational minimization of (12) results in the following two
Euler equations [31]:

(13)

Solving (13) for results in a 2-D vector field – GVF that
can be used as an external force field for the active contour.

III. MOTION GRADIENT VECTOR FLOW

A. Formulation

We have already demonstrated an example where the active
contour fails to delineate a leukocyte with GVF as the external

force for the active contour. This situation frequently arises
with Algorithm 1, when the frame-to-frame displacement of
the leukocyte is large (i.e., greater than one cell radius). To
seek a remedy, we propose to embed the leukocyte motion
direction (can be estimated a priori utilizing microvessel shape
information; see Section III-C) inside the energy for the GVF
in the following way:

(14)

where is a regularized heaviside function, is the video
frame edge-map: , and is the blood flow
direction, known a priori. The first term in (14) smoothes the
gradient of the image edge map, with a bias in the direction of
flow, . Here, the heaviside function impedes dif-
fusion of the vectors in the direction of blood flow. The second
term forces the evolving gradient vectors at the actual bound-
aries to resemble the initial gradient vectors at the boundaries.

is a nonnegative constant controlling the smoothness (diffu-
sivity) imposed by the first term in the energy functional. We
utilize the following regularized version of the heaviside func-
tion, parameterized by a small positive number :

(15)

Applying the variational principles for the minimization of
(14) we obtain the following gradient descent equation (see the
Appendix for derivation):

(16)

Once is obtained by solving (16), the gradient of , viz.,
, serves the role of the external force for the active con-

tour. The force field is referred to as the MGVF. Note from
(16) that unlike GVF where the diffusion coefficient is constant,
in MGVF the coefficient is dependent on , as well as the
blood flow direction. Thus, the diffusion mechanism in MGVF
is anisotropic.

B. Computation

To obtain a solution to (16), we follow an 8-neighborhood
system on the discrete Cartesian image domain and utilize a Ja-
cobian solution procedure as used in solving anisotropic diffu-
sion equation [19], as shown in (17) at the bottom of the page,
where , , and , respectively, denote the value
of the surface and the edge-map at the th location in
the discrete domain, denotes the iteration number, and de-
notes inverse of the time-step. The following proposition illus-

(12)

(17)



1470 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 12, DECEMBER 2004

Fig. 5. (a) A circle representing a synthetic leukocyte, (b) GVF force for the circle and initial active contour, and (c) MGVF force for the circle and the same
initial active contour.

Fig. 6. (a) Leukocyte image of Fig. 3(a), (b) GVF and (c) MGVF for the leukocyte image.

trates the convergence conditions and the speed of convergence
for (17).

Proposition 1: The numerical implementation given by (17)
is convergent, and the rate of convergence is that of a geometric
series of common ratio , provided

a) the edge-map is normalized such that

(18)

and
b) we select the multiplicative inverse of the time-step as

(19)

Proof: See the Appendix .
Fig. 5(a) shows a synthetic leukocyte image, and Fig. 5(b)

shows the GVF field of Fig. 5(a) and a lagging active contour.
It is visually evident in Fig. 5(b) that the force is discouraging
the active contour to delineate the proper leukocyte. Fig. 5(c)
shows MGVF and the same lagging active contour. Due to the
anisotropic diffusion of the vectors influenced by the motion di-
rection, we can capture the leukocyte boundary despite the large
displacement. The center from where the force arrows seem to
emanate inside the circle in Fig. 5(b) is at the circle center, while
the same point has been shifted toward right, near the circum-
ference of the circle in Fig. 5(c). Note that in case of MGVF, the
minimum value of [of (17)] is attained at this point and thus
the divergence of is the highest here creating the impres-
sion that force arrows emanate from this point. Fig. 6 illustrates
GVF and MGVF for a real leukocyte image. In Section III-D by
means of a simulation study with various values of the param-
eters and in the MGVF equation, we illustrate that the shift
takes place consistently toward the edge and it stops at the edge.

Fig. 7. MGVF active contour evolution. Frame-to-frame displacement is
(a) small (on the order of one cell radius), and (b) large (approaching one
cell diameter). In both these situations the contour evolution leads to object
delineation. (c) Active contour evolution with MGVF but without a shape and
size constraint. The contour fails to delineate the leukocyte.

