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a b s t r a c t

We develop a framework for assessing the quality of stereoscopic images that have been
afflicted by possibly asymmetric distortions. An intermediate image is generated which
when viewed stereoscopically is designed to have a perceived quality close to that of the
cyclopean image. We hypothesize that performing stereoscopic QA on the intermediate
image yields higher correlations with human subjective judgments. The experimental
results confirm the hypothesis and show that the proposed framework significantly
outperforms conventional 2D QA metrics when predicting the quality of stereoscopically
viewed images that may have been asymmetrically distorted.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Stereoscopic vision was first systematically studied by
Wheatstone [1] in the early 1800s and the production of
3D films can be dated back to 1903 [2]. Since then,
numerous 3D films have been produced, culminating in
the breakout success of Avatar in 2009, which went on to
become the highest-grossing film of all time. The success
of Avatar has since greatly inspired further efforts in 3D
film production and improved technologies and methods
for 3D content capture and display.

Indeed, the wave of 3D has not been limited to the
theater screen. In 2011, mobile phones supporting 3D
capture and viewing are now available, the number of
released 3D films has tripled compared to the number in
All rights reserved.
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2008 [2], and broadcast 3D content over the Internet is
becoming common [3]. With the release of 3D phones and
3D broadcast services, it is reasonable to believe that the
amount of 3D content that is delivered by wireless and
wireline will follow the trend of consumer video and
increase exponentially over the next few years. Given an
increasing clogged communication infrastructure, being
able to monitor and maintain the integrity of 3D video
streams is of high interest. However, our understanding of
the perceptual factors that determine the quality of stereo-
scopic viewed 3D videos remains limited.

The perceptual quality of a stereoscopically viewed 3D
image is the topic of this study, which can be very different
from the perceived quality of each 2D image in the stereo-
pair. The additional dimension of depth, along with
unwanted side effects induced by geometry or poor stereo-
graphy, leading to visual discomfort or fatigue, can affect the
experience of viewing a stereoscopic image in both positive
and negative ways. Conversely, a variety of factors need to be
considered when creating 3D content, in order to be able to
deliver a pleasant stereoscopic 3D viewing experience [4].
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A considerable amount of research has been conducted
on the complex relationship between visual comfort and
stereography. Such factor as accommodation-convergence
conflicts, the distribution of disparities, binocular mis-
matches, depth inconsistencies, perceptual and cognitive
inconsistencies, and the quality of the images, may all
affect the degree of visual comfort experienced when
viewing stereoscopic content. Lambooij et al. [5] and Tam
et al. [6] provide comprehensive reviews of these topics,
and some general rules, such as the zone of comfortable
viewing [7,8], have been proposed to predict potential
visual discomfort, and to guide the production of satisfac-
tory stereo content.

Regarding the visual quality of stereoscopic content,
while a number of studies on the perception of distorted
stereoscopic and 3D QA models have been conducted,
methods for predicting 3D image quality remain limited
in capability, and indeed none has been shown to outper-
form 2D QA models when predicting the quality of
stereoscopically viewed 3D images. For example, human
studies [9–11] on distorted stereoscopic content have
shown that the perceptual quality of stereo content cannot
be expressed as simply as the average quality of the left
view and the right views.

Research on 3D QA models can be divided into two
classes based on whether computed disparity information
is considered. The first group directly applies 2D QA model
to the 3D QA problem. The methods in [12,13] do not use
disparity information and apply 2D QA algorithms to the
left and right views independently, then combine (by
various means) the two scores into a predicted 3D quality
score. The models in this class are based on the hypothesis
that the quality of a binocularly viewed image may be
deduced from the quality of the 2D images without
accessing disparity or the third dimension. However, other
studies provide evidence that the quality of stereoscopi-
cally viewed images is generally different than a simple
combination of the qualities of the 2D viewed images. For
example, Meegan et al. [10] claimed that the binocular
sense of the quality of asymmetric MPEG-2 distorted
stereo images is approximately the average of the quality
of the two views, but that the perception of asymmetric
blur distorted stereo images is dominated by the higher
quality view.

The second class of models takes depth information
into account, typically by applying 2D quality assessment
(QA) algorithms on both stereo images and also on the
estimated disparity map [14–20]. A 3D quality score is
then generated using a combination of the various pre-
dicted 2D scores. The hypothesis underlying these QA
models is that 3D viewing quality is correlated with depth
quality. In this direction, Seuntiens [21] coined the term
viewing experience to describe the overall sensation of
viewing stereoscopic content. This author opines that the
quality of a stereoscopic viewing experience is chiefly
determined by three factors: image quality, depth quality,
and naturalness. However, it is difficult to assess the
quality of perceived depth or disparity, since ground truth
disparity or depth is generally not available. Such models
can only assess the depth quality using estimated disparity
maps (computed from a pristine stereopair and/or from a
distorted stereopair). Hence 3D QA performance may be
substantially affected by the accuracy of the disparity
estimation algorithm that is used. Moreover, benchmark
tests on stereo algorithms [22] utilize high-quality stereo
images, and the performance of stereo algorithms on
distorted stereo images is rarely considered.

