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Chapter 1

Introduction

1.1 General introduction to the subject area

Welcome to the world of statistics! This is a discipline with unparalleled applicability
whose use can be found in a wide range of areas such as finance, business, management,
economics and other fields in the social sciences. ST104a Statistics 1 provides you
with the opportunity to grasp the fundamentals of the subject and will equip you with
the vital quantitative skills and powers of analysis which are highly sought-after by
employers in many sectors.

The material in this course is necessary as preparation for other courses you may study
later on as part of your degree or diploma; indeed, in many cases statistics is a
compulsory course on our degrees.

In particular, it has links with SC1021 Principles of sociology and MN3141
Principles of marketing.

You may also choose to take ST104b Statistics 2 or MT2076 Management
mathematics so that you can study the concepts introduced here in greater
depth. A natural continuation of this course and ST104b Statistics 2 are the
advanced courses ST3133 Advanced statistics: distribution theory and
ST3134 Advanced statistics: statistical inference.

You may wish to develop your economic statistics by taking EC2020 Elements of
econometrics.

You may want to build on your interests in social research and take SC2145
Social research methods.

You will also find these techniques valuable as a geographer by taking this course
with GY1148 Methods of geographical analysis.

So the reach of statistics is considerable. Hence it rightly forms a core component of the
EMFSS programmes since all of the courses mentioned above require an understanding
of the concepts and techniques introduced in ST104a Statistics 1. The analytical
skills which you will develop on this course will thus stand you in very good stead both
for your future studies and beyond into the real world of work.

1.2 Aims of the course

The emphasis of this 100 half course is on the application of statistical methods in
management, economics and the social sciences. Attention will focus on the
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1 1. Introduction

interpretation of tables and results and the appropriate way to approach statistical
problems. Treatment is at an elementary mathematical level. Ideas of probability,
inference and multivariate analysis are introduced and are further developed in the half
course ST104b Statistics 2.

1.3 Learning outcomes

At the end of the course, and having completed the essential reading and activities, you
should:

be familiar with the key ideas of statistics that are accessible to a student with a
moderate mathematical competence

be able to routinely apply a variety of methods for explaining, summarising and
presenting data and interpreting results clearly using appropriate diagrams, titles
and labels when required

be able to summarise the ideas of randomness and variability, and the way in which
these link to probability theory to allow the systematic and logical collection of
statistical techniques of great practical importance in many applied areas

have a grounding in probability theory and some grasp of the most common
statistical methods

be able to perform inference to test the significance of common measures such as
means and proportions and conduct chi-squared tests of contingency tables

be able to use simple linear regression and correlation analysis and know when it is
appropriate to do so.

1.4 Syllabus

This course introduces some of the basic ideas of theoretical statistics, emphasising the
applications of these methods and the interpretation of tables and results.

Basic background : Elementary summation signs, elementary probability, Venn and
tree diagrams.

Data collection : Elements of survey design, the stages of a survey, ideas of
randomness, observation and experiment.

Data presentation and analysis : Descriptive statistics, measures of location and
dispersion, pictorial and graphical representation.

The normal distribution : Estimation of mean, proportion, standard deviation,
confidence intervals and hypothesis testing. Ideas of testing for differences between
means and proportions. The use of Student’s t.

Goodness-of-fit tests : The chi-squared distribution and contingency tables.

Regression and correlation : An introduction to the ideas of regression and
correlation, least squares, estimation of a, b and r, scatter diagrams.
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11.5. Essential reading list and other learning resources

1.5 Essential reading list and other learning
resources

Numerous titles are available covering the topics frequently covered in foundation
statistics courses such as ST104a Statistics 1. Due to the doubtless heterogeneity
among students taking this course, some may find one author’s style easier to
comprehend than another’s.

That said, the recommended textbook for this course is:

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060].

This textbook contains many additional examples, complete with solutions to selected
even-numbered exercises. To ensure you fully understand each topic, you should
attempt these, and check your answers against the solutions provided. In addition, the
textbook introduces all the topics in an alternative style to this subject guide so if you
have difficulty following a specific point, you may wish to consult the textbook for
further clarification. A non-exhaustive list of other suggested textbooks is outlined
below under ‘Further reading’.

Statistical tables will be provided in the examination for ST104a Statistics 1, hence
you should also purchase:

Lindley, D.V. and W.F. Scott New Cambridge Statistical Tables. (Cambridge:
Cambridge University Press, 1995) second edition [ISBN 9780521484855].

These tables form the basis of the tables which are provided for you to use in the
examination. It is essential that you familiarise yourself with these tables in advance
rather than those printed in your textbook, as the method of navigating through the
tables is not uniform across all publications. In order to prepare yourself, you should
concentrate in particular on using Tables 4, 5, 7, 8, 9 and 10 of the New Cambridge
Statistical Tables. These relate to the (standard) normal, Student’s t and chi-squared
distributions.

Detailed reading references in this subject guide refer to the editions of the set
textbooks listed above. New editions may have been published by the time you study
this course. You can use a more recent edition of any of the books; use the detailed
chapter and section headings and the index to identify relevant readings. Also check the
virtual learning environment (VLE) regularly for updated guidance on readings.

1.5.1 Further reading

As previously mentioned, numerous alternative textbooks are available to purchase,
although references in this subject guide will be to the eighth edition of Newbold et al.
If you do decide to purchase a different/additional textbook, do ensure it covers all the
syllabus topics (listed earlier in this introductory chapter). A word of caution at this
point: statistical notation can differ between textbooks so be prepared for this.

Please note that as long as you read the Essential reading you are then free to read
around the subject area in any textbook, paper or online resource. You will need to

3



1 1. Introduction

support your learning by reading as widely as possible and by thinking about how these
principles apply in the real world. To help you read extensively, you have free access to
the VLE and University of London Online Library (see below). Other useful textbooks
for this course include:

Aczel, A.D. Complete Business Statistics. (London: McGraw-Hill Higher
Education, 2009) seventh edition [ISBN 9780071287531].

Anderson, D.R., D.J. Sweeney, T.A. Williams, J. Freeman and E. Shoesmith
Statistics for Business and Economics. (South-Western Cengage Learning, 2010)
eleventh edition [ISBN 9780324783247].

Lind, D.A., W.G. Marchal and S.A. Wathen Statistical Techniques in Business and
Economics. (Boston: McGraw-Hill Higher Education, 2009) fourteenth edition
[ISBN 9780073401768].

Wonnacott, T.H. and R.J. Wonnacott Introductory Statistics for Business and
Economics. (Chichester: John Wiley & Sons, 1990) fourth edition [ISBN
9780471615170].

Chapters 9 and 10 of the subject guide concentrate on the concepts of surveys and
experimentation. You will find these topics particularly useful if you are studying
SC1021 Principles of sociology or MN3141 Principles of marketing. For those
who wish to research these areas in more detail, we recommend the following:

Shipman, M. The Limitations of Social Research. (London: Longman, 1997) fourth
edition [ISBN 9780582311039].

In addition, Social Trends (a compendium of UK official statistics and surveys) is
useful when you work on Chapter 9.

Office for National Statistics Social Trends. (Basingstoke: Palgrave Macmillan,
2009) [ISBN 9780230220508].

If you feel that you need to refresh your basic mathematics you will need for the
course and which you will cover in Chapter 1, we recommend:

Anthony, M. and N. Biggs Mathematics for Economics and Finance. (Cambridge:
Cambridge University Press, 1996) [ISBN 9780521559133] Chapters 1, 2 and 7.

1.6 How to study statistics

1.6.1 Mathematical background

To study and understand statistics you will need some familiarity with abstract
mathematical concepts combined with the common sense to see how to use these ideas
in real-life applications. The concepts needed for probability and statistical inference are
impossible to absorb by just reading them in a book – although you may find you need
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to do this more than once! You need to read, then think a little, then try some
problems, then read and think some more. This process should be repeated until you
find the problems easy to do. Reading without practising with the examples and
activities set in this subject guide will be of little help.

You will also need to be able to use high-school arithmetic and understand some basic
algebraic ideas. These are very important. Starting with them should help you feel
comfortable with this course from the outset and we introduce you to these ideas in
Chapter 2.

1.6.2 Calculators and computers

A calculator may be used when answering questions on the examination paper for
ST104a Statistics 1 and it must comply in all respects with the specification given in
the Regulations. You should also refer to the Admission Notice you will receive when
entering the examination and the ‘notice on permitted materials’.

The most important thing is that you should accustom yourself to using your chosen
calculator and feel comfortable with it. Specifically, calculators must:

be hand-held, compact and portable

be quiet in operation

have no external wires

be non-programmable

not be capable of receiving, storing or displaying user-supplied non-numerical data.

If you are aiming to carry out serious statistical analysis (which is beyond the level of
this course) you will probably want to use some statistical software package such as
Minitab or SPSS. It is not necessary for this course to have such software available, but
if you do have access to it you could profit from using it.

1.7 How to use the subject guide

1.7.1 Using the subject guide and the textbook

This subject guide has been structured such that it is tailored to the specific
requirements of the examinable material. It is ‘written to the course’, unlike textbooks
which typically include additional material which will not be examinable. Therefore, the
subject guide should act as your principal resource and you should refer to the specific
sections in Newbold et al. as indicated.

A key benefit of the textbook is that it contains a wealth of further examples and
exercises which can be used to check and consolidate your understanding. As previously
mentioned, solutions to selected even-numbered exercises are provided in the textbook
enabling you to check your answers.
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1.7.2 Online study resources

In addition to the subject guide and the Essential reading, it is vitally important that
you take advantage of the study resources that are available online for this course,
including the VLE and the Online Library.

You can access the VLE, Online library and your University of London email account
via the Student Portal: http://my.londoninternational.ac.uk

You should have received your login details for the Student Portal with your official
offer, which was emailed to the address that you gave on your application form. You
have probably already logged in to the Student Portal in order to register. As soon as
you registered, you will automatically have been granted access to the VLE, Online
Library and your fully functioning University of London email account.

If you have forgotten these login details, please click on the ‘Forgotten your password’
link on the login page.

The Student Portal forms an important part of your study experience with the
University of London and should therefore be accessed regularly.

1.7.3 Virtual learning environment

The VLE, which complements this subject guide, has been designed to enhance your
learning experience, providing additional support and a sense of community. In addition
to making printed materials more accessible, the VLE provides an open space for you to
discuss interests and to seek support from other students, working collaboratively to
solve problems and discuss subject material. In a few cases, such discussions are driven
and moderated by an academic who offers a form of feedback on all discussions. In
other cases, video material, such as audio-visual tutorials, are available. These will
typically focus on taking you through difficult concepts in the subject guide. For
quantitative courses, such as Mathematics and Statistics, fully worked-through solutions
of practice examination questions are available. For some qualitative courses, academic
interviews and debates will provide you with advice on approaching the subject and
examination questions, and will show you how to build an argument effectively.

Past examination papers and Examiners’ commentaries from the past three years are
available to download which provide advice on how each examination question might
best be answered. Self-testing activities allow you to test your knowledge and recall of
the academic content of various courses and where possible sessions from previous years’
Study Weekends have been recorded. Finally, a section of the VLE has been dedicated
to providing you with expert advice on preparing for examinations and developing
digital literacy skills.

Unless otherwise stated, all websites in this subject guide were accessed in January
2014. We cannot guarantee, however, that they will stay current and you may need to
perform an internet search to find the relevant pages.
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1.7.4 Making use of the Online Library

The Online Library contains a huge array of journal articles and other resources to help
you read widely and extensively.

To access the majority of resources via the Online Library you will either need to use
your University of London Student Portal login details, or you will be required to
register and use an Athens login: http://tinyurl.com/ollathens

The easiest way to locate relevant content and journal articles in the Online Library is
to use the Summon search engine.

If you are having trouble finding an article listed on the reading list, try removing any
punctuation from the title, such as single quotation marks, question marks and colons.

For further advice, please see the online help pages:
www.external.shl.lon.ac.uk/summon/about.php

1.7.5 Structure of the subject guide

Statistics is fundamentally a cumulative discipline – that is, the following 11
chapters are not a series of self-contained units, rather they build on each
other sequentially. As such, you are strongly advised to follow the subject guide in
chapter order, understanding the material in the early chapters before embarking on
later material. There is little point in rushing past material which you have only
partially understood in order to reach the later chapters.

1.7.6 Time management

About one-third of your private study time should be spent reading and the other
two-thirds doing problems. (Note the emphasis on practising problems!) We normally
recommend that if you are intending to study ST104a Statistics 1 over the course of
one academic year, then you would need to devote a minimum of seven hours per week
to your studies.

To help your time management, we have converted the chapters and topics of this
course into approximate weeks to devote to each subject if you were, for example,
spending 20 weeks on ST104a Statistics 1. What you should gain from the following
breakdown is an indication of the relative amounts of time to be spent on each topic.
Bear in mind, however, that some of you may not need to spend as much time on
Chapter 2 if the concepts and techniques of basic arithmetic and algebra (in particular
the use of summation signs, the equation of a straight line, and the idea of a uniform
distribution) are familiar to you.
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Chapter 2 – 2 weeks
Chapter 3 – 1 week
Chapter 4 – 2 weeks
Chapter 5 – 1 week
Chapter 6 – 1 week
Chapter 7 – 1 week
Chapter 8 – 1 week
Chapter 9 – 1 week
Chapter 10 – 2 weeks
Chapter 11 – 1 week
Chapter 12 – 2 weeks
Revision(!) – 5 weeks

1.7.7 Recommendations for working through the chapters

The following procedure is recommended for each chapter:

1. Carefully read the aims of the chapter and the learning outcomes.

2. Read the introduction, noting carefully the sections of Newbold et al. to which you
are referred.

3. Now work through each section of the chapter making sure you can understand the
examples given. In parallel, watch the accompanying video tutorials for each
section.

4. Review the intended learning outcomes carefully, almost as a checklist. Do you
think you have achieved your targets?

5. Attempt the learning activities which appear near the end of each chapter.

6. Attempt the chapter’s self-test quizzes on the VLE.

7. Attempt the sample examination questions given at the end of the chapter. You
can review the video solutions, but do so after attempting the questions yourself!

8. When you have finished the material in the chapter, try the suggested questions
from Newbold et al. You can treat these as additional activities. This time, though,
you will have to think a little about which part of the new material you have learnt
is appropriate to each question.

9. If you have problems at this point, go back to the subject guide and work through
the area you find difficult again. Don’t worry – you will improve your
understanding to the point where you can work confidently through the problems.

10. Once you have completed your work on the whole subject guide, you will be ready
for examination revision. Start with work on the Sample examination paper which
you will find at the back of the subject guide.

The last few steps are most important. It is easy to think that you have understood the
text after reading it, but working through problems is the crucial test of
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understanding. Problem-solving should take most of your study time (refer to the
‘Time management’ section above). Note that we have given worked examples and
activities to cover each substantive topic in the subject guide. The Newbold et al.
examples are added for further consolidation of the whole chapter topic and also to help
you work out exactly what the questions are about! One of the problems students
sometimes have in an examination is that they waste time trying to understand to
which part of the syllabus particular questions relate. These final questions, together
with the further explanations on the VLE, aim to help with this before you tackle the
sample examination questions at the end of each chapter.

Try to be disciplined about this: don’t look up the answers until you have done your
best. Promise? Statistical ideas may seem unfamiliar at first, but your attempts at the
questions, however dissatisfied you feel with them, will help you understand the
material far better than reading and rereading the prepared answers – honestly!

So to conclude, perseverance with problem solving is your passport to a strong
examination performance. Attempting (ideally successfully!) all the cited exercises is of
paramount importance.

1.8 Examination advice

Important: the information and advice given in the following section are based on the
examination structure used at the time this subject guide was written. Please note that
subject guides may be used for several years. Because of this, we strongly advise you to
check both the current Regulations for relevant information about the examination, and
the VLE where you should be advised of any forthcoming changes. You should also
carefully check the rubric/instructions on the paper you actually sit and follow those
instructions.

This half course is assessed by a two-hour, unseen, written examination. No books may
be taken into the examination, but you will be provided with the necessary extracts
from the New Cambridge Statistical Tables and a formula sheet (which can be found in
past examination papers on the VLE). These will be supplied as part of the
examination question paper for ST104a Statistics 1 rather than being provided
separately. A calculator may be used when answering questions on this paper and it
must comply in all respects with the specification given in the Regulations.

Section A is a series of short compulsory questions worth 50 per cent of the total marks.
In Section B, you should attempt two out of a choice of three longer questions, each of
which is worth 25 per cent of the total marks. As Section A will seek to assess a broad
cross section of the syllabus, we strongly advise you to study the whole syllabus. A
sample examination paper is provided at the end of this subject guide.

Students should be aware that graph paper will be supplied as part of the examination
question paper for this half course, so they will not need to request it from the
invigilator. Students will need to detach this graph paper from the back of the question
paper and tie any sheets that they use into their examination answer booklets. Students
should therefore practise using this type of graph paper as part of their preparation for
the examination.

Examiners will expect this graph paper to be used where indicated and they will be

9
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looking for greater precision in the answers to these questions than in recent years.

Strategies for success, your academic and study skills handbook, also provides
additional guidance on examination technique.

Remember, it is important to check the VLE for:

up-to-date information on examination and assessment arrangements for this course

where available, past examination papers and Examiners’ commentaries for the
course which give advice on how each question might best be answered.

10



2Chapter 2

Mathematical revision – simple
algebra and coordinate geometry

2.1 Aims

This chapter outlines the essential mathematical building blocks which you will need to
work with in this course. Most of them will be revision to you but some new material is
introduced. Particular aims are:

to be familiar with the basic rules of arithmetic operations

to learn further notation concerned with absolute value and ‘greater than’ (>) and
‘less than’ (<) signs

to use summation signs to calculate simple statistical measures

to learn how to plot a straight line graph and identify its slope and intercept.

2.2 Learning outcomes

After completing this chapter, and having completed the Recommended reading and
activities, you should be able to:

manipulate arithmetic and algebraic expressions using the simple rules

recall and use common signs: square, square root, ‘greater than’, ‘less than’ and
absolute value

demonstrate use of the summation sign and explain the use of the ‘i’, or index, of x

draw the straight line for a linear function.

2.3 Recommended reading

Anthony, M. and N. Biggs Mathematics for Economics and Finance. (Cambridge:
Cambridge University Press, 1996) [ISBN 9780521559133] Chapters 1, 2 and 7.

You may find Anthony and Biggs or any other appropriate non-specialist mathematics
textbook helpful as background for the mathematics you will need for this course. If you
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are studying for MT105a Mathematics 1, that course will support your studies in
ST104a Statistics 1. However, you will not need all of the material in MT105a
Mathematics 1 here.

In addition there is essential ‘watching’ of this chapter’s accompanying video tutorials
accessible via the ST104a Statistics 1 area at http://my.londoninternational.ac.uk

2.4 Introduction

This opening chapter introduces some basic concepts and mathematical tools on which
the rest of the course is built. Before proceeding to the rest of the subject guide, it is
essential that you have a solid understanding of these fundamental concepts and tools.

You should be confident users of the basic mathematical operations: addition,
subtraction, multiplication and division, and be able to use these operations on a basic
electronic calculator. The content of Chapter 1 is expected to be a ‘refresher’ of the
elementary algebraic and arithmetic rules from schooldays. Some material featured in
this chapter may be new to you, such as summation signs and graphs of linear
functions. If so, you should master these new ideas before progressing.

Finally, remember that although it is unlikely that an examination question would test
you on the topics in this chapter alone, the material covered here may well be an
important part of the answer!

2.5 Arithmetic operations

We begin with elementary arithmetic operations which will be used when working with
figures in ST104a Statistics 1. Students often let themselves down by understanding
the statistical concepts, but fail to manage a problem because they are unable to deal
with the required arithmetic. Although this is not primarily an arithmetic paper, many
calculations will be used, so it is vital to ensure that you are comfortable with the
examples and activities presented here.

The acronym to remember is ‘BODMAS’, which tells us the correct order (that is, the
priority) in which mathematical operations are performed:

Brackets

Order (i.e. powers, square roots, etc.)

Division

Multiplication

Addition

Subtraction.

12
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2.6. Squares and square roots

You should also know that:

the sum of a and b means a+ b

the difference between a and b means either a− b or b− a

the product of a and b means a× b = a · b

the quotient of a and b means a divided by b, i.e. a/b.

Example 2.1

What is (35÷ 7 + 2)− (42 − 8× 3)?

‘BODMAS’ tells us to work out brackets first. Here there are two sets of brackets, so
let us do them one at a time:

First bracket: 35÷ 7 + 2.

Do division first: 35÷ 7 + 2 = 5 + 2.

Then perform the addition: 5 + 2 = 7.

Second bracket: 42 − 8× 3.

Do order first: 42 − 8× 3 = 16− 8× 3.

Next do multiplication: 16− 8× 3 = 16− 24.

Then perform the subtraction: 16− 24 = −8.

Now the problem has been simplified we complete the calculation with the final
subtraction: 7− (−8) = 7 + 8 = 15. Note the two negatives become positive!

2.6 Squares and square roots

The power is the number of times a quantity is to be multiplied by itself. For example,
34 = 3× 3× 3× 3 = 81. Any number raised to the power 2 is called ‘squared’, hence x2

is ‘x squared’, which is simply x× x.

Remember that squared values, such as x2, are always non-negative. This is important,
for example, when we compute the quantity s2 in Chapter 4 or r2 in Chapter 12 which
involve squared terms, so a negative answer should ring alarm bells telling us a mistake
has been made!

It might be helpful to think of the square root of x (denoted
√
x) as the reverse of the

square, such that
√
x×
√
x = x. Note positive real numbers have two square roots:

±
√

81 = ±9, although the positive square root will always be used in ST104a
Statistics 1. In practice, the main problems you will encounter involve taking square
roots of numbers with decimal places. Be careful that you understand that 0.9 is the
square root of 0.81 and that 0.3 is the square root of 0.09 (and not 0.9!). Of course, in
the examination you can perform such calculations on your calculator, but it always
helps to have an idea of what the answer should be as a feasibility check of your answer!
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2. Mathematical revision – simple algebra and coordinate geometry

2.7 Fractions and percentages

A fraction is part of a whole and can be expressed as either:

common fractions: for example 1/2 or 3/8, or

decimal fractions: for example 0.5 or 0.375.

In the common fraction, the top number is the numerator and the bottom number is
the denominator. In practice, decimal fractions are more commonly used.

When multiplying fractions together, just multiply all the numerators together to
obtain the new numerator, and do the same with the denominators. For example:

4

9
× 1

3
× 2

5
=

4× 1× 2

9× 3× 5
=

8

135
.

Percentages give an alternative way of representing fractions by relating a particular
quantity to the whole in parts per hundred. For example, 60% is 60 parts per 100,
which, as a common fraction, is simply 60/100.

2.8 Some further notation

2.8.1 Absolute value

One useful sign in statistics is | | which denotes the absolute value. This is the
numerical value of a real number regardless of its sign (positive or negative). The
absolute value of x, sometimes referred to as the modulus of x, or ‘mod x’, is |x|. So
|7.1| = |−7.1| = 7.1.

Statisticians sometimes want to indicate that they only want to use the positive value of
a number. For example, let the distance between town X and town Y be 5 miles.
Suppose someone walks from X to Y – a distance of 5 miles. A mathematician would
write this as +5 miles. Later, after shopping, the person returns to X and the
mathematician would record him as walking −5 miles (taking into account the direction
of travel). Hence this way the mathematician can show the person ended up where he
started. We, however, may be more interested in the fact that the person has had some
exercise that day! So we need notation to indicate this. The absolute value enables us to
take only the positive values of our variables. The distance, d, from Y to X may well be
expressed mathematically as −5 miles, but you will probably be interested in the
absolute amount, so |−d| = d.

2.8.2 Inequalities

An inequality is a mathematical statement that one quantity is greater or less than
another:

x > y means ‘x is greater than y’

14
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2.9. Summation operator,
∑

x ≥ y means ‘x is greater than or equal to y’

x < y means ‘x is less than y’

x ≤ y means ‘x is less than or equal to y’

x ≈ y means ‘x is approximately equal to y’.

2.9 Summation operator,
∑

The summation operator,
∑

, is likely to be new to many of you. It is widely used in
statistics and you will come across it frequently in ST104a Statistics 1, so make sure
you are comfortable using it before proceeding further!

Statistics is all about data analysis, so to use statistical methods we need data.
Individual observations are typically represented using a subscript notation. For
example, the heights of n people1 would be called x1, x2, . . . , xn, where the subscript
denotes the order in which the heights are observed (x1 represents the height of the first
person, etc.). Hence xi represents the height of the ith individual and, in order to list
them all, the subscript i must take all integer values from 1 to n. So the whole set of
observations is {xi : i = 1, . . . , n} which can be read as ‘a set of observations xi such
that i goes from 1 to n’.

The sum of a set of n observations, that is x1 + x2 + · · ·+ xn, may be written as:

i=n∑
i=1

xi (2.1)

by introducing the summation operator,
∑

(the Greek capital letter sigma), which

can be read as ‘the sum of’. Therefore
i=n∑
i=1

xi is read ‘sigma xi, for i equals 1 to n’.

Summation opeartor,
∑

So the summation is said to be over i, where i is the index of summation and the
range of i, in (2.1), is from 1 to n. So the lower bound of the range is the value of i
written underneath

∑
, and the upper bound is written above it. Note the lower bound

can be any integer (positive, negative or zero), such that the summation is over all
values of the index of summation in step increments of size one from the lower bound to
the upper bound.

As stated above,
∑

appears frequently in statistics. For example, in Chapter 4 you will
meet descriptive statistics including the arithmetic mean of observations which is
defined as:

x̄ =
1

n

n∑
i=1

xi.

1Throughout this course, n will denote a sample size.
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2. Mathematical revision – simple algebra and coordinate geometry

As seen in this example, rather than write out
i=n∑
i=1

xi in full, when all the xis are

summed we sometimes write short-cuts, such as
n∑
i=1

xi, or (when the range of summation

is obvious) just
∑
xi.

Note that the resulting sum does not involve i in any form. Hence the sum is unaffected
by the choice of letter used for the index of summation, so, for example:

n∑
i=1

xi =
n∑
j=1

xj =
n∑
k=1

xk.

Sometimes the way that xi depends on i is known. For example, if xi = i, we have:

3∑
i=1

xi =
3∑
i=1

i = 1 + 2 + 3 = 6.

However, do not always assume xi = i!

Example 2.2 If {xi : i = 1, . . . , n} is a set of observations, we might observe
x1 = 4, x2 = 5, x3 = 1, x4 = −2 and x5 = 9. Then:

4∑
i=1

x2i = 42 + 52 + 12 + (−2)2 = 46

5∑
i=4

xi(xi − 2) =
5∑
i=4

(
x2i − 2xi

)
= ((−2)2 − 2×−2) + (92 − 2× 9) = 71

remembering to use BODMAS in the second example.

2.10 Graphs

In Chapter 4 you will spend some time learning how to present material in graphical
form, and also in the representation of the normal distribution in Chapter 6. You should
make sure you have understood the following material. If you are taking MT105a
Mathematics 1, you will need and use these ideas. If you are not, you are encouraged
to read up on and practise examples in Anthony and Biggs.

When a variable y depends on another variable x, we can represent the relationship
mathematically using functions. In general we write this as y = f(x), where f is the
rule which allows us to determine the value of y when we input the value of x. Graphs
are diagrammatic representations of such relationships, using coordinates and axes. The
graph of a function y = f(x) is the set of all points in the plane of the form (x, f(x)).
Sketches of graphs can be very useful. To sketch a graph, we begin with the x-axis and
y-axis as shown in Figure 2.1.

We then plot all points of the form (x, f(x)). Therefore, at x units from the origin (the
point where the axes cross), we plot a point whose height above the x-axis (that is,
whose y-coordinate) is f(x), as shown in Figure 2.2.
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2.11. The graph of a linear function

 

Figure 2.1: Graph axes.

 

Figure 2.2: Example of a plotted coordinate.

Joining all points together of the form (x, f(x)) results in a curve (or sometimes a
straight line), which is called the graph of f(x). A typical curve might look like that
shown in Figure 2.3.

However, you should not imagine that the correct way to sketch a graph is to plot a few
points of the form (x, f(x)) and join them up – this approach rarely works well in
practice and more sophisticated techniques are needed. There are two function types
which you need to know about for this course:

linear functions (i.e. the graph of a straight line, see below), and

normal functions (which we shall meet frequently in later chapters).

2.11 The graph of a linear function

Linear functions are those of the form f(x) = mx+ c and their graphs are straight
lines which are characterised by a gradient (or slope), m, and a y-intercept (where
x = 0) at the point (0, c).

A sketch of the function y = 2x+ 3 is provided in Figure 2.4, and the function
y = −x+ 2 is shown in Figure 2.5.
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2. Mathematical revision – simple algebra and coordinate geometry

 

Figure 2.3: The graph of a generic function, y = f(x).

y

x          -1.5

3

Figure 2.4: A sketch of the linear function y = 2x+ 3.

y

2 x

2

Figure 2.5: A sketch of the linear function y = −x+ 2.
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2.12. Summary

2.12 Summary

Much of this material should be familiar to you, but some is almost bound to be new.
Although it is only a language or set of rules to help you deal with statistics, without it
you will not be able to make sense of the following chapters.

