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1. Introduction 
Sumudu integral transform was introduced by Watugala 

[1] to facilitate the process of solving differential and 
integral equations in the time domain, and for the 
utilization in sundry applications of system engineering 
and applied physics. Albeit the mathematical properties of 
the Sumudu transform have been explored in some details 
[2-9], to the best of our cognizance, no systematic 
derivation of the Sumudu transform is available in the 
open literature. 

The fractional calculus deals with arbitrary orders of 
derivatives and integrals of applied mathematics. In the 
last decade, the fractional calculus has found applications 
in numerous ostensibly diverse fields of science and 
engineering. Fractional differential equations are 
increasingly used to model quandaries in fluid mechanics, 
acoustics, biology, electromagnetism, diffusion, signal 
processing, and many other physical processes. 

In sundry fields of science and engineering, it is 
consequential to obtain exact or numerical simulation of 
the nonlinear partial differential equations. In science and 
engineering, to find the exact and numerical solution of 
nonlinear equations is still challenging, therefore it’s 
required lucid methods for finding the exact and approximate 
solutions. Sundry potent mathematical methods such as 
Adomian decomposition method (ADM) [10,11,12,13,14], 
homotopy perturbation method (HPM) [15-20], homotopy 
analysis method (HAM) [21,22,23,24,25], variational 
iteration method (VIM) [26-32], Laplace decomposition 

method (LDM) [33,34,35], homotopy perturbation 
transform method (HPTM) [36], homotopy perturbation 
sumudu transform method (HPSTM) [37] and homotopy 
analysis transform method (HATM) [38,39,40] have been 
proposed to obtain exact and approximate analytical 
solutions of nonlinear equations. 

Inspired by all these perpetual research, we propose 
HAFSTM for the solution of fourth order differential 
equations with variable coefficient. 

2. Sumudu Transform 
In early 90’s, Watugala [1] introduced an incipient 

integral transform, designated the sumudu transform and 
applied it to the solution of mundane differential equation 
in control engineering quandaries. The sumudu transform 
is defined over the set of functions 
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by the following formula 
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Weerakoon [2,3,4] was established the properties of 
mentioned transform. Further fundamental properties of 
this transform were also established by Asiru [4]. In the 
same way, this transform was applied to the unidimensional 
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neutron convey equation in [5] by Kadem. In fact, it was 
shown that there is a vigorous relationship between 
Sumudu and other integral transforms refer to Kılıҫman et 
al. [6]. In particular the relation between Sumudu 
transform and Laplace transforms was proved in Kılıҫman 
and Gadain [7]. Further, in Eltayeb et al. [9], the Sumudu 
transform was elongated to the distributions and some of 
their properties were furthermore studied in Kılıc¸man and 
Eltayeb [9]. Recently, this transform is applied to solve 
the system of differential equations [41,42,43]. 

3. Basic Definition of Fractional Calculus 

Definition 3.1 A real function ( ) , 0,f t t >  is said to be in 
the space ,Cµ µ ∈  if there exists a real number 

( ) ,p µ>  such that ( ) ( )1 ,pf t t f t=  where 

( ) [ )1 0, ,f t C∈ ∞  and it is said to be in the space mCµ  iff 

( ) ,mf C m Nµ∈ ∈ . 
Definition 3.2 The Riemann Liouville Fractional integral 
operator of order 0,α ≥  of a function ( ) ,f t Cµ∈ and 

1µ ≥ − is defined as [44,45] 
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For the Riemann – Liouville fractional integral, we 
have 
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Definition 3.3 The fractional derivative of ( )f t in the 
Caputo sense is defined as [46]  
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where 1 , , 0.m m m N tα− < ≤ ∈ >  
For the Riemann – Liouville fractional derivative, we 

obtain the following relation.  