3D QA models that utilize models of binocular percep-
tion are also available. Bensalma et al. [23] proposed a 3D
QA algorithm that measures the difference of binocular
energy between the reference and tested stereopairs, and
thus considers the potential influence of binocularity on
perceived 3D quality. However, in their experiment, they
only compared the performance of their model with Peak-
Singal-to-Noise-Ratio (PSNR) and the Structural SIMilarity
(SSIM) index, which perform significantly worse than high
performance 2D FR QA models, such as Multi-Scale Struc-
tural SIMilarity (MSSSIM) index [24] and visual information
fidelity (VIF) [25]. Thus, it is still questionable whether their
model can outperform high performance 2D FR QA models
in prediction the quality of stereoscopic 3D images. In
addition, they only provided performance numbers for JPEG
distortion stereo images. Wang et al. [26] proposed a 3D QA
model that is based on the suppression theory of binocular
fusion. The basic tenet of the suppression theory is that the
binocular visual signal is, in fact, a spatial patchwork of
monocular inputs. In other words, in any given spatial
region, vision is dominated by either one eye or the other.
Within this framework, it is conceivable that spatial detail
could be carried by one eye's signal, with the other eye
contributing only what is necessary for disparity computa-
tions. Unfortunately, as summarized in Howard and Rogers
[27], a vast body of the literature has rendered the suppres-
sion theory untenable. Thus, any QA metric based on the
suppression theory cannot be based what the human visual
system actually does. Ryu et al. [28] also proposed a 3D FR
QA model that utilized research on binocular perception. In
their model, the 3D quality score is a weighted summation
of the quality scores from the left and right views.

We take steps towards ameliorating some of these
shortfalls by introducing a 3D QA framework that is based
on biologically plausible visual processing. Our proposed
model is motivated by the results of studies on masking
and facilitation effects experienced when viewing stereo-
scopic images. In particular, we make a model of the
influence of binocular rivalry between the left-right views.
Evidence from a series of directed human studies is shown
to support the ideas embodied in this new 3D QA frame-
work. A practical 3D QA algorithm is derived and shown
to perform well on a large 3D image quality database
containing both symmetric and asymmetric distorted
stereopairs equipped with associated ground truth dis-
parity maps.

The reminder of this paper is organized as follows.
Section 2 describes related work on relevant aspects of 3D
perception which helps to motivate the models that are
used. The overall 3D QA framework is described in Section
3 including the derivation of a practical 3D QA algorithm
from the models. Section 4 describes the experiments
conducted on the 3D QA database and analyzes the model
performance. Finally, Section 5 concludes the paper with a
discussion of ideas for future work.
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2. Distortion perception on stereo images

In order to explain the ideas underline the 3D QA
modeling framework, we first review some relevant find-
ings on 3D distortion perception (Section 2.1). We then
focus on the highly relevant phenomenon of binocular
rivalry (Section 2.2) and how it affects the quality of
distorted stereo images.
Fig. 2. Illustration of binocular rivalry: Two different stimuli are pre-
sented to the left eye (an arrow) and the right eye (a star). The blue line
indicates that the stimulus is perceived by a human observer inside that
time interval. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
2.1. Masking/facilitation of distorted stereo images

Meegan et al. [10] founded that the task of conducting
subjective 3D QA on MPEG compressed video content can
be reduced to conducting 2D spatial QA, but on blur
distorted content conducting 2D QA is insufficient. Seun-
tiens et al. [9] later found similar behavior on JPEG
compression distorted images, reinforcing the idea that
the impact of 2D distortion on 3D content is highly
distortion-dependent.

Of course, the interaction of distortion with content can
greatly influence distortion visibility and annoyance level,
e.g., the well-known masking effect [30]. However, there
exists only a vanishingly small literature on depth/dispar-
ity masking, and no prior work on the effect of depth/
disparity content on distortion visibility. Thus, to gain
insight into possible depth masking or binocular effects
of stereo 3D distortions, a study wherein human subjects
were asked to identify local distortions embedded in
stereopairs was conducted [29]. Fig. 1 illustrates a local
distorted stimulus in a 2D image. By varying the position
of the local distortion on both views, symmetric and
asymmetric distorted stereopair were created. The study
design provided both subjective quality ratings and data
directly linked to subject performance (success rate and
response times when asked to find distortions). Four
diverse distortion types were studied: white noise, blur,
JPEG compression, and JP2K compression distortions.

Two main observations of use arose from this study.
First, we found that the perceived quality of a stereoscopic
image cannot be accurately characterized by the average
qualities of the left and right images for blur, JPEG, and
Fig. 1. Image with local white noise distortion. The boundary was
blended using a Gaussian blending window. When the image was
presented, the subject was requested to point out the distortion by
clicking the mouse cursor on the distortion.
JP2K distorted stereo images, but that the average may be
a good quality predictor for white noise distorted stereo
images. Our findings on JPEG distorted images were
different than those reported in prior work [9], but are
statistically significant. Second, we did not observe any
depth masking effect for stereoscopic images, i.e., masking
of distortion by depth activity. However, for stereoscopic
images distorted by blur, JPEG, or JP2K distortions, we
found the surprising opposite: that distortions co-located
with high depth variations are more easily found by the
human subjects, i.e., there exists a facilitation effect.

