
ActionScript In-lined Reference Monitoring in
Prolog?

Meera Sridhar and Kevin W. Hamlen

The University of Texas at Dallas
Richardson, Texas, U.S.A.

meera.sridhar@student.utdallas.edu, hamlen@utdallas.edu

Abstract. A Prolog implementation of an In-lined Reference Monitor-
ing system prototype for Adobe ActionScript Bytecode programs is pre-
sented. Prolog provides an elegant framework for implementing IRM’s.
Its declarative and reversible nature facilitate the dual tasks of binary
parsing and code generation, greatly simplifying many otherwise diffi-
cult IRM implementation challenges. The approach is demonstrated via
the enforcement of several security policies on real-world Adobe Flash
applets and AIR applications.

1 Introduction

In-lined Reference Monitors (IRM’s) [4] enforce software security policies by
injecting runtime guard code directly into untrusted binaries. The guard code
decides at runtime whether an impending operation violates the security policy;
if so, the IRM intervenes to prevent the operation. The approach can enforce
policies not precisely enforceable by any static analysis [3] without requiring
changes to the operating system or cooperation from code-producers.

Correct and efficient IRM implementation is often difficult, motivating cer-
tifying IRM systems (e.g., [2]) that automatically verify that rewritten binaries
produced by an IRM system are policy-adherent. IRM certifiers use program ver-
ification technology (e.g., model-checking) to statically prove that the inserted
guard code suffices to prevent a runtime policy violation. This shifts the binary-
rewriter(s) out of the trusted computing base in favor of a certifier that is not
policy-specific and is less subject to change.

Our experience building a certifying IRM system for ActionScript indicates
that Prolog provides an unusually elegant framework that eases many otherwise
difficult implementation challenges. In particular, Prolog’s declarative nature
allows for concise expression of both the policy-enforcing IRM code and the
model-checking analysis that certifies it; and the reversibility of Prolog predicates
allows both binary parsing and code generation to be elegantly expressed as
a single module. Our resulting binary-rewriters are approximately 400 lines of
Prolog code per security policy family, 900 lines of shared parser/generator code,
and 2000 of certifier code.
? This research was supported by AFOSR YIP award number FA9550-08-1-0044.



2 Meera Sridhar and Kevin W. Hamlen

ABC
Extractor

Original SWF File

Parser
ABC
File

Rewriter
AST

Code
GeneratorRewritten

AST

Verifier
Rewritten
ABC File

NO

Counter-
example

ABC
Injector

YES

Verified
ABC File

Original SWF File

Verified
SWF File

Trusted Computing Base

Fig. 1. Certified in-lined reference monitoring framework

Figure 1 shows the system architecture. Each rewriter automatically trans-
forms untrusted ActionScript Bytecode (ABC) extracted from ShockWave Flash
(SWF) binary archives into self-monitoring bytecode. The parser converts ex-
tracted bytecode into an annotated abstract syntax tree (AST) using a Defi-
nite Clause Grammar [5]. The reversibility of Prolog predicates allows the same
code to serve as a code generator that produces self-monitoring ABC binaries
from modified AST’s. The verifier consists of a model-checker that certifies the
resulting IRM against the original security policy; its design using co-logic pro-
gramming is the subject of two prior works [1, 6]. Finally, the ABC Injector
reconstructs a modified SWF file by replacing the original bytecode with the
modified code.

2 Implementation

We used our implementation to enforce and certify three different policies on a
collection of real-world Flash applets and AIR applications. Experimental results
are shown in Fig. 2. All tests were performed on an Intel Pentium Core 2 Duo
machine running Yap Prolog v5.1.4.

Program
Tested

Policy
Enforced

Size
Before

Size
After

Rewriting
Time

Verification
Time

countdownBadge redir 1.80 KB 1.95 KB 1.429s 0.532s
NavToURL redir 0.93 KB 1.03 KB 0.863s 0.233s
fiona redir 58.9 KB 59.3 KB 15.876s 0.891s
calder redir 58.2 KB 58.6 KB 16.328s 0.880s
posty postok 112.0 KB 113.0 KB 54.170s 2.443s
fedex flimit 77.3 KB 78.0 KB 39.648s 1.729s

Fig. 2. Experimental results

The redir policy prohibits malicious URL-redirections by ABC ad applets.
Redirections are implemented at the bytecode level by navigateToURL system
calls. The policy requires that method check url(s) must be called to validate
destination s before any redirection to s may occur. Method check url has a
trusted implementation provided by the ad distributor and/or web host, and
may incorporate dynamic information such as ad hit counts or webpage context.
Our IRM enforces this policy by injecting calls to check url into untrusted



ActionScript In-lined Reference Monitoring in Prolog 3

applets. For better runtime efficiency, it positions some of these calls early in the
program’s execution (to pre-validate certain URL’s) and injects runtime security
state variables that avoid potentially expensive duplicate calls by tracking the
history of past calls.

Policy postok sanitizes strings entered into message box widgets. This can be
helpful in preventing cross-site scripting attacks, privacy violations, and buffer-
overflow exploits that affect older versions of the ActionScript VM. We enforced
the policy on the Posty AIR application, which allows users to post messages
to social networking sites such as Twitter, Jaiku, Tumblr, and Friendfeed.

Policy flimit enforces a resource bound that disallows the creation of more
than n files on the user’s machine. We enforced this policy on the FedEx Desktop
AIR application, which continuously monitors a user’s shipment status and sends
tracking information directly to his or her desktop. The IRM implements the
policy by injecting a counter into the untrusted code that tracks file creations.

3 Conclusion

We have presented an elegant Prolog implementation of a certifying IRM system
for ActionScript. The IRM system augments Adobe Flash’s sandboxing security
model with support for enforcing system-specific, consumer-specified, safety poli-
cies. The certifier uses model-checking to prove that each IRM instance satisfies
the original policy. Using Prolog has resulted in faster development and simpler
implementation due to code reusability from reversible predicates and succinct
program specifications from declarative programming. This results in a smaller
trusted computing base for the overall system.

Acknowledgments

The authors thank Peleus Uhley at Adobe Research for providing real-world
SWF applets of interest for testing and certification.

References

1. B. W. DeVries, G. Gupta, K. W. Hamlen, S. Moore, and M. Sridhar. ActionScript
bytecode verification with co-logic programming. In Proc. of the ACM SIGPLAN
Workshop on Prog. Languages and Analysis for Security (PLAS), 2009.

2. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Certified in-lined reference
monitoring on .NET. In Proc. of the ACM SIGPLAN Workshop on Prog. Languages
and Analysis for Security (PLAS), 2006.

3. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for enforce-
ment mechanisms. ACM Trans. Prog. Languages and Sys., 28(1):175–205, 2006.

4. F. B. Schneider. Enforceable security policies. ACM Trans. on Information and
System Security, 3:30–50, 2000.

5. L. Shapiro and E. Y. Sterling. The Art of PROLOG: Advanced Programming Tech-
niques. The MIT Press, 1994.

6. M. Sridhar and K. W. Hamlen. Model-checking in-lined reference monitors. In Proc.
Verification, Model-Checking and Abstract Interpretation, 2010. to appear.