Before you continue, make sure you have completed all the learning activities below,
understood what you have done and, if necessary, worked through additional examples
in the basic textbooks.

2.13 Key terms and concepts

Absolute value BODMAS
Fractions Inequalities
Linear function Percentages
Power Square root
Summation operator

2.14 Learning activities

1. Work out the following:

(a) (2 + 4)× (3 + 7)

(b) 1/3 of 12− 4÷ 2

(c) (1 + 4)/5× (100− 98).

If you find these difficult at all, go to Anthony and Biggs, or your old school
textbook and work on some more examples before you do anything else.

2. Work out the following (use a calculator where necessary):

(a)
√

16

(b) (0.07)2

(c)
√

0.49.

3. (a) What is 98% of 200?

(b) Give 17/25 as a percentage.

(c) What is 25% of 98/144?

4. Give the absolute values for:

(a) |−8|

(b) |15− 9|.
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5. (a) For which of 2, 3, 7 and 9 is x > 3?

(b) For which of 2, 3, 7 and 9 is x < 3?

(c) For which of 2, 3, 7 and 9 is x ≤ 3?

(d) For which of 2, 3, 7 and 9 is x2 ≥ 49?

6. Given x1 = 3, x2 = 1, x3 = 4, x4 = 6 and x5 = 8, find:

(a)
5∑
i=1

xi

(b)
4∑
i=3

x2i .

Given also that p1 = 1/4, p2 = 1/8, p3 = 1/8, p4 = 1/3 and p5 = 1/6, find:

(c)
5∑
i=1

pixi

(d)
5∑
i=3

pix
2
i .

If you find these difficult, go back to an elementary textbook and do some more
work on this. It is most important that you deal with this before you embark on
the topic of descriptive statistics, such as means, in Chapter 4.

7. Sketch the following:

(a) y = x+ 3

(b) y = 3x− 2.

You are going to need equations like this for all the material on regression in
Chapter 12.

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk

In addition, attempt the ‘Test your understanding’ self-test quizzes available on the
VLE.

2.15 A reminder of your learning outcomes

After completing this chapter, and having completed the Recommended reading and
activities, you should be able to:

manipulate arithmetic and algebraic expressions using the simple rules

recall and use common signs: square, square root, ‘greater than’, ‘less than’ and
absolute value

demonstrate use of the summation sign and explain the use of the ‘i’, or index, of x

draw the straight line for a linear function.
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2.16. Sample examination questions

2.16 Sample examination questions

1. Suppose x1 = 4, x2 = 1 and x3 = 2. For these figures, give:

2∑
i=1

x3i .

2. If n = 4, x1 = 2, x2 = 3, x3 = 5 and x4 = 7, find:

(a)
3∑
i=1

xi

(b)

1

n

4∑
i=1

x2i .

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk
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Chapter 3

The nature of statistics

3.1 Aims

This chapter gives a general introduction to some of the statistical ideas which you will
be learning about in this course. It should also enable you to link different parts of the
syllabus and see their relevance to each other and also to the other courses you are
studying. You should aim to:

have an overview of the ideas to be introduced in later chapters

connect the ideas of sampling to real-life problems

be able to decide to take topics in a different sequence from the subject guide
where this is more appropriate for your overall study plan.

3.2 Learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

explain the difference between a population, a sample and a census

discuss the idea of systematic bias

describe simple random sampling and justify its use

explain the principle of random sampling

identify what the parameter(s) of a function is (are)

and you should then be ready to start studying statistics!

It is rare for examination questions to focus solely on the topics covered in this chapter.
However, a good understanding of the ideas covered is essential when answering the
sample examination questions given in Chapters 10 and 11 of the subject guide.

3.3 Essential reading

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060]
Chapter 1 and Section 6.1.
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3.4 Further reading

Wonnacott, T.H. and R.J. Wonnacott Introductory Statistics for Business and
Economics. (Chichester: John Wiley & Sons, 1990) fourth edition [ISBN
9780471615170] Chapter 1.

If you are taking SC1021 Principles of sociology, read Chapter 2 of that subject
guide too and enrich your knowledge of both subjects! If you are not studying for
SC1021 Principles of sociology you might like to find this chapter online and read it
through.

3.5 Introduction

This chapter sets the framework for the subject guide. Read it carefully, because the
ideas introduced are fundamental to this subject, and, although superficially easy, give
rise to profound difficulties both of principle and of methodology. It is important that
you think about these ideas as well as being thoroughly familiar with the
techniques explained in Chapter 2 before you begin work on later chapters.

3.6 Coverage of the course

ST104a Statistics 1 is divided into six main sections:

1. Data presentation (Chapter 4).

This covers: Ways of summarising data; measures of location and dispersion;
graphical presentation.

2. Probability (Chapter 5).

This covers: Probability theory; probability trees.

3. The normal distribution and ideas of sampling (Chapter 6).

This covers: Definitions of random variables; expectations and variances;
normal distribution; central limit theorem.

4. Decision analysis (Chapters 7, 8 and 9).

This covers: Estimation and confidence intervals for means, proportions and
differences; Student’s t distribution; hypothesis testing; Type I and Type II
errors; contingency tables.

5. Sampling design (Chapter 10).

This covers: Key features of different data sampling techniques.
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6. Modelling for decision making (Chapters 11 and 12).

This covers: Measures of correlation; spurious correlation; model selection;
model testing.

In the presence of a real-world problem, the aim is to develop a quantitative framework
for decision-making under uncertainty. The first step is to conduct an experiment and
collect data on which to base the decisions (Chapter 10). The second step is to explore
the data (Chapter 4) and the third step is to assign good probability models (Chapters
5 and 6). The final step is the task of statistical inference (or else decision analysis) and
this uses the material of Chapters 7, 8 and 9, and possibly also Chapters 11 and 12.

3.7 Terminology

Before progressing to Chapter 4, it is sensible to spend time familiarising yourself with
some important terminology and ideas which you will meet later on in the course (and
also in ST104b Statistics 2, for those studying that as well).

In brief, statistics is a mathematical science concerned with analysing and interpreting
data. Data collection is not a zero-cost exercise – costs involve both time and money
and, in the real world, time and budget resources are finite! (If we did perform a total
enumeration of the population, then this is called a census.) Who might collect data?
In principle anyone – governments, corporations, individuals etc.

As is so often the case in statistics, some words have technical meanings
that overlap with their common everyday use but are not the same. It is
important that you are aware of these so that you can read and use them
correctly.

3.7.1 Population

Population is one such word. Most people think of the word as being about the
number of people living in a country. Statisticians, however, use it more generally to
refer to the collection of items1 which we would like to study. So, for example:

if we were studying children aged two to five years old we would refer to them as
the study ‘population’ and not consider older or younger children, or their parents

if we were making an analysis of toy retailers in a country, we might look at the
‘population’ of toy shops.

Often, it is not feasible to collect full information on the entire population due to the
size of many populations2 (and the time and financial constraints described above).
Hence, we collect a sample drawn from the population (see below).

It can sometimes be difficult to decide which population should be sampled. For
instance, if we wished to sample n listeners to a radio station specialising in music,

1Note ‘items’ need not be restricted to people – researchers may wish to study a variety of different
populations: fish, countries, dictators, businesses, alumni, criminals, politicians, . . ..

2Indeed, the population size may well be finite, but unknown. For example, how many fish live in the
sea?
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should the population be of listeners to that radio station in general, or of listeners to
that station’s classical music programme, or perhaps just regular listeners, or any one of
many other possible populations that you can construct for yourself? In practice, the
population is often chosen by finding one that is easy to sample from, and that may not
be the population of first choice – that is, our survey population may differ from our
target population (of course, in an ideal world the two would be the same).

In medical trials (which are an important statistical application), the population may
be those patients who arrive for treatment at the hospital carrying out the trial, and
this may be very different from one hospital to another. If you look at any collection of
official statistics (which are most important for state planning) you will be struck by
the great attention that is given to defining the population that is surveyed or sampled,
and to the definition of terms. For instance, it has proved difficult to get consensus on
the meaning of ‘unemployed’ in recent years, but a statistician must be prepared to
investigate the population of unemployed persons. Think about this carefully; it is
particularly important to those of you studying sociology or marketing.

3.7.2 Bias

Besides the common-sense meaning of bias, in statistics there is a more technical
meaning.3 Intuitively, bias is something we should aim to minimise (if not eliminate
entirely). A full discussion of bias will be given later in the subject guide, but for now
remember that the term systematic bias refers to an estimation methodology which
results in systematic errors, i.e. consistently over- or under-estimating some population
parameter (discussed shortly). It would be difficult to justify a methodology that was
biased, hence sample survey methodology places great emphasis on unbiased surveys
and unbiased estimators.

3.7.3 Parameters

At this point it is useful to think a little about parameters. We can define a parameter
(or set of parameters) as a measure (or set of measures) which completely describes a
function.

For example, in the linear equation y = mx+ c, the parameters4 are m and c which
completely determine the position of a straight line in a graph (where m denotes the
slope, and c the y-intercept). Hence as m, c, or both vary, then we obtain different lines.

Consider another application: you are asked to draw a circle. How do you do this –
what things do you need to know in order to draw it? A little thought makes us realise
that, of course, you need to know the centre of the circle. You also need to know how
big it is – we need to know its radius. If we only knew the centre we could literally draw
millions of different, but concentric, circles; if we knew the radius, but not the centre,
then we could again draw millions of circles each of the same size, but with different

3It is covered in more technical detail in ST104b Statistics 2 when exploring the properties of
estimators.

4Mathematical textbooks will typically use m and c as the parameters of a line; however, in statistics
we typically use α and β for the intercept and slope, respectively. The linear function is then written
as y = α + βx. Of interest later on will be the estimation of these parameters when their values are
unknown – this is achieved (for a line) in regression (Chapter 12).
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positions in space. There is, however, only one circle which has a given centre and
radius. This very interesting idea of finding a minimum number of properties
(attributes) to define a shape was first described by the Greek mathematical
philosophers who gave them their names.

In Chapter 6 you will meet the normal distribution. One of the reasons statisticians like
to use the normal distribution is that, despite its complicated functional form, it is
completely determined by two parameters: its mean, µ, and variance, σ2.5 If we know
these two parameter values, we can draw a unique normal curve. As you will discover,
this is extremely useful for working out probabilities and confidence intervals, and for
testing hypotheses (part of statistical inference – covered in Chapters 7 and 8).

3.7.4 Sampling

As discussed above, a census is not usually a feasible option; however, we may wish to
know the value of some attribute of a particular population (specifically, the value of a
population parameter). In the absence of population data, we resort to drawing a
sample from the population of interest, and use the sample observations (our data) to
estimate a certain parameter when its true value is unknown (due to the absence of
population-level data).6

Of course, although sampling avoids the costs associated with a census, it is possible to
make an argument against the practice. One could argue that since some members of
the population will be excluded from the sample, then the process is inherently
undemocratic. However, although the omission of some population members will
certainly give rise to sampling error, sampling might well be more accurate, since
more time can be spent verifying the sample information collected. The key aim of
sampling is to select a representative sample from the population. Chapter 10 will
explore various sampling techniques in depth. A brief summary of the main themes is
outlined below.

Random sampling

In order to collect a random sample, the researcher needs a sampling frame – a list of
all population members. For example, if you want to investigate UK secondary schools,
the sampling frame would be a list of all the secondary schools in the UK. The key
advantages of random sampling are:

it avoids systematic bias, and

it allows an assessment of the size of the sampling error.

Access to a sampling frame allows a known, non-zero probability of selection to be
attached to each population unit. This is the main feature of a random sample, hence
the collection of random sampling techniques is known as probability sampling. A
simple random sample is a special case where each population unit has an equal,

5Concepts formally introduced in Chapter 4.
6This is what we term statistical inference, that is inferring ‘things’ (such as parameter values) about

a population based on sample data.
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known, non-zero probability of selection. The two most common kinds of non-simple
random samples are:

stratified (where the precision of estimates should be improved if the stratification
factors are appropriate)

cluster (where precision may not be better, but time and money may be saved on
interview surveys involving travel to the site of the interview).

Randomisation (the process by which a random sample is selected) is popular since it
avoids the biases caused by the prejudices of the person taking the sample. Of course,
just by chance, a random sample may have the appearance of extreme bias – for
example, drawing from a population of men and women produces a sample containing
men only. Such difficulties are usually resolved with some suitable form of restricted
randomisation. One might for instance, in this example, use a stratified random sample
(by gender) and select half the sample from all men and the other half from all women.

Random sampling is carried out, for many populations, by choosing at random without
replacement7 a subset of the very large number of population units, N .8 If the sample is
a sufficiently small proportion of the population (n/N is sufficiently small), then there is
no appreciable difference between the inferences possible using sampling with
replacement and sampling without replacement.

3.8 Summary

This chapter has laid out the coverage of ST104a Statistics 1 detailing the six main
sections of the syllabus. Many frequently cited terms in statistics have been introduced
providing an introductory overview of the issue of sampling – specifically, probability
sampling techniques. These will be explored in much greater depth in Chapter 10. Also,
the concept of parameters was introduced which is extremely important since statistical
inference (covered in Chapters 7, 8, 9 and 12) is concerned with the estimation and
testing of unknown parameters.

3.9 Key terms and concepts

Census Cluster sampling
Parameter Population
Sample Sampling error
Sampling frame Simple random sample
Stratified sampling Systematic bias

7Sampling without replacement means that once a population unit is selected it is permanently
removed from the remaining population, which ensures no population unit is repeatedly observed.

8That is, N denotes the population size.
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3.10 Learning activities

1. Why might you use a quota sample rather than a random sample in an interview
survey? What problems would you then have? How would you deal with them?

2. Explain the difference between a simple random sample and a random sample.
Name two kinds of non-simple random samples.

3. What parameters could you find for a circle?

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk

In addition, attempt the ‘Test your understanding’ self-test quizzes available on the
VLE.

3.11 Further exercises

If you are taking SC1021 Principles of sociology, this would be a good time to work
through the activities in Chapter 2 of that subject guide.

3.12 A reminder of your learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

explain the difference between a population, a sample and a census

discuss the idea of systematic bias

describe simple random sampling and justify its use

explain the principle of random sampling

identify what the parameter(s) of a function is (are).

3.13 Self assessment

This chapter is an introduction to ideas you will meet again later. Check that you
understand the content of the syllabus.

If you want to study the ideas of sampling and causation in greater detail now before
studying the theoretical statistical concepts in the next chapters, you could go straight
to Chapters 10 and 11, before returning to Chapter 4.
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Chapter 4

Data presentation

4.1 Aims

This chapter contains two separate but related themes, both to do with the
understanding of data. These are:

to find graphical representations for data, which allow one to see their most
important characteristics

to calculate simple numbers, such as the mean or interquartile range, which will
summarise those characteristics.

4.2 Learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

calculate the following: arithmetic mean, median, mode, standard deviation,
variance, quartiles, range and interquartile range

explain the use and limitations of the above quantities

draw and interpret: histograms, stem-and-leaf diagrams, boxplots and cumulative
frequency distributions

incorporate labels and titles correctly in your diagrams and give the units you have
used.

In summary, you should be able to use appropriate measures and diagrams in order to
explain and clarify data you have collected or which are presented to you.

4.3 Essential reading

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060]
Sections 1.3, 1.5 and 2.1–2.3.

In addition there is essential ‘watching’ of this chapter’s accompanying video tutorials
accessible via the ST104a Statistics 1 area at http://my.londoninternational.ac.uk
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4.4 Further reading

Aczel, A.D. Complete Business Statistics. (London: McGraw-Hill Higher
Education, 2009) seventh edition [ISBN 9780071287531] Chapter 1.

Anderson, D.R., D.J. Sweeney, T.A. Williams, J. Freeman and E. Shoesmith
Statistics for Business and Economics. (South-Western Cengage Learning, 2010)
eleventh edition [ISBN 9780324783247] Chapters 1–3.

Lind, D.A., W.G. Marchal and S.A. Wathen Statistical Techniques in Business and
Economics. (Boston: McGraw-Hill Higher Education, 2009) fourteenth edition
[ISBN 978007110004] Chapters 3 and 4.

Wonnacott, T.H. and R.J. Wonnacott Introductory Statistics for Business and
Economics. (Chichester: John Wiley & Sons, 1990) fourth edition [ISBN
9780471615170] Chapter 2.

4.5 Introduction

Both themes considered in this chapter (graphical representations for data and
calculating values which summarise characteristics of data) could be applied to
population1 data, but in most cases (namely here) they are applied to a sample. The
notation would change a bit if a population was being represented. Most graphical
representations are very tedious to construct in practice without the aid of a computer.
However, you will understand much more if you try a few by hand (as is commonly
asked in examinations). You should also be aware that spreadsheets do not always use
correct terminology when discussing and labelling graphs. It is important, once again,
to go over this material slowly and make sure you have mastered the basic statistical
definitions introduced before you proceed to more theoretical ideas. Make sure that,
once you have completed the chapter and its activities, you make time to practise the
recommended questions from Newbold et al.

4.6 Types of variable

Many of the questions for which people use statistics to help them understand and make
decisions involve types of variables which can be measured. Obvious examples include
height, weight, temperature, lifespan, rate of inflation and so on. When we are dealing
with such a variable – for which there is a generally recognised method of determining
its value – we say that it is a measurable variable. The numbers which we then obtain
come ready-equipped with an order relation, i.e. we can always tell if two measurements
are equal (to the available accuracy) or if one is greater or less than the other.

Data2 are obtained on any desired variable. For most of this course, we will be dealing
with variables which can be partitioned into two types.

1Refer back to the ‘Terminology’ in Section 3.7.
2Note that the word ‘data’ is plural, but is very often used as if it was singular. You will probably

see both forms written in textbooks.
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1. Discrete data: things you can count. Examples: number of passengers on a flight
and telephone calls received each day in a call centre. Observed values for these
will be 0, 1, 2, . . . (i.e. non-negative integers).

2. Continuous data: things you can measure. Examples: height, weight and time,
all of which can be measured to several decimal places.

Types of variable

Of course, before we do any sort of data analysis, we need to collect data. Chapter 10
will discuss a range of different techniques which can be employed to obtain a sample.
For now, we just consider some examples of situations where data might be collected:

pre-election opinion poll asks 1,000 people about their voting intentions

market research survey asks homemakers how many hours of television they watch
per week

census3 interviewer asks each householder how many of their children are receiving
full-time education.

4.6.1 Categorical variables

A polling organisation might be asked to determine whether, say, the political
preferences of voters were in some way linked to their food preferences: for example, do
supporters of Party X tend to be vegetarians? Other market research organisations
might be employed to determine whether or not users were satisfied with the service
which they obtained from a commercial organisation (a restaurant, say) or a department
of local or central government (housing departments being one important instance).

This means that we are concerned, from time to time, with categorical variables in
addition to measurable variables. So we can count the frequencies with which an item
belongs to particular categories. Examples include:

(a) The number of vegetarians who support Party X.

(b) The total number of vegetarians (in a sample).

(c) The number of Party X supporters who are vegetarians.

(d) The total number of Party X supporters (in a sample).

(e) The number of diners at a restaurant who were dissatisfied/indifferent/satisfied
with the service.

In cases (b) and (d) we are doing simple counts, within a sample, of a single category,
while in cases (a) and (c) we are looking at some kind of cross-tabulation between
variables in two categories: dietary v. political preferences in (a), and political v. dietary
preferences in (c) – they are not the same!

3Recall that a census is the total enumeration of a population, hence this would not be a sample.
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There is no obvious and generally recognised way of putting political or dietary
preferences in order (in the way that we can certainly say that 2.28 < 2.32). It is
similarly impossible to rank (as the technical term has it) many other categories of
interest: in combatting discrimination against people, for instance, organisations might
want to look at the effects of gender, religion, nationality, sexual orientation, disability,
or whatever, but the whole point of combatting discrimination is that different
‘varieties’ within each category cannot be ranked.

In case (e), by contrast, there is a clear ranking: the restaurant would be pleased if
there were lots of people who expressed themselves satisfied rather than dissatisfied.
Such considerations lead us to distinguish between two main types of variable, the
second of which is itself subdivided.

Measurable variables, where there is a generally recognised method of
measuring the value of the variable of interest.

Categorical variables, where no such method exists (or, often enough, is even
possible), but among which:

• some examples of categorical variables can be put in some sensible order
(case (e)), and hence are called ordinal (categorical) variables

• some examples of categorical variables cannot be put in any sensible
order, but are only known by their names, and hence are called nominal
(categorical) variables.

Classification of variables

4.7 Data presentation

Datasets consist of potentially vast amounts of data. Hedge funds, for example, have
access to very large databases of historical price information on a range of financial
assets, such as so-called ‘tick data’ – very high-frequency intra-day data. Of course, the
human brain cannot easily make sense of such large quantities of numbers when
presented with them on screen. However, the human brain can cope with graphical
representations of data. By producing various plots, we can instantly ‘eyeball’ to get a
bird’s-eye view of the dataset. So, at a glance, we can quickly get a feel for the data and
determine whether there are any interesting features, relationships, etc. which could
then be examined in greater depth. (For those studying ST104b Statistics 2, in
modelling we often make distributional assumptions, and a suitable variable plot
allows us to easily check the feasibility of a particular distribution.) To summarise, plots
are a great medium for communicating the salient features of a dataset to a wide
audience.

The main representations we use in ST104a Statistics 1 are histograms,
stem-and-leaf diagrams and boxplots.4 We also use scatter plots for two

4There are many other representations available from software packages, in particular pie charts and
standard bar charts which are appropriate when dealing with categorical data, although these will not
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measurable variables (covered in Chapter 12).

4.7.1 Presentational traps

Before we see our first graphical representation you should be aware when reading
articles in newspapers, magazines and even within academic journals, that it is easy to
mislead the reader by careless or poorly-defined diagrams. Hence presenting data
effectively with diagrams requires careful planning.

A good diagram:

• provides a clear summary of the data

• is a fair and honest representation

• highlights underlying patterns

• allows the extraction of a lot of information quickly.

A bad diagram:

• confuses the viewer

• misleads (either accidentally or intentionally).

Advertisers and politicians are notorious for ‘spinning’ data for their own objectives!

4.7.2 Dot plot

Although a dot plot would not be asked in an examination question, the simplicity of
such a diagram makes it an ideal starting point to think about the concept of a
distribution. For small datasets, this type of plot is very effective for seeing the data’s
underlying distribution. We use the following procedure:

1. Obtain the range of the dataset (values spanned by the data), and draw a
horizontal line to accommodate this range.

2. Place dots (hence the name ‘dot plot’ !) corresponding to the values above the line,
resulting in the empirical distribution.

Example 4.1

Hourly wage rates (in £) for clerical assistants (historic data!):

2.20 1.50 1.80 1.60 2.10 1.80 1.60 1.70 1.50
1.60 1.90 1.70 1.60 2.10 1.70 1.80 1.90 2.00

•
• • •

• • • • • •
• • • • • • • •

1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20

be considered further in this course.
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Instantly, some interesting features emerge from the dot plot which are not
immediately obvious from the raw data. For example, most clerical assistants earn
less than £2 and nobody (in the sample) earns more than £2.20.

4.7.3 Histogram

Histograms are excellent diagrams to use when we want to depict the frequency
distribution of (discrete or continuous) variables. To construct histograms, data are first
organised into a table which arranges the data into class intervals (also called bins) –
subdivisions of the total range of values which the variable takes. To each class interval,
the corresponding frequency is determined, that is the number of observations of the
variable which falls in each class interval.

Example 4.2 Weekly production output5 of a factory over a 50-week period. (You
can choose what the manufactured good is!)

360 383 368 365 371 354 360 359 358 354
385 381 393 392 395 410 437 420 456 441
458 453 451 444 445 382 379 372 363 350
362 365 365 372 364 396 396 398 402 406
450 469 467 460 454 438 358 362 404 459

In principle the bins do not have to be of equal width, but for simplicity we use
equal bin widths whenever possible (the reason why will become clear below). A
word of warning: recall our objective is to represent the distribution of the data. As
such, too many bins will dilute the distribution, while too few will concentrate it
(using technical jargon, will degenerate the distribution). Either way, the pattern of
the distribution will be lost – defeating the purpose of the histogram. As a guide, six
or seven bins should be sufficient, but remember to exercise common sense!

Interval Frequency Cumulative
Class interval width Frequency density frequency

[300, 360) 60 6 0.100 6
[360, 380) 20 14 0.700 20
[380, 400) 20 10 0.500 30
[400, 420) 20 4 0.200 34
[420, 460) 40 13 0.325 47
[460, 500) 40 3 0.075 50

The table above includes two additional columns: (i.) ‘Frequency density’ – obtained
by calculating ‘frequency divided by interval width’ (for example, 6/60 = 0.100), and
(ii.) ‘Cumulative frequency’ – obtained by simply determining the running total of
the class frequencies (for example, 6 + 14 = 20). Note the final column is not
required for a histogram per se, although the computation of cumulative frequencies
may be useful when determining medians and quartiles (to be discussed later in this
chapter).
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To construct the histogram, adjacent bars are drawn over the respective class
intervals such that the area of each bar is proportional to the interval
frequency. This explains why equal bin widths are desirable since this reduces the
problem to making the heights proportional to the interval frequency.
However, you may be told to use a particular number of bins or bin widths, such
that the bins will not all be of equal width. In such cases, you will need to compute
the frequency density as outlined above. The histogram for the above example is
shown in Figure 4.1.

300 350 400 450 500
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Frequency density histogram of weekly production output
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Figure 4.1: Frequency density histogram of weekly production output.

Key points to note:

All bars are centred on the midpoints of each class interval.

Informative labels on the histogram, i.e. title and axis labels. The idea is the
reader can work out what the graphic is showing!

Because area represents frequency, it follows that the dimension of bar heights is
number per unit class interval, hence the y-axis should be labelled ‘Frequency
density’ rather than ‘Frequency’.

Keen students only: experiment with different numbers of bins and see how
sensitive the histogram shape is to this choice!

5This is a discrete variable since the output will take integer values, i.e. something which we can
count.
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4.7.4 Stem-and-leaf diagram

A stem-and-leaf diagram requires the raw data. As the name suggests, it is formed
using a ‘stem’ and corresponding ‘leaves’. Choice of the stem involves determining a
major component of a typical data item, for example the ‘10s’ unit, or if data are of the
form 1.4, 1.8, 2.1, 2.9, . . ., then the integer part would be appropriate. The remainder of
the data value plays the role of the ‘leaf’. Applied to the weekly production dataset, we
obtain the stem-and-leaf diagram shown below in Example 4.3. Note the following
points:

These stems are equivalent to using the (discrete) class intervals:

[350, 359], [360, 369], [370, 379], . . . , [460, 469].

Leaves are vertically aligned, hence rotating the stem-and-leaf diagram 90 degrees
anti-clockwise reproduces the shape of the data’s distribution, just as would be
revealed with a histogram.

The leaves are placed in order of magnitude within the stems – therefore it is a
good idea to sort the raw data into ascending order first of all.

Unlike the histogram, the actual data values are preserved. This is advantageous if
we want to calculate various (descriptive or summary) statistics later on.

Example 4.3 Continuing with Example 4.2, the stem-and-leaf diagram is:

Stem-and-leaf diagram of weekly production

Stem (Tens) Leaves (Units)
35 044889
36 0022345558
37 1229
38 1235
39 235668
40 246
41 0
42 0
43 78
44 145
45 0134689
46 079

Note the informative title and labels for the stems and leaves.

So far we have considered how to summarise a dataset graphically. This methodology is
appropriate to get a visual feel for the distribution of the dataset. In practice, we would
also like to summarise things numerically – and so we shall. There are two key
properties of a dataset that will be of particular interest.
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Measures of location – a central point about which the data tends (also known
as measures of central tendency).

Measures of spread – a measure of the variability of the data, i.e. how spread
out it is about the central point (also known as measures of dispersion).

Key properties of a dataset

4.8 Measures of location

Mean, median and mode are the three principal measures of location. In general,
these will not all give the same numerical value for a given dataset/distribution.6 These
three measures (and, later, measures of spread) will now be introduced using the
following simple sample dataset:

32 28 67 39 19 48 32 44 37 24. (4.1)

4.8.1 Mean

The preferred measure of location/central tendency, which is simply the ‘average’ of the
data. It will be frequently applied in various statistical inference techniques in later
chapters.

Using the summation operator,
∑

, which, remember, is just a form of ‘notational
shorthand’, we define the sample mean7 as:

x̄ =

n∑
i=1

xi

n
=
x1 + x2 + · · ·+ xn

n
.

Sample mean

Example 4.4 For the dataset in (4.1) above:

x̄ =
32 + 28 + · · ·+ 24

10
=

370

10
= 37.

Of course, it is possible to encounter datasets in frequency form, that is each data value
is given with the corresponding frequency of observations for that value, fk, for

6‘In general’ 6= always! An interesting example is the normal distribution (introduced in Chapter 6)
which is symmetric about the mean (and so mean = median) and achieves a maximum at this point, i.e.
mean = median = mode.