Fig. 7(a) illustrates the leukocyte of Fig. 3(a) with an initial
active contour identical to that of Fig. 3(b). Here the MGVF ac-
tive contour captures the leukocyte, as does GVF. In Fig. 7(b),
we use MGVF to delineate the leukocyte, where GVF fails as
already indicated by Fig. 3(c). This is an example that demon-
strates the efficacy of MGVF for both large and small frame-to-
frame displacement of the leukocytes. However, we recognize
that MGVF alone cannot recover leukocyte shapes, as shown
in Fig. 7(c) for contour evolution with MGVF but without a
shape-size constraint on the contour. In this case the contour
fails to delineate the leukocyte boundary. We thus utilize both
MGVF and shape-size constraint for the contour while tracking
leukocytes.

Since a priori estimation of leukocyte movement direction is
essential in MGVF computation the next section describes such
a method.

C. Estimation of Leukocyte Rolling Direction

MGVF computation involves the a priori direction of leuko-
cyte movement, which is essentially the direction of blood
flow and can be approximated by the tangential direction to
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Fig. 8. (a) First frame of a sequence, (b) sum of absolute differences of consecutive frames for the sequence, (c) area open close of (b) with area scale of 500
pixels, (d) fuzzy c-means classification of (c), (e) morphological open–close of (d) with a circular structuring element of radius 3, (f) boundaries of the microvessel
and the microvessel centerline, i.e., the path of leukocyte rolling.

the centerline of the microvessel. Thus, we detect two mi-
crovessel boundaries from a video sequence; then compute
the centerline that is midway between these two boundaries.
The first step toward the centerline computation is to register
the video frames. We employ a template matching method for
video frame registration. The template in this case is the entire
intensity profile of the first frame of a sequence. The match
measure is normalized cross correlation, where jitter is assumed
to be caused by a single global translation. Previous studies
support the assumption of global translation for the intravital
microscopic experiments [13], [25]. Thus, every frame in the
sequence is registered with respect to the first frame of the
sequence. Tang and Acton [28] find the microvessel boundaries
by active contour-based method; however, we employ fuzzy
-means classification [5] that produces reasonably accurate

results and is computationally inexpensive. The method is
described in the following sequential steps:

1) Computation of average of absolute differences
( ): Let be the registered video
frames of a sequences, then is computed as:

.
Fig. 8(a) shows the first image of a video sequence.
Fig. 8(b) shows the average of absolute difference image,

, for this video sequence.
2) Computation of area open–closed image: Area open

(close) refers to a connected filter that retains foreground
(background) connected components of every possible
level set of a gray scale image, the area for which is
greater than or equal to a certain value [2]. Here, the
term level set refers to a binary image obtained by
thresholding the original gray level image at a gray level.
The area value with which area opening or area closing
is performed referred to as a “scale.” Thus, if is the
original gray scale image, and are, respectively,
the area open and area close operators at a scale , then
the area-open close of at scale is .
Typically a leukocyte has a diameter of 8 . So it has
an area of about 50 (which equates to roughly 290
pixels with the spatial resolution of our experiments). The
microvessel on the other hand is typically 100 20

(about 11 560 pixels in our system). Thus, we need
to choose an area scale over 290 pixels but below 11 560

pixels. We observe that an area scale of 500 pixels suf-
fices. Fig. 8(c) shows .

3) Classification of area open–closed image:
We consider fuzzy -means classification [5] of the area

open–closed image, , based on
its gray values. Fig. 8(d) shows fuzzy -means classifica-
tion of into two classes (inside and outside of the
microvessel).

4) Postprocessing: Since fuzzy -means classification in
most of the cases provide a rough boundary of the mi-
crovessel and sometimes partly broken in the middle
(as shown in Fig. 8(d)), we make the boundary smooth
by morphological close–open filter [27]. We obtain
Fig. 8(e) after smoothing Fig. 8(d) with a morphological
close–open filter.

5) Computation of microvessel centerline: The final step is to
find out the edge of the microvessel and obtain the mean
leukocyte rolling path that is midway between the mi-
crovessel boundaries. In order to compute this mean path,
we first compute the skeleton (via medial axis transforma-
tion) [27] of the binary image shown in Fig. 8(e), next we
take longest path [27] in the skeleton as the microvessel
centerline, which is shown in Fig. 8(f).

Note that the method described thus far is a special case of
the scale-space segmentation technique proposed by Acton and
Mukherjee in [2], where area open–close is performed on the
same image in general for ( ) area scales to generate
filtered images collectively called a scale-space. Then pixel lo-
cations are classified based on the entire scale-space, i.e., each
spatial pixel is classified using a vector of values from the
scale-space images. Here instead we employ the classification
technique on a single area scale since we need only two classes.