Given that the stereoscopically viewed quality of a
stereoscopic image cannot generally be accurately pre-
dicted by the average qualities of the two stereo images for
all distortion types; and that it depends on the type of
distortion, then it is sensible to incorporate this observa-
tion into a 3D stereoscopic QA model.
2.2. Binocular rivalry

Binocular rivalry is a perceptual effect that occurs when
the two eyes view mismatched images at the same retinal
location(s). Here, mismatch means that the stimuli received
by the two eyes are sufficiently different from each other to
cause match failures or to otherwise affect stereopercep-
tion. Failures of binocular matching trigger binocular rivalry,
which is experienced in various ways, i.e., a sense of failed
fusion or a bi-stable alternation between the left and right
eye images. Fig. 2 shows an example of binocular rivalry
when mismatched stimuli are present. In Fig. 2, in the
interval (t0, t1), the observer saw the stimulus from the left
eye (the arrow). Then, the stimulus from the right eye (the
star) dominated until time t2, after which the observer
again saw an arrow. This fluctuation continues when an
observer is experiencing binocular rivalry. The fluctuation
period may vary from a fraction of a second to several
seconds, and it may depend on the color, shape, and texture
of the stimuli. Binocular suppression [31] is a special case of
binocular rivalry. When binocular suppression1 is experi-
enced, no rivalrous fluctuations occur between the two
images when viewing the mismatched stereo stimulus.
Instead, only one of the images is seen while the other is
1 Binocular suppression does not equal to the suppression theory of
binocular fusion used by Wang's work [26].



Fig. 3. Illustration of binocular suppression: two different stimuli are
presented to the left eye (an arrow) and the right eye (a star). An observer
only sees the arrow when s/he experiences binocular suppression.

Fig. 4. The proposed framework for 3D quality assessment.
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hidden from conscious awareness. Fig. 3 shows an example
of binocular suppression.

Numerous studies have been conducted towards
understanding binocular rivalry/suppression. Currently,
three different models are prevalent: early suppression,
late (high-level) suppression, and a hybrid model includ-
ing both early and late processes. The early suppression
model [32–34,31,35] suggests that binocular rivalry is the
result of competition between the eyes. This model views
rivalry as an early visual process involving reciprocal
inhibition between the monocular channels.

Research that supports a high level suppression model
[36,37], on the other hand, argues that there is very little
correlation between neural activity and perceptual alter-
nations in area V1 of visual cortex. Moreover, there are
some early cortical neurons whose activity is anti-
correlated with binocular perception; this means that
these neurons fire more when acting on suppressed
stimuli. Hence, it has been claimed that the rivalry model
should be high-level. For example, Alais and Blake [38]
showed that grouping information may contribute to
binocular rivalry. Finally, since both early and late models
are supported by some evidence, more recent research
[39] suggests that a hybrid model may be the best
explanation. However, these ideas have not previously
been applied towards understanding how binocular rivalry
might be related to distortion type. Another important
finding is that binocular rivalry is a nearly independent
local process. A series of papers [40,41,38] discuss whether
the binocular rivalry zones function independently, and
their findings indicate that binocular rivalry is composed
of local processes.

The discussions in Section 2 provide basic concepts that
are used in the 3D QA framework that is introduced in the
next section.

3. A framework for quality assessment of distorted stereo
images

The logical goal of a 3D stereoscopic QA model is to
estimate the quality of the true cyclopean image formed
within an observer's mind when a stereo image pair is
stereoscopically presented. Of course, simulating the true
cyclopean image [42] associated with a given stereopair is
a daunting task, since it would require accounting for the
display geometry, the presumed fixation, vergence, and
accommodation. This task is herculean, and is com-
pounded by the fact that it is still unclear how a true
cyclopean image is formed! Towards a limited approxima-
tion of this goal, however, we seek to synthesize an
internal image having a quality level that is close to the
quality of the true cyclopean image. By way of notation,
henceforth we still use the term “cyclopean” image to
represent the synthesized image and cyclopean image to
mean the one formed in the observer's mind. By perform-
ing 3D quality assessment on the synthesized “cyclopean”
image we hope to produce accurate estimates of 3D quality
perceived on the true cyclopean image.

The concept underneath the model framework is
shown in Fig. 4. Given a stereo image, an estimated
disparity map is generated by a stereo algorithm, while
Gabor filter responses are generated on the stereo images
using a bandpass filter bank. A cyclopean image is synthe-
sized from the stereo image pair, the estimated disparity
map, and the Gabor filter responses. A cyclopean image is
created from the reference stereopair and another “cyclo-
pean” image is calculated from the test stereopair. Finally,
full reference 2D QA models are applied to the two
cyclopean images to predict 3D quality scores.

3.1. Disparity estimation

Research on stereo algorithm (disparity estimation)
design has been a topic of intense inquiry for decades.
However, there is no consensus on the type of stereo
matching algorithm that should be used in 3D QA other
than it be of low complexity. Further, there is scarce
literature on the performance of stereo algorithms operat-
ing under different distortion regimens. Therefore, we
deploy a variety of these efficient stereo depth-finding
algorithms differing considerably in their operational con-
stants along with the framework we described above to
assess perceived 3D quality.