 ( ) ( ) ( ) ( )
1

0
0 ,

m
kk

t t
k

J D f t u f t u fα α α α
−

− − + +

=

  = −    ∑  

where 1 .m mα− < ≤  

4. Solution by Homotopy Analysis 
Fractional Sumudu Transform Method  

To illustrate the rudimental conception of the HAFSTM 
for the fractional partial differential equation, we consider 
the following fractional partial differential equation as 
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is the linear operation in ,x  

[ ]N x  is the general nonlinear operation in x  and ( ),G x t  
is a continuous function. 

All initial and boundary conditions are ignored for 
minimalism, which can be treated in a homogeneous way 
now applying the Sumudu transform first on both sides of 
the equation (4.1), we get 
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Using the differentiation property of the Sumudu 
transform  
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 (4.3) 

we define nonlinear operator as  
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where [ ]0,1q∈ be an embedding parameter and 

( )x,t;qφ is a real function of x, t and .q we construct a 
homotopy as follow: 
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where   is a nonzero auxiliary parameter and 
( )H x,t 0.≠  An auxiliary function ( )0U x,t  is an initial 

guess of ( )U x,t  and ( )x,t;qφ  is an unknown function. It 
is important that one has great freedom to choose auxiliary 
parameter in HAFSTM. Obviously, when 0q =  and 

1q =  it holds 

 ( ) ( ) ( ) ( )0x,t;0 x,t , x,t;1 x,tU Uφ φ= =  (4.6) 

Thus, as q increases from 0 to 1,the solution varies 
from initial guess ( )0 x,tU  to the solution ( )x,t .U  Now, 

expanding ( )x,t;qφ  on Taylor’s series with respect to ,q  
we get  
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The convergence of the series solution (4.7) is 
controlled by .  If the auxiliary linear operator, the initial 
guess, the auxiliary parameter   and the auxiliary 
function are properly chosen, the series (4.7) converges at 

1.q =  Hence we obtain  
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which must be one of the solutions of original nonlinear 
equations. The above expression provides us with a 
relationship between the initial guess ( )0 ,U x t  and the 

exact solution ( ),U x t  by means of the terms 

( )( ), 1, 2,3,... ,mU x t m =  which are still to be determined. 
Define the vectors  
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Differentiating the zero order deformation Eq. (4.5) m  
times with respect to embedding parameter q  and then 
setting 0,q =  and finally dividing them by !,m  we obtain 

the thm  order deformation equation as follows: 

 
( ) ( )
( ) ( )

1

1

, ,

, , , .

m m m

mm

U x t U x t

H x t R U x t

χ −

−

−  

=





 (4.11) 

Operating the inverse Sumudu transform of both sides, 
we get 
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and  

 
0, 1,
1 1.m

m
m

χ
≤

=  >
 

In this way, it is easy to obtain ( ),mU x t  for 1,m ≥  at 
thM  order, we have  
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where ,M →∞  we obtain an accurate approximation of 
the original equation (4.1). 

5. Numerical Examples 
In this section, we apply the HAFSTM developed in 

Section 4 to solve one and two dimensional initial boundary 
value quandaries with variable coefficients. The methods 
may additionally be applicable for higher dimensional 
spaces. Numerical results reveal that the HAFSTM is 
facile to implement and reduce the computational work to 
a tangible level while still maintaining a higher caliber of 
precision. All the results for the following three 
applications are calculated by utilizing the symbolic 
calculus software MATHEMATICA 8.0. 
Example 5.1: Consider the following problem of one-
dimensional time-fractional fourth-order PDE [47] 
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subject to the initial and boundary conditions 

 

( ) ( )

( )

( )

( ) ( )

( ) ( )

5

5

2

2 3

2

2

,
,0 0, 1 ;

120

1 0.5, 1 sin , ;
2 120

1 1 1, sin , ;
2 6 2

1211, sin , ;
120

11, sin , ;
6

U x t xU x
t

U t t

U t t
x

U t t

U t t
x

α

α

α

α

∂
= = + 

∂ 
   = +         
∂   =  

 ∂ 


= 

∂
=
∂


 (5.2) 

where the function ( )sin ,t α  is defined as  
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We start with initial condition 
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Operating the Sumudu transform of both sides in Eq. 
(5.1) and after using the differentiation property of 
Sumudu transform for fractional derivative, we get 
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The nonlinear operator is  
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and thus  
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The thm −  order deformation equation is given by  
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Applying the inverse Sumudu transform, we have 
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On solving above equation from 1,2,...,m =  we get  
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and so on, in the same manner the rest of the components 
of the series 4m ≥  can be obtained. 