Although leukocyte velocity direction is crucial information
to MGVF computation and subsequent tracking, the following
example illustrates that correct tracking results may be obtained
even when leukocyte movement direction varies significantly
from the assumed/estimated direction. In Fig. 9(a) we illustrate a
microvessel boundary obtained via segmentation, the centerline
of the microvessel and the manually computed leukocyte path.
The figure indicates that actual leukocyte movement direction
in this case is quite different from the direction of the centerline
velocity for the vessel. However, the active contour tracking of
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Fig. 9. (a) Microvessel boundary outlines, microvessel centerline and manually computed leukocyte path for a sequence – (b) 1st frame, (c) 11th frame, (d) 21st
frame, (e) 31st frame, (f) 41st frame, (g) 51st frame. Tracking by MGVF guided shape and size constrained active contour is shown on all the frames.

the leukocyte via MGVF and shape-size constraints proceeds
without any error as shown in Fig. 9(b)–(g). This leukocyte se-
quence can be considered as a relatively ’fast’ sequence, since
the interframe leukocyte displacement exceeded one leukocyte
radius in a number of frames. We have observed that the simulta-
neous occurrence of a) high interframe leukocyte displacement
and b) leukocyte movement direction that is significantly dif-
ferent from the estimated motion direction can lead to failure of
the MGVF-driven active contour.

The next section illustrates one-dimensional (1-D) simulation
for MGVF that indicates the roles of the parameters involved in
the MGVF functional.

D. One-Dimensional Simulation

For the convenience of representation, we carry out the simu-
lation in one dimension. The 1-D MGVF equation is as follows:

(20)

where is the direction of flow; and , respectively,
denote movement to right or left. The topmost image of Fig. 10
shows a 1-D signal, the second image from top shows the edge
response for the signal. 1-D MGVF computation with
and as the edge response in (20) yields as shown in the
third image (from the top) in Fig. 10. The minimum value of
within the step edge indicators is marked with asterisk on the
same image. The sign of is shown in the fourth image
of Fig. 10. The sign image indicates that the sign of
is different on the two sides of the asterisk (location of lowest

value of ). The second image from bottom in Fig. 10 shows
computed via (20) with . And the corresponding sign

image is shown in the bottom image of Fig. 10. imposes
the lowest value of at the midpoint of the edge responses.

With this preliminary MGVF computation we observe that
shifts the lowest point of to the right, and the slope

of is negative (positive) to the left (right) of the lowest point.
Any point to the left (right) of the lowest point of is attracted to
the left (right) edge because of the slope of . Similarly, in two
dimensions, once an active contour, possibly lagging far behind
the leukocyte, includes this lowest point within its periphery,
the contour is attracted to the leukocyte boundary. Therefore,
for successful leukocyte boundary delineation, the lowest point
of must be inside the initial active contour. We carry out a 1-D
simulation illustrated in Fig. 11 to show that the lowest point of

will be located at the right edge regardless of the value of ,
when is sufficiently small. Fig. 11 shows computed values
via (20) corresponding to various values of and with
on a noise-free 1-D signal. We observe from the simulation that
for any value of (between 0.01 and 10), there is always a
value of below which the lowest point of will be located
at the right edge position. Note that the shift is monotonic with
decreasing , and once the right edge location is reached, the
lowest point of does not shift any more even if is decreased
further. From this simulation we observe that: 1) the shift of
the minimum point of occurs in the opposite direction of the
velocity, and this minimum does not move beyond edges; 2) the
choice of is insignificant for noise-free ideal images, since
with a sufficiently small , the lowest point of is located at the
edge; 3) larger values of require lower values of for moving
the lowest point of to the edge. The second two observations
suggest that if we choose a small value for , then, even if the
lagging active contour from previous frame barely overlaps with
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Fig. 10. Step edge and MGVF in one dimension.

the present leukocyte position, MGVF is expected to align the
active contour onto the leukocyte boundary.

IV. TRACKING EXPERIMENTS

We consider two test data sets for the tracking experiments.
The first test data set consists of 100 intravital microscopic
video sequences each 91 frames long (3 s in duration). These
sequences are captured from experiments involving wild
type and knockout mice [18]. The video frames have been
recorded at a spatial resolution of 320 240 pixels, where the
pixel-to-micron ratio is 2.47 pixels/micron horizontally and
2.34 pixels/micron vertically, and the temporal resolution is
30 frames/s. The second data set consists of 25 intravital mi-
croscopic video sequences each 31 frames long (1-s duration)
obtained from experiments with trauma-induced untreated mice
[22]. The second data set has been captured at a higher spatial
resolution (3.11 pixels/micron horizontally and 3.10 pixels/mi-
cron vertically) and with the same temporal resolution of 30
frames/s. The frame-to-frame displacements of the leukocytes
in the second data set are higher than those in the first data set.
To compare the tracking performance of MGVF to that of GVF,
we utilize manually determined leukocyte center locations.