In order gain insights into the influence of stereo
algorithms on the performance of 3D QA models, three
stereo algorithms were selected based on their complexity
and performance. In general, better stereo algorithms
(based on results on the Middlebury database [22]) have
higher computational complexity, and we balanced this
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tradeoff in the choice of stereo matching models. The first
algorithm has the lowest complexity. It uses a very simple
sum-of-absolute difference (SAD) luminance matching
functional without a smoothness constraint. The disparity
value of a pixel in a stereopair is uniquely computed by
minimizing the SAD between this pixel and its horizontal
shifted pixels in the other view with ties broken by
selecting the lower disparity solution. The second algo-
rithm [43] has the highest complexity among the three
models. This segmentation-based stereo algorithm deli-
vers highly competitive results on the Middlebury data-
base [22]. The third is a SSIM based stereo algorithm that
uses SSIM scores to choose the best matches. The disparity
map of a stereopair is generated by maximizing the SSIM
scores between the stereopair along the horizontal direc-
tion, again resolving ties by a minimum disparity criterion.

3.2. Gabor filter bank

As discussed earlier, when the two images of a stereo-
pair present different degrees or characteristics of distor-
tion, the subjective quality of the stereoscopically viewed
3D image generally cannot be predicted from the average
quality of the two individual images. Binocular rivalry is a
reasonable explanation for this observation. Levelt [34]
conducted a series of experiments that clearly demon-
strated that binocular rivalry/suppression was strongly
governed by low-level sensory factors. He used the term
stimulus strength, and noted that stimuli that were higher
in contrast, or had more contours, tend to dominate the
rivalry. Inspired by this result, we use the energy of Gabor
filter bank responses on the left and right images to model
stimulus strength and to simulate rivalrous selection of
“cyclopean” image quality.

The Gabor filter bank extracts features from the lumi-
nance and chrominance channels. These filters closely
model frequency-orientation decompositions in primary
visual cortex and capture energy in a highly localized
manner in both space and frequency [44]. A complex 2D
Gabor filter is defined

Gðx; y; sx; sy; ζx; ζy; θÞ

¼ 1
2πsxsy

e−ð1=2Þ½ðR1=sxÞ2þðR2=syÞ2 �eiðxζxþyζyÞ ð1Þ

where R1 ¼ x cos θ þ y sin θ, and R2 ¼ − sin θ þ y cos θ,
sx and sy are the standard deviations of an elliptical
Gaussian envelope along x and y axes, and ζx and ζy are
spatial frequencies, and θ orients the filter. The design of
the Gabor filter bank was based on the work conducted by
Su et al. [45]. The local energy is estimated by summing
Gabor filter magnitude responses over four orientations
(horizontal, both diagonals, and vertical (901) at a spatial
frequency of 3.67 cycles/degree, under the viewing model
described in Section 4.1.3.

Regarding the choice of the spatial center frequency,
Tyler [46] pointed out that the depth signal in human
vision is carried within a much smaller band-width than is
the luminance channel. In addition, Schor et al. [47] found
that the stereoacuity of human vision normally falls off
quickly when seeing stimuli dominated by spatial frequen-
cies lower than 2.4 cycles/degree. Based on their findings,
using filters having spatial center frequencies in the range
from 2.4 to 4 cycles/degree should produce responses to
which a human observer would be most sensitive.
3.3. Cyclopean image

A linear model was proposed by Levelt [34] to explain
the experience of binocular rivalry in perceived cyclopean
image when a stereo stimulus is presented. The model he
proposed is

wlEl þwrEr ¼ C ð2Þ
where El and Er are the stimuli to the left and the right
eye respectively, wl and wr are weighting coefficients for
the left and right eye that are used to describe the pro-
cess of binocular rivalry, where wl þwr ¼ 1, and C is the
cyclopean image.

Given that a foveally presented monocular stimulus
generally does not disappear spontaneously, he hypothe-
sized that the duration of a period of dominance period of
an eye does not depend on the strength of the stimulus
presented to that eye, but rather on the stimulus strength
presented to the other eye. Therefore, he concludes that
the experience of binocular rivalry is not correlated to the
absolute stimulus strength of each view, but is instead
related to the relative stimulus strengths of two views.
He also proposed a model whereby the weighting co-
efficients are positively correlated with the stimulus
strengths, which we embody in a biologically plausible
model whereby the local energies of the responses of a
bank of Gabor filters are used to weight the left and right
image stimuli. Since binocular rivalry is a local multiscale
phenomena (as discussed in Section 2.2), broadening
Levelts model in this manner is a natural way to simulate
a synthesized cyclopean image. In our model, as in Levelts;
the stereo views used to synthesize to the cyclopean view
are disparity-compensated then the “cyclopean” image is
mapped onto the coordinate system of the left view image.
Thus the localized linear model that we use to synthesize a
“cyclopean” image is

CIðx; yÞ ¼WLðx; yÞ � ILðx; yÞ
þWRððxþ dÞ; yÞ � IRððxþ dÞ; yÞ ð3Þ

where CI is the simulated “cyclopean” image, IL and IR are
the left and right images respectively, and d is a disparity
index that corresponds pixels from IL to those in IR. The
weights WL and WR are computed from the normalized
Gabor filter magnitude responses

WLðx; yÞ ¼
GELðx; yÞ

GELðx; yÞ þ GERððxþ dÞ; yÞ ð4Þ

WRðxþ d; yÞ ¼ GERððxþ dÞ; yÞ
GELðx; yÞ þ GERððxþ dÞ; yÞ ð5Þ

where GEL and GER are the summation of the convolution
responses of the left and right images to filters of the form
(1). Because of the normalization in (5), increased Gabor
energy of either (the left or right) stimulus suppresses the
contribution of the other view when there is binocular
rivalry. Finally, the task of 3D QA is performed by applying



Fig. 5. Top: stereo images with local white noise distortion. Bottom: cyclopean image synthesized by the proposed framework.