7x̄ will be used to denote an observed sample mean, while µ will denote its population counterpart,
that is the population mean.

39



4

4. Data presentation

k = 1, . . . , K, where there are K different variable values. In such a situation, use the
formula:

x̄ =

K∑
k=1

fkxk

K∑
k=1

fk

. (4.2)

Note that this preserves the idea of ‘adding up all the observations and dividing by the
total number of observations’. This is an example of a weighted mean, where the
weights are the relative frequencies.

If the data are given in grouped-frequency form, for example as shown in the table in
Example 4.2, then the individual data values are unknown8 – all we know is the interval
in which each observation lies. The sensible solution is to use the midpoint of the
interval as a ‘representative proxy’ for each observation recorded as belonging within
that class interval. Hence you still use the grouped-frequency mean formula (4.2), but
each xi value will be substituted with the appropriate class interval midpoint.

Example 4.5 Using the weekly production data in Example 4.2, the interval
midpoints are: 330, 370, 390, 410, 440 and 480, respectively. These will act as the
data values for the respective classes. The mean is then calculated by:

x̄ =

K∑
k=1

fkxk

K∑
k=1

fk

=
(6× 330) + · · ·+ (3× 480)

6 + · · ·+ 3
= 397.2.

Compared to the true mean of the raw data (which is 399.72), we see that using the
midpoints as proxies gives a mean very close to the true sample mean value. Note
the mean is not rounded up or down since it is an arithmetic result.

Note a drawback with the mean is its sensitivity to outliers (extreme observations).
For example, suppose we record the net worth of 10 randomly chosen people. If Warren
Buffett, say, was included, his substantial net worth would drag the mean upwards
considerably! By increasing the sample size n, the effect of his inclusion, although
diluted, would still be ‘significant’, assuming we were not just sampling from the
population of billionaires!

4.8.2 Median

The median is the middle value of the ordered dataset, where observations are arranged
in (ascending) order. By definition, 50 per cent of the observations are greater than the
median, and 50 per cent are less than the median.

8Of course, we do have the raw data for the weekly production example and so could work out the
exact sample mean, but here suppose we did not have access to the raw data, instead we were just given
the table of class frequencies in Example 4.2.
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Arrange the n numbers in ascending order,9 say x(1), x(2), . . . , x(n),
10 then:

If n is odd, there is an explicit middle value, so the median, m, is x((n+1)/2).

If n is even, there is no explicit middle value, so take the average of the values
either side of the ‘midpoint’, hence m =

(
x(n/2) + x(n/2+1)

)
/2.

Median

Example 4.6 For the dataset in (4.1), the ordered observations are:

19 24 28 32 32 37 39 44 48 67.

n = 10, i.e. even, so we compute the average of the fifth and sixth ordered
observations, that is:

m =
1

2

(
x(5) + x(6)

)
=

1

2
(32 + 37) = 34.5.

If we only had data in grouped-frequency form (as in Example 4.2), then we can make
use of the cumulative frequencies. Since n = 50, the median is the 25.5th ordered
observation which must be in the [380, 400) interval because once we exhaust the
ordered data up to the [360, 380) interval we have only covered 20 observations, while
once the [380, 400) interval is exhausted we have accounted for 30 observations,
meaning the median lies in this interval. Assuming the raw data are not accessible, we
could use the midpoint (i.e. 390) as denoting the median. Alternatively we could use an
interpolation method which uses the following ‘general’ formula for grouped data, once
you have identified the class which includes the median (such as [380, 400) above):

Endpoint of previous class +
Class width × # of remaining observations

Class frequency
.

Example 4.7 Returning to the weekly production example, the median would be:

380 +
20× (25.5− 20)

10
= 391.

For comparison, using the raw data, x(25) = 392 and x(26) = 393 (quickly obtained
from the stem-and-leaf diagram), giving a median of 392.5.

Although the median is advantageous in not being influenced by outliers (Warren
Buffett’s net worth would be x(n) and so would not affect the median), in practice it is
of limited use in formal statistical inference.

For symmetric data, the mean and median are always equal. Hence this is a good way
to verify whether a dataset is symmetric. Asymmetrical distributions are skewed, where

9If you have constructed a stem-and-leaf diagram, you would have already done this!
10These are known as ‘order statistics’, for example x(1) is the first order statistic, i.e. the smallest

observed value, and x(n) is the largest observed value.
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Positively-skewed

distribution

Negatively-skewed

distribution

Figure 4.2: Different types of skewed distributions.

skewness measures the departure from symmetry. Although you will not be expected
to compute the coefficient of skewness (its numerical value), you need to be familiar
with the two types of skewness.

Mean > median indicates a positively-skewed distribution (also, referred to
as ‘right-skewed’).

Mean < median indicates a negatively-skewed distribution (also, referred to
as ‘left-skewed’).

Skewness

Graphically, skewness can be determined by identifying where the long ‘tail’ of the
distribution lies. If the long tail is heading toward +∞ (positive infinity) on the x-axis
(i.e. on the right-hand side), then this indicates a positively-skewed (right-skewed)
distribution. Similarly, if heading toward −∞ (negative infinity) on the x-axis (i.e. on
the left-hand side) then this indicates a negatively-skewed (left-skewed) distribution, as
illustrated in Figure 4.2.

Example 4.8 The hourly wage rates used in Example 4.1 are skewed to the right,
due to the influence of the ‘extreme’ values 2.0, 2.1, 2.1 and 2.2 – the effect of these
(akin to Warren Buffett’s effect mentioned above) is to ‘drag’ or ‘pull’ the mean
upwards, hence mean > median.

Example 4.9 For the weekly production dataset in Example 4.2, we have
calculated the mean and median to be 399.72 and 392.50, respectively. Since the
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mean is greater than the median, the data form a positively-skewed distribution, as
confirmed by the histogram in Figure 4.1.

4.8.3 Mode

Our final measure of location is the mode.

By definition, the mode is the most frequently occurring value in a dataset.

Mode

It is perfectly possible to encounter a multimodal distribution where several data values
are tied in terms of their frequency of occurrence.

Example 4.10 The modal value of the dataset in (4.1) is 32, since it occurs twice
while the other values only occur once each.

Example 4.11 For the weekly production dataset, looking at the stem-and-leaf
diagram in Example 4.3, we can quickly see that 365 is the modal value (the three
consecutive 5s opposite the second stem stand out). If just given grouped data, then
instead of reporting a modal value we can determine the modal class, which is
[360, 380) with 14 observations. (The fact that this includes 365 here is a coincidence
– the modal class and modal value are not the same thing.)

4.9 Measures of spread

The dispersion (or spread) of a dataset is extremely relevant when drawing conclusions
from it. Thus it is important to have a useful measure of this property, and several
candidates exist – these are reviewed below. As expected, there are advantages and
disadvantages to each.

4.9.1 Range

Our first measure of spread is the range.

The range is simply the largest value minus the smallest value, that is:

Range = x(n) − x(1).

Range

Example 4.12 For the dataset in (4.1), the range is:

x(n) − x(1) = 67− 19 = 48.
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Clearly, the range is very sensitive to extreme observations since (when they occur) they
are going to be the smallest and/or largest observations, hence this measure is of
limited appeal. If we were confident that no outliers were present (or decided to filter
out any outliers), then the range would better represent the true spread of the data.

More formally, we could consider the idea of the interquartile range (IQR) instead –
that is, the upper (third) quartile, Q3, minus the lower (first) quartile, Q1. The upper
quartile has 75 per cent of observations below it (and 25 per cent above it) while the
lower quartile has 25 per cent below (and 75 per cent above). Unsurprisingly the
median, given our earlier definition, is the middle (second) quartile. By discarding the
top 25 per cent and bottom 25 per cent of observations, respectively, we restrict
attention solely to the central 50 per cent of observations.

TheIQRisdefinedas : IQR = Q3 −Q1

where Q1 and Q3 are the first (lower) and third (upper) quartiles, respectively.

Interquartile range

Example 4.13 Continuing with the dataset in (4.1), computation of these quartiles
can be problematic since, for example, for the lower quartile we require the value
such that 2.5 observations are below it and 7.5 values are above it. A suggested
remedy11 (motivated by the median calculation when n is even) is to use:

Q1 =
1

2
(x(2) + x(3)) =

1

2
(24 + 28) = 26.

Similarly:

Q3 =
1

2
(x(7) + x(8)) =

1

2
(39 + 44) = 41.5.

Hence the IQR is 41.5− 26 = 15.5. Contrast this with the range of 48.

4.9.2 Boxplot

At this point, it is useful to introduce another graphical method – the boxplot.12 In a
boxplot, the middle horizontal line is the median and the upper and lower ends of the
box are the upper and lower quartiles, respectively. The ‘whiskers’ are drawn from the
quartiles to the observations furthest from the median, but not by more than
one-and-a-half times the IQR (i.e. excluding outliers). The whiskers are terminated by
horizontal lines. Any extreme points beyond the whiskers are plotted individually. An
example of a (generic) boxplot is shown in Figure 4.3.

If you are presented with a boxplot, then it is easy to obtain all of the following:
median, quartiles, IQR, range and skewness. Recall skewness (departure from

11There are many different methodologies for computing quartiles, and conventions vary from country
to country. Any rational, and justified, approach is perfectly acceptable in ST104a Statistics 1. For
example, interpolation methods, as demonstrated previously for the case of the median, are valid.

12Some people call such plots box-and-whisker plots. No prizes for guessing why!
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Values more than 3 boxlengths from Q3 (extreme outlier)

Values more than 1.5 boxlengths from Q3 (outlier)

Largest observed value that is not an outlier

Q3

50% of cases

have values Q2 = Median

within the box

Q1

Smallest observed value that is not an outlier

Values more than 1.5 boxlengths from Q1 (outlier)

Values more than 3 boxlengths from Q1 (extreme outlier)

o

o

x

x

Figure 4.3: An example of a boxplot (not to scale).

symmetry) is characterised by a long tail, attributable to outliers, which are readily
apparent from a boxplot.

Example 4.14 From the boxplot shown in Figure 4.4, it can be seen that the
median, Q2, is around 74, Q1 is about 63 and Q3 is approximately 77. The numerous
outliers provide a useful indicator that this is a negatively-skewed distribution as the
long tail covers lower values of the variable. Note also that Q3 −Q2 < Q2 −Q1.

4.9.3 Variance and standard deviation

These are much better and more useful statistics for representing the spread of a
dataset. You need to be familiar with their definitions and methods of calculation for a
sample of data values x1, x2, . . . , xn.

Begin by computing the so-called ‘corrected sum of squares’, Sxx, the sum of the
squared deviations of each data value from the (sample) mean, where:

Sxx =
n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2i − nx̄2. (4.3)

Recall from earlier x̄ =
n∑
i=1

xi/n. The proof for why the expressions in (4.3) are

equivalent is beyond the scope of this course.
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Figure 4.4: A boxplot showing a negatively-skewed distribution.

The sample variance is defined as:

s2 =
Sxx
n− 1

=
1

n− 1

n∑
i=1

(xi − x̄)2 =
1

n− 1

(
n∑
i=1

x2i − nx̄2
)
.

Sample variance

Note the divisor used to compute s2 is n− 1, not n. Do not worry about why,13 just
remember to divide by n− 1 when computing a sample variance.14 To obtain the
sample standard deviation, s, we just take the (positive) square root of the sample
variance, s2.

The sample standard deviation is:

s =
√
s2 =

√
Sxx
n− 1

.

Sample standard deviation

Example 4.15 Using the dataset in (4.1), x̄ = 37, so:

Sxx = (32− 37)2 + (28− 37)2 + · · ·+ (24− 37)2 = 25 + 81 + · · ·+ 169 = 1698.

Hence s =
√

1698/(10− 1) = 13.74.

Note that, given
∑
x2i = 15388, we could have calculated Sxx using the other

13This is covered in ST104b Statistics 2.

14In contrast for population data, the population variance is σ2 =
N∑
i=1

(xi − µ)2/N , i.e. we use the N

divisor here. N denotes population size while n denotes sample size. Also, note the use of µ (population
mean) instead of x̄ (sample mean).
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expression:

Sxx =
n∑
i=1

x2i − nx̄2 = 15388− 10× 372 = 1698.

So this alternative method is much quicker to calculate Sxx.

For grouped-frequency data with K classes, to compute the sample variance we would
use the formula:

s2 =

K∑
k=1

fk(xk − x̄)2

K∑
k=1

fk

=

K∑
k=1

fkx
2
k

K∑
k=1

fk

−


K∑
k=1

fkxk

K∑
k=1

fk


2

.

Sample variance for grouped-frequency data

Recall that the last bracketed squared term is simply the mean formula for grouped
data. Note that for grouped-frequency data we can ignore the ‘divide by n− 1’ rule,
since we would expect n to be very large in such cases, such that n− 1 ≈ n and so
dividing by n or n− 1 makes negligible difference in practice.

Example 4.16

Let us now consider an extended example bringing together many of the issues
considered in this chapter. We will draw a histogram, here with equal class widths,
and introduce the cumulative frequency diagram.

A stockbroker is interested in the level of trading activity on a particular stock
exchange. He has collected the following data, which are weekly average volumes (in
millions), over a 29-week period. This is an example of time series data. Note that
this variable is treated as if it was discrete, but because the numbers are so large the
variable can be treated as continuous.

172.5 154.6 163.5
161.9 151.6 172.6
172.3 132.4 168.3
181.3 144.0 155.3
169.1 133.6 143.4
155.0 149.0 140.6
148.6 135.8 125.1
159.8 139.9 171.3
161.6 164.4 167.0
153.8 175.6

So to construct a histogram we first decide on the choice of class intervals, which is a
subjective decision. The objective is to convey information in a useful way. In this
case the data lie between (roughly) 120 and 190 million shares/week, so class
intervals of width 10 million will give seven classes. With almost 30 observations this
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choice is probably adequate; more observations might support more classes (a class
interval of 5 million, say); fewer observations would, perhaps, need a larger interval
of 20 million.

The class intervals are thus defined like this:

120 ≤ Volume < 130, 130 ≤ Volume < 140, etc.

or alternatively [120, 130), [130, 140), etc. We now proceed to determine the
frequency density (and cumulative frequencies, for later).

Interval Frequency Cumulative
Class interval width Frequency density frequency

[120, 130) 10 1 0.1 1
[130, 140) 10 4 0.4 5
[140, 150) 10 5 0.5 10
[150, 160) 10 6 0.6 16
[160, 170) 10 7 0.7 23
[170, 180) 10 5 0.5 28
[180, 190) 10 1 0.1 29

Hence the frequency density histogram is as shown in Figure 4.5.

A development from the histogram is the cumulative frequency diagram. Recall that
a cumulative frequency gives us the total frequency of observations that fall below
the upper endpoint of a class interval. Therefore it is the upper endpoint that we use
in the diagram. Figure 4.6 displays this for the trading data example.

A variation on this is the cumulative relative frequency diagram which accumulates
the relative frequencies (typically expressed as percentages), rather than the
frequencies, where the relative frequency of the kth interval is calculated by:

Relative frequencyk = fk/n.

Relative % Cumulative
Class interval Frequency frequency (%) relative frequency

[120, 130) 1 3.45 3.45
[130, 140) 4 13.79 17.24
[140, 150) 5 17.24 34.48
[150, 160) 6 20.69 55.17
[160, 170) 7 24.14 79.31
[170, 180) 5 17.24 96.55
[180, 190) 1 3.45 100.00

So, for example, in the above table since n = 29 the relative frequency for the first
interval is 1/29 = 0.0345, or 3.45%. Plotting the cumulative relative frequencies
yields the cumulative relative frequency diagram, shown in Figure 4.7.

Note all the diagrams use the grouped frequencies, rather then the original raw data.
For comparison, Figure 4.8 uses the raw ungrouped data, providing a more ‘precise’
cumulative relative frequency diagram.
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Finally, we use the grouped data to compute particular descriptive statistics –
specifically the mean, variance and standard deviation. There are K = 7 classes, so
we perform the appropriate intermediate calculations by groups.

Class interval Midpoint, xk Frequency, fk fkxk fkx
2
k

[120, 130) 125 1 125 15625
[130, 140) 135 4 540 72900
[140, 150) 145 5 725 105125
[150, 160) 155 6 930 144150
[160, 170) 165 7 1155 190575
[170, 180) 175 5 875 153125
[180, 190) 185 1 185 34225
Total,

∑
29 4535 715725

Hence the grouped mean is:

x̄ =

7∑
k=1

fkxk

7∑
k=1

fk

=
4535

29
= 156.4

and the grouped variance is:

s2 =

7∑
k=1

fkx
2
k

7∑
k=1

fk

−


7∑

k=1

fkxk

7∑
k=1

fk


2

=
715725

29
− (156.4)2 = 219.2

giving a standard deviation of
√

219.2 = 14.8. For comparison, the ungrouped mean,
variance and standard deviation are 156.0, 217.0 and 14.7, respectively (compute
these yourself to verify!). Note the units for the mean and standard deviation are
‘millions of shares/week’, while the units for the variance are the square of those for
the standard deviation, i.e. ‘(millions of shares/week)2’, so this is an obvious reason
why we often work with the standard deviation, rather than the variance, due to the
original and meaningful units.

4.10 Summary

This chapter, although in practice concerned with what you can do with data after you
have collected it, serves as a useful introduction to the whole course. It highlights some
of the problems with handling data and, furthermore, has introduced many of the
fundamental concepts such as mean, variance, discrete and continuous data, etc.
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Figure 4.5: Frequency density histogram of trading volume data.

x
x

x

x

x

x

x
x

120 130 140 150 160 170 180 190

0
5

10
15

20
25

30

Cumulative frequency of trading volume data

Weekly average shares traded/day (millions)

C
um

ul
at

iv
e 

fr
eq

ue
nc

y

Figure 4.6: Cumulative frequency of trading volume data.

4.11 Key terms and concepts

Boxplot Categorical variable
Continuous variable Cumulative frequency
Discrete variable Distribution
Dot plot Histogram
Interquartile range Mean
Measurable variable Median
Mode Nominal
Ordinal Outliers
Range Relative frequency
Skewness Standard deviation
Stem-and-leaf diagram Variance
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Figure 4.7: Cumulative relative frequency of trading volume data.
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Figure 4.8: Cumulative relative frequency of trading volume (ungrouped) data.
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4.12 Learning activities

1. Identify and describe the variables in each of the following examples:

(a) Voting intentions in a poll of 1,000 people.

(b) The number of hours homemakers watch television per week.

(c) The number of children per household receiving full-time education.

2. Find the mean of the number of hours of television watched per week by 10
homemakers:

Number of hours watched: 2, 2, 2, 5, 5, 10, 10, 10, 10, 10.

3. Calculate the mean, median and mode of the prices of spreadsheets (using the data
below).

Name Price (in £)
Kuma K-Spread II 52
Logistix 64
Sage Planner 65
SuperCalc 3.21 82
VP Planner Plus 105
SuperCalc v4 107
Multiplan IV 110
Borland QUATTRO 115
Legend Twin Level 3 155
SuperCalc v5 195
Plan Perfect 195
Microsoft Excel 239
Lotus 1-2-3 265

Total 1749
Number of observations 13

You should be able to show that the arithmetic mean is 134.54, the median is 110,
and the mode is 195 or 110.

(Note: a mode exists at 195 (with two values) in this raw data. However, rounding
to the nearest 10 gives values at 110.)

4. Work out s2 for a sample of nine observations of the number of minutes students
took to complete a statistics problem.

Minutes to complete problem: 2, 4, 5, 6, 6, 7, 8, 11, 20.

5. Think about why and when you would use each of the following:

(a) histogram

(b) stem-and-leaf diagram.

When would you not do so?
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6. Find data presentation diagrams in newspapers or magazines that might be
construed as misleading.

7. Calculate the range, variance, standard deviation and interquartile range of the
spreadsheet prices shown below. Check against the answers given after the data.

Name Price Price−Mean (Price−Mean)2

Kuma K-Spread II 52 −82.54 6812.60
Logistix 64 −70.54 4975.67
Sage Planner 65 −69.54 4835.60
SuperCalc 3.21 82 −52.54 2760.29
VP Planner Plus 105 −29.54 875.52
SuperCalc v4 107 −27.54 758.37
Multiplan IV 110 −24.54 602.14
Borland QUATTRO 115 19.54 381.75
Legend Twin Level 3 155 20.46 418.67
SuperCalc v5 195 60.46 3655.60
Plan Perfect 195 60.46 3655.60
Microsoft Excel 239 104.46 10912.21
Lotus 1-2-3 265 130.46 17020.21

Total 0.00 57661.23

Variance = 4435.48 Std. Dev. = 66.60 IQR = 113

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk

In addition, attempt the ‘Test your understanding’ self-test quizzes available on the
VLE.

4.13 Further exercises

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060].
Relevant exercises from Sections 1.3, 1.5 and 2.1–2.3.

4.14 A reminder of your learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

calculate the following: arithmetic mean, median, mode, standard deviation,
variance, quartiles, range and interquartile range

explain the use and limitations of the above quantities
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draw and interpret: histograms, stem-and-leaf diagrams, boxplots and cumulative
frequency distributions

incorporate labels and titles correctly in your diagrams and give the units you have
used.

In summary, you should be able to use appropriate measures and diagrams in order to
explain and clarify data you have collected or which are presented to you.

4.15 Sample examination questions

1. The data below show the number of daily phone calls received by an office supplies
company over a period of 25 working days.

219 541 58 7 13
476 418 177 175 455
258 312 164 314 336
121 77 183 133 78
291 138 244 36 48

(a) Construct a stem-and-leaf diagram for these data and use this to find the
median of the data.

(b) Find the first and third quartiles of the data.

(c) Would you expect the mean to be similar to the median? Explain.

(d) Comment on your figures.

2. Say whether the following statement is true or false and briefly give your
reason(s). ‘The mean of a dataset is always greater than the median.’

3. For x1 = 4, x2 = 1 and x3 = 2, calculate:

(a) the median

(b) the mean.

4. Briefly state, with reasons, the type of chart which would best convey the data in
each of the following:

(a) a country’s total import of wine, by source

(b) students in higher education, classified by age

(c) numbers of students registered for secondary school in years 1998, 1999 and
2000 for areas A, B and C of a country.

5. If n = 4, x1 = 1, x2 = 4, x3 = 5 and x4 = 6, find:

1

3

4∑
i=2

xi.

Why might you use this figure to estimate the mean?
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6. State whether the following statement is true or false and briefly give your
reason(s). ‘Three quarters of the observations in a dataset are less than the lower
quartile.’

7. If x1 = 4, x2 = 2, x3 = 2, x4 = 5 and x5 = 6, calculate:

(a) the mode

(b) the mean.

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk
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Chapter 5

Probability

5.1 Aims

This chapter introduces the fundamental concepts of probability. In other courses,
particularly in ST104b Statistics 2 and MN3032 Management science methods
you may make full use of probability in both theory and in decision trees, and highlight
the ways in which such information can be used.

We will look at probability at quite a superficial level in this course. Even so, you may
find that, although the concepts of probability introduced are simple, their application
in particular circumstances may be very difficult. Try not to lose heart. Aim to:

be capable of dealing with the basic concepts and follow through on examples and
activities

relate the new ideas of probability to the examples given

appreciate its uses and applications.

5.2 Learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

apply the ideas and notation involved in set theory to simple examples

recall the basic axioms of probability and apply them

distinguish between the ideas of conditional probability and independence

draw and use appropriate Venn diagrams

draw and use appropriate probability trees.

5.3 Essential reading

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060]
Sections 3.1–3.3 and 3.5.

In addition there is essential ‘watching’ of this chapter’s accompanying video tutorials
accessible via the ST104a Statistics 1 area at http://my.londoninternational.ac.uk
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5.4 Further reading

Aczel, A.D. Complete Business Statistics. (London: McGraw-Hill Higher
Education, 2009) seventh edition [ISBN 9780071287531] Sections 2.1–2.6.

Anderson, D.R., D.J. Sweeney, T.A. Williams, J. Freeman and E. Shoesmith
Statistics for Business and Economics. (South-Western Cengage Learning, 2010)
eleventh edition [ISBN 9780324783247] Sections 4.1–4.4.

Lind, D.A., W.G. Marchal and S.A. Wathen Statistical Techniques in Business and
Economics. (Boston: McGraw-Hill Higher Education, 2009) fourteenth edition
[ISBN 978007110004] The first half of Chapter 5.

Wonnacott, T.H. and R.J. Wonnacott Introductory Statistics for Business and
Economics. (Chichester: John Wiley & Sons, 1990) fourth edition [ISBN
9780471615170] Sections 3.1–3.3.

5.5 Introduction

Chance is what makes life worth living – if everything was known in advance, imagine
the disappointment! If decision-makers had perfect information about the future as well
as the present and the past, there would be no need to consider the concepts of
probability. However, it is usually the case that uncertainty cannot be eliminated and
hence its presence should be recognised and used in the process of making decisions.

5.6 The concept of probability

Probability forms the bedrock on which statistical methods are based. This chapter will
be devoted to understanding this important concept, its properties and applications.

One can view probability as a quantifiable measure of one’s degree of belief in a
particular event or set1 of interest. To motivate the use of the terms ‘event’ and ‘set’,
we begin by introducing the concept of an experiment. An experiment can take many
forms, but to prevent us from becoming over-excited, let us consider two mundane
examples:

i. the toss of a (fair) coin

ii. the roll of a (fair) die.

We define the sample space, S, as the set of all possible outcomes for an experiment.

Sample space

1These terms can be used interchangeably.
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Example 5.1 Thus for our two examples we have:

i. Coin toss: S = {H,T}, where H and T denote ‘heads’ and ‘tails’, respectively,
and are called the elements or members of the sample space.

ii. Die score: S = {1, 2, 3, 4, 5, 6}.

So the coin toss sample space has two elementary outcomes, H and T , while the score
on a die has six elementary outcomes. These individual elementary outcomes are
themselves events, but we may wish to consider slightly more exciting events of interest2

– for example, for the die score, we may be interested in the event of obtaining an even
score, or a score greater than 4, etc. Hence we proceed to define an event.

An event is a collection of elementary outcomes from the sample space S of an
experiment, and therefore it is a subset of S.

Event

Typically we can denote events by letters for notational efficiency. For example, A = ‘an
even score’, and B = ‘a score greater than 4’. Hence A = {2, 4, 6} and B = {5, 6}.
The universal convention is that we define probability to lie on a scale from 0 to 1
inclusive.3 Hence the probability of any event A, say, is denoted P (A) and is a real
number somewhere on the unit interval, i.e. P (A) ∈ [0, 1], where ‘∈’ means ‘is a member
of’. Note the following:

If A is an impossible event, then P (A) = 0.

If A is a certain event, then P (A) = 1.

For events A and B, if P (A) > P (B), then A is more likely to happen than B.

We thus have a probability scale from 0 to 1 on which we are able to rank events, as
evident from the P (A) > P (B) result above. However, we need to consider how best to
quantify these probabilities. Let us begin with the experiments where each elementary
outcome is equally likely, hence our (fair) coin toss and (fair) die score fulfil this
criterion (conveniently).

For an experiment with equally likely elementary outcomes, letN be the total number
of equally likely elementary outcomes, and let n be the number of these elementary
outcomes that are favourable to our event of interest, A. Then:

P (A) =
n

N
.

Determining event probabilites for equally likely elementary outcomes

2Admittedly, for a single coin toss, we cannot go beyond a choice of heads or tails.
3Multiplying by 100 yields a probability as a percentage.
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Example 5.2

i. So returning to our coin toss example, if A is the event ‘heads’, then N = 2 (H
and T ), n = 1 (H), so for a fair 4 coin, P (A) = 1/2 = 0.5.5

ii. For the die score, if A is the event ‘an even score’, then N = 6 (1, 2, 3, 4, 5 and
6), n = 3 (2, 4 and 6), so for a fair die, P (A) = 3/6 = 1/2 = 0.5.

Finally, if B is the event ‘a score greater than 4’, then N = 6 (as before), n = 2
(5 and 6), hence P (B) = 2/6 = 1/3.

5.7 Relative frequency

So far we have only considered equally likely experimental outcomes. Clearly, to apply
probabilistic concepts more widely, we require a more general interpretation – the
relative frequency interpretation.

Suppose the event A associated with some experiment either does or does not occur.
Also, suppose we conduct this experiment independently6 F times. Suppose that,
following these repeated experiments, A occurs f times. Hence the ‘frequentist’
approach to probability would regard:

P (A) =
f

F

as F →∞.

Relative frequency approach to probability

Example 5.3 For a coin toss with event A = {H}, if the coin is fair we would
expect that repeatedly tossing the coin F times would result in approximately
f = F/2 heads, hence P (A) = (F/2)/F = 1/2. Of course, this approach is not
confined to fair coins!

Intuitively, this is an appealing interpretation and is extremely useful when we come to
its use in statistical inference later on. However, do be aware that we are not advocating
that you perform all these experiments! Rather they are imaginary experiments, but the
concept gives a meaning to numerical probability.7

4Remember we are assuming equally likely elementary outcomes here, so a fair coin is required. If we
had a biased coin, then this approach would fail to accurately quantify probabilities.