For an error measure, we employ the root mean-squared error
(RMSE), measured in microns, between the tracker-computed
and the manually determined leukocyte center within each
frame. Through the use of minimax method, we found that

and are suitable for the tracking within
these data sets [20]. And, from the simulation study we learn
that a small value of for MGVF is advisable. We choose as

for all the tracking experiments reported here.
To compare tracking results using GVF and MGVF as the

external force for the active contour, it is necessary to study
the sensitivity to the parameter . For this purpose, we ran-
domly choose 15 leukocyte sequences from the data set con-
sisting of 100 sequences and run tracking experiments on them
for different values of for computing GVF and MGVF. The
average error values obtained after such experiments are re-
ported through Fig. 12(a) and (b). We have displayed results for
two different ranges of weighting parameter values – Fig. 12(a)
showing [0.01, 0.1] and Fig. 12(b) showing [0.1, 1.0]. We ob-
serve in both these cases that MGVF outperforms GVF tracking
results for all corresponding values of weighting parameters.
Also note that the overall minimum error for MGVF is less than
that of GVF within the range [0.01, 1.0]. In the subsequently
reported tracking experiments, we choose as 0.08.
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Fig. 11. One-dimensional MGVF simulation study showing w computed with (20) for various values of � and ".

Fig. 12. Comparison of GVF and MGVF tracking performance for different
values of weighting parameters.

In the first tracking experiment on the 25-sequence data set,
we utilize three “rules” of contour advancement for GVF: an ini-
tial position shifted in blood flow direction by 1) half the leuko-

TABLE I
AVERAGE RMSES (IN �m) FOR FOUR METHODS OF TRACKING

cyte radius, 2) one leukocyte radius, and 3) no shift at all. Next
we perform MGVF tracking on these 25 sequences, utilizing
the computed leukocyte rolling direction. In Fig. 13, we show
RMSEs for the leukocyte sequences arranged in the increasing
order of the manually observed average rolling velocity. For the
four tracking experiments Table I shows RMSEs averaged over
all the 25 sequences.

As mentioned in Section I, the leukocytes show complex
traits of motion—sometimes they adhere to the endothelial wall
and often they show microbursts or leaps in position. Thus,
advancing the contour in the direction in the motion has the risk
that the contours may be attracted to clutter; this is reflected in
the results (Fig. 13 and Table I) where contours are advanced by
one full leukocyte radius. On the other hand, not advancing the
contour at all has the risk that the contours getattracted to the
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Fig. 13. Tracking performance vs. average rolling velocity. GVF: no advancement of initial active contour. GVF Shifted R=2: initial active contour advanced by
half the leukocyte radius, R. GVF Shifted R: initial active contour advanced by half the leukocyte radius.

Fig. 14. From top to bottom order – GVF versus MGVF tracking performance with original, half, one-third and one-fourth frame rate. x-axis represents leukocyte
rolling velocity (manually found) in microns/s and y-axis represents tracking error in microns.

clutter when the leukocyte moves ahead. When the advancement
of the contour is half the leukocyte radius, the RMSE error is
less than aforementioned two cases (Table I). Because, in this
case the tracker tries to achieve a balance between the two situ-
ations: 1) where the leukocytes are adherent; 2) where the cells
make bursts in motion as large as one full leukocyte radius.
However, MGVF tracker outperforms these three GVF trackers
as noted in Table I. The performance MGVF tracker is compa-
rable to those of GVF in the lower velocity range ( ).
However, note from Fig. 13 that as the leukocyte velocity in-
creases, the MGVF performance significantly exceeds that of
the GVF trackers. The experiment validates our motivation be-
hind MGVF – when frame-to-frame displacement of leukocytes
is large, MGVF will be effective.