M.-J. Chen et al. / Signal Processing: Image Communication 28 (2013) 1143–11551148
a full reference 2D QA algorithm on the reference “cyclo-
pean” image and on the test “cyclopean” image.

Fig. 5 shows an example of a synthesized “cyclopean”
image. The stereopairs in Fig. 5 are locally distorted by
white noise patches at different locations. Since the white
noise distortion produces a elevated stimulus strength, the
synthesized cyclopean image is dominated by white noise
distortion, which approximates the experience when
stereoscopically viewing the stereopair.

4. Experiment and discussion

A human study was conducted to construct a subjective
data set to be used in assessing algorithms of this type.
This section describes the human study and experiments
performed using it.

4.1. Stereoscopic image quality dataset

A stereoscopic image quality dataset annotated with
associated subjective quality ratings was constructed using
the outcomes of a human study. The details of the dataset
and human study are described in the following.

4.1.1. Source images
The stereo images used for the study were captured by

members of the LIVE lab. They captured co-registered stereo
images and range data with a high-performance range
scanner (RIEGL VZ-400 [48]) with a Nikon D700 digital
camera mounted on the top. The stereo images pairs were
shot with a 65 mm camera base distances. Off-line correc-
tion was later applied to deal with translations occurring
during capture. The sizes of the images are 640�360 pixels.
The eight pristine images are shown in Fig. 6, while Fig. 7
shows the ground truth depth map of one of them. The
eight pairs of stereo images to be used in this study were
taken on the campus of The University of Texas at Austin
and a nearby park. The ground truth depth map of each
stereopair was transformed to a ground truth disparity map
based on the captured model described above.
4.1.2. Participants
Six females and twenty-seven males participated in the

experiment all aged between 22 and 42 years. A Randot
stereo test was used to pre-screen participants for normal
stereo vision. Each subject reported normal or corrected
normal vision and no acuity or color test was deemed
necessary.
4.1.3. Display setting
The study was conducted using a Panasonic 58 in. 3D

TV with active shutter glasses. The viewing distance was
set at 116 in., which is four times the screen height.
4.1.4. Stimuli
Both symmetric and asymmetric distortions were gen-

erated. The distortions that were simulated include com-
pression using the JPEG and JP2K compression standards,
additive white Gaussian noise, Gaussian blur and a fast-
fading model based on the Rayleigh fading channel. The
degradation of stimuli was varied by control parameters
within pre-defined ranges; the control parameters are
reported in Table 1. The ranges of control parameters were
decided beforehand to ensure that the distortions varied
from almost invisible to severely distorted with good
overall perceptual separation. For each distortion type,
every reference stereopair was distorted to create three
symmetric distorted stereopairs and six asymmetric dis-
torted stereopairs. Thus, a total of 360 distorted stereo-
pairs were created.



Fig. 6. The eight reference images (only left views are shown) used in the experiment.

Fig. 7. A stereo image (free-fuse the left and right images) and the ground truth disparity maps.
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Table 1
Range of parameter values for distortion simulation.

Distortion Control parameter Range

WN Variance of Gaussian [0.001 0.5]
Blur Variance of Gaussian [0.5 30]
JP2K Bit-rate [0.04 0.5]
JPEG Quality parameter [8 50]
FF Channel signal-to-noise ratio [15 30]

Fig. 8. Illustration with 2D image, the study was conducted with 3D
stimuli. The subject was requested to give a overall 3D viewing experi-
ence when a 3D stimulus is shown.

Table 2
SROCC scores obtained by averaging left and right QA scores (center
column) and using the 3D “cyclopean” model (right column).

Algorithm 2D baseline “Cyclopean model”

PSNR 0.672 0.762
SSIM 0.796 0.856
MS-SSIM 0.78 0.901
VIF 0.822 0.864

Table 3
LCC scores obtained by averaging left and right QA scores (center column)
and using the 3D “cyclopean” model (right column).

Algorithm 2D baseline “Cyclopean model”

PSNR 0.687 0.783
SSIM 0.804 0.867
MS-SSIM 0.784 0.908
VIF 0.844 0.872
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4.1.5. Procedure
We followed the recommendation for a single stimulus

continuous quality scale (SSCQS) [49] to collect the 3D
subjective image quality of each distorted stereoscopic
image. The instructions given to each participant was: give
an overall rating based on your viewing experience when
viewing the stereoscopic stimuli. The ratings were obtained
on a continuous scale labeled by equally spaced adjective
terms: bad, poor, fair, good, and excellent, i.e. a Liekart scale.
The graphic user Interface (GUI) used is shown in Fig. 8. The
experiment was divided into two sessions; each held to less
than 30 min to minimize subject fatigue. A training session
using six stimuli was conducted before the beginning of
each study to verify that the participants were comfortable
with the 3D display and to help familiarize them with the
user interface used in the task. The training content was
different from the images in the study and was impaired
using the same distortions. Questions about the experiment
were answered during the training session and a short post-
interview was conducted to determine whether the partici-
pant experienced visual discomfort during the experiment.
Only two participants reported any visual discomfort.
Table 4
RMSE values obtained by averaging left and right QA scores (center
column) and using the 3D “cyclopean” model (right column).