5Probabilities can be reported as proper fractions or in decimal form. If in decimal form (which is
preferred), report answers to a maximum of four decimal places in the examination.

6‘Independent’ is an important term, discussed later.
7There is another ‘school’ of probability thought, known as the ‘Bayesian’ school. We will touch on

this only briefly via Bayes’ formula later in this chapter. In short, the Bayesian view is that probability
is a degree of belief in an event’s occurrence based on the observer’s knowledge of the situation.
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5.8 ‘Randomness’

Statistical inference is concerned with the drawing of conclusions from data that are
subject to randomness , perhaps due to the sampling procedure, perhaps due to
observational errors, perhaps for some other reason. Let us stop and think why, when
we repeat an experiment under apparently identical conditions, we get different results.
The answer is that although the conditions may be as identical as we are able to control
them to be, there will inevitably be a large number of uncontrollable (and frequently
unknown) variables that we do not measure and which have a cumulative effect on the
result of the sample or experiment. For example, weather conditions may affect the
outcomes of biological or other ‘field’ experiments.

The cumulative effect, therefore, is to cause variations in our results. It is this variation
that we term randomness and, although we never fully know the true generating
mechanism for our data, we can take the random component into account via the
concept of probability, which is, of course, why probability plays such an important role
in data analysis.

5.9 Properties of probability

We begin this section by presenting three simple, self-evident truths known as axioms
which list the basic properties we require of event probabilities.

1. For any event A, 0 ≤ P (A) ≤ 1.

2. For the sample space S, P (S) = 1.

3. If {Ai}, i = 1, . . . , n, are mutually exclusive events, then the probability of their
‘union’ is the sum of their respective probabilities, that is:

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai).

Axioms of probability

The first two axioms should not be surprising. The third may appear a little more
daunting. Events are labelled mutually exclusive when they cannot both
simultaneously occur.

Example 5.4 When rolling a die once, the event A = ‘get an even score’ and the
event B = ‘get an odd score’ are mutually exclusive.

Extending this, a collection of events is pairwise mutually exclusive if no two events can
happen simultaneously. For instance, the three events A, B and C are pairwise
mutually exclusive if A and B cannot happen together and B and C cannot happen
together and A and C cannot happen together. Another way of putting this is that a
collection of events is pairwise mutually exclusive if at most one of them can happen.
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Related to this is the concept of a collection of events being collectively exhaustive.
This means at least one of them must happen, i.e. all possible experimental outcomes
are included among the collection of events.

5.9.1 Notational vocabulary

Axiom 3 above introduced a new symbol. For the remainder of this chapter, various
symbols connecting sets will be used as a form of notational shorthand. It is important
to be familiar with these symbols, hence two ‘translations’ are provided – one for
children and one for grown-ups.8

Symbol ‘Child’ version ‘Adult’ version Example
∪ or union A ∪B = ‘A union B’
∩ and intersect A ∩B = ‘A intersect B’
c not complement of Ac = ‘complement of A’
| given conditional on A |B = ‘A conditional on B’

Also, do make sure that you distinguish between a set and the probability of a set . This
distinction is important. A set , remember, is a collection of elementary outcomes from
S, whereas a probability (from Axiom 1) is a number on the unit interval, [0, 1]. For
example, A = ‘an even die score’, while P (A) = 0.5, for a fair die.

5.9.2 Venn diagrams

The previous coin and die examples have been rather simple (for illustrative purposes).
Hence it is highly likely (in fact with a probability of 1!) that you will encounter more
challenging sets and sample spaces. Fear not, there is a helpful geometric technique
which can often be used – we represent the sample space elements in a Venn diagram.

Imagine we roll a die twice and record the total score. Hence our sample space will be:

S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Suppose we are interested in the following three events:

A = an even total, that is A = {2, 4, 6, 8, 10, 12}.

B = a total strictly less than 8, that is B = {2, 3, 4, 5, 6, 7}.

C = a total greater than 4, but less than 10, that is C = {5, 6, 7, 8, 9}.
Having defined these events, it is therefore possible to insert every element in the
sample space S into a Venn diagram, as shown in Figure 5.1.

The box represents S, so every possible outcome of the experiment (the total score
when a die is rolled twice) appears within the box. Three (overlapping) circles are
drawn representing the events A, B and C. Each element of S is then inserted into the
appropriate area. For example, the area where the three circles all intersect represents
the event A ∩B ∩ C into which we place the element ‘6’, since this is the only member
of S which satisfies all three events A, B and C.

8I shall leave you to decide which one of these mutually exclusive and exhaustive sets applies to you.
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A B

10, 12

3
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8
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Figure 5.1: Venn diagram for pre-defined sets A, B and C recording the total score when
a die is rolled twice.

Example 5.5 Using Figure 5.1, we can determine the following sets:

A ∩B = {2, 4, 6} A ∩ C = {6, 8}
A ∩B ∩ C = {6} (A ∪B ∪ C)c = {11}
A ∩B ∩ Cc = {2, 4} Ac ∩B = {3, 5, 7}
(A ∪ C)c ∩B = {3} A |C = {6, 8}.

5.9.3 The additive law

We now introduce our first probability ‘law’ – the additive law.

Let A and B be any two events. The additive law states that:

P (A ∪B) = P (A) + P (B)− P (A ∩B).

So P (A ∪ B) is the probability that at least one of A and B occurs, and P (A ∩ B)
is the probability that both A and B occur.

The additive law

Example 5.6 We can think about this using a Venn diagram. The total area of the
Venn diagram in Figure 5.2 is assumed to be 1, so area represents probability. Event
A is composed of all points in the left-hand circle, and event B is composed of all
points in the right-hand circle. Hence:

P (A) = area x + area z P (B) = area y + area z
P (A ∩B) = area z P (A ∪B) = area x + area y + area z.

63



5

5. Probability

A

x z y

B

Figure 5.2: Venn diagram illustrating the additive law.

P (A ∪B) = P (A) + P (B)− P (A ∩B)

= (area x+ area z) + (area y + area z)− (area z)

= area x+ area y + area z.

Hence, to compute P (A ∪B) we need to subtract P (A ∩B) otherwise that region
would have been counted twice.

Example 5.7 Consider an industrial situation in which a machine component can
be defective in two ways such that:

P (defective in first way) = P (D1) = 0.01

P (defective in second way) = P (D2) = 0.05

P (defective in both ways) = P (D1 ∩D2) = 0.001.

Then it follows that the probability that the component is defective is:

P (D1 ∪D2) = P (D1) + P (D2)− P (D1 ∩D2) = 0.01 + 0.05− 0.001 = 0.059.

A B

Figure 5.3: Venn diagram illustrating two mutually exclusive events.
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If A and B are mutually exclusive events, i.e. they cannot occur simultaneously, then
P (A ∩B) = 0. Hence:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

= P (A) + P (B)− 0

= P (A) + P (B).

Such events can be depicted by two non-overlapping sets in a Venn diagram as shown
in Figure 5.3. Now revisit Axiom 3, to see this result generalised for n mutually
exclusive events.

Additive law – special case 1

The probability of an event A not happening, i.e. the complement, Ac, is:

P (Ac) = 1− P (A).

Additive law – special case 2

5.9.4 The multiplicative law

This rule is concerned with the probability of two events happening at the same time –
specifically when the two events have the special property of independence. An
informal definition of independence is that two events are said to be independent if one
event has no influence on the other.

Formally, events A and B are independent if the probability of their intersect is the
product of their individual probabilities, that is:

P (A ∩B) = P (A) · P (B).

The multiplicative law (for independent events)

Example 5.8 Consider rolling two fair dice. The score on one die has no influence
on the score on the other. Hence the respective scores are independent events. Hence:

P (two sixes) =
1

6
× 1

6
=

1

36
.

Note the multiplicative (or product) law does not hold for dependent events, which is
the subject of conditional probability, discussed shortly. Also, take a moment to
ensure that you are comfortable with the terms ‘mutually exclusive’ and ‘independent’.
These are not the same thing, so do not get these terms confused!
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5.10 Conditional probability and Bayes’ formula

We have just introduced the concept of independent events – one event has no influence
on another. Clearly, there are going to be many situations where independence does not
in fact hold, i.e. the occurrence of one event has a ‘knock-on’ effect on the probability of
another event occurring.

Example 5.9 For a single roll of a fair die, let A be ‘roll a 6’, and B be ‘an even
number’. The following probabilities are obvious:

P (A) = 1/6

P (B) = 1/2

P (A |B) = 1/3.

So, we see that the probability of a 6 changes from 1/6 to 1/3 once we are given the
information that ‘an even number’ has occurred. Similarly, the probability of an even
number changes from 1/2 to 1, conditional on a 6 occurring, i.e. P (B |A) = 1.

Example 5.10 In order to understand and develop formulae for conditional
probability, consider the following simple example, representing the classification by
gender and subject (where A, B, C and D are defined below) of 144 college students.

Subject Female Male Total
A: Mathematics 4 14 18
B: Economics 17 41 58
C: Science 4 25 29
D: Arts 28 11 39
Total 53 91 144

Let F = ‘Female’ and M = ‘Male’ (obviously!), then P (A) = 18/144,
P (F ) = 53/144 and P (A∩ F ) = 4/144. Note that P (A∩ F ) 6= P (A) · P (F ), hence A
and F are not independent events.

From the table we have the following probabilities:

P (A |F ) = 4/53 6= P (A)

P (F |A) = 4/18 6= P (F ).

The correct relationship of these conditional probabilities to the original
unconditional probabilities is:

P (A |F ) =
4/144

53/144
=

4

53
=
P (A ∩ F )

P (F )
.

Similarly:

P (F |A) =
4/144

18/144
=

4

18
=
P (A ∩ F )

P (A)
. (Note P (A ∩ F ) = P (F ∩ A).)

66



5

5.10. Conditional probability and Bayes’ formula

Activity 5.1 Check that some of the other conditional probabilities obtained from
the table in Example 5.10 satisfy this formula, such as P (C |F ) = 4/53.

Note also another important relationship involving conditional probability is the ‘total
probability formula’ (discussed in greater depth shortly). This expresses an
unconditional probability in terms of other, conditional probabilities.

Example 5.11 Continuing with Example 5.10, we have:

P (A) =
18

144
=

(
4

53
× 53

144

)
+

(
14

91
× 91

144

)
= P (A |F )P (F ) + P (A |M)P (M).

5.10.1 Bayes’ formula

We formally define conditional probabilities.

For any two events A and B, we define conditional probabilities as:

P (A |B) =
P (A ∩B)

P (B)
and P (B |A) =

P (A ∩B)

P (A)
. (5.1)

In words: ‘the probability of one event, given a second event, is equal to the
probability of both, divided by the probability of the second (conditioning) event.’

Conditional probability

This is the simplest form of Bayes’ formula, and this can be expressed in other ways.
Rearranging (5.1), we obtain:

P (A ∩B) = P (A |B)P (B) = P (B |A)P (A),

from which we can derive Bayes’ formula.

The simplest form of Bayes’ formula is:

P (A |B) =
P (B |A)P (A)

P (B)
.

Bayes’ formula

5.10.2 Total probability formula

The simplest case of the total probability formula involves calculating the probability of
an event A from information about its two conditional probabilities with respect to some
other event B and its complement, Bc, together with knowledge of P (B). Note that:
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B and Bc are mutually exclusive, and

B and Bc are collectively exhaustive.

Fulfilment of these criteria (being mutually exclusive and collectively exhaustive) allows
us to view B and Bc as a partition of the sample space.

The total probability formula is:

P (A) = P (A |B) · P (B) + P (A |Bc) · P (Bc).

In words: ‘the probability of an event is equal to its conditional probability on a
second event times the probability of the second event, plus its probability conditional
on the second event not occurring times the probability of that non-occurrence.’

The (simplest form of the) total probability formula

There is a more general form of the total probability formula. Let B1, B2, . . . , Bn

partition the sample space S into n pairwise mutually exclusive (at most one of them
can happen) and collectively exhaustive (at least one of them must happen) events. For
example, for n = 4, see Figure 5.4.

B 3 S

B 1

B 2 B 4

Figure 5.4: An example of a partitioned sample space.

Figure 5.5 superimposes an event A.

B 3 S

B 1 A

B 2 B 4

Figure 5.5: The event A within a partitioned sample space.
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Extending the simple form of the total probability formula, we obtain:

P (A) =
n∑
i=1

P (A |Bi)P (Bi)

= P (A |B1)P (B1) + P (A |B2)P (B2) + · · ·+ P (A |Bn)P (Bn).

Recall that P (B |A) = P (A ∩B)/P (A) = P (A |B)P (B)/P (A), so assuming we have
the partition B and Bc, then:

P (B |A) =
P (A |B)P (B)

P (A |B) · P (B) + P (A |Bc) · P (Bc)
.

A more general partition gives us a more complete form of Bayes’ formula.

For a general partition of the sample space S into B1, B2, . . . , Bn, and for some event
A, then:

P (Bk |A) =
P (A |Bk)P (Bk)
n∑
i=1

P (A |Bi)P (Bi)
.

General form of Bayes’ formula

Activity 5.2 In an audit Bill analyses 60% of the audit items and George analyses
40%. Bill’s error rate is 5% and George’s error rate is 3%. Suppose an item is
sampled at random.

(a) What is the probability that it is in error (audited incorrectly)?

(b) If the chosen item is incorrect what is the probability that Bill is to blame?

Activity 5.3 Two fair coins are tossed. You are told that ‘at least one is a head’.
What is the probability that both are heads?

5.10.3 Independent events (revisited)

The terms ‘dependent’ and ‘independent’ reflect the fact that the probability of an
event is changed when another event is known to occur only if there is some dependence
between the events. If there is such a dependence, then P (A |B) 6= P (A).

It follows from this that two events, A and B, are independent if and only if:

P (A |B) = P (A).

Recall from the multiplicative law in Section 5.9, that under independence
P (A ∩B) = P (A) · P (B). Substituting this into our conditional probability formula
gives the required result:

P (A |B) =
P (A ∩B)

P (B)
=
P (A) · P (B)

P (B)
= P (A)

provided P (B) > 0. Hence if A and B are independent, knowledge of B, i.e. ‘|B’, is of
no value to us in determining the probability of A occurring.
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5.11 Probability trees

Probability problems can often be represented in several ways. We have already seen
how Venn diagrams provide a convenient way to visualise the members of various
combinations of events.

Here, we introduce the probability tree, also referred to as a tree diagram. This is
best explained by way of an example.

Example 5.12 The London Special Electronics company is investigating a fault in
its manufacturing plant. The tests done so far prove that the fault is at one of three
locations: A, B or C. Taking all the tests and other evidence into account, the
company assesses the chances of the fault being at each site as:

Suspect site A B C
Probability of it being site of fault 0.5 0.2 0.3

The next test they will do is expected to improve the identification of the correct
site, but (like most tests) it is not entirely accurate.

• If the fault is at A, then there is a 70 per cent chance of a correct identification;
i.e. given that A is the site of the problem then the probability that the test
says that it is at A is 0.7, and in this case the probabilities of either possible
error are equal.

• If the fault is at B, then there is a 60 per cent chance of a correct identification,
and in this case too the probabilities of either possible error are equal.

• If the fault is at C, then there is an 80 per cent chance of a correct identification,
and in this case too the probabilities of either possible error are equal.

Draw a probability tree for this problem, and use it to answer the following:

(a) What is the probability that the new test will (rightly or wrongly) identify A as
the site of the fault?

(b) If the new test does identify A as the site of the fault, find:

i. the company’s revised probability that C is the site of the fault

ii. the company’s revised probability that B is not the site of the fault.

Let A, B and C stand for the events: ‘fault is at A’, ‘fault is at B’ and ‘fault is at C’,
respectively. Also, let a, b and c stand for the events: ‘the test says the fault is at A’,
‘the test says the fault is at B’ and ‘the test says the fault is at C’, respectively. The
probability tree is shown in Figure 5.6.

(a) The probability P (a) is the sum of the three values against ‘branches’ which
include the event a, that is:

0.35 + 0.04 + 0.03 = 0.42.
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a 0.7

b 0.15

A c 0.15

0.5

a 0.2

B b 0.6

0.2

c 0.2

C a 0.1

0.3

b 0.1

c 0.8

p  = 0.2 x 0.2 = 0.04

p  = 0.3 x 0.1 = 0.03

p  = 0.3 x 0.1 = 0.03

p  = 0.3 x 0.8 = 0.24

Probability tree

p  = 0.5 x 0.7 = 0.35

p  = 0.5 x 0.15 = 0.075

p  = 0.5 x 0.15 = 0.075

p  = 0.2 x 0.2 = 0.04

p  = 0.2 x 0.6 = 0.12

True site

of fault

Test says

fault at

Final

probabilities

Figure 5.6: Probability tree for Example 5.12.

(b) i. The conditional probability P (C | a) is the value for the C ∩ a branch
divided by P (a), that is:

0.03

0.35 + 0.04 + 0.03
=

1

14
= 0.071.

ii. The conditional probability P (Bc | a) is the sum of the values for the A ∩ a
and C ∩ a branches divided by P (a), that is:

0.35 + 0.03

0.42
= 0.905.

Alternatively:

P (Bc | a) = 1− value of (B ∩ a) branch

P (a)
= 1− 0.04

0.42
= 0.905.

5.12 Summary

This chapter has introduced the idea of probability, and defined the key terms. You
have also seen how Venn diagrams can be used to illustrate probability, and used the
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three axioms. This should prepare you for the following chapter.

5.13 Key terms and concepts

Additive law Axioms
Bayes’ formula Collectively exhaustive
Conditional Element
Equally likely Event
Exhaustive Experiment
Independence Member
Multiplicative law Mutually exclusive
Partition Probability
Probability tree Relative frequency
Sample space Set
Subset Tree diagram
Venn diagram

5.14 Learning activities

1. When throwing a die, we have:

S = {1, 2, 3, 4, 5, 6}, E = {3, 4}, and F = {4, 5, 6}.

Determine:

(a) F c

(b) Ec ∩ F c

(c) (E ∪ F )c

(d) Ec ∩ F .

2. Consider the following information.

Supplier Delivery time
Early On time Late Total

Jones 20 20 10 50
Smith 10 90 50 150
Robinson 0 10 90 100
Total 30 120 150 300

What are the probabilities associated with a delivery chosen at random for each of
the following?

(a) Being an early delivery.

(b) Being a delivery from Smith.

(c) Being both from Jones and late?
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3. Draw the appropriate Venn diagram to show each of the following in connection
with Question 1:

(a) E ∪ F = {3, 4, 5, 6}
(b) E ∩ F = {4}
(c) Ec = {1, 2, 5, 6}.

4. There are three sites a company may move to: A, B and C. We are told that P (A)
(the probability of a move to A) is 1/2, and P (B) = 1/3. What is P (C)?

5. Two events A and B are independent with P (A) = 1/3 and P (B) = 1/4. What is
P (A ∩B)?

6. A company gets 60% of its supplies from manufacturer A, and the remainder from
manufacturer Z. The quality of the parts delivered is given below:

Manufacturer % Good parts % Bad parts
A 97 3
Z 93 7

(a) The probabilities of receiving good or bad parts can be represented by a
probability tree. Show, for example, that the probability that a randomly
chosen part comes from A and is bad is 0.018.

(b) Show that the sum of the probabilities of all outcomes is 1.

(c) The way the tree is used depends on the information required. For example,
show that the tree can be used to show that the probability of receiving a bad
part is 0.028 + 0.018 = 0.046.

7. A company has a security system comprising four electronic devices (A, B, C and
D) which operate independently. Each device has a probability of 0.1 of failure.
The four electronic devices are arranged such that the whole system operates if at
least one of A or B functions and at least one of C or D functions.

Show that the probability that the whole system functions properly is 0.9801.

(Use set theory and the laws of probability, or a probability tree.)

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk

In addition, attempt the ‘Test your understanding’ self-test quizzes available on the
VLE.

5.15 Further exercises

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060].
Relevant exercises from Sections 3.1–3.3 and 3.5.
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5.16 A reminder of your learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

apply the ideas and notation involved in set theory to simple examples

recall the basic axioms of probability and apply them

distinguish between the ideas of conditional probability and independence

draw and use appropriate Venn diagrams

draw and use appropriate probability trees.

5.17 Sample examination questions

1. Say whether the following statement is true or false and briefly give your
reason(s). ‘If two events are independent, then they must be mutually exclusive.’

2. If X can take values of 1, 2 and 4 with P (X = 1) = 0.3, P (X = 2) = 0.5 and
P (X = 4) = 0.2, what are:

(a) P (X2 < 4)

(b) P (X > 2 |X is an even number)?

3. Write down and illustrate the use in probability of:

(a) the addition law

(b) the multiplicative rule.

4. A student can enter a course either as a beginner (73% of all students) or as a
transferring student (27% of all students). It is found that 62% of beginners
eventually graduate, and that 78% of transferring students eventually graduate.

(a) Find:

i. the probability that a randomly chosen student is a beginner who will
eventually graduate

ii. the probability that a randomly chosen student will eventually graduate

iii. the probability that a randomly chosen student is either a beginner or will
eventually graduate, or both.

(b) Are the events ‘Eventually graduates’ and ‘Enters as a transferring student’
statistically independent?

(c) If a student eventually graduates, what is the probability that the student
entered as a transferring student?
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(d) If two entering students are chosen at random, what is the probability that not
only do they enter in the same way but that they also both graduate or both
fail?

5. A coffee machine may be defective because it dispenses the wrong amount of coffee,
event C, and/or it dispenses the wrong amount of sugar, event S. The probabilities
of these defects are:

P (C) = 0.05, P (S) = 0.04 and P (C ∩ S) = 0.01.

What proportion of cups of coffee has:

(a) at least one defect

(b) no defects?

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk
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Chapter 6

The normal distribution and ideas of
sampling

6.1 Aims

Now is the time where the ideas of measurement (introduced in Chapter 4) and
probability (Chapter 5) come together to form the ideas of sampling. Your aims should
be to:

understand the concept of a random variable and its distribution

work with the normal distribution

see the connection between the mathematical ideas of sampling introduced here
and their uses (introduced in Chapter 3, and covered in detail in Chapter 10).

6.2 Learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

summarise the meaning of E(X) and Var(X)

compute areas under the curve for a normal distribution

state and apply the central limit theorem

explain the relationship between sample size and the standard error of the sample
mean.

6.3 Essential reading

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060]
Sections 4.1, 4.3, 5.1–5.3, 6.1 and 6.2.

In addition there is essential ‘watching’ of this chapter’s accompanying video tutorials
accessible via the ST104a Statistics 1 area at http://my.londoninternational.ac.uk
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6.4 Further reading

Wonnacott, T.H. and R.J. Wonnacott Introductory Statistics for Business and
Economics. (Chichester: John Wiley & Sons, 1990) fourth edition [ISBN
9780471615170] Chapters 4 and 6.

6.5 Introduction

If all governmental political and economic decisions were based on figures from entire
populations, think how costly and time-consuming that would be. You could argue that
one would never in fact tackle the problem itself. If we needed to know exactly how
many homeless families there are in a particular country before implementing policy, or
the exact number of companies which employ people on a part-time basis, and for how
many hours, then work might scarcely get off the ground! Think, for example, of the
population of your country and the cost of a complete census, even if only limited
questions are asked about residents.

Fortunately for everyone, statisticians have come up with a way of estimating such
figures using samples from the population. They can also tell us how accurate these
estimates are likely to be for a particular sample size and this is why survey sampling,
rather than taking a full census, is the preferred tool of governments, social researchers
and market research companies! The rest of this chapter develops the ideas you need in
order to use random sampling successfully.

6.6 The random variable

Formally, a random variable is a ‘mapping’ of the elementary outcomes in the sample
space to real numbers. This allows us to attach probabilities to the experimental
outcomes. Hence the concept of a random variable is that of a measurement which takes
a particular value for each possible trial (experiment).

Frequently, this will be a numerical value. For example, suppose we sample five people
and measure their heights, hence ‘height’ is the random variable and the five (observed)
values of this random variable are the realised measurements for the heights of these
five people.

As a further example, suppose a fair die is thrown four times and we observe two 6s, a 3
and a 1. The random variable is the ‘score on the die’, and for these four trials it takes
the values 6, 6, 3 and 1. (In this case, since we do not know the true order in which the
values occurred, we could also say that the results were 1, 6, 3 and 6 or 1, 3, 6 and 6,
etc.)

An example of an experiment with non-numerical outcomes would be a coin toss, for
which recall S = {H,T}. We can use a random variable, X, to convert the sample space
elements to real numbers:

X =

{
1 : if heads
0 : if tails.
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The value of any of the aforementioned measurable variables will typically vary from
sample to sample, hence the name ‘random variable’.

So each experimental random variable has a collection of possible outcomes, and a
numerical value associated with each outcome. We have already encountered the term
‘sample space’ which is the set of all possible (numerical) values of the random variable.

Random variables come in two ‘types’: discrete and continuous. Discrete random
variables are those associated with count data, such as the score on a die, while
continuous random variables refer to measurable data, such as height, weight and time.

Example 6.1 Examples of discrete random variables include:

Experiment Random variable Sample space
Die is thrown Value on top face {1, 2, 3, 4, 5, 6}
Coin is tossed five times Number of heads {0, 1, 2, 3, 4, 5}
Twenty people sampled Number with blue eyes {0, 1, 2, . . . , 19, 20}
Machine operates for a day Number of breakdowns {0, 1, 2, . . .}

Example 6.2 Possible examples of continuous random variables include:

In economics, measuring values of inputs or outputs, workforce productivity or
consumption.

In sociology, measuring the proportion of people in a population with a
particular preference.

In engineering, measuring the electrical resistance of materials.

In physics, measuring temperature, electrical conductivity of materials.

Note the repeated appearance of ‘measuring’ in the above examples. Hence
continuous variables deal with measured data, while discrete variables deal with
count data.

We typically use a capital letter to denote the random variable. For example, X =
‘score of a die’. The letter X is often adopted, but it is perfectly legitimate to use any
other letter: Y , Z, etc. In contrast, a lower case letter denotes a particular value of the
random variable. For example, if the die results in a 3, then this is x = 3.

A natural question to ask is ‘what is the probability of any of these values?’. That is, we
are interested in the probability distribution of the random variable. Special
probability distributions are the subject matter of ST104b Statistics 2; however,
there is one very special distribution which will concern us – the normal distribution.
Before the normal distribution is introduced though, it is necessary to introduce two
important measures.

79



6

6. The normal distribution and ideas of sampling

6.7 Population mean and variance

‘Mean’ and ‘variance’ were introduced in Chapter 4, although importantly these referred
to the sample versions, i.e. x̄ and s2, which were calculated based on sample data.
Here, our attention is on the population (theoretical) mean and variance. These play
a key role in sampling theory which will occupy us for the next few chapters. In order to
work with these measures, we first need to introduce the expectation operator, ‘E’.

6.7.1 Population mean

Certain important properties of distributions arise if we consider probability-weighted
averages of random variables, and of functions of random variables.1 For example, we
might want to know the average of a random variable.

It would be foolish to simply take the average of all the values taken by the random
variable, as this would mean that very unlikely values (those with small probabilities of
occurrence) would receive the same weighting as very likely values (those with large
probabilities of occurrence). The obvious approach is to use the probability-weighted
average of the sample space values.

If x1, x2, . . . , xN are the possible values of the random variable X, with corresponding
probabilities p1, p2, . . . , pN , then:

E(X) = µX = µ =
N∑
i=1

pixi = p1x1 + p2x2 + · · ·+ pNxN .

Expected value of a discrete random variable

Note this population mean can be written as E(X) (in words ‘the expectation of the
random variable X’), or µX (in words ‘the (population) mean of X’). Also, note the
distinction between the sample mean, x̄, (introduced in Chapter 4) based on observed
sample values, and the population mean, µX , based on the theoretical probability
distribution.

Example 6.3 If the ‘random variable’ X happens to be a constant, then
x1 = x2 = · · · = xN = k, and it is always the case that p1 = p2 = · · · = pN = 1, so
trivially E(X) = k.

Example 6.4 Let X represent the value shown when a fair die is thrown once. Its
probability distribution (that is, how the sample space probability of 1 is
distributed across the values the random variable takes) is:

X = x 1 2 3 4 5 6 Total
P (X = x) 1/6 1/6 1/6 1/6 1/6 1/6 1

Note that the sum of the individual probabilities is 1 (a consequence of the second

1A function, f(X), of a random variable X is, of course, a new random variable, say Y = f(X).
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probability axiom). So the (population) mean is calculated to be:

E(X) =
6∑
i=1

pixi =
1

6
· 1 +

1

6
· 2 + · · ·+ 1

6
· 6 = 3.5.

Example 6.5 Suppose the random variable X takes the values 3, 6 and 8 with
probabilities 0.2, 0.7 and 0.1, respectively. Hence its probability distribution is:

X = x 3 6 8 Total
P (X = x) 0.2 0.7 0.1 1

The population mean is calculated to be:

E(X) =
3∑
i=1

pixi = (0.2× 3) + (0.7× 6) + (0.1× 8) = 5.6.