Our second tracking experiment involves the 100-sequence
data set. Using this data set, we perform GVF and MGVF

tracking on successively decreasing temporal resolutions (i.e.,
increasing frame-to-frame displacements). Four temporal reso-
lutions are considered : 1) original resolution, i.e., every frame
in the sequence is considered; 2) half resolution, i.e., every
other frame is considered; 3) one-third resolution; 4) one-fourth
resolution. For all four temporal resolutions, we perform GVF
as well as MGVF tracking. The results are shown in Fig. 14.
Table II, shows the summary of these results by providing
only the average RMSEs computed over the 100 sequences
for all the four temporal resolutions. The results show that the
performance of GVF deteriorates as the frame rate decreases,
whereas the performance of MGVF remains almost the same
for first three frame rates and decreases (at a rate less than that
of GVF) for the one-fourth frame rate. Again this experiment
demonstrates that when the frame-to-frame displacement of
leukocytes increases, the MGVF tracker outperforms GVF
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TABLE II
AVERAGE RMSE (IN �m) OF GVF AND MGVF TRACKING METHODS FOR FOUR FRAME RATES

tracker, because in the latter case the contour lags far behind
the leukocyte and there is no mechanism to drag the contour to-
ward the leukocyte. Note also that the MGVF tracking RMSE
increases when the frame rate is one-fourth the original rate
and the average velocity is large ( ), because in such
cases, frame-to-frame displacements are so high sometimes that
the lagging contours barley overlap or do not overlap at all with
the leukocytes.

V. CONCLUSION

In this paper, we introduce a novel external force for tracking
rolling leukocytes observed in intravital video microscopy. Un-
like existing active contour force models, such as GVF, MGVF
utilizes the direction of leukocyte movement. We show that
while GVF is unsuitable for tracking fast rolling leukocytes,
MGVF is well adapted to both fast and slow rolling. Equiva-
lently, MGVF performs well when the temporal resolution of a
leukocyte rolling sequence is reduced, and thus can be used to
increase throughput. We also show that MGVF computation is
numerically convergent and the rate of convergence is that of
an equivalent geometric series.

APPENDIX

MINIMIZATION OF MGVF ENERGY FUNCTIONAL

Minimization of MGVF energy functional can be achieved
with variational calculus [8], [30] as follows. The first variation
of (14) with respect to is obtained by adding a small perturba-
tion function to , and taking the derivative with
respect to , as shown in (21) at the bottom of the page. Now,
applying the Mean Value Theorem [24]

(22)

where is a function with . Using
(22) in (21), we obtain

(23)

where

(24)

Now for the first integral in (23) the following can be deduced
using (24):

(25)

From (25) we readily observe that except when gradient of
is perpendicular or nearly perpendicular to the leukocyte

flow velocity , the contribution of the first integral in
(23) is negligible for small values of . On the other hand, the
minimization of MGVF energy functional (14) should lead
to small , when is perpendicular or nearly perpen-
dicular to the flow velocity. In other words we may assume
that when is infinitesimal so is , i.e.,

(21)
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for small . Thus, in
such cases we have

(26)

From (26) we observe that for small values of the first inte-
gral in (23) is negligible when is perpendicular or nearly
perpendicular to the flow velocity. Therefore, we neglect the
contribution of the first integral of (23) whether or not is
perpendicular to the flow velocity and now we are only left with
the second and the third integral of (23).

Applying Green’s theorem [24] to the second integral of (23)
we obtain

(27)

Thus, disregarding the first integral of (23), combining (23) with
(27) and applying the boundary condition: on ,
where denotes the perpendicular to the boundary , we
obtain

(28)

So the first variation of the energy functional (14) obtained from
(28) is as follows [30]:

(29)

And now the gradient descent equation to obtain the minimizing
function is as follows:

Proof of Proposition 1

If denotes the location , then (17) can be rewritten as

(30)
where denotes the 8 neighbors of the location and is
as follows:

(31)

where denotes the vector representing the direction from
location to the location in , and denotes the
leukocyte velocity direction. Let us now impose the following:

(32)

then all the coefficients of ’s in (30) become nonnegative.
Equation (30) can be rewritten for all the grid locations of the
image domain in a matrix-vector form as follows:

(33)

where is a matrix, being the total number of grid
points in the image domain. has all nonnegative elements
and any of its row contains at the most 9 positive elements.
and are column vectors given as follows:

(34)

We can rewrite (33) as follows:

(35)

If we now impose condition (18) on the edge-map, then it can
be shown that

where denotes the th element of the vector . Now, note
that (35) is a series with nonnegative terms, so by the compar-
ison test with a geometric series of common ratio:

, (35) converges as Finally from (31) we note
that the maximum value a coefficient, , can achieve is unity;
also the maximum value of the normalized edge-map is unity.
Therefore, the right hand side of (32) never exceeds as-
suming an 8-neighborhood, consequently we make as
in the numerical implementation of (17).
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