Algorithm 2D baseline “Cyclopean model”

PSNR 17.67 15.09
SSIM 14.43 12.11
MS-SSIM 15.09 10.2
VIF 13.03 11.89
4.1.6. Subjective quality scores
Difference opinion scores (DOS) were obtaining by

subtracting the ratings that the subject gave each refer-
ence stimuli from the ratings that the subjective gave to
the corresponding test distorted stimuli. The remaining
subjective scores were then normalized to Z-scores, and
then averaged across subjects to produce difference mean
opinion scores (DMOS).
4.2. Performance against subjective quality ratings

We studied four widely-used full-reference 2D QA
metrics (PSNR, SSIM [50], VIF [51] [43], and MS-SSIM
candidate 2D QA methods to be used within the 3D QA
framework. This is the final stage of predicting the quality
of the cyclopean image. We used Spearman's rank ordered
correlation coefficient (SROCC), the linear (Pearson's) cor-
relation coefficient (LCC) and the root-mean-squared error
(RMSE) to measure the performance of the 3D QA models
thus devised. LCC and RMSE were computed after logistic
regression through a non-linearity which is described in
[25]. Higher SROCC and LCC values indicate good correla-
tion (monotonicity and accuracy) with human quality
judgments, while lower values of RMSE indicate better
performance.

4.2.1. Performance using ground truth disparity map
We begin the performance analysis by using ground

truth depth, which minimizes the effects of flaws in the
stereo matching algorithms. The performance numbers are
shown in Tables 2–4. Also included are the performance
numbers arrived at using the same 2D FR QA algorithms,
simply applied to the left and right views and the QA
scores averaged. The “cyclopean” QA algorithm does sig-
nificantly better than the 2D baseline QA algorithms on
the mixed data set containing both symmetric and asym-
metric distorted data.
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It is clear from Tables 2 to 4 that MS-SSIM delivers the
best performance among the four 2D QA algorithms when
embedded in the “cyclopean” model. Fig. 9 breaks down
the performance of the “cyclopean” model using MS-SSIM.
Clearly, the QA performance is improved on blur and JP2K
as might be expected, since strong binocular rivalry exists
in asymmetric blur and JP2K distorted stereo images. The
improvement in QA performance for FF distorted images is
also significant for similar reasons. For stereo images
distorted by white noise, there is no significant difference
between the performance of averaged 2D QA and the
“cyclopean” mode since binocular rivalry does not occur
in white noise distorted stereo images [29]. For JPEG
compression distorted stereo images, the performance
numbers of the averaged 2D QA and the “cyclopean”
model are very close. These results strongly suggest that
Fig. 9. SROCC values using MS-SSIM, b
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Fig. 10. Plot of predicted objective scores versus DMOS and predicting errors. Top
errors of MS-SSIM “cyclopean” framework. Bottom left: predicted by MS-SSIM 2
binocular rivalry is an important ingredient in subjective
stereoscopic QA, and our “cyclopean” framework success-
fully captures and utilizes binocular rivalry to predict
subjective 3D quality. Fig. 10 plots the predicted quality
scores using MS-SSIM (after logistic regression) versus
DMOS. Predicted scores from the proposed “cyclopean”
framework are shown on top-left, while the bottom-left
plot shows the scores from the 2D baseline. Clearly, the
predicted scores attained using the “cyclopean” frame-
work are better than the scores predicted by the 2D
baseline. Moreover, the predicting errors which are mea-
sured by root mean square error (RMSE) of the “cyclopean”
framework are lower than the predicting errors of the 2D
baseline.

To obtain deeper insights into how the performance of
the “cyclopean” 3D QAmodel is improved by accounting for
roken down by distortion type.
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binocular rivalry, its performance on the separated sym-
metric and asymmetric distorted stereopairs is reported in
Tables 5–7. The performance numbers in Tables 5–7 indi-
cate that the “cyclopean” model did not boost performance
on symmetric distorted stereoscopic images. However,
performance was greatly enhanced on the asymmetric
distorted stereopairs. Furthermore, Tables 5–7 indicate that
the task of predicting the quality of asymmetric distorted
stereopairs is more difficult than that of predicting the
quality of symmetric distorted data.
4.2.2. Influence of stereo matching algorithms
The preceding discussion describing the stereoscopic

“cyclopean” QA model assumed that highly accurate
ground truth depth values are available. Next, we study
stereoscopic QA performance when estimated depth is
used as computed by stereo algorithms.

Currently, stereo matching algorithms are generally
tested on undistorted stereo images and compared using
a simple measure (bad-pixel rate) [22]. The bad-pixel rate
Table 5
SROCC scores relative to human subjective scores. Obtained using
averaged left-right QA scores (2D baseline) and the “cyclopean” model
on symmetric and asymmetric distorted stereopairs.

Symmetric Asymmetric

2D
baseline

“Cyclopean”
model

2D
baseline

“Cyclopean”
model

PSNR 0.781 0.819 0.596 0.698
SSIM 0.826 0.85 0.742 0.827
MSSSIM 0.912 0.929 0.687 0.854
VIF 0.916 0.902 0.737 0.804

Table 6
LCC scores relative to human subjective scores obtained using averaged
left-right QA scores (2D baseline) and the “cyclopean” model on sym-
metric and asymmetric distorted stereopairs.