6.7.2 Population variance

The concept of a probability-weighted average (or expected value) can be extended to
functions of the random variable. For example, if X takes the values x1, x2, . . . , xN with
corresponding probabilities p1, p2, . . . , pN , then:

E

(
1

X

)
=

N∑
i=1

pi
1

xi
provided xi 6= 0

E(X2) =
N∑
i=1

pix
2
i .

One very important average associated with a distribution is the expected value of the
square of the deviation2 of the random variable from its mean, µ, known as the
population variance, σ2.

If x1, x2, . . . , xN are the possible values of the random variable X, with corresponding
probabilities p1, p2, . . . , pN , then:

σ2 = E((X − µ)2) =
N∑
i=1

pi(xi − µ)2.

Variance of a discrete random variable

This can be seen to be a measure – not the only one, but the most widely used by far –
of the spread of the distribution and is known as the (population) variance of the
random variable.

2Which roughly means ‘distance with sign’.
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The (positive) square root of the variance is known as the standard deviation and,
given the variance is typically denoted by σ2, the standard deviation is denoted by σ.

Example 6.6 Returning to the fair die example, we now compute the variance of
X as follows, noting that µ = 3.5.

X = x 1 2 3 4 5 6 Total

P (X = x) 1/6 1/6 1/6 1/6 1/6 1/6 1

(x− µ)2 25/4 9/4 1/4 1/4 9/4 25/4

(x− µ)2 · P (X = x) 25/24 9/24 1/24 1/24 9/24 25/24 70/24 = 2.92

Hence σ2 = E((X − µ)2) = 2.92 and σ =
√

2.92 = 1.71.

The tabular format in Example 6.6 has some advantages. Specifically:

It helps to have (and to calculate) the ‘Total’ column since, for example, if a
probability, P (X = x), has been miscalculated or miscopied then the row total will
not be 1 (recall the second probability axiom). This would therefore highlight an
error so, with a little work, could be identified.

It is often useful to do a group of calculations as fractions over the same
denominator (as in the final row of the table in Example 6.6), rather than to cancel
or to work with them as decimals, because important patterns can be more
obvious, and calculations easier.

It can be shown3 that the population variance can be expressed in an alternative form:

Var(X) = E((X − µ)2) = E(X2)− (E(X))2 .

In words, ‘the (population) variance is equal to the mean of the square minus the square
of the mean’.

Example 6.7 Using the same single die example from Example 6.6:

X = x 1 2 3 4 5 6 Total

P (X = x) 1/6 1/6 1/6 1/6 1/6 1/6 1

x · P (X = x) 1/6 2/6 3/6 4/6 5/6 6/6 21/6 = 3.5 = µ

x2 · P (X = x) 1/6 4/6 9/6 16/6 25/6 36/6 91/6

Hence µ = E(X) = 3.5, E(X2) = 91/6, so the variance is 91/6− (3.5)2 = 2.92, as
before. However, this method is usually easier.

3This means the result is important, but the derivation of the result is not required for this course.
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6.8 The normal distribution

The normal distribution is the most important distribution in statistical theory and
it is essential to much statistical theory and reasoning. It is, in a sense, the ‘parent’
distribution of all the sampling distributions which we shall meet later.

In order to get some feel for the normal distribution, let us consider the exercise of
constructing a histogram of people’s heights (assumed to be normally distributed).
Suppose we start with 100 people and construct a histogram using sufficient class
intervals such that the histogram gives a good representation of the data’s distribution.
This will be a fairly ‘ragged’ diagram, but useful nonetheless.

Now suppose we increase our sample size to 500 and construct an appropriate
histogram for these observed heights, but using more class intervals now that we have
more data. This diagram will be smoother than the first, peaked in the centre, and
roughly symmetric about the centre. The normal distribution is emerging! If we
continue this exercise to sample sizes of 5,000 or even 50,000, then we will eventually
arrive at a very smooth bell-shaped curve similar to that shown in Figure 6.1. Hence we
can view the normal distribution as the smooth limit of the basic histogram as the
sample size becomes very large.

Such a diagram represents the distribution of the population. It is conventional to
adjust the vertical scale so that the total area under the curve is 1, and so it is easy to
view the area under the curve as probability (recall the second probability axiom). The
mathematical form for this curve is well-known and can be used to compute areas, and
thus probabilities – in due course we shall make use of statistical tables for this purpose.
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Figure 6.1: Density function of the (standard) normal distribution.
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6.8.1 Relevance of the normal distribution

The normal distribution is relevant to the application of statistics for many reasons such
as:

Many naturally occurring phenomena can be modelled as following a normal
distribution. Examples include heights of people, diameters of bolts, weights of
pigs, etc.4

A very important point is that averages of sampled variables (discussed later),
indeed any functions of sampled variables, also have probability distributions. It
can be demonstrated, theoretically and empirically, that, provided the sample size
is reasonably large, the distribution of the sample mean, X̄, will be
(approximately) normal regardless of the distribution of the original variable. This
is known as the central limit theorem (CLT) which we will return to later.

The normal distribution is often used as the distribution of the error term in
standard statistical and econometric models such as linear regression. This
assumption can be, and should be, checked. This is considered further in ST104b
Statistics 2.

6.8.2 Consequences of the central limit theorem

The consequences of the CLT are twofold:

A number of statistical methods that we use have a robustness property, i.e. it
does not matter for their validity just what the true population distribution of the
variable being sampled is.

We are justified in assuming normality for statistics which are sample means or
linear transformations of them.

The CLT was introduced above ‘provided the sample size is reasonably large’. In
practice, 30 or more observations are usually sufficient (and can be used as a
rule-of-thumb), although the distribution of X̄ may be normal for n much less than 30.
This depends on the distribution of the original (population) variable. If this population
distribution is in fact normal, then all sample means computed from it will be normal.
However, if the population distribution is very non-normal, then a sample size of (at
least) 30 would be needed to justify normality.

4Note the use of the word ‘modelled ’. This is due to the ‘distributional assumption’ of normality. Since
a normal random variable X is defined over the entire real line, i.e. −∞ < x < ∞, we know a person
cannot have a negative height, even though the normal distribution has positive, non-zero probability
over negative values. Also, nobody is of infinite height (the world’s tallest man ever, Robert Wadlow,
was 272 cms), so clearly there is a finite upper bound to height, rather than ∞. Therefore height does
not follow a true normal distribution, but it is a good enough approximation for modelling purposes.
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6.8.3 Characteristics of the normal distribution

The equation which describes the normal distribution takes the general form:

fX(x) =
1√

2πσ2
e−(x−µ)2/2σ2

.

The shape of this function is the bell-shaped curve, such as in Figure 6.1. Don’t panic,
you will not be working with this function directly! That said, do be aware that it
involves two parameters: the mean, µ, and the variance, σ2.5

Since the normal distribution is symmetric about µ, the distribution is centred at
µ. As a consequence of this symmetry, the mean is equal to the median. Also, since
the distribution peaks at µ, it is also equal to the mode. In principle, the mean can
take any real value, i.e. −∞ < µ <∞.

The variance is σ2, hence the larger σ2, the larger the spread of the distribution.
Note that variances cannot be negative, hence σ2 > 0.

If the random variable X has a normal distribution with parameters µ and σ2, we
denote this as X ∼ N(µ, σ2).6 Given the infinitely many possible values for µ and σ2,
and given that a normal distribution is uniquely defined by these two parameters, there
is an infinite number of normal distributions due to the infinite combinations of values
for µ and σ2.

The most important normal distribution is the special case when µ = 0 and σ2 = 1. We
call this the standard normal distribution, denoted by Z, i.e. Z ∼ N(0, 1).
Tabulated probabilities that appear in statistical tables are for the standard normal
distribution.

6.8.4 Standard normal tables

We now discuss the determination of normal probabilities using standard statistical
tables. (Extracts from the) New Cambridge Statistical Tables will be provided in the
examination. Here we focus on Table 4.

Table 4 of the New Cambridge Statistical Tables lists ‘lower-tail’ probabilities, which
can be represented as:

P (Z ≤ z) = Φ(z), z ≥ 0

using the conventional Z notation for a standard normal variable.7

Standard normal probabilities

Note the cumulative probability8 for the Z distribution, P (Z ≤ z), is often denoted
Φ(z). We now consider some examples of working out probabilities from Z ∼ N(0, 1).

5‘Parameters’ were introduced in Chapter 3.
6Read ‘∼’ as ‘is distributed as’.
7Although Z is the conventional letter used to denote a standard normal variable, Table 4 uses

(somewhat annoyingly) ‘x’ to denote ‘z’.
8A cumulative probability is the probability of being less than or equal to some particular value.
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Example 6.8 If Z ∼ N(0, 1), what is P (Z > 1.2)?

When computing probabilities, it is useful to draw a quick sketch to visualise the
specific area of probability that we are after.

So for P (Z > 1.2) we require the upper-tail probability shaded in red in Figure 6.2.
Since Table 4 gives us lower-tail probabilities, if we look up the value 1.2 in the table
we will get P (Z ≤ 1.2) = 0.8849. The total area under a normal curve is 1, so the
required probability is simply 1− Φ(1.2) = 1− 0.8849 = 0.1151.
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Figure 6.2: Standard normal distribution with shaded area depicting P (Z > 1.2).

Example 6.9 If Z ∼ N(0, 1), what is P (−1.24 < Z < 1.86)?

Again, begin by producing a sketch.

The probability we require is the sum of the blue and red areas in Figure 6.3. Using
Table 4, which note only covers z ≥ 0, we proceed as follows.

The red area is given by:

P (0 ≤ Z ≤ 1.86) = P (Z ≤ 1.86)− P (Z ≤ 0)

= Φ(1.86)− Φ(0)

= 0.9686− 0.5

= 0.4686.
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The blue area is given by:

P (−1.24 ≤ Z ≤ 0) = P (Z ≤ 0)− P (Z ≤ −1.24)

= Φ(0)− Φ(−1.24)

= Φ(0)− (1− Φ(1.24))

= 0.5− (1− 0.8925)

= 0.3925.

Note by symmetry of Z about µ = 0, P (Z ≤ −1.24) = P (Z ≥ 1.24) = 1− Φ(1.24).
So although Table 4 does not give probabilities for negative z values, we can exploit
the symmetry of the (standard) normal distribution.

Hence P (−1.24 < Z < 1.86) = 0.4686 + 0.3925 = 0.8611.

Alternatively:

P (−1.24 < Z < 1.86) = Φ(1.86)− Φ(−1.24)

= Φ(1.86)− [1− Φ(1.24)]

= 0.9686− (1− 0.8925)

= 0.8611.
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Figure 6.3: Standard normal distribution depicting P (−1.24 < Z < 1.86) as the shaded
areas.

6.8.5 The general normal distribution

We have already discussed that there exists an infinite number of different normal
distributions due to the infinite pairs of parameter values since −∞ < µ <∞ and
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σ2 > 0. The good news is that Table 4 of the New Cambridge Statistical Tables can be
used to determine probabilities for any normal random variable X, such that
X ∼ N(µ, σ2).

To do so, we need a little bit of magic – standardisation. This is a special
transformation which converts X ∼ N(µ, σ2) into Z ∼ N(0, 1).

If X ∼ N(µ, σ2), then the transformation:

Z =
X − µ
σ

creates a standard normal random variable, i.e. Z ∼ N(0, 1). So to standardise X
we subtract the mean and divide by the standard deviation.

The transformation formula for standardisation

To see why,9 first note that any linear transformation of a normal random variable is
also normal – hence as X is normal, so too is Z, since the standardisation
transformation is linear in X. It remains to show that standardisation results in a
random variable with zero mean and unit variance.

Since X ∼ N(µ, σ2), we have:

E(Z) = E

(
X − µ
σ

)
=

1

σ
E(X − µ) =

1

σ
(E(X)− µ) =

1

σ
(µ− µ) = 0. (6.1)

This result exploits the fact that σ is a constant, hence can be taken outside the
expectation operator. Turning to the variance, we have:

Var(X) = Var

(
X − µ
σ

)
=

1

σ2
Var(X − µ) =

1

σ2
Var(X) =

1

σ2
σ2 = 1. (6.2)

This result uses the fact that we must square a constant when taking it outside the
‘Var’ operator.

Example 6.10

Suppose X ∼ N(5, 4). What is P (5.8 < X < 7.0)?

9This bit of theory, that is (6.1) and (6.2), is purely for illustrative purposes (and for the interested
student!), you will not have to reproduce this in the examination.

88



6

6.9. Sampling distributions

P (5.8 < X < 7.0) = P

(
5.8− µ
σ

<
X − µ
σ

<
7.0− µ
σ

)
= P

(
5.8− 5√

4
<
X − 5√

4
<

7.0− 5√
4

)
= P (0.4 < Z < 1)

= P (Z ≤ 1)− P (Z ≤ 0.4)

= 0.8413− 0.6554 (from Table 4)

= 0.1859.

6.9 Sampling distributions

In Chapter 3, ‘Statistics’ was introduced as a discipline for data analysis. In this
chapter we have encountered the normal probability distribution. Probability
distributions typically have associated parameters, such as the (theoretical) mean, µ,
and the (theoretical) variance, σ2, for the normal distribution. By convention, Greek
letters are used to denote population parameters, whose values in practice are
typically unknown.

The next few chapters of this course will be the subject of statistical inference,
whereby we infer unknown population parameters based on sample data. As an
example, suppose we wanted to investigate the height of the UK population. As
previously discussed, it is reasonable to assume that height is a normally-distributed
random variable with some mean µ and some variance σ2. What are the exact values of
these parameters? To know these values precisely would require data on the heights of
the entire UK population – all 60-plus million people!

Population sizes, denoted by N , are typically very large and clearly no-one has the
time, money or patience to undertake such a marathon data collection exercise. Instead
we opt to collect a sample (some subset of the population) of size n.10 Having collected
our sample, we then estimate the unknown population parameters based on the known
(observed) sample data. Specifically, we estimate population quantities based on
their respective sample counterparts.

A ‘statistic’ (singular noun) is just some known function calculated from data. A sample
statistic is calculated from sample data. At this point, be aware of the following
distinction between an estimator and an estimate.

10If n = N , and we sample without replacement, then we have obtained a complete enumeration of
the population – a census.

89



6

6. The normal distribution and ideas of sampling

An estimator is a statistic (which is a random variable) describing how to obtain a
(point) estimate (which is a real number) of a population parameter.

Estimator versus estimate

Example 6.11 The sample mean X̄ =
n∑
i=1

Xi/n is the estimator for the population

mean, µ. If we had drawn at random from the population the sample data 4, 8, 2, 6,
then the (point) estimate for µ would be x̄ = 20/4 = 5. Notice the notation – the
estimator is written as ‘capital’ X̄ and is a random variable, while the estimate is
written as ‘lower case’ x̄ as it is computed for a specific sample, hence is fixed
(constant) for that particular sample. Had the random sample been instead
2, 9, 1, 4 (from the same population), then the estimator for µ would still be

X̄ =
n∑
i=1

Xi/n, but the estimate would now be x̄ = 16/4 = 4.

So we see that sample statistics vary from sample to sample due to the random nature
of the sample. Hence estimators are random variables with corresponding probability
distributions, namely sampling distributions.

A sampling distribution is the probability distribution of an estimator.

Sampling distribution

Before we proceed further, let us take a moment to review some population quantities
and their respective sample counterparts.

Population quantity Sample counterpart
Probability distribution Histogram
(Population) mean, µ (Sample) mean, x̄
(Population) variance, σ2 (Sample) variance, s2

(Population) standard deviation, σ (Sample) standard deviation, s
(Population) proportion, π (Sample) proportion, p

The precision (or quality) of point estimates such as x̄, s2 and p will depend on the
sample size n, and in principle on the population size N , if finite. In practice if N is
large relative to n, then we can use approximations which are more than adequate for
practical purposes, but would only be completely accurate if the population truly was
infinite. In what follows we assume N is large enough to be treated as infinite.

6.10 Sampling distribution of X̄

Let us consider a large population (big enough to be treated as if it was infinite) which
is normally distributed, i.e. N(µ, σ2). Suppose we take an initial random sample of size
n and obtain the sample mean, x̄1. Next we take a second, independent sample (from
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the same initial population) and compute x̄2. Continue taking new, independent
samples, resulting in a series of sample means: x̄1, x̄2, x̄3, . . .. These values will, of
course, vary from sample to sample, hence if we constructed a histogram of these values
we would see the empirical sampling distribution of X̄. Fortunately, however, we are
often able to determine the exact, theoretical form of sampling distributions without
having to resort to such empirical ‘simulations’.

When taking a random sample of size n from a N(µ, σ2) population, it can be shown
11 that:

X̄ ∼ N

(
µ,

σ2

n

)
.

Sampling distribution of X̄ for normal populations

The central limit theorem concerns the sampling distribution of X̄ when sampling from
any non-normal distribution (with some exceptions).

When taking a random sample of size n from a non-normal population with finite
mean µ and finite variance σ2, then:

X̄ ∼ N

(
µ,

σ2

n

)
approximately, as n→∞.

Central limit theorem

So the difference between sampling from normal and non-normal populations is that X̄
is exactly normally distributed in the former case, but only approximately so in the
latter case. The approximation is reasonable for n at least 30, as a rule-of-thumb.
Although because this is an asymptotic approximation (i.e. as n→∞), the bigger n is,
the better the normal approximation.

We can use standardisation to compute probabilities involving X̄, but we must
remember to divide by σ/

√
n rather than σ, since the variance of X̄ is σ2/n. σ/

√
n is

known as the standard error of X̄.

The standard deviation of an estimator is called its standard error.

For example, X̄ ∼ N(µ, σ2/n) (either exactly, or approximately by the CLT), so
Var(X̄) = σ2/n, hence the standard deviation of X̄, i.e. the standard error, is:√

Var(X̄) =

√
σ2

n
=

σ√
n
.

Note the standard error decreases as n increases.

Standard error

11Which means the actual proof is beyond the scope of this course.
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Example 6.12 A random sample of 16 values is taken from a normal distribution
with µ = 25 and σ = 3. What is P (X̄ > 26)?

Since the population is normally distributed, the sampling distribution of X̄ is
exactly N(µ, σ2/n) = N (25, 9/16). If Z is the standard normal random variable,
then:

P (X̄ > 26) = P

(
Z >

26− 25

3/
√

16

)
= P (Z > 1.33) = 1−Φ(1.33) = 1− 0.9082 = 0.0918

using Table 4 of the New Cambridge Statistical Tables.

6.11 Summary

This chapter covered the key points relating to the normal distribution and the central
limit theorem. You should now be ready to embark on Chapters 7, 8 and 9, and work on
ideas of statistical estimation and inference. Do not worry if you found some later
sections of this chapter difficult to understand. Work at the learning activities and the
sample examination questions below.

6.12 Key terms and concepts

Central limit theorem Expectation operator
Normal distribution Population mean
Population variance Probability distribution
Random variable Sampling distribution
Standard error Standardisation
Statistical inference Statistical tables

6.13 Learning activities

1. Check the following using Table 4 of the New Cambridge Statistical Tables.

If Z ∼ N(0, 1), then:

(a) P (Z ≥ 1) = 1− Φ(1) = 0.1587

(b) P (Z ≤ 1) = Φ(1) = 1− 0.1587 = 0.8413.

2. Check that (approximately):

(a) 68% of normal random variables fall within 1 standard deviation of the mean.

(b) 95% of normal random variables fall within 2 standard deviations of the mean.

(c) 99% of normal random variables fall within 3 standard deviations of the mean.

Draw the areas concerned on a normal distribution.
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3. The following six observations give the time taken, in seconds, to complete a
100-metre sprint by all six individuals competing in the race – hence this is
population data.

Individual Time
A 15
B 14
C 10
D 12
E 20
F 15

(a) Find the population mean, µ, and the population standard deviation, σ, of the
sprint times.

(b) Calculate the sample mean for each possible sample of:

i. two individuals

ii. three individuals

iii. four individuals.

(c) Work out the mean for each set of sample means (it must come to µ!) and
compare the standard deviations of the sample means about µ.

This may take some time, but, after you have done it, you should have a
clearer idea about sampling distributions!

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk

In addition, attempt the ‘Test your understanding’ self-test quizzes available on the
VLE.

6.14 Further exercises

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060].
Relevant exercises from Sections 4.1, 4.3, 5.1–5.3, 6.1 and 6.2.

6.15 A reminder of your learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

summarise the meaning of E(X) and Var(X)

compute areas under the curve for a normal distribution

state and apply the central limit theorem
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explain the relationship between sample size and the standard error of the sample
mean.

6.16 Sample examination questions

1. Given a normal distribution with mean 20 and variance 4, what proportion of the
distribution would be:

(a) above 22

(b) between 14 and 16?

2. The manufacturer of a new brand of lithium battery claims that the mean life of a
battery is 3,800 hours with a standard deviation of 250 hours.

(a) What percentage of batteries will last for more than 3,500 hours?

(b) What percentage of batteries will last for more than 4,000 hours?

(c) If 700 batteries are supplied, how many should last between 3,500 and 4,000
hours?

3. In an examination, the scores of students who attend schools of type A are
normally distributed about a mean of 50 with a standard deviation of 5. The scores
of students who attend schools of type B are also normally distributed about a
mean of 55 with a standard deviation of 6.

Which type of school would have a higher proportion of students with marks below
45?

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk
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Chapter 7

Estimation

7.1 Aims

This chapter develops the ideas of sampling introduced in Chapter 6 and looks at the
actual estimation of population parameters using both normal and Student’s t
distributions. Your aims are to:

estimate values for common parameters such as means and proportions

decide which is the appropriate distribution to use – normal or Student’s t.

7.2 Learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

calculate sample means, standard deviations and proportions, and demonstrate
their use as estimators

construct a confidence interval for a sample mean, a sample proportion, the
difference between two sample means and the difference between two sample
proportions

know when to use Student’s t distribution.

You do not need to:

demonstrate the central limit theorem

know about the concepts relating to a ‘good’ estimator.

7.3 Essential reading

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060]
Sections 7.1–7.3 and 8.1–8.4.

In addition there is essential ‘watching’ of this chapter’s accompanying video tutorials
accessible via the ST104a Statistics 1 area at http://my.londoninternational.ac.uk
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7.4 Further reading

Wonnacott, T.H. and R.J. Wonnacott Introductory Statistics for Business and
Economics. (Chichester: John Wiley & Sons, 1990) fourth edition [ISBN
9780471615170] Chapter 7 and Sections 8.1–8.3 and 8.5.

7.5 Introduction

This chapter is concerned with data-based decision-making. It is about making a
decision which involves a population. The population is made up of a set of individual
items (known as ‘elements’). This could be, for example, a set of individuals or
companies which constitute the market for your product. It could consist of the items
being manufactured from a production line.

The sort of information needed for a decision may be a mean value (for example, ‘How
many items does an individual purchase per year, on average?’) or a proportion (‘What
proportion of items manufactured has a fault?’). The associated decision may range
from setting up extra capacity to cope with estimated demand, to stopping the
production line for readjustment.

In most cases it is impossible to gather information about the whole population (due
to time and financial constraints), so instead one collects information about a sample
drawn from the population and infers the required information about the population. In
ST104a Statistics 1, we will look at the most commonly-used estimators. If you take
ST104b Statistics 2, you will learn what the properties of a ‘good’ estimator are and
look at other measures to be estimated apart from means and proportions.

In order to carry out this type of exercise, one obvious decision needs to be made. How
large should the sample be? The answer to this question is ‘it depends’ ! Specifically, it
depends on how variable the population is, on how accurate the input to the decision
needs to be, and on how costly the data collection is.

In this chapter you will learn to construct confidence intervals. You will also look at the
idea of sample size determination. How does it affect accuracy when you estimate
population means and proportions? How do you use this information?

Note that inferring information about a parent (or theoretical) population
using observations from a sample is the primary concern of the subject of
statistics.

7.6 Principle of confidence intervals

A point estimate is our ‘best guess’ of an unknown population parameter based on
sample data. Due to the random nature of sample data, we do not expect to estimate
the parameter exactly (unless we are very lucky). Hence there is some uncertainty in
our estimation so it would be advisable to communicate the level of uncertainty (or
imprecision) in conjunction with the point estimate.
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7.7. General formulae for normally-distributed statistics

Standard errors (recall the standard error is the square root of the variance, i.e. the
standard deviation, of an estimator) act as measures of estimation (im)precision and
these are used in the construction of confidence intervals – the subject of this
chapter. Informally, you can think of a confidence interval as representing our ‘best
guess plus or minus a bit’, where the magnitude of this ‘bit’ is dependent on the level of
precision. More formally, an x% confidence interval covers the unknown parameter
with x% probability over repeated samples.1 This method of expressing the accuracy
of an estimate is easily understood and requires no statistical sophistication for
interpretation.

So, it is important to distinguish point estimation (using sample data to obtain a
numerical estimate of an unknown population parameter) from a confidence interval
(an interval estimate of the parameter whose width indicates how reliable the point
estimate is). At this point, you may wish to reread Section 6.9 to ensure that you are
clear about the distinction between statistics (such as point and interval estimators)
and parameters (population characteristics).

Clearly, a very wide confidence interval would show that our estimate was not very
reliable, as we could not be sure that its value was close to the true parameter value,
whereas a narrow confidence interval would correspond to a more reliable estimate. The
degree of confidence that we have in our confidence interval can be expressed
numerically; an ideal situation is a narrow interval with a high coverage probability.
With these points in mind we now show how such intervals can be computed from data
in some basic situations.

7.7 General formulae for normally-distributed
statistics

Chapter 6 introduced the sampling distribution of X̄. We will now draw on this
sampling theory.

7.7.1 Standard error known

Let θ̂ be an unbiased2 estimator for θ such that its sampling distribution is:

N(θ, Var(θ̂)) = N(θ, (S.E.(θ̂))2)

recalling that the standard error of an estimator, denoted here as S.E.(θ̂), is the square
root of its variance, denoted here as Var(θ̂). Assume this standard error is known. We
require a confidence interval defined by a pair of values such that the probability of the
interval covering θ, the coverage probability, is high.

Since θ̂ is normally distributed it follows that, upon standardising θ̂, we have:

Z =
θ̂ − θ

S.E.(θ̂)
∼ N(0, 1).

1A useful phrase in examinations!
2An unbiased estimator means the point estimate is correct on average, over repeated samples. This

concept is covered in greater depth in ST104b Statistics 2.
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Hence, assuming we desire a 95% coverage probability, we have:

P

(
−1.96 <

θ̂ − θ
S.E.(θ̂)

< 1.96

)
= 0.95

using Table 4 of the New Cambridge Statistical Tables. Note we can also write 1.96 as
z0.025, that is the z-value which cuts off 2.5% probability in the upper tail of the
standard normal distribution.

Since S.E.(θ̂) > 0 (a standard error must be strictly positive):

0.95 = P

(
−1.96 <

θ̂ − θ
S.E.(θ̂)

< 1.96

)
= P

(
−1.96× S.E.(θ̂) < θ̂ − θ < 1.96× S.E.(θ̂)

)
= P

(
−1.96× S.E.(θ̂) < θ − θ̂ < 1.96× S.E.(θ̂)

)
= P

(
θ̂ − 1.96× S.E.(θ̂) < θ < θ̂ + 1.96× S.E.(θ̂)

)
where we multiply by −1 to go from the second to the third line, and therefore the
inequality sign is reversed.

A 95% confidence interval for θ has endpoints θ̂±1.96×S.E.(θ̂). Hence the reported
confidence interval would be:

(θ̂ − 1.96× S.E.(θ̂), θ̂ + 1.96× S.E.(θ̂)).

Endpoints for a 95% confidence interval (standard error known)

This is a simple, but very important, result. As we shall see, it can be applied to give
confidence intervals in many different situations such as the estimation of a mean,
proportion, difference in means and difference in proportions.

The above derivation was for a 95% confidence interval, i.e. with a 95% coverage
probability, which is a generally accepted confidence requirement. Of course, it is
possible to have different levels of confidence, say 90% or 99%. Fortunately, we can use
the same argument as above; however, a different multiplier coefficient drawn from the
standard normal distribution is required (i.e. not z0.025 = 1.96). Using Table 5 of the
New Cambridge Statistical Tables, it is easy to obtain such coefficients. For convenience,
key values are given below, where zα denotes the z-value which cuts off 100α%
probability in the upper tail of the standard normal distribution.

For 90% confidence, use the multiplier z0.05 = 1.6449
For 95% confidence, use the multiplier z0.025 = 1.9600
For 99% confidence, use the multiplier z0.005 = 2.5758.

Check these values from Table 5 in the New Cambridge Statistical Tables, and make
sure you know how to work out other ones, for example 80% or 98% confidence.3

3These would be z0.1 = 1.2816 and z0.01 = 2.3263, respectively.
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Unfortunately, the method used so far in this section is limited by the assumption that
the standard error of θ̂ is known. This means, in effect, that we need to know the true
population variance and, in most practical cases, the assumption that we know either
the population variance or the sampling standard error will not be justified.

In such cases it will be necessary to estimate the standard error from the data. This
requires a modification both of the approach and, in particular, of the general formula
for the endpoints of a confidence interval.