Finally, the solution of (5.1) is given as 
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According to Liao [24], the accuracy and convergence 
of the HAM series solution depends on the careful 
selection of the auxiliary parameter .  Here we choose 
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For 1,= −  the above expressions are exactly the same 
as those given by the Decomposition method by N. A. 
Khan [47]. 

Nevertheless, most of the results given by the ADM, 
LDM, HPM and HPTM converge to the corresponding 
numerical solutions in a rather small region. Except, 
different from these methods, the HAFSTM provides us 
through a simple way to alter and manage the convergence 

region of solution series by choosing a proper value for 
the auxiliary parameter  . So, the valid region for ,  
where the series converge is the horizontal segment of 
each   curve. When we choose 2,α =  then clearly, we 
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obtained by Wazwaz [45,46]. 
Example 5.2: Consider the following problems of one-
dimensional time-fractional fourth-order PDE [47] 
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subject to the initial and boundary conditions 
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We start with initial condition 
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Operating the Sumudu transform on both sides in (5.15) 
and after using the differentiation property of Sumudu 
transform for fractional derivative, we get  
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Applying the initial and boundary conditions of (5.15) 
from (5.16) to (5.17), we obtain 
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The nonlinear operator is  
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The thm  - order deformation equation  
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Applying the inverse Sumudu transform,  
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On solving above equation from 1,2,...,m =  we get 
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and so on, in the same manner the rest of the components 
of the series 4m ≥  can be obtained. 

Finally, the solution of Eq. (5.15) is given as 

 ( ) ( ) ( )0
1

, , , .m
m

U x t U x t U x t
∞

=
= + ∑  (5.24) 

According to Liao [24], the accuracy and convergence 
of the HAM series solution depends on the careful 
selection of the auxiliary parameter ,  here, we choose 

1,= −  then 
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For 1,= − the above expressions are exactly the same 
as those given by the Decomposition method by N. A. 
Khan [47]. 

When we choose 2,α =  then clearly, we can conclude 

that the obtained solution ( )
0

,m
m

U x t
∞

=
∑  converge to the 

exact solution ( ), sintU x t e t−=  obtained by Wazwaz 
[48,49], and Biazar and Ghavini [50]. 
Example 5.3: Consider the following problem of two-
dimensional time-fractional fourth-order PDE [47] 

 

( ) ( )

( )

44

2 4

44

2 4

, ,1, , 2
6!

, ,12 0,
6!

1 , 1, 0,1 2,
2

t
U x y txD U x y t

x x

U x y ty
y x

x y t

α

α

  ∂
+ +   ∂ 

  ∂
+ + =   ∂ 

< < > < ≤

 (5.26) 

subject to the initial and boundary conditions: 
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we start with initial condition  
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Operating the Sumudu transform on both sides in (5.26) 
and after using the differentiation property of Sumudu 
transform for fractional derivative, we get  
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Applying the initial and boundary conditions of 
equation (5.26) from equation (5.27), we obtain 
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The nonlinear operator is  
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and thus  
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The thm  - order deformation equation  
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Applying the inverse Sumudu transform,  
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On solving above equation from 1,2,...m = we get 
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and so on, in the same manner the rest of the components 
of the series 4m ≥  can be obtained. 