Symmetric Asymmetric

2D
baseline

“Cyclopean”
model

2D
baseline

“Cyclopean”
model

PSNR 0.791 0.825 0.625 0.737
SSIM 0.845 0.882 0.767 0.850
MSSSIM 0.924 0.937 0.709 0.879
VIF 0.924 0.906 0.772 0.822

Table 7
Fitting errors measured by RMSE obtained using averaged left-right QA
scores (2D baseline) and the “cyclopean” model on symmetric and
asymmetric distorted stereopairs.

Symmetric Asymmetric

2D
baseline

“Cyclopean”
model

2D
baseline

“Cyclopean”
model

PSNR 16.42 15.15 16.83 14.58
SSIM 14.35 12.65 13.85 11.37
MSSSIM 10.23 9.37 15.20 10.29
VIF 10.23 11.35 13.69 12.27
(BR) is defined as

BR¼ 1
N

∑
ðx;yÞ

dCðx; yÞ−dT ðx; yÞ 4δd
�
�

�
� ð6Þ

where δd is a disparity error tolerance, dC is the computed
disparity map, and dT is a ground truth depth map. We use
δd ¼ 1 as suggested by the authors of [22].

However, we believe that such metrics provide little or
no information regarding perceived 3D image quality.
Indeed, there have been no studies conducted to deter-
mine the degree to which the quality of an estimated
disparity map is correlated with subjective judgements of
depth. It is likewise unclear whether distortions of stereo-
pairs affects perceived depth quality [11,21].

The bad-pixel rates of the three selected stereo algo-
rithms against ground truth are reported in Table 8.
Clearly, all perform equally poorly when applied to dis-
torted images. This lack of robustness is not unexpected
owing to the ill-posedness of the stereo problem, and since
none of these (or any other) stereo algorithms has been
designed to excel in the presence of distortions. For
example, as shown in Fig. 11, white noise confuses the
SSIM-based stereo matching algorithm, yet a human
observer easily fuses the stereopair. In addition, the
ground truth maps that we used were obtained using a
high-resolution laser range scanner. The ground truth
maps have relatively fine disparity resolution over both
smooth and depth-textured regions.

Next, we discuss the influence of poor disparity estima-
tion performance on 3D stereo QA. The performance of the
“cyclopean” model using ground truth disparity, estimated
disparity, and no disparity information are reported in
Table 9. Table 9 shows that there is no significant differ-
ence in the performance attained using the ground truth
and estimated disparities, although the performance of the
very simple SAD-based stereo algorithm is slightly lower
than the other two stereo algorithms. All three signifi-
cantly outperform the no-disparity case indicating that
estimated disparities provide useful information when
predicting the quality of the stereo 3D images in the
database. These results suggest that we should not use
bad-pixel rate to evaluate stereo algorithms in the context
of 3D image quality assessment algorithm design. Note
that the depth signal in human vision occupies a much
narrower bandwidths than the luminance spatial channel
[52–54], suggesting that a low-resolution disparity map
maybe adequate for the task of 3D quality assessment.

4.2.3. Comparison with existing 3D QA models
Gorley and Holliman [13] proposed a PSNR-based 3D

stereo QA model that does not include depth. Benoit et al.
[15] proposed a SSIM-based stereo QA model operating on
both stereopairs and disparity maps. You et al. [19] applied
Table 8
Mean bad pixel rate value on 360 distorted stereopairs with standard
deviation (inside the bracket) for three stereo algorithms.

SAD SSIM Klaus

Bad-pixel rate 79.8% (9.24) 79.52% (10.7) 78.04% (11.83)



Fig. 11. Depth estimation using SSIM-based stereo algorithm on noised distorted stereo pairs. Free-fuse the noisy stereo image to see a 3D image.

Table 9
SROCC, LCC, and RMSE relative to human subjective scores attained by
“cyclopean” model using disparity maps computed using different stereo
algorithms.

Stereo algorithm SROCC LCC RMSE

Ground truth 0.901 0.907 10.2
SAD 0.876 0.885 11.29
SSIM 0.893 0.901 10.58
Klaus 0.890 0.896 10.80
No depth information 0.817 0.824 13.73

Table 10
SROCC, LCC, and RMSE relative to human subjective scores attained by
several 3D QA models using SSIM-based stereo algorithm.

Algorithm SROCC LCC RMSE

Proposed (MS-SSIM) 0.893 0.901 10.58
Baseline (MS-SSIM) 0.780 0.784 15.09
Benoit [15] 0.728 0.745 16.2
You [19] 0.784 0.797 14.66
Hewage [17] 0.496 0.55 20.29
Gorley [13] 0.158 0.511 20.88
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a variety of 2D QA models on stereopairs and disparity
map and tried a number of ways to combine the predicted
quality scores from stereopairs and disparity maps into
predicted quality scores. Their best result is also SSIM-
based. Hewage and Martini [17] proposed a PSNR-based
reduced-reference stereo quality model utilizing disparity.
In our simulations, since some of these algorithms require
estimated disparity maps from both reference and test
stereopairs, we used the SSIM-based stereo algorithm to
create disparity maps.

Table 10 shows the performances of these 3D QA
algorithms as compared with the “cyclopean” model. The
“cyclopean” model using MS-SSIM delivers the highest
performance, followed by the model proposed by You
et al., which yields no significant difference relative to
the performance of left-right averaged 2D QA using MS-
SSIM. The performances of the other three algorithms are
lower than this 2D baseline. This is another powerful
demonstration of the importance of accounting for bino-
cular rivalry when conducting stereoscopic QA.