7.7.2 Standard error unknown

Here we consider cases where the standard error of θ̂ is estimated, hereby denoted
E.S.E.(θ̂) which stands for the estimated standard error of θ̂. It may be tempting to
think that:

θ̂ − θ
E.S.E.(θ̂)

∼ N(0, 1)

i.e. it is standard normal, but because of the additional sampling variability of the
estimated standard error, this new, transformed function of the data will have a more
dispersed distribution than the standard normal – the Student’s t distribution on ν
degrees of freedom (discussed below). Hence:

θ̂ − θ
E.S.E.(θ̂)

∼ tν .

7.7.3 Student’s t distribution

‘Student’ was the pen name of William S. Gosset (1876–1937) who is credited with
developing this distribution.4 You should be familiar with its generic shape, which
resembles the standard normal (i.e. bell-shaped and symmetric about 0) but with
‘fatter’ tails. We get different versions of the t distribution for different degrees of
freedom,5 ν. Graphical examples of the t distribution for various degrees of freedom
are given in Figure 7.1, but note that as ν →∞ (in words, ‘as the degrees of freedom
tend to infinity’), we approach the standard normal distribution – that is, tν → N(0, 1)
as ν →∞ (in words, ‘the Student’s t distribution tends to the standard normal
distribution as the degrees of freedom tend to infinity’).

For our purposes, we will use this distribution whenever we are performing inference for
population means when population variances are unknown, and hence estimated from
the data. The correct degrees of freedom will depend on the degrees of freedom used to
estimate the variance (more on this later).

Assuming a 95% coverage probability, using Table 10 of the New Cambridge Statistical

4Curious students may wonder why Gosset was not vain enough to call it Gosset’s t distribution
– after all, who wouldn’t want to achieve such statistical immortality? In fact the reason for the pen
name was due to the refusal of Guinness (his employer when he discovered this distribution) to allow its
researchers to publish papers fearing leaks of trade secrets, forcing Gosset to publish anonymously. Poor
Gosset.

5We will not discuss ‘degrees of freedom’ in any great depth in ST104a Statistics 1.
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Figure 7.1: Student’s t distribution – various degrees of freedom.

Tables,6 for a given ν we can find t0.025, ν such that:

P

(
−t0.025, ν <

θ̂ − θ
E.S.E.(θ̂)

< t0.025, ν

)
= 0.95

where t0.025, ν cuts off 2.5% probability in the upper tail of the t distribution with ν
degrees of freedom. On rearranging the inequality within the brackets we get:

P
(
θ̂ − t0.025, ν · E.S.E.(θ̂) < θ < θ̂ + t0.025, ν · E.S.E.(θ̂)

)
= 0.95.

A 95% confidence interval for θ has endpoints θ̂ ± t0.025, ν · E.S.E.(θ̂), leading to a
reported confidence interval of the form:

(θ̂ − t0.025, ν · E.S.E.(θ̂), θ̂ + t0.025, ν · E.S.E.(θ̂))

where t0.025, ν is the t-value which cuts off 2.5% probability in the upper tail of the t
distribution with ν degrees of freedom, obtained from either Table 9 or Table 10 in
the New Cambridge Statistical Tables.

Endpoints for a 95% confidence interval (standard error unknown)

This general result can be used in a large number of situations to compute confidence
intervals.

In order to use these results we need to know how to calculate or estimate, respectively,
the standard errors for the various cases (using the sample data). We now proceed to
demonstrate these techniques for some important scenarios.

6Make sure you are comfortable using this table.
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7.8. Confidence interval for a single mean (σ known)

Important note: In the following applications, whenever the t distribution is
used and we have large sample size(s) (hence large degrees of freedom), it is
acceptable to use standard normal values as approximations due to the
tendency of the t distribution to the standard normal as the degrees of
freedom approach infinity. What constitutes a ‘large’ sample size is rather
subjective; however, as a rule-of-thumb treat anything over 30 as ‘large’ in
ST104a Statistics 1.

7.8 Confidence interval for a single mean (σ known)

Given observed sample values x1, x2, . . . , xn, the point estimate for µ is x̄ =
n∑
i=1

xi/n.

Assuming the (population) variance, σ2, is known, the standard error of x̄ is σ/
√
n

(exactly if the population is normal; approximately, for large enough n, when sampling
from non-normal populations by the central limit theorem).

In such instances, we use the standard normal distribution when constructing a
confidence interval with endpoints:

x̄± zα/2 ·
σ√
n

=⇒
(
x̄− zα/2 ·

σ√
n
, x̄+ zα/2 ·

σ√
n

)
where zα/2 is the z-value which cuts off α/2 probability in the upper tail of the
standard normal distribution to ensure a 100(1 − α)% confidence interval. For
example, for α = 0.05, we have a 100(1− 0.05)% = 95% confidence interval, and we
require the z-value which cuts off α/2 = 0.025, i.e. 2.5% probability in the upper tail
of the standard normal distribution, that is 1.96, which can be obtained from Table
5 in the New Cambridge Statistical Tables.

Confidence interval endpoints for a single mean (σ known)

Example 7.1 Measurements of the diameter of a random sample of 200 ball
bearings produced by a machine gave a sample mean of x̄ = 0.824. The population
standard deviation, σ, is 0.042. Find a 95% confidence interval and a 99% confidence
interval for the true mean value of the diameter of the ball bearings.

We are told that σ = 0.042. So a 95% confidence interval, where α = 0.05, has
endpoints:

x̄± 1.96× σ√
n

= 0.824± 1.96× 0.042√
200

= 0.824± 0.006

where z0.025 = 1.96 is the z-value which cuts off α/2 = 0.025 probability in the upper
tail of the standard normal distribution. In other words, the interval is
(0.818, 0.830) which covers the true mean with a probability of 95%.

To compute a 99% confidence interval (where α = 0.01), since σ is known we require
zα/2 = z0.005, that is the z-value which cuts off 0.5% probability in the upper tail of
the standard normal distribution. Using Table 5 of the New Cambridge Statistical
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Tables, the z-value is 2.5758. So a 99% confidence interval has endpoints:

x̄± 2.576× σ√
n

= 0.824± 2.5758× 0.042√
200

= 0.824± 0.008.

In other words, the interval is (0.816, 0.832). Note the higher level of confidence has
resulted in a wider confidence interval.

7.9 Confidence interval for a single mean (σ
unknown)

In practice it is unusual for σ2 to be known – why would we know σ2, but not µ?
However, we can estimate σ2 with the sample variance s2,7 using the estimator:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

This is because S2 is an unbiased estimator8 of σ2. The degrees of freedom associated
with this estimator are n− 1, where n is the sample size.

In such instances, we use the t distribution when constructing a 100(1 − α)%
confidence interval with endpoints:

x̄± tα/2, n−1 ·
s√
n

=⇒
(
x̄− tα/2, n−1 ·

s√
n
, x̄+ tα/2, n−1 ·

s√
n

)
where tα/2, n−1 is the t-value which cuts off 100(α/2)% probability in the upper tail
of the t distribution with n− 1 degrees of freedom, obtained from either Table 9 or
Table 10 in the New Cambridge Statistical Tables.

Confidence interval endpoints for a single mean (σ unknown)

Example 7.2

A company producing designer label jeans carries out a sampling exercise in order to
estimate the average price that retailers are charging for the jeans. A random sample
of 12 retailers gives the following sample of prices (in £):

34.50, 36.00, 43.50, 29.50, 44.50, 47.50, 45.50, 53.00, 40.00, 38.00, 33.00, 54.50.

We seek a 95% confidence interval for the mean retailer’s price of the jeans.

Clearly, n = 12 and it is not hard to check x̄ = 41.625 and s = 7.84.

So the estimated standard error of the sample mean is:

s√
n

=
7.84√

12
= 2.2632 on n− 1 = 11 degrees of freedom.

7An example of an unknown population parameter being estimated by its sample counterpart.
8Recall an unbiased estimator means the point estimate is correct on average, over repeated samples.

This concept is covered in greater depth in ST104b Statistics 2.
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7.10. Confidence interval for a single proportion

Hence a 95% confidence interval for µ has endpoints 41.625± 2.201× 2.2632, i.e. the
confidence interval is:

(£36.64, £46.61).

Two important points:

Make sure you see where 2.201 comes from in Table 10 – it is t0.025, 11, i.e. the
t-value above which lies 2.5% probability for a Student’s t distribution with 11
degrees of freedom.

Make sure you report confidence intervals in the form (£36.64, £46.61); that is
you must compute the actual endpoints and report these as an interval , as that
is what a confidence interval is! Note the lower endpoint should be given first.

7.10 Confidence interval for a single proportion

We often want to estimate a (population) proportion, for example in surveys of people’s
social, political or consumer attitudes.9 Take an opinion poll in which we investigate
voters’ support for a particular political party. We can ask the question ‘Do you support
party X?’, to which the n respondents each answer either ‘yes’ or ‘no’. If r people reply
‘yes’, then the sample proportion who support the party is r/n. This is our point
estimate of the true proportion of support in the population, π.

The sampling distribution of the sample proportion, P , (estimator of the population
proportion, π)10 is:

P ∼ N

(
π,

π(1− π)

n

)
(approximately). (7.1)

Sampling distribution of the sample proportion estimator, P

Hence Var(P ) = π(1− π)/n, so the standard error is S.E.(P ) =
√
π(1− π)/n.

Unfortunately, this depends on π, precisely what we are trying to estimate, hence the
true standard error is unknown, so must itself be estimated. As π is unknown, the best
we can do is replace it with our point estimate for it, p = r/n, hence the estimated
standard error is:

E.S.E.(p) =

√
p(1− p)

n
=

√
r/n (1− r/n)

n
.

9In Chapter 4, categorical variables were introduced. Political party affiliation is an example of a
categorical variable.

10This result is a consequence of the central limit theorem applied to the proportion of successes for
a ‘binomial’ distribution. Full details can be found in ST104b Statistics 2, although such details are
beyond the scope of this course.
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A 100(1− α)% confidence interval for a single proportion has endpoints:

p± zα/2 ·
√
p(1− p)

n
=⇒

(
p− zα/2 ·

√
p(1− p)

n
, p+ zα/2 ·

√
p(1− p)

n

)

where zα/2 is the z-value which cuts off 100(α/2)% probability in the upper tail
of the standard normal distribution, obtained from Table 5 in the New Cambridge
Statistical Tables.

Confidence interval endpoints for a single proportion

Note that although we are estimating a variance, for proportions we do not use
Student’s t distribution for two reasons:

The standard error has not been estimated by a corrected sum of squares
calculation, unlike S2 = Sxx/(n− 1).

The sample size n has to be large for the normal approximation to hold, and so the
standard normal distribution is appropriate in this case.

Example 7.3 A survey is conducted by a bank to estimate the proportion of its
customers who would be interested in using a proposed new mobile telephone
banking service. If we denote the population proportion of customers who are
interested in this proposal by π, and it is found that 68 out of 150 customers are in
favour, then we would estimate π by p = 68/150 = 0.453. Hence a 95% confidence
interval for π has endpoints:

0.453± 1.96×
√

0.453(1− 0.453)

150
=⇒ (0.37, 0.53).

Note, for a 95% confidence interval, α = 0.05 and so we use z0.025 = 1.96 in the
computation of the confidence interval.

7.11 Sample size determination

The question ‘How big a sample do I need to take?’ is a common one when sampling.
The answer to this depends on the quality of inference that the researcher requires
from the data. In the estimation context, this can be expressed in terms of the accuracy
of estimation.

If the researcher requires that there should be a 95% chance that the estimation error
should be no larger than e units (we refer to e as the tolerance on the sampling
error), then this is equivalent to having a 95% confidence interval of width 2e. Note
here e represents the half-width of the confidence interval since the point estimate is,
by construction, at the centre of the confidence interval.

For known variance, a 95% confidence interval is based on the error of estimation
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being no greater than 1.96 standard errors. Hence we can conveniently use the relation:

1.96× S.E.(θ̂) ≤ e

and solve this simple equation for the required sample size (note the standard error is a
function of n).

To estimate µ to within e units with 100(1−α)% confidence, we require a sample of
size:

n ≥
zα/2

2σ2

e2
(7.2)

where zα/2 is the z-value which cuts off 100(α/2)% probability in the upper tail
of the standard normal distribution, obtained from Table 5 in the New Cambridge
Statistical Tables.

Sample size determination for a single mean

To estimate π to within e units with 100(1−α)% confidence, we require a sample of
size:

n ≥
zα/2

2p(1− p)
e2

(7.3)

where zα/2 is the z-value which cuts off 100(α/2)% probability in the upper tail
of the standard normal distribution, obtained from Table 5 in the New Cambridge
Statistical Tables.

Sample size determination for a single proportion

Example 7.4 A simple random sample of 50 households is taken from a population
of 1,000 households in an area of a town. The sample mean and standard deviation of
weekly expenditure on alcoholic beverages are £18 and £4, respectively. How many
more observations are needed to estimate µ to within 1 unit with 99% confidence?

Here, e = 1, and we can assume σ = 4 since the initial sample with n = 50 is ‘large’
and hence we would expect s ≈ σ. For 99% confidence, we use z0.005 = 2.5758.
Hence, using (7.2), we have:

n ≥ (2.5758)2 × 42

12
= 106.16.

Remembering that n must be an integer, the smallest n satisfying this is 107.11 So
57 more observations are needed.

Example 7.5

The reaction time of a patient to a certain stimulus is known to have a standard
deviation of 0.05 seconds. How large a sample of measurements must a psychologist
take in order to be 95% confident and 99% confident, respectively, that the error in
the estimate of the mean reaction time will not exceed 0.01 seconds?

11Note that we round up, otherwise had we rounded down it would lead to less precision.
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For 95% confidence, we use z0.025 = 1.96 using Table 5 of the New Cambridge
Statistical Tables. So, using (7.2), n is to be chosen such that:

n ≥ (1.96)2(0.05)2

(0.01)2
.

Hence, we find that n ≥ 96.04. Since n must be an integer, 97 observations are
required to achieve an error of 0.01 or less with 95% probability.

For 99% confidence, we use z0.005 = 2.5758. So, using (7.2), n is to be chosen such
that:

n ≥ (2.5758)2(0.05)2

(0.01)2
.

Hence, we find that n ≥ 165.87. Since n must be an integer, 166 observations are
required to achieve an error of 0.01 or less with 99% probability.

Note that a higher level of confidence requires a larger sample size as more
information (sample data) is needed to achieve a higher level of confidence for a
given tolerance, e.

Example 7.6 A pilot study estimates a proportion to be 0.4. If we wish to be 90%
confident of estimating the true population proportion with an error no greater than
0.03, how large a sample is needed?

Here e = 0.03, and we have an initial estimate of p = 0.4. For 90% confidence, we use
z0.05 = 1.645 using Table 5 of the New Cambridge Statistical Tables. Hence, using
(7.3), we have:

n ≥ (1.645)20.4(1− 0.4)

(0.03)2
= 721.61.

So, rounding up, we require a sample size of 722.

7.12 Difference between two population proportions

The correct approach to the comparison of two population proportions, π1 and π2, is,
obviously, via the difference between the population proportions. The sample
proportions P1 and P2 are, for large sample sizes n1 and n2, respectively,
(approximately) normally distributed as, from (7.1), we have:

P1 ∼ N

(
π1,

π1(1− π1)
n1

)
and P2 ∼ N

(
π2,

π2(1− π2)
n2

)
.

When random samples are drawn from two independent populations, then these
distributions are statistically independent, and it can be shown12 that their difference is
also normally distributed such that:

P1 − P2 ∼ N

(
π1 − π2,

π1(1− π1)
n1

+
π2(1− π2)

n2

)
. (7.4)

12This is code for ‘beyond the scope of the course’ !
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Clearly, Var(P1 − P2), and hence S.E.(P1 − P2) =
√

Var(P1 − P2), depends on the
unknown parameters π1 and π2. So we must resort to the estimated standard error:

E.S.E.(P1 − P2) =

√
P1(1− P1)

n1

+
P2(1− P2)

n2

.

With point estimates for π1 and π2 of p1 = r1/n1 and p2 = r2/n2, respectively,
a 100(1 − α)% confidence interval for the difference between two proportions has
endpoints:

(p1 − p2)± zα/2 ·

√
p1(1− p1)

n1

+
p2(1− p2)

n2

(7.5)

where zα/2 cuts off 100(α/2)% probability in the upper tail of the standard normal
distribution, obtained from Table 5 in the New Cambridge Statistical Tables.

Confidence interval endpoints for the difference between two proportions

Example 7.7 We use (7.5) to calculate 95% and 90% confidence intervals for the
difference between the population proportions of the general public who are aware of
a particular commercial product before and after an advertising campaign. Two
surveys were conducted and the results of the two random samples were:

Sample size Number aware
Before campaign 150 68
After campaign 120 65

To avoid working with negative differences whenever possible (to keep notation
simpler by working with positive values), let p1 = r1/n1 = 65/120 = 0.5417 and
p2 = r2/n2 = 68/150 = 0.4533. Hence our point estimate for the difference is:

‘After’− ‘Before’ = p1 − p2 = 0.5417− 0.4533 = 0.0884.

So a 95% confidence interval for the difference in population proportions, π1 − π2,
has endpoints:

0.0884± 1.96×
√

0.4533(1− 0.4533)

150
+

0.5417(1− 0.5417)

120

which can be expressed as (−0.031, 0.208).

A 90% confidence interval has endpoints:

0.0884± 1.645×
√

0.4533(1− 0.4533)

150
+

0.5417(1− 0.5417)

120

which can be expressed as (−0.012, 0.189).

Note that both confidence intervals include zero (since they both have a negative
lower bound and positive upper bound). This suggests there is no significant
difference in public awareness. This idea has close parallels with hypothesis testing,
introduced in Chapter 8.
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7.13 Difference between two population means

In this section we are primarily interested in the difference between two population
means, i.e. µ1 − µ2. There are four cases to be considered, depending on whether
variances are known or unknown, in which case we can assume they are either equal or
unequal, and the case of paired datasets.

7.13.1 Unpaired samples – variances known

Suppose we have random samples of size n1 and n2 from two normal populations,
N(µ1, σ

2
1) and N(µ2, σ

2
2). The sampling distributions of X̄1 and X̄2 are hence:

X̄1 ∼ N

(
µ1,

σ2
1

n1

)
and X̄2 ∼ N

(
µ2,

σ2
2

n2

)
.

A natural estimator for µ1 − µ2 is X̄1 − X̄2. Random samples drawn from two
independent populations are statistically independent, hence X̄1 and X̄2 are
independent. The sampling distribution of their difference is:

X̄1 − X̄2 ∼ N

(
µ1 − µ2,

σ2
1

n1

+
σ2
2

n2

)
. (7.6)

If the population variances σ2
1 and σ2

2 are known, a 100(1− α)% confidence interval
for µ1 − µ2 has endpoints:

(x̄1 − x̄2)± zα/2 ·

√
σ2
1

n1

+
σ2
2

n2

(7.7)

where zα/2 cuts off 100(α/2)% probability in the upper tail of the standard normal
distribution, obtained from Table 5 in the New Cambridge Statistical Tables.

Confidence interval endpoints for the difference between two means

7.13.2 Unpaired samples – variances unknown and unequal

We have the same set-up as above, with the same sampling distribution for X̄1 − X̄2 in
(7.6), but now the population variances σ2

1 and σ2
2 are unknown. Assuming large sample

sizes, say greater than 30, we can replace these unknown parameters with the respective
sample variances s21 and s22 and continue to use standard normal values. The
justification is that since the sample sizes are large, we would expect accurate estimates
of the population variances, such that s21 ≈ σ2

1 and s22 ≈ σ2
2.
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If the population variances σ2
1 and σ2

2 are unknown, provided sample sizes n1 and
n2 are large (greater than 30), a 100(1 − α)% confidence interval for µ1 − µ2 has
endpoints:

(x̄1 − x̄2)± zα/2 ·

√
s21
n1

+
s22
n2

where zα/2 cuts off 100(α/2)% probability in the upper tail of the standard normal
distribution, obtained from Table 5 in the New Cambridge Statistical Tables.

Confidence interval endpoints for the difference between two means

7.13.3 Unpaired samples – variances unknown and equal

In some circumstances we may be able to justify the assumption that the two
populations being sampled are of equal variability. In which case suppose we have
random samples of size n1 and n2 from two normal populations, N(µ1, σ

2) and
N(µ2, σ

2), i.e. the populations have a common variance, σ2, which is unknown.13 The
sampling distributions of X̄1 and X̄2 are hence:

X̄1 ∼ N

(
µ1,

σ2

n1

)
and X̄2 ∼ N

(
µ2,

σ2

n2

)
.

A natural estimator for µ1 − µ2 is still X̄1 − X̄2. Since we have unpaired (independent)
samples, X̄1 and X̄2 are statistically independent, hence the sampling distribution of
their difference is:

X̄1 − X̄2 ∼ N

(
µ1 − µ2, σ

2

(
1

n1

+
1

n2

))
.

The problem is that this common variance σ2 is unknown, so needs to be estimated.
Should we use S2

1 or S2
2 as an estimator for σ2? Answer: use both, by pooling the two

sample variances, since both contain useful information about σ2.

The pooled variance estimator, where S2
1 and S2

2 are sample variances from samples
of size n1 and n2, respectively, is:

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
(7.8)

on n1 + n2 − 2 degrees of freedom, where the subscript ‘p’ denotes ‘pooled’.

Pooled variance estimator

Hence S2
p is the weighted average of sample variances S2

1 and S2
2 , where the weights are

(n1 − 1)/(n1 + n2 − 2) and (n2 − 1)/(n1 + n2 − 2), respectively.

So if n1 = n2, then we give the sample variances equal weight. Intuitively this should
make sense. As the sample size increases, a sample variance provides a more accurate

13If the population variances were known, then we would know their true values. Hence no assumptions
would be necessary and we could use (7.7).
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estimate of σ2. Hence if n1 6= n2, the sample variance calculated from the larger sample
is more reliable, so is given greater weight in the pooled variance estimator. Of course, if
n1 = n2, then the variances are equally reliable, hence are given equal weight.

If the population variances σ2
1 and σ2

2 are unknown but assumed equal, a 100(1−α)%
confidence interval for µ1 − µ2 has endpoints:

(x̄1 − x̄2)± tα/2, n1+n2−2 ·

√
s2p

(
1

n1

+
1

n2

)
(7.9)

where s2p is the estimate from the pooled variance estimator (7.8), and where
tα/2, n1+n2−2 is the t-value which cuts off 100(α/2)% probability in the upper tail
of the Student’s t distribution with n1 + n2 − 2 degrees of freedom, obtained from
either Table 9 or Table 10 in the New Cambridge Statistical Tables.14

Confidence interval endpoints for the difference between two means

An obvious problem is how to decide whether to assume the unknown variances are
equal or unequal. Well, firstly it would be wise to check the question to see if it explicitly
states one way or the other. If it is not clear, then consider the following points:

If σ2
1 = σ2

2, then we would expect approximately equal sample variances, i.e. s21 ≈ s22,
since both sample variances would be estimating the same (common) variance. If
the sample variances are very different, then this would suggest σ2

1 6= σ2
2.15

If we are sampling from two ‘similar’ populations (companies in the same industry,
for example) then an assumption of equal variability in these ‘similar’ populations
would be reasonable.

Example 7.8 Two companies supplying a similar service are compared for their
reaction times (in days) to complaints. Random samples of recent complaints to
these companies gave the following:

Sample size Sample mean Sample std. dev.
Company A 12 8.5 3.6
Company B 10 4.8 2.1

We compute a 95% confidence interval for the true difference in reaction times and
use this interval to decide if one company is faster than the other.

Because the markets are ‘similar’, it is reasonable to assume (though it is only an
assumption!) that the two population variances are equal. Under this assumption,
using (7.8), we have:

s2p =
(12− 1)× (3.6)2 + (10− 1)× (2.1)2

12 + 10− 2
= 9.1125

14Recall for sufficiently ‘large’ degrees of freedom, a standard normal approximation can be used,
provided a justification is given.

15A formal hypothesis test of H0: σ2
1 = σ2

2 could be performed. We will not consider that in this course,
although it is covered in ST104b Statistics 2.
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on n1 + n2 − 2 = 12 + 10− 2 = 20 degrees of freedom. So the estimated standard
error of the difference in sample means is:√

s2p

(
1

n1

+
1

n2

)
=

√
9.1125

(
1

12
+

1

10

)
=
√

9.1125× 0.1833 = 1.2925.

Hence a 95% confidence interval for µA − µB, using (7.9), is:

(8.5− 4.8)± 2.086× 1.2925 =⇒ (1.01, 6.39)

where t0.025, 20 = 2.086 (we have estimated the common variance, so use the
Student’s t distribution, here with 20 degrees of freedom) using Table 10 of the New
Cambridge Statistical Tables.

As zero does not lie in this interval, we conclude that the data suggests that
Company B is faster than Company A in reacting to complaints. (Note the variable
is reaction time, so a lower sample mean suggests a faster true average reaction
time.)

7.13.4 Paired (dependent) samples

Paired-sample methods are used in special cases when the two samples are not
statistically independent. For our purposes, such paired data are likely to involve
observations on the same individuals in two different states – specifically ‘before’ and
‘after’ some intervening event. A paired-sample experimental design is advantageous
since it allows researchers to determine whether or not significant changes have occurred
as a result of the intervening event free of bias from other factors, since these have been
controlled for by observing the same individuals.16

A necessary, but not sufficient, indicator for the presence of paired sample data is that
n1 = n2, in order to have ‘pairs’ of data values. Common sense needs to be exercised to
determine whether or not we have paired data. An example of such a dataset would be
observations of the same individuals at two different points in time, typically ‘before’
and ‘after’ some event, such as statistical ‘IQ’ before and after taking ST104a
Statistics 1.17

This scenario is easy to analyse as the paired data can simply be reduced to a ‘one
sample’ analysis by working with differenced data. That is, suppose two samples
generated sample values x1, x2, . . . , xn and y1, y2, . . . , yn, respectively (note the same
number of observations, n, in each sample). Compute the differences, that is:

d1 = x1 − y1, d2 = x2 − y2, . . . , dn = xn − yn.

It follows that x̄d = x̄− ȳ, so that by using the differences to compute a confidence
interval for µd, then we get the required confidence interval for µX − µY . The technique
therefore follows that in Section 7.9.

16Experimental studies are discussed in Chapter 11.
17One hopes, of course, that this would result in a mean increase, or at the very least no decrease, in

statistical ‘IQ’ !
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Example 7.9

The table below shows the before and after weights (in pounds) of 8 adults after a
diet. Provide a 95% confidence interval for the loss of weight due to the diet. Are
you convinced that the diet reduces weight?

Before After Before After
127 122 150 144
130 120 147 138
114 116 167 155
139 132 153 152

The differences (calculated as ‘Before − After’) are:

5 10 −2 7 6 9 12 1.

Hence n = 8, x̄d = 6 and sd = 4.66 on n− 1 = 7 degrees of freedom. The estimated
standard error of the sample mean is s/

√
n = 4.66/

√
8 = 1.65. Using the t

distribution on 7 degrees of freedom, for 95% confidence we use t0.025, 7 = 2.365.

So a 95% confidence interval for the mean difference in weight before and after the
diet is x̄d ± t0.025, n−1 · s/

√
n, that is:

6± 2.365× 1.65 =⇒ (2.1, 9.9).

Since zero is not included in this confidence interval, we conclude that the diet does
appear to reduce weight, i.e. the average weight loss appears to be positive.

7.14 Summary

The concepts of estimation are obviously extremely important for a manager who wants
to collect a reasonable amount of data so as to make a good judgement of the overall
situation. Make sure that you understand when Student’s t is required rather than the
standard normal distribution.

Remember:

We use the standard normal distribution when we know the variance or standard
deviation, either as given by the researcher or as a population figure.

If we have to estimate the variance or standard deviation from a sample, we will
need to use Student’s t, whatever the size of the sample.

If the sample size is large, then the standard normal distribution approximates
Student’s t.

We use the standard normal distribution whenever we are dealing with proportions.
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7.15 Key terms and concepts

Confidence interval Coverage probability
Degrees of freedom Differences
Endpoints Half-width
Paired sample Pooled variance
Standard error Student’s t
Tolerance

7.16 Learning activities

1. National figures for a blood test result have been collected and the population
standard deviation is 1.2. You take a sample of 100 observations and find a sample
mean of 25 units. Provide a 95% confidence interval for the mean.

2. Look again at Example 7.1, but this time read the description ‘Measurements of
the diameter of a random sample of 200 ball bearings produced by a machine gave
a sample mean x̄ = 0.824. The sample standard deviation was s = 0.042. Find a
95% confidence interval and a 99% confidence interval for the true mean value of
the diameter of ball bearings.’

(Note: Although this time you have been told that you only have a sample estimate
for the standard deviation, you can justify using the standard normal distribution
because of the central limit theorem, since the sample size is very large and your
confidence interval will be exactly the same as in Example 7.1.)