Finally, the solution of Eq. (5.26) is given as 
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The accuracy and convergence of the HAM series 
solution depend on the careful selection of the auxiliary 
parameter ,  here, we choose 1,= −  them 
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For 1,= − the above expressions are exactly the same 
as those given by the Decomposition method by N. A. 
Khan [47]. 
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6. Numerical Results and Discussion  
Example 1 
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Figure 1. Plot of ( ),U x t  w.r. to ћ at 0.1t =  and 1.x =  

 
Figure 2. Plot of ( ),U x t  w.r.t x  and t  at 1.5.α =  

 
Figure 3. Plot of ( ),U x t  w.r.t x  and t  at 1.75.α =  
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Figure 4. Plot of ( ),U x t  w.r.t x  and t  at 2.0.α =  

 
Figure 5. Plot of Exact Solution of ( ),U x t  w.r.t x  and .t  
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Figure 6. Plot of ( ),U x t  w.r. to ћ at 0.1t =  and 1.x =  
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Figure 7. Plot of ( ),U x t  w.r.t x  and t  at 1.5.α =  

 
Figure 8. Plot of ( ),U x t  w.r.t x  and t  at 1.75.α =  

 
Figure 9. Plot of ( ),U x t  w.r.t x  and t  at 2.0.α =  
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Figure 10. Plot of Exact Solution of ( ),U x t  w.r.t x  and .t  

Example 3  
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Figure 11. Plot of ( ),U x t  w.r. to ћ at 0.1t =  and 1.x =  

 
Figure 12. Plot of ( ),U x t  w.r.t x  and t  at 1.5.α =  



 American Journal of Numerical Analysis 62 

 

 
Figure 13. Plot of ( ),U x t  w.r.t x  and t  at 1.75.α =  

 
Figure 14. Plot of ( ),U x t  w.r.t x  and t  at 2.0.α =  

 
Figure 15. Plot of Exact Solution of ( ),U x t  w.r.t x  and t  
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Figure 1 Shows that the curve between approximate 
solution ( ),U x t  and convergence control parameter   
for the different values of fractional order α viz. 

1.5,1.75,2.0.α = The convergence lies between the range 
1 0− ≤ < at 0.5t = and 1x = for example 1. 
Figure 2 shows that the three dimensional plot between 
( ),U x t for independent variables x  and t  at 1.5.α =  

Similarly Figure 3 and Figure 4 show the corresponding 
slight changes for different fractional Brownian motions 
of 1.75,2.0α = respectively. 

Figure 5 is plotted for the exact solution of 
( ),U x t which is equal to the Figure 4. 
In the subsequent manner the plot of example 2,   

curve for ( ),U x t lies between 1.3 0− ≤ <  in Fig. 6. and 
Figure 7-Figure 9 are shown the plot of approximate 
solution correspond to two independent variables x  and t  
verses 1.5,1.75,2.0.α =  Figure 10 is plotted for exact 
solution which shows the same plot as Figure 9. 

Figure 11-Figure 15 show the evaluation results of the 
approximate analytical solution for the Example 3. These 
also figures show the behavior of the approximate solution 
obtained by the proposed method for different fractional 
Brownian motions 1.5,1.75,2.0α =  and the convergence 
region for convergence control parameter   and approximate 
solutions. 

Solution at integral value at 2.0α = in all above 
mentioned plots is shown the same as obtained by N.A. 
Khan et. al [44] , Wazwaz [45,46] and Biazar and Gazvini [47]. 

7. Conclusion 
In science and engineering, the incipient modification 

of HAFSTM is potent implement to probe the solution of 
sundry linear and nonlinear quandaries. The main aim of 
this article is to provide the approximate solution and 
additionally analytic approximation utilizing the proposed 
method for fourth order boundary value quandaries. The 
analytical results have been given in terms of a potency 
series with facilely computed terms. The method 
surmounts the arduousness in different methods because it 
is efficient and lucid. Three examples were investigated to 
demonstrate the facileness and multifariousness of our 
incipient approach. The illustrative examples show that 
the method is facile to utilize and is an efficacious 
implement to solve fractional partial differential equations 
numerically. 
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