4.2.4. Testing with other 3D image dataset
To the best of our knowledge, the number of publicly

available stereo 3D image quality dataset is very limited
[15,18,55]. Among these three datasets, only the MICT stereo
image database [18] includes asymmetrically distorted stereo
images. However, the MICT database is comprised only of
distorted stereo images and the ground truth disparity maps
are not available. The MICT stereo image database has 480
JPEG distorted stereo images and 10 pristine stereo images.
The distorted stereo images include both asymmetrically
and symmetrically JPEG distorted stereo images. However,
a double stimulus impairment scale (DSIS) protocol and a
discrete scale were used in the subjective study. Subjects
were asked to assess the annoyance they experienced
when viewing each distorted stereo image pair against the
simultaneously displayed reference image by choosing a
rating among the following five options: 5¼ imperceptible,
4¼perceptible but not annoying, 3¼slightly annoying, 2¼
annoying and 1¼very annoying. The display they used was a
very small (10-in.) auto-stereoscopic display, and the viewing
distance was not provided.

The performance numbers (SROCC, LCC, and MSE) of 2D
and 3D QA models on the MICT database are shown in
Table 11. From Table 11, it is clear that the 2D FR model
MS-SSIM delivers the best performance among all the
compared QA models on the MICT dataset. Neither our
cyclopean model nor other 3D QA models outperforms 2D



Table 11
Performance numbers tested against MICT database. Italicized algorithms
are 2D IQA algorithm, others are 3D IQA algorithms.

Algorithm SROCC LCC MSE

2D PSNR 0.586 0.554 0.971
2D SSIM 0.846 0.862 0.591
2D MS-SSIM 0.935 0.935 0.415
Benoit 0.902 0.910 0.483
You 0.857 0.864 0.586
Gorley 0.065 −0.022 1.166
Hewage 0.625 0.623 0.912
Cyclopean MS-SSIM 0.862 0.864 0.587
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MS-SSIM on the MICT dataset. The discrepancy between
the experimental results of our dataset and the results of
the MICT dataset may be caused by the poor performance
of disparity estimation algorithm or on the design or
environment of the human study. However, further clar-
ification is not feasible unless the ground truth disparity
maps of the MICT dataset become available.

5. Conclusion and future work

We presented a new framework for conducting automatic
objective 3D QA that delivers highly competitive performance,
with a clear advantage when left-right distortion asymmetries
are present. The design of the framework is motivated by
studies on the perception of distorted stereoscopic images,
and recent theories of binocular rivalry. The “cyclopean” 3D
QAmodel that we derived was tested on the LIVE Asymmetric
3D Image Quality Database, and found to significantly outper-
form conventional 2D QA models and well-known 3D QA
models. The impact of the stereo algorithm used to conduct
3D QA was also discussed. We also found that a low-
complexity SSIM-based stereo algorithm performs quite well
for estimating disparity in the “cyclopean” algorithm in the
sense that a high level of 3D QA performance is maintained.

An important contribution of this work is the demon-
stration that accounting for binocular rivalry can greatly
improve the performance of 3D QA models. Indeed, most of
the advantage conveyed by the “cyclopean” model was
observed on asymmetric distorted stereopairs. The frame-
work can, therefore, ostensibly be used to evaluate the
quality of stereo content that has been compressed using a
mixed resolution coding technique [56,57]. Compressed
stereo content that is transmitted over the wireless Internet
may be subjected to other asymmetric distortions as well.

To further advance the performance of current 3D QA
models, we think that the effect of depth masking and
depth quality needs to be further studied and addressed.
Regarding depth masking, our prior work [29] revealed no
depth masking effect when viewing distorted stereopairs.
However, we do not regard the results of our prior study to
be universal and there remain other distortions to be
studied. Furthermore, while we did not find depth masking
of distortions, we did find evidence of facilitation which
may prove relevant to 3D QA.

Regarding the role of computed disparity, prior models
utilizing disparity maps derived from reference and test
stereopairs have generally failed to deliver better QA
performance than 2D QA models on the individual stereo
images. Of course, the disparity cue is not the only one
used by the human visual system to perceive depth. For
example, monocular cues such as occlusion, relative size,
texture gradient, perspective distortion, lighting, shading,
and motion parallax [58] all affect the perception of depth.
It is not yet clear how the brain integrates all these cues to
produce an overall sensation of depth [59].

The influences of distortions on perceived depth quality
also remain an open question. While Seuntiens et al. [9]
claimed that JPEG encoding has no effect on perceived
depth, other recent research suggested that perceived
depth quality is affected by both blur and white noise
distortion, although the influence of distortion on per-
ceived depth is less than the influence on perceived image
quality [60]. Another recent study showed that, when
viewing stereoscopic videos compressed by an H.264/
AVC encoder using a range of QP values, perceived depth
quality remained constant for some subjects, but varied
with perceived image quality [61] for others. Subject
agreement on perceived depth quality was much lower
than on perceived image quality. Clearly, more research is
merited on how perceived depth quality is affected by
different distortion types, and on what kinds of depth cues
are most strongly correlated with the reduced quality of
depth perception when viewing distorted stereopairs.
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