3. Open your New Cambridge Statistical Tables at Table 10. Note that different
probability tails are given for ν = 1, 2 etc. (ν is the same as n− 1 in this case).
Now consider a 95% confidence interval for µ when n = 21 (i.e. for 20 degrees of
freedom). You can see the t value is t0.025, 20 = 2.086. However, when ν is very large,
the t value is 1.96 – exactly the same as for the standard normal distribution.
Although you can see that t values are given for quite large degrees of freedom, we
generally assume that the standard normal distribution can be used instead of
Student’s t if the degrees of freedom are greater than 30 (some textbooks say 40,
others say 50).

4. A random sample of 200 students is observed. 30 of them say they are ‘really
enjoying’ Statistics.

(a) Calculate the proportion of students in this sample saying they are ‘really
enjoying’ Statistics and then provide a 95% confidence interval for this value.

You now take a further random sample, in another institution. This time there are
20 students and 8 say they are ‘really enjoying’ Statistics.

(b) Provide a 95% confidence interval for this value. Think about why the two
confidence intervals are different.

(c) Provide a 95% confidence interval for the difference between the two
proportions.
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5. A business requires an expensive check on the value of stock in its warehouse. In
order to do this, a random sample of 50 items is observed and valued. The average
value of these is computed to be £320.41 with a (sample) standard deviation of
£40.60. It is known that there are 9,875 items in total stock.

(a) Estimate the total value of the stock to the nearest £10,000.

(b) Calculate a 95% confidence interval for the mean value of all items and hence
determine a 95% confidence interval for the total value of the stock.

6. The reaction times, in seconds, for eight police officers were found to be:

0.28 0.23 0.21 0.26 0.29 0.21 0.25 0.22.

Determine a 90% confidence interval for the mean reaction time of all police officers.

7. A random sample of 100 voters contained 60 Labour supporters. Give a 95%
confidence interval for the proportion of Labour voters in the population.

8. A sample of 954 adults in early 1987 found that 23% of them held shares.

(a) Given a UK adult population of 41 million, and assuming a proper random
sample was taken, find a 95% confidence interval for the number of
shareholders in the UK.

A ‘similar’ survey the previous year had found a total of 7 million shareholders.

(b) Assuming ‘similar’ means the same sample size, find a 95% confidence interval
for the increase in shareholders between the two years.

9. Two advertising companies each give quotations for nine different campaigns. Their
quotations (in £000s) are shown in the following table. Calculate a 95% confidence
interval for the true difference between mean quotations. Can you deduce from this
confidence interval if one company is more expensive than the other?

Company 1 2 3 4 5 6 7 8 9
A 39 24 36 42 45 30 38 32 39
B 46 26 32 39 51 34 37 41 44

10. A college contains 12,000 students. A random sample of 400 students are
interviewed and it is found that 240 use the refectory. Use these data to calculate:

(a) a 95% confidence interval

(b) a 99% confidence interval

for the total number of students who use the refectory.

The college catering officer claims that the refectory is used by at least 9,000
students and that the survey has yielded a low figure due to sampling variability. Is
this claim reasonable?

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk

In addition, attempt the ‘Test your understanding’ self-test quizzes available on the
VLE.
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7.17 Further exercises

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060].
Relevant exercises from Sections 7.1–7.3 and 8.1–8.4.

7.18 A reminder of your learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

calculate sample means, standard deviations and proportions, and understand their
use as estimators

construct a confidence interval for a sample mean, a sample proportion, the
difference between two sample means and the difference between two sample
proportions

know when to use Student’s t distribution.

You do not need to:

demonstrate the central limit theorem

know about the concepts relating to a ‘good’ estimator.

7.19 Sample examination questions

1. Would you say the following statement is true or false? Give brief reasons. ‘When
calculated from the same dataset, a 91% confidence interval is wider than a 96%
confidence interval.’

2. A factory has 1,200 workers. A simple random sample of 100 of these had weekly
salaries with a (sample) mean of £315 and a (sample) standard deviation of £20.
Calculate a 90% confidence interval for the mean weekly salary of all workers in the
factory.

3. (a) Write down the formula for the standard error of the sample proportion when
sampling is at random from a very large population and the population
proportion is equal to π. Give the formula for pooled proportions when
comparing the two samples. (Note that you need to check this on your
examination formula sheet for ST104a Statistics 1.)

(b) An independent assessment is made of the services provided by two holiday
companies. Of a random sample of 300 customers who booked through
company A, 220 said they were satisfied with the service. Of a random sample
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of 250 of company B’s customers, 200 said they were satisfied. For both
companies the total customer base was very large.

Calculate a 95% confidence interval for the difference between the proportions
of satisfied customers between the two companies. Basing your conclusion on
this confidence interval, do you believe that one company gives more
satisfaction than the other?

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk
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Chapter 8

Hypothesis testing

8.1 Aims

In Chapters 6 and 7 you were introduced to the idea of the probability that a parameter
could lie within a range of values, and in particular the confidence interval (generally
90%, 95% or 99% confidence) for a parameter.

In this chapter, we are going to look at the idea of using statistics to see whether we
should accept or reject statements about these parameters – the concept of testing a
hypothesis. The arithmetic and underlying ideas you need are similar to those you met
in the last chapter.

You should aim to consolidate your familiarity with ideas of randomness and work on
the different aspects of hypothesis testing as presented here.

8.2 Learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

set up the null and alternative hypotheses for a problem and state whether the
latter is one- or two-sided, hence leading to a one- or two-tailed test

define and apply the terminology of statistical testing

perform statistical tests on means and proportions

construct and explain a simple chart showing the kinds of errors that can be made
in hypothesis testing.

8.3 Essential reading

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060]
Sections 9.1–9.4 and 10.1–10.3.

In addition there is essential ‘watching’ of this chapter’s accompanying video tutorials
accessible via the ST104a Statistics 1 area at http://my.londoninternational.ac.uk
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8.4 Further reading

Aczel, A.D. Complete Business Statistics. (London: McGraw-Hill Higher
Education, 2009) seventh edition [ISBN 9780071287531] Chapters 7, 8 and 14
(taking care to omit topics not in the learning outcomes).

Anderson, D.R., D.J. Sweeney, T.A. Williams, J. Freeman and E. Shoesmith
Statistics for Business and Economics. (South-Western Cengage Learning, 2010)
eleventh edition [ISBN 9780324783247] Chapter 9 and Sections 10.2, 12.2 and 14.9.

Lind, D.A., W.G. Marchal and S.A. Wathen Statistical Techniques in Business and
Economics. (Boston: McGraw-Hill Higher Education, 2009) fourteenth edition
[ISBN 978007110004] Chapters 9, 10, 11 and the latter half of 16.

Wonnacott, T.H. and R.J. Wonnacott Introductory Statistics for Business and
Economics. (Chichester: John Wiley & Sons, 1990) fourth edition [ISBN
9780471615170] Chapter 9.

8.5 Introduction

In this chapter we introduce a branch of statistical inference known as hypothesis
testing. Typically we choose between two statements about the value of a parameter
based on evidence obtained from sample data which, due to sample data being subject
to randomness, can be regarded as realisations of some random variable of interest.

Our objective is to choose between these two conflicting statements about the
population, where these statements are known as hypotheses. By convention these
are denoted by H0 and H1. Qualitative examples of such hypotheses are:

Null hypothesis, H0 Alternative hypothesis, H1

A modified process does not produce a A modified process does produce a
higher yield than the standard process. higher yield than the standard process.
True economic output has not True economic output has
increased over a year. increased over a year.
A person is not gifted with A person is gifted with
Extra Sensory Perception. Extra Sensory Perception.
The average level of lead in the blood The average level of lead in the blood
of people in a particular environment of people in a particular environment
is as high as 3.0. is lower than 3.0.

From these examples we see that we use H0 to represent ‘no difference’, ‘no
improvement’, ‘no effect’ etc., and this is known as the null hypothesis, while H1 is
the alternative hypothesis.

Many statistical procedures can be represented as statements about the values of
population parameters such as the mean, µ, or variance, σ2.1 The first step in any
hypothesis testing problem is to ‘translate’ the real problem into its technical analogue.

1There is also a branch of statistics which deals with so-called ‘non-parametric tests’, although we
will not consider such tests in this course.
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In ST104a Statistics 1, the hypotheses will only contain parameters. For example, the
previous hypotheses can all be ‘translated’ into technical forms similar to:

‘We observe x1, x2, . . . , xn from N(µ, σ2) and we wish to test:

H0 : µ = µ0 vs. H1 : µ > µ0

where µ0 is some specified value such as 0 or 3.’

Performing the ‘translation’ correctly can itself be complicated, hence this requires
careful thought. Specifically, it is the form of H1 which needs consideration. The null
hypothesis, H0, will always denote the parameter value with equality (=),2 such as:

H0 : µ = µ0.

In contrast the alternative hypothesis, H1, will take one of three forms, i.e. using 6=, <,
or >, that is:

H1 : µ 6= µ0 or H1 : µ < µ0 or H1 : µ > µ0.

Note that only one of these forms will be used per test. To determine which form to
use will require careful consideration of the wording in the question.

The form H1 : µ 6= µ0 is an example of a two-tailed (two-sided) test and we use this form
with questions worded such as ‘test the hypothesis that µ is zero’. Here, there is no
indication of the value of µ if it is not zero – do we assume µ > 0 or µ < 0 in such cases?
We cannot be sure, so we take the ‘conservative’ option of a two-sided test, i.e. µ 6= 0.

In contrast, had the question been phrased as ‘test whether or not µ is greater than
zero’, then unambiguously we would opt for H1 : µ > µ0. This is an example of an
upper-tailed (one-sided) test. Unsurprisingly, ‘test whether or not µ is less than zero’
leads to H1 : µ < µ0 which is a lower-tailed (also one-sided) test.

Later, when testing for differences between two population means or proportions, you
need to look out for comparative phrases indicating if one population value should
exceed the other (for example, testing whether ‘A’ is taller/smarter/faster than ‘B’).
Practising problems will make you proficient in correctly specifying your hypotheses.

8.6 Statistical tests

Consider the following two situations:

1. Suppose that it has been suggested that a particular environment is such that the
average lead content of blood is as high as 3 units. In order to assess the truth of
this, 50 samples are analysed and it is found that the average of these is 2.8 and
that the sample standard deviation is 0.20.3 The standard error is, therefore, 0.028

2Such an H0 is called a simple null hypothesis. It is possible to have a composite null hypothesis, e.g.
H0 : µ ≥ 0 which allows for more than one parameter value, however, in ST104a Statistics 1 we will
only focus on simple forms of H0.

3Even when the true mean of the blood lead level is 3, we do not expect the sample mean to be
exactly 3. But we do expect the sample mean to be ‘close’ to 3, while being willing to tolerate a certain
amount of deviation from that value, due to chance. The important question here is ‘Is this deviation
from 3 due to chance alone, or is it too large to be explained purely by chance?’. The deviation of 2.8
from 3 is far too large, given the standard error.
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so that the sample mean is more than 7 standard errors below the hypothetical
mean – highly unlikely if the hypothesis is true! The data are extremely
inconsistent with the hypothetical mean of 3, and so we reject this value on the
evidence of the data.

2. A coin is tossed 100 times in order to decide whether or not it is a fair coin. We
observe 98 heads and 2 tails. Common sense tells us that this is strong evidence
that the coin is biased towards heads. More formally, we reject the hypothesis that
the coin is fair as the chance of obtaining 98 heads with a fair coin is extremely
low; the observation, 98 heads, is inconsistent with the coin being fair (since we
would have expected (approximately) 50 heads).

In these examples it would be perfectly reasonable to make common sense judgements
since the data were so extreme, but these ‘common sense’ judgements are using exactly
the same underlying logic as do the more sophisticated tests involving the formal
calculation of a test statistic. By fully understanding this logic, we are able to make
optimal decisions in less extreme and more complicated cases. A further advantage of
the formal approach is that it enables us to express numerically the degree of confidence
in our inference procedure; this can be extremely important in communicating our
conclusions via reports, presentations, etc.

Choosing between competing hypotheses requires us to conduct a statistical test. The
test procedures themselves involve straightforward calculations using the sample data.
At this point it is worth emphasising the following: always assume the null
hypothesis, H0, is true. That is, H0 is our ‘working hypothesis’ which we hold to be
true until we obtain significant evidence against it.

A test statistic is the formal mechanism used to evaluate the support given to H0 by
sample data. Different test statistics are used for testing different sorts of hypotheses.
For example, tests of a single mean, single proportion, differences in means or
proportions all require different test statistics.

Since H0 refers to a population parameter, we use a suitable estimator to estimate it
based on the sample data. For example, X̄ would be used when testing µ. Test statistics
are constructed from the sampling distribution of the estimator (introduced in Chapter
6). Hence test statistics are themselves random variables, as they are functions of
estimators (which are random variables). It follows, therefore, that test statistics also
follow probability distributions.

Since we assume H0 to be true, the test statistic’s distribution is conditional on H0.
Using the given sample data, we evaluate the test statistic to obtain a test statistic
value (analogous to obtaining a point estimate using an estimator). If we find this test
statistic value is sufficiently extreme – as determined by the test statistic distribution –
then we will have sufficiently strong evidence to justify rejecting H0.

Of course, we need to specify what constitutes a ‘sufficiently extreme’ test statistic
value. In fact we define a critical region which spans test statistic values which are
considered sufficiently extreme. It follows that our decision rule is to reject H0 if the
test statistic value falls in this critical region. If it does not, then we fail to reject H0,
which is retained as our working hypothesis. For any test, the critical region is defined
by one or two critical values, depending on whether we are performing a one-tailed or
two-tailed test, respectively. These critical values are obtained from the test statistic’s
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distribution under H0.

8.7 Types of error

In any hypothesis test there are two types of inferential decision error that could be
committed. Clearly, we would like to reduce the probabilities of these errors as much as
possible. These two types of error are called Type I error and Type II error.

Type I error: Rejecting H0 when it is true. This can be thought of as a ‘false
positive’. Denote the probability of this type of error by α.

Type II error: Failing to reject H0 when it is false. This can be thought of as
a ‘false negative’. Denote the probability of this type of error by β.

Type I and Type II errors

Both errors are undesirable and, depending on the context of the hypothesis test, it
could be argued that either one is worse than the other.4 However, on balance, a Type I
error is usually considered to be more problematic. The possible decision space can be
presented as:

Decision
Not reject H0 Reject H0

H0 true Correct decision Type I error
H1 true Type II error Correct decision

For example, if H0 was being ‘innocent’ and H1 was being ‘guilty’, a Type I error would
be finding an innocent person guilty (bad for him/her), while a Type II error would be
finding a guilty person innocent (bad for the victim/society, but admittedly good for
him/her!).

The complement of a Type II error, that is 1− β, is called the power of the test – the
probability that the test will reject a false null hypothesis. You will not be expected to
calculate either β or (1− β) in this course. However, you should understand the
implications of the different types of error and be able to complete the chart in the
second learning activity at the end of this chapter.

Example 8.1 In the example about lead levels discussed earlier, we would make a
Type I error if we decided the lead level was less than 3 when it was actually as high
as 3, and we would make a Type II error if we believed the level to be 3 when it was
actually lower than 3. These errors are taken into consideration in the formulation of
test procedures – the standard tests presented below are all devised to minimise the
probabilities of making such errors.

4Which is better – a medical test incorrectly concludes a healthy person has a terminal illness, or
incorrectly concludes that a terminally ill person is perfectly healthy?
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8.8 Tests for normal populations

Let us suppose that, having obtained sample data from a normal distribution, we use
estimator θ̂ to estimate an unknown parameter θ. Assume θ̂ has the sampling
distribution:

θ̂ ∼ N(θ, V )

where V = Var(θ̂) is assumed to be known. Hence the standard error, S.E.(θ̂), is also
known. The hypothesis test will proceed using the following steps.

1. Define the hypotheses. In this case suppose we test:

H0 : θ = θ0 vs. H1 : θ > θ0.

Hence large values of θ̂ would imply H1, while small values would tend to favour
H0. Note in this case the alternative hypothesis is one-sided and this has an effect
on the format of the test, i.e. here we perform an upper-tailed test.

2. State the test statistic and its distribution, then compute its value.
Regardless of the type of parameter we are testing, we choose a test statistic whose
distribution, conditional on H0, has a standard tabulated distribution such as the
standard normal, Student’s t, or chi-squared distributions (the chi-squared
distribution is introduced in Chapter 9). In this case, due to the known standard
error, standardisation of θ̂ readily yields:

θ̂ − θ0
S.E.(θ̂)

∼ N(0, 1).

Next compute the test statistic value using the sample data, i.e. θ̂ will be our point
estimate of θ.

3. Define the critical region for a given significance level, α.5 Obtain critical
value(s) from statistical tables to define the critical region. For this example, let
α = 0.05, where α is the Type I error probability. Since we are conducting an
upper-tailed test, we require zα = z0.05 = 1.645, i.e. the value, for the standard
normal distribution, above which lies α = 0.05 = 5% probability.

4. Decide whether or not to reject H0. Now we decide whether or not to reject
H0 (our working hypothesis which, up to now, is assumed to be true). If the test
statistic value lies in the critical region then we will reject H0, otherwise we do not
reject H0. A rejected H0 means the test is statistically significant at the specific
significance level used. In the examination you will be required to test at two
significance level sequentially – more on this later.

5. Draw conclusions. It is always important to draw conclusions in the context of
the variables of the original problem. It is not sufficient to conclude ‘the test is
significant at the 5% significance level’. This is just a technical step which guides us
to make a better decision about the original real-world problem, and final
conclusions should be drawn in terms of that problem.

5See the next section for a discussion of significance levels.
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An important aspect of this test is the simple form of the test statistic, namely:

Point estimator− Hypothesised value

(Estimated) standard error
.

Although this is not the format of all test statistics, it does cover a wide class of
situations, listed next.

Test of a single population mean, H0 : µ = µ0.

Test of a single population proportion, H0 : π = π0.

Test of the equality of two means, H0 : µ1 = µ2.

Test of the equality of two proportions, H0 : π1 = π2.

8.9 Significance levels

Step 3 of the previous test procedure referred to a significance level, α. We control
for the probability of committing a Type I error by setting the probability of this to be
α. Hence the significance level, or size, of a test is just the probability of committing a
Type I error. If we perform a test at the 5% significance level, say, then we are actually
basing our decision on a procedure which gives us a 5% chance of making a Type I error
(rejecting H0 when H0 is true).

In the development of the general normal test above, we used a significance level of 5%.
This is one of the most commonly used significance levels, although 1% and 10% are
also sometimes used. The value of quoting the significance level used is that it gives an
acceptable method of expressing the user’s confidence in the decision that was made. A
test that is significant at the 1% level expresses a strong conviction that H0 is untrue,
whereas a test that is significant only at the 10% level expresses merely some doubt on
H0.

The significance levels – 10%, 5% and 1%, corresponding to α values of 0.10, 0.05 and
0.01, respectively – provide a means of deciding which values of the test statistic are
extreme. Consider, for example, a one-sided, upper-tailed test of:

H0 : µ = 2 vs. H1 : µ > 2.

We calculate the test statistic value and if it falls deep enough into the right-hand tail
(the critical region) of the test statistic’s distribution then we reject H0. Where do we
draw the line which signals the start of this critical region? That is, what critical value
should we use? An accepted convention is to use a critical value that ‘cuts off’ a tail of
size α. So, if the test statistic follows a standard normal distribution, for an
upper-tailed test, using Table 5 of the New Cambridge Statistical Tables, we denote this
cut-off point as zα which for:

α = 0.10 =⇒ z0.10 = 1.2816

α = 0.05 =⇒ z0.05 = 1.6449

α = 0.01 =⇒ z0.01 = 2.3263
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such that if the test statistic value exceeds the critical value, then the ‘test is significant
at the 100α% significance level’.

Clearly, significance at the 1% level (2.3263 < test statistic value) implies significance at
the 5% level (since 1.6449 < 2.3263) which, in turn, implies significance at the 10% level
(since 1.2816 < 1.6449 < 2.3263). When a test is significant we should always state the
smallest level of significance as possible as this provides the best measure of the
compatibility (or rather, incompatibility) of the data with the null hypothesis.

If the test statistic value falls between 1.2816 and 1.6449, then the test is significant at
the 10% level, but not at the 5% level. This type of result arises from rather
inconclusive data and so it would be better to sample more data in the hope that a
firmer conclusion can be drawn one way or the other. Such an outcome is saying that
the null hypothesis is to be treated with suspicion, but that we cannot confidently reject
it. These points and ideas will be reinforced in the subsequent examples.

8.9.1 Order of conducting tests

The best practice for answering hypothesis test questions in the examination is to test
at two significance levels. However, the order in which you apply the significance
levels is taken into account by the Examiners. Noting the discussion above, a test which
is significant at the 5% significance level, say, must also be significant at the 10%
significance level, so you would be penalised if you used 10% as your second significance
level having just rejected at the 5% significance level. In such a situation it would be
more appropriate to test at the 1% significance level next.

Unless an examination question states otherwise, a sensible strategy to follow is to
initially test at the 5% significance level and then test either at the 1% or 10%
significance level, depending on whether or not you have rejected at the 5% significance
level. A ‘decision tree’ depiction of the procedure to follow is presented in Figure 8.1.

As indicated in Figure 8.1, it is possible to state whether a test result is ‘highly
significant’, ‘moderately significant’, ‘weakly significant’ or ‘not significant’, and
therefore we can convey a measure of the ‘strength’ of any statistical significance.

8.10 One- and two-tailed tests

The tests that have been described so far have been one-tailed (specifically,
upper-tailed). This is because the alternative hypotheses used were one-sided. Recall
the discussion in Section 8.5 which identified three different forms of H1. For example, if
testing a population mean H0 : µ = µ0, these are:

i. H1 : µ 6= µ0 or ii. H1 : µ < µ0 or iii. H1 : µ > µ0.

If H1 is of type (i.), then both tails of the test statistic’s distribution will form the
critical region, i.e. a two-tailed test. The critical region will still be of total area α, so
it is logical to split this α evenly between the two tails. So if the test statistic follows a
standard normal distribution, for a two-tailed test, using Table 5 of the New Cambridge
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Start at the

5% level

Choose the 1% level

Significance level decision tree

Reject H0

Reject H0

Reject H0

Not reject H

Not reject H0

Test result is 'highly significant'

Test result is 'moderately significant'

Test result is 'weakly significant'

Choose the 10% level

Not reject H0

Not reject H0

Test result is 'not significant'

Figure 8.1: Significance level decision tree.

Statistical Tables and noting symmetry of the standard normal distribution about zero:

α = 0.10 =⇒ zα/2 = z0.05 = 1.6449, giving critical values of ± 1.6449

α = 0.05 =⇒ zα/2 = z0.025 = 1.9600, giving critical values of ± 1.9600

α = 0.01 =⇒ zα/2 = z0.005 = 2.5758, giving critical values of ± 2.5758

such that if the test statistic value exceeds either critical value (i.e. greater than the
upper critical value, or less than the lower critical value), then the ‘test is significant at
the 100α% significance level’.

If H1 is of type (ii.), then this is a lower-tailed test. Hence the critical region is in the
left-hand tail of the test statistic’s distribution. So if the test statistic follows a standard
normal distribution, for a lower-tailed test, using Table 5 of the New Cambridge
Statistical Tables and noting symmetry of the standard normal distribution about zero:

α = 0.10 =⇒ z0.90 = −1.2816

α = 0.05 =⇒ z0.95 = −1.6449

α = 0.01 =⇒ z0.99 = −2.3263

such that if the test statistic value exceeds the critical value (i.e. falls below the critical
value), then the ‘test is significant at the 100α% significance level’.

If H1 is of type (iii.), then we have an upper-tailed test, which has already been
discussed.
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8.11 P -values

Before proceeding to examples of hypothesis test situations, we will discuss an
alternative approach to hypothesis testing based on the p-value.

So far we have spoken about defining a critical region and rejecting the null hypothesis,
H0, whenever the test statistic value falls in this critical region. An alternative approach
is to compute the probability of obtaining the observed test statistic value or a more
extreme value conditional on H0 being true, using the probability distribution of the
test statistic. This probability is the p-value.

So, given we reject H0 if the test statistic value is sufficiently extreme, we would also
reject H0 if we obtained a sufficiently small p-value. To summarise, in the p-value world
of testing, we use the following simple decision rule.

Reject H0 if p-value < α, where α is the significance level.

Do not reject H0 if p-value ≥ α.

Hypothesis testing – p-value decision rule

It remains to show how to calculate the p-value. Again, this will depend on the form of
H1 and the test statistic distribution.

Let the test statistic value be x, and the test statistic (a random variable as it is
constructed from an estimator) be X. Assuming a test statistic distribution which is
symmetric about zero for the two-tailed test , in general these can be summarised as
follows.

Form of H1 p-value calculation

H1 : θ 6= θ0 2× P (X ≥ |x|)

H1 : θ < θ0 P (X ≤ x)

H1 : θ > θ0 P (X ≥ x)

Calculating p-values

In each case use the New Cambridge Statistical Tables corresponding to the distribution
of test statistic X.

Example 8.2 If X ∼ N(0, 1), and we obtain the test statistic value x = −1.82,
then for a lower-tailed test the p-value would be:

P (X ≤ −1.82) = 1− Φ(1.82) = 1− 0.9656 = 0.0344

using Table 4 of the New Cambridge Statistical Tables. Hence this is significant at
the 5% significance level (0.0344 < 0.05), but not at the 1% significance level
(0.0344 > 0.01), indicating a moderately significant result.
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The next few sections detail various hypothesis testing situations analogous to the
confidence interval situations presented in Chapter 7.

8.12 Hypothesis test for a single mean (σ known)

We first consider the test of a single population mean when the population standard
deviation, σ, is known. To test H0 : µ = µ0 when sampling from N(µ, σ2) we use the
following test statistic.

In this case, the test statistic is:

Z =
X̄ − µ0

σ/
√
n
∼ N(0, 1). (8.1)

Hence critical values are obtained from the standard normal distribution, i.e. using
Table 5 of the New Cambridge Statistical Tables.

z-test of hypothesis for a single mean (σ known)

Example 8.3 The mean lifetime of 100 components in a sample is 1,570 hours and
their standard deviation is known to be 120 hours. µ is the mean lifetime of all the
components produced. Is it likely the sample comes from a population whose mean
is 1,600 hours?

We perform a two-tailed test since we are testing whether or not µ is 1,600.6

Hence we test:
H0 : µ = 1,600 vs. H1 : µ 6= 1,600.

Since σ is known, we use (8.1) to calculate the test statistic value, which is:

z =
x̄− µ0

σ/
√
n

=
1,570− 1,600

120/
√

100
= −2.5.

We first test at the 5% significance level. Since this is a two-tailed test, the critical
values are ±1.96. Since the test statistic value is in the critical region
(−2.5 < −1.96), we reject H0. If we now refer to the significance level decision tree
(Figure 8.1), we now test at the 1% level with critical values of ±2.5758. Since
−2.5758 < −2.5 we are (just) unable to reject H0 and conclude that the test result is
‘moderately significant’. Hence at the 5% significance level there is evidence to
suggest that the mean lifetime of components, µ, is not equal to 1,600.

If we wanted to compute the p-value, then from Section 8.11, for this two-tailed test
the p-value would be:

p-value = 2× P (Z > | − 2.5|) = 2× P (Z ≥ 2.5) = 2× 0.0062 = 0.0124.

Since 0.01 < 0.0124 < 0.05, we see that using the p-value testing method we still
conclude (as we must) that the test is significant at the 5% significance level, but not
at the 1% significance level.
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8.13 Hypothesis test for a single mean (σ unknown)

Here the only difference with the previous example is that σ2 is unknown. In which case
this is estimated with the sample variance estimator S2. To test H0 : µ = µ0 when
sampling from N(µ, σ2) we use the following test statistic.

In this case, the test statistic is:

T =
X̄ − µ0

S/
√
n
∼ tn−1. (8.2)

Hence critical values are obtained from the Student’s t distribution with n−1 degrees
of freedom, i.e. using Table 10 of the New Cambridge Statistical Tables.

t test of hypothesis for a single mean (σ unknown)

Example 8.4 A study on the impact of comprehensive planning on financial
performance reported that the average annual return on investment for American
banks was 10.2%,7 and suggested that banks who exercised comprehensive planning
would do better than this. A random sample of 26 such banks gave the following
returns on investment. Do these data support the conjecture?

10.00, 11.90, 9.90, 10.09, 10.31, 9.96, 10.34, 10.30, 10.50,
10.23, 10.72, 11.54, 10.81, 10.15, 9.04, 11.55, 10.81, 8.69,
10.74, 10.31, 10.76, 10.92, 11.26, 11.21, 10.20, 10.76.

We test:
H0 : µ = 10.2 vs. H1 : µ > 10.2.

Note that the alternative hypothesis is one-sided as this is the region of interest (we
hypothesise that banks exercising comprehensive planning perform better than
10.2%). This implies that an upper-tailed test is needed.

The summary statistics are n = 26, x̄ = 10.5 and s = 0.714. Hence, using (8.2), the
test statistic value is:

t =
x̄− µ0

s/
√
n

=
10.5− 10.2

0.714/
√

26
= 2.14.

We compare this test statistic value with the upper tail of the Student’s t
distribution with 26− 1 = 25 degrees of freedom.

If we choose α = 0.05,8 then Table 10 of the New Cambridge Statistical Tables can
be used to find the (upper tail) critical value of 1.708. For α = 0.01, the critical value
is 2.485. Since 1.708 < 2.14 < 2.485, we conclude that the test is significant at the
5% level, but not at the 1% level, indicating that the result is moderately significant.

6Common sense might lead us to perform a lower-tailed test since 1,570 < 1,600, suggesting that if µ
is not 1,600, then it is likely to be less than 1,600. However, since the question is phrased as a two-tailed
test, a justification for performing a lower-tailed test would be required, should you decide to opt for a
lower-tailed test. Indeed, in principle the alternative hypothesis should be determined before data are
collected, to avoid the data biasing our choice of alternative hypothesis.
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Using the p-value approach, the p-value is calculated to be:

p-value = P (t25 > 2.14) ≈ 0.02

using Table 9 of the New Cambridge Statistical Tables, with 24 as the nearest
available degrees of freedom. We see that 0.01 < 0.021 < 0.05 so, of course, we reach
the same conclusion. Note that we can view the p-value as the smallest α value such
that we would reject the null hypothesis.9

We conclude that there is moderate evidence against the null hypothesis and that
comprehensive planning does improve the average annual return on investment.

8.14 Hypothesis test for a single proportion

We now consider the hypothesis test for a single proportion. Recall from Section 7.10
that the standard error for a proportion is S.E.(π) =

√
π(1− π)/n. When testing

H0 : π = π0, under H0, the standard error is
√
π0(1− π0)/n leading to the following

test statistic, achieved by standardising the sample proprotion estimator, P , given in
(7.1).

In this case, the test statistic is:

Z ∼=
P − π0√

π0(1− π0)/n
∼ N(0, 1) (approximately). (8.3)

Hence critical values are obtained from the standard normal distribution, i.e. using
Table 5 of the New Cambridge Statistical Tables.

z test of hypothesis for a single proportion

Example 8.5 To illustrate this, let us reconsider Example 7.3 in which a survey
was conducted by a bank to estimate the proportion of its customers who would be
interested in using a proposed new mobile telephone banking service. If we denote
the population proportion of customers who are interested in this proposal by π, and
it is found that 68 out of 150 customers are in favour, then we would estimate π
with p = 68/150 = 0.453. Let us suppose that other surveys have shown that 40% of
the public are interested in mobile telephone banking and it is proposed to test
whether or not the above survey agrees with this figure, i.e. we conduct a two-tailed
test. Hence:

H0 : π = 0.4 vs. H1 : π 6= 0.4.

7Before the financial crisis!
8Recall that if the question does not specify a significance level, then α = 0.05, representing a 5%

significance level, is a good starting point.
9You are not expected to calculate p-values from the Student’s t distribution in the examination,

although the Examiners will not penalise those who use this approach provided the p-value is compared
against two appropriate significance levels.
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The test statistic value, using (8.3), is:

z =
p− π0√

π0(1− π0)/n
=

0.453− 0.4√
0.4× 0.6/150

= 1.325.

Let α = 0.05, then we compare this test statistic value with the critical values ±1.96
(using Table 5 of the New Cambridge Statistical Tables), so it can be seen that the
test is not significant at the 5% significance level as we do not reject H0 since
1.325 < 1.96. The significance level decision tree (see Figure 8.1) now requires us to
test at the 10% significance level, which gives critical values of ±1.6449, so again we
do not reject H0 since 1.325 < 1.6449, i.e. the test result is not statistically
significant.

We conclude that these data are consistent with the null hypothesis and that the
level of interest shown among the bank’s customers for the proposed new mobile
telephone banking service may well be 40%.

8.15 Difference between two population proportions

As with confidence intervals, the correct approach to the comparison of two population
proportions, π1 and π2, is to consider the difference between them, i.e. π1 − π2. When
testing for equal proportions (i.e. a zero difference), the null hypothesis is therefore
H0 : π1 − π2 = 0, or equivalently H0 : π1 = π2. We derive the test statistic by
standardising the sampling distribution of the difference in two independent sample
proportions, P1 − P2, given in (7.4), leading to the proposed test statistic:

Z =
(P1 − P2)− (π1 − π2)√

π1(1− π1)/n1 + π2(1− π2)/n2

∼ N(0, 1).

However, when evaluating this test statistic, which values do we use for π1 and π2? In
the test of a single proportion, we had H0 : π = π0, where π0 is the tested value. When
comparing two proportions, under H0 no value is given for π1 and π2, only that they are
equal, that is π1 = π2 = π, where π is the common proportion whose value, of course,
is still unknown! Hence we need to estimate π from the sample data using the pooled
proportion estimator.

If R1 and R2 represent the number of ‘favourable’ responses from two independent
samples with sample sizes of n1 and n2, respectively, then the pooled proportion
estimator is:

P =
R1 +R2

n1 + n2

. (8.4)

Pooled proportion estimator

This leads to the following revised test statistic.
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In this case, the test statistic is:

Z ∼=
(P1 − P2)− (π1 − π2)√
P (1− P ) (1/n1 + 1/n2)

∼ N(0, 1) (approximately). (8.5)

Hence critical values are obtained from the standard normal distribution, i.e. using
Table 5 of the New Cambridge Statistical Tables.

z test for the difference between two proportions

Example 8.6 To illustrate this, let us reconsider Example 7.7 to test for a
difference between the population proportions of the general public who are aware of
a particular commercial product before and after an advertising campaign. Two
surveys were conducted and the results of the two random samples were:

Sample size Number aware
Before campaign 150 68
After campaign 120 65

If π1 and π2 are the true population proportions before and after the campaign,
respectively, then we wish to test:

H0 : π1 = π2 vs. H1 : π1 < π2.

Note that we use a one-sided alternative on the assumption that the campaign
would not decrease awareness!10

After checking that this way round the value we get is positive (avoiding negative
differences wherever possible to keep the notation as ‘light’ as possible), we estimate
the difference in the population proportions as:

‘After’− ‘Before’ = p2 − p1 =
65

120
− 68

150
= 0.0884.

On the assumption that H0 is true, we estimate the common proportion, π, using
(8.4), as:

68 + 65

150 + 120
= 0.4926.

So our test statistic value, using (8.5), is:

z =
0.0884√

0.4926(1− 0.4926) (1/150 + 1/120)
= 1.44.

For a z test at the 5% significance level, we compare this test statistic value with the
upper-tail critical value of 1.645, for this upper-tailed test. Since 1.44 < 1.6449, we
fail to reject H0 and conclude that the test is not significant at the 5% significance
level. But it is significant at the 10% significance level (because 1.2816 < 1.44), and
so we maintain belief in the null hypothesis with some reservation as the data have
thrown some doubt on it. It is possible that the campaign has increased awareness
but, on the basis of these samples, we would not be fully convinced – the test is at
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best ‘weakly significant’. If we had to take an important decision, we would almost
certainly want more information before doing so!

Incidentally, the p-value for this problem is simply P (Z > 1.44) = 0.0749, using
Table 4 of the New Cambridge Statistical Tables. So, clearly, we would be unable to
reject H0 for any significance level α < 0.0749, agreeing with our earlier findings.

8.16 Difference between two population means

In this section we are primarily interested in the difference between two population
means, µ1 − µ2. As in Chapter 7, there are four cases to consider.

8.16.1 Unpaired samples – variances known

Suppose we have two random samples of size n1 and n2, respectively, drawn from
N(µ1, σ

2
1) and N(µ2, σ

2
2), where σ2

1 and σ2
2 are known. Testing for the equality of means

gives the null hypothesis H0 : µ1 = µ2 or, in terms of their difference, H0 : µ1 − µ2 = 0.
Standardising the sampling distribution of X̄1 − X̄2, shown in (7.6), gives the test
statistic.

In this case, the test statistic is:

Z =
X̄1 − X̄2 − (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

∼ N(0, 1). (8.6)

Hence critical values are obtained from the standard normal distribution, i.e. using
Table 5 of the New Cambridge Statistical Tables.

Note if testing for the equality of means, then µ1−µ2 = 0 under H0. Hence, in (8.6),
we set the term (µ1 − µ2) = 0.

z test for the difference between two means (variances known)

8.16.2 Unpaired samples – variances unknown and unequal

We have the same set-up as above, with the same sampling distribution for X̄1 − X̄2,
but now the population variances σ2

1 and σ2
2 are unknown. Assuming large sample sizes

we can replace these unknown parameters with the sample variance estimators S2
1 and

S2
2 to obtain the test statistic.

10An example of the importance of using common sense in determining the alternative hypothesis!
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If the population variances σ2
1 and σ2

2 are unknown, provided sample sizes n1 and n2

are large (greater than 30), then:

Z ∼=
X̄1 − X̄2 − (µ1 − µ2)√

S2
1/n1 + S2

2/n2

∼ N(0, 1) (approximately, for large samples). (8.7)

Hence critical values are obtained from the standard normal distribution, i.e. using
Table 5 of the New Cambridge Statistical Tables.

Note if testing for the equality of means, then µ1−µ2 = 0 under H0. Hence, in (8.7),
we set the term (µ1 − µ2) = 0.

z test for the difference between two means (variances unknown)

8.16.3 Unpaired samples – variances unknown and equal

Although still unknown, if we assume the population variances are equal to some
common variance, i.e. σ2

1 = σ2
2 = σ2, then we only have one (common) unknown

variance to estimate. As with confidence intervals, we utilise the pooled variance
estimator, given in (7.8).

If the population variances σ2
1 and σ2

2 are unknown but assumed equal, then:

T =
X̄1 − X̄2 − (µ1 − µ2)√

S2
p (1/n1 + 1/n2)

∼ tn1+n2−2 (8.8)

where S2
p is the pooled variance estimator, given in (7.8).

Hence critical values are obtained from the Student’s t distribution with n1 + n2− 2
degrees of freedom, i.e. using Table 10 of the New Cambridge Statistical Tables.11

Note if testing for the equality of means, then µ1−µ2 = 0 under H0. Hence, in (8.7),
we set the term (µ1 − µ2) = 0.

t test for the difference between two means (variances unknown)

Look back at Section 7.13 for hints about how to decide whether or not σ2
1 = σ2

2.

Example 8.7 To illustrate this, let us reconsider Example 7.8 where two
companies supplying a similar service are compared for their reaction times (in days)
to complaints. Random samples of recent complaints to these companies gave the
following statistics:

Sample size Sample mean Sample std. dev.
Company A 12 8.5 3.6
Company B 10 4.8 2.1

11Recall for sufficiently ‘large’ degrees of freedom, a standard normal approximation can be used,
provided a justification is given.
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We want to test for a true difference in reaction times, that is:

H0 : µA = µB vs. H1 : µA 6= µB.

Because the markets are ‘similar’, it is reasonable to assume (though it is only an
assumption!) that the two population variances are equal. Under this assumption,
using (7.8), we have:

s2p =
(12− 1)× (3.6)2 + (10− 1)× (2.1)2

12 + 10− 2
= 9.1125.

Using (8.8), the test statistic value is therefore:

t =
8.5− 4.8√

9.1125 (1/12 + 1/10)
= 2.87.

There are 12 + 10− 2 = 20 degrees of freedom, hence we obtain critical values from
the t20 distribution using Table 10 of the New Cambridge Statistical Tables. For a
two-tailed test at the 5% significance level, we obtain critical values of ±2.086, hence
the test is significant at this level since 2.086 < 2.87. Moving to the 1% significance
level, as per the significance level decision tree in Figure 8.1, the critical values are
±2.845, so again we (just) reject H0 since 2.845 < 2.87. On this basis, we have a
highly significant result when we reject H0, and we conclude that the mean reaction
times are different. Indeed, it appears that Company B reacts faster than Company
A.

8.16.4 Paired (dependent) samples

Recall from Section 7.13, that for paired (dependent) samples we work with differenced
data to reduce matters to a one sample analysis. As before, we compute the differenced
data as:

d1 = x1 − y1, d2 = x2 − y2, . . . , dn = xn − yn

reducing the two-sample problem to a one-sample problem. The test is then analogous
to the hypothesis test of a single mean with σ unknown.

Using the sample mean and sample standard deviation of differenced data, then:

T =
X̄d − µd
Sd/
√
n
∼ tn−1. (8.9)

Hence critical values are obtained from the Student’s t distribution with n−1 degrees
of freedom, i.e. using Table 10 of the New Cambridge Statistical Tables.

t test for the difference in means in paired samples

Example 8.8 The table below shows the before and after weights (in pounds) of 8
adults after a diet. Test whether there is evidence that the diet is effective.
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Before After Before After
127 122 150 144
130 120 147 138
114 116 167 155
139 132 153 152

We want to test:
H0 : µ1 = µ2 vs. H1 : µ1 > µ2

which is equivalent to:

H0 : µd = 0 vs. H1 : µd > 0

where we choose a one-tailed test because we are looking for a reduction (if there is
any change, we would expect weight loss from a diet!) and we define µd = µ1 − µ2

since we anticipate that this way round the values will (more likely) be positive.

The differences (calculated as ‘Before − After’) are:

5 10 −2 7 6 9 12 1.

Hence n = 8, x̄d = 6 and sd = 4.66 on n− 1 = 7 degrees of freedom. Using (8.9), the
test statistic value is:

t =
6− 0

4.66/
√

8
= 3.64.

At the 5% significance level, the upper-tail critical value is 1.895 (using Table 10 of
the New Cambridge Statistical Tables), hence we reject H0 since 1.895 < 3.64. Using
Figure 8.1, we proceed to test at the 1% significance level, which uses a critical value
of 2.998. Therefore we, again, reject H0 since 2.998 < 3.64 and we conclude that the
test is highly significant. These data strongly suggest that the diet reduces weight.

8.17 Summary

The idea of testing hypotheses is a central part of statistics, and underpins the
development of theories and checking of ideas in management and the social sciences. It
is important that you make sure you understand the material introduced in this chapter
and Chapters 6 and 7 before you move on to look at the chi-squared distribution in
Chapter 9.

8.18 Key terms and concepts

Alternative hypothesis Common proportion
Critical region Critical value
Lower-tailed test Null hypothesis
P -value Power
Significance level Test statistic (value)
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Two-tailed test Type I error
Type II error Upper-tailed test

8.19 Learning activities

1. Think about each of the following statements. Then give the null and alternative
hypotheses and say whether they will need one- or two-tailed tests.

(a) The general mean level of family income in a population is known to be 10,000
‘ulam’ per year. You take a random sample in an urban area U and find the
mean family income is 6,000 ulam per year in that area. Do the families in the
chosen area have a lower income than the population as a whole?

(b) You are looking at data from two schools on the heights and weights of children
by age. Are the mean weights for girls aged 10–11 the same in the two schools?

(c) You are looking at reading scores for children before and after a new teaching
programme. Have their scores improved?

2. Complete the following chart:

Real situation Result from your test
Not reject H0 Reject H0

H0 true Correct decision

Probability (1− α)
called the confidence

level of the test
H1 true Type II error

Probability (1− β) called
the power of the test

3. The manufacturer of a patient medicine claimed that it was 90% effective in
relieving an allergy for a period of 8 hours. In a sample of 200 people suffering from
the allergy, the medicine provided relief for 160 people.

Determine whether the manufacturer’s claim is legitimate. (Be careful. Your
parameter here will be π.) Is your test one- or two-tailed?

4. A sample of seven is taken at random from a large batch of (nominally 12 volt)
batteries. These are tested and their true voltages are shown below:

12.9 11.6 13.5 13.9 12.1 11.9 13.0.

(a) Test if the mean voltage of the whole batch is 12 volts.

(b) Test if the mean batch voltage is less than 12 volts.
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5. Explain what you understand by the statement: ‘The test is significant at the 5%
significance level’. How would you interpret a test that was significant at the 10%
significance level, but not at the 5% significance level?

In a particular city it is known, from past surveys, that 25% of homemakers
regularly use a washing powder named ‘Snolite’. After an advertising campaign, a
survey of 300 randomly selected homemakers showed that 100 had recently
purchased ‘Snolite’. Is there evidence that the campaign had been successful?

6. If you live in California, the decision to purchase earthquake insurance is a critical
one. An article in the Annals of the Association of American Geographers (June
1992) investigated many factors that California residents consider when purchasing
earthquake insurance. The survey revealed that only 133 of 337 randomly selected
residences in Los Angeles County were protected by earthquake insurance.

(a) What are the appropriate null and alternative hypotheses to test the research
hypothesis that less than 40% of the residents of Los Angeles County were
protected by earthquake insurance?

(b) Do the data provide sufficient evidence to support the research hypothesis?
(Use α = 0.10.)

(c) Calculate and interpret the p-value for the test.

7. A random sample of 250 households in a particular community was taken and in 50
of these the lead level in the water supply was found to be above an acceptable
level. A sample was also taken from a second community, which adds
anti-corrosives to its water supply and, of these, only 16 out of 320 households were
found to have high levels of lead level. Is this conclusive evidence that the addition
of anti-corrosives reduces lead levels?

8. Two different methods of determination of the percentage fat content in meat are
available. Both methods are used on portions of the same meat sample. Is there
any evidence to suggest that one method gives a higher reading than the other?

Meat Sample Method Meat Sample Method
I II I II

1 23.1 22.7 9 38.4 38.1
2 23.2 23.6 10 23.5 23.8
3 26.5 27.1 11 22.2 22.5
4 26.6 27.4 12 24.7 24.4
5 27.1 27.4 13 45.1 43.5
6 48.3 46.8 14 27.6 27.0
7 40.5 40.4 15 25.0 24.9
8 25.0 24.9 16 36.7 35.2
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9. The data in the following table show the numbers of daily parking offences in two
areas of a city. The day identifications are unknown and the recordings were not
necessarily made on the same days. Is there evidence that the areas experience
different numbers of offences?

Area A Area B Area A Area B
38 32 33 28
38 38 27 32
29 22 32 34
45 30 32 24
42 34 34

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk

In addition, attempt the ‘Test your understanding’ self-test quizzes available on the
VLE.

8.20 Further exercises

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060].
Relevant exercises from Sections 9.1–9.4 and 10.1–10.3.

8.21 A reminder of your learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

set up the null and alternative hypotheses for a problem and state whether the
latter is one- or two-sided, hence leading to a one- or two-tailed test

define and apply the terminology of statistical testing

perform statistical tests on means and proportions

construct and explain a simple chart showing the kinds of errors that can be made
in hypothesis testing.

8.22 Sample examination questions

1. Say whether the following statement is true or false and briefly give your reasons.
‘The power of a test is the probability that the correct hypothesis is chosen.’
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2. Explain your attitude to a null hypothesis if a test of the hypothesis is significant:

(a) at the 1% significance level

(b) at the 10% significance level, but not at the 5% significance level.

3. Measurements of a certain characteristic are normally distributed. What can you
say about an individual position (with respect to this characteristic) in the
population if their z-score is:

(a) −0.5

(b) +8.5

(c) +1.95?

4. You have been asked to compare the percentages of people in two groups with
n1 = 16 and n2 = 24 who are in favour of a new plan. You decide to make a pooled
estimate of the proportion and make a test. What test would you use?

5. Look at Question 3 of the Sample examination questions in Chapter 7. You were
asked in (b) whether you thought one company gave more satisfaction than the
other. Now give the null and alternative hypotheses for such a one-tailed test. Show
how you would decide whether or not to reject the null hypothesis.

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk
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Chapter 9

Contingency tables and the
chi-squared test

9.1 Aims

This chapter introduces you to a further application of hypothesis testing using a new
distribution – the chi-squared (χ2) distribution. This distribution enables you to work
with categorical variables. Your aims are to:

learn a new application

link this with different applications in the business and social statistical fields.

9.2 Learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

set up the null and alternative hypotheses appropriate for a contingency table

compute the degrees of freedom, expected frequencies and appropriate critical
values of chi-squared for a contingency table

summarise the limitations of a chi-squared test

be able to extend from chi-squared to an appropriate test of proportions, if
necessary

be able to work with a one-row or one-column contingency table as above.

9.3 Essential reading

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060]
Sections 14.1 and 14.3.

In addition there is essential ‘watching’ of this chapter’s accompanying video tutorials
accessible via the ST104a Statistics 1 area at http://my.londoninternational.ac.uk
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9.4 Further reading

Wonnacott, T.H. and R.J. Wonnacott Introductory Statistics for Business and
Economics. (Chichester: John Wiley & Sons, 1990) fourth edition [ISBN
9780471615170] Chapter 17.

9.5 Introduction

In Chapter 8 we focused on testing the value of a particular population parameter of
interest, such as a mean, µ, or a proportion, π. Being able to perform such statistical
tests is of particular use when making policy decisions. Here we shall look at two
additional testing procedures, one which deals with testing for association between two
categorical variables (introduced in Chapter 4), and a second which considers the shape
of the distribution from which the sample data was drawn. Both tests can easily be
applied to business management and social science fields.

9.6 Correlation and association

If we are asking whether two measurable variables (see Section 4.6) are related to each
other, the technical way of describing the case when they are is to say that the two
variables are correlated. It is possible to measure the strength of a correlation based
on sample data, and also to study to what extent changes in a variable ‘explain’ changes
in another – a topic known as regression. These topics will be discussed in Chapter 12.

But we also often wish to answer questions such as ‘Do vegetarians tend to support
Party X?’ or ‘Do Party X supporters tend to be vegetarians?’. If either question has the
affirmative answer, we say that there is association between the two categories (or
‘attributes’ or ‘factors’). We will need frequency data in order to answer such questions,
but, in this course, we will not be concerned with the strength of any such association,
rather we restrict ourselves to testing for its existence and commenting on the nature of
any association which we discover.

Finally, note that if one variable is measurable and the other categorical, we would still
be testing for the existence of association instead of computing correlation. In which
case we would ‘demote’ the measurable variable to categorical status by creating levels.
For example, age could be converted to a categorical variable by creating age groups.1

9.7 Tests for association

This type of test, tests the null hypothesis that two factors (or attributes) are not
associated, against the alternative hypothesis that they are associated. Each data unit
we sample has one level (or ‘type’ or ‘variety’) of each factor.

1Note age group would be an ordinal variable, since we could rank the age groups in order, from
youngest to oldest.
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Example 9.1 Suppose that we are sampling people, and that one factor of interest
is hair colour (black, blonde, brown etc.) while another factor of interest is eye
colour (blue, brown, green etc.). In this example, each sampled person has one level
of each factor. We wish to test whether or not these factors are associated. Hence:

H0 : There is no association between hair colour and eye colour2

H1 : There is association between hair colour and eye colour.

So, under H0, the distribution of eye colour is the same for blondes as it is for
brunettes etc., whereas if H1 is true it may be attributable to blonde-haired people
having a (significantly) higher proportion of blue eyes, say.

The association might also depend on the sex of the person, and that would be a
third factor which was associated with (i.e. interacted with) both of the others.3 The
main way of analysing these questions is by using a contingency table, discussed
in the next section.

9.7.1 Contingency tables

In a contingency table, also known as a cross-tabulation, the data are in the form
of frequencies (counts), where the observations are organised in cross-tabulated
categories. We sample a certain number of units (people perhaps) and classify them
according to the (two) factors of interest.

Example 9.2 In three areas of a city, a record has been kept of the numbers of
burglaries, robberies and car thefts that take place in a year. The total number of
offences was 150, and they were divided into the various categories as shown in the
following contingency table:

Area Burglary Robbery Car theft Total
A 30 19 6 55
B 12 23 14 49
C 8 18 20 46

Total 50 60 40 150

The cell frequencies are known as observed frequencies and show how the data
are spread across the different combinations of factor levels. The first step in any
analysis is to complete the row and column totals (as already done in this table).

2When conducting tests for association, the null hypothesis can be expressed either as ‘There
is no association between categorical variables X and Y ’, or that ‘Categorical variables X and Y
are independent’. The corresponding alternative hypothesis would then replace ‘no association’ or
‘independent’ with ‘association’ or ‘not independent (dependent)’, respectively.

3We will not consider interactions in testing in ST104a Statistics 1.
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9.7.2 Expected frequencies

We proceed by computing a corresponding set of expected frequencies, conditional
on the null hypothesis of no association between the factors, i.e. that the factors are
independent.

Now suppose that you are only given the row and column totals for the frequencies. If
the factors were assumed to be independent, consider how you would calculate the
expected frequencies. Recall from Chapter 5 that if A and B are two independent
events, then P (A ∩B) = P (A) · P (B). We now apply this idea.

Example 9.3 For the data in Example 9.2, if a record was selected at random from
the 150 records:

P (a crime being a burglary) = 50/150

P (a crime being in area A) = 55/150.

Hence, under H0, we have:

P (a crime being a burglary in area A) =
50

150
· 55

150

and so the expected number of burglaries in area A is:

150× 50

150
· 55

150
.

So the expected frequency is obtained by multiplying the product of the ‘marginal’
probabilities by n, the total number of observations. This can be generalised as follows.

The expected frequency, Eij, for the cell in row i and column j of a contingency table
with r rows and c columns, is:

Eij =
(row i total)× (column j total)

total number of observations

where i = 1, . . . , r and j = 1, . . . , c.

Expected frequencies in contingency tables

Example 9.4 The completed expected frequency table for the data in Example 9.2
is (rounding to two decimal places – which is recommended in the examination):

Area Burglary Robbery Car theft Total
A 18.33 22.00 14.67 55
B 16.33 19.60 13.07 49
C 15.33 18.40 12.27 46

Total 50 60 40 150
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Make sure you can replicate these expected frequencies using your own calculator.

9.7.3 Test statistic

To motivate our choice of test statistic, if H0 is true then we would expect to observe
small differences between the observed and expected frequencies, while large differences
would suggest that H1 is true. This is because the expected frequencies have been
calculated conditional on the null hypothesis of independence hence, if H0 is actually
true, then what we actually observe (the observed frequencies) should be
(approximately) equal to what we expect to observe (the expected frequencies).

Let the contingency table have r rows and c columns, then formally the test statistic4

used for tests of association is:

r∑
i=1

c∑
j=1

(Oij − Eij)2

Eij
∼ χ2

(r−1)(c−1). (9.1)

Critical values are found using Table 8 of the New Cambridge Statistical Tables.

χ2 test of association

Notice the ‘double summation’ here just means summing over all rows and columns.
This test statistic follows an (approximate) chi-squared distribution with (r − 1)(c− 1)
degrees of freedom, where r and c denote the number of rows and columns, respectively,
in the contingency table.

9.7.4 The χ2 distribution

A chi-squared variable is only defined over positive values. The precise shape of the
distribution is dependent on the degrees of freedom, which is a parameter of the
distribution. Figure 9.1 illustrates the chi-squared distribution for a selection of degrees
of freedom.

Although the shape of the distribution does change quite significantly for different
degrees of freedom, note the distribution is always positively skewed.

9.7.5 Degrees of freedom

The general expression for the number of degrees of freedom in tests for association is:

(Number of cells)− (Number of times data is used to calculate Eijs) .

For an r× c contingency table, we begin with rc cells. We lose one degree of freedom for
needing to use the total number of observations to compute the expected frequencies.
However, we also use the row and column totals in these calculations, but we only need

4This test statistic was first used by the statistician Karl Pearson, hence it is often referred to as
‘Pearson’s chi-squared statistic’. We will not worry in this course about how this test statistic is derived.

145



9

9. Contingency tables and the chi-squared test
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Figure 9.1: Examples of the chi-squared distribution with a selection of degrees of freedom.

r − 1 row totals and c− 1 column totals, as the final one in each case can be deduced
using the total number of observations. Hence we only lose r − 1 degrees of freedom for
the row totals, similarly we only lose c− 1 degrees of freedom for the column totals.

Hence the overall degrees of freedom are:

ν = rc− (r − 1)− (c− 1)− 1 = (r − 1)(c− 1).

9.7.6 Performing the test

As usual, we choose a significance level, α, at which to conduct the test. But are we
performing a one-tailed test or a two-tailed test? To determine this, we need to consider
what sort of test statistic value would be considered extreme under H0. As seen in
Figure 9.1, the chi-squared distribution only takes positive values. The squared term in
the numerator of the test statistic in (9.1) ensures the test statistic value will be
positive (the Eijs in the denominator are clearly positive too). If H0 is true, then
observed and expected frequencies should be quite similar, since the expected
frequencies are computed conditional on the null hypothesis of independence. This
means that |Oij − Eij| should be quite small for all cells. In contrast if H0 is not true,
then we would expect comparatively large values for |Oij − Eij| due to large differences
between the two sets of frequencies. Therefore, upon squaring |Oij − Eij|, sufficiently
large test statistic values suggest rejection of H0. Hence χ2 tests of association are
always upper-tailed tests.
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Example 9.5 Using the data in Example 9.2, we proceed with the hypothesis test.
Note it is advisable to present your calculations as an extended contingency table as
shown below, where the three rows in each cell correspond to the observed
frequencies, the expected frequencies and the test statistic contributor.

Burglary Robbery Car theft Total

O 30 19 6 55
A E 18.33 22.00 14.67 55

(O − E)2/E 7.48 0.41 5.15
O 12 23 14 49

B E 16.33 19.60 13.07 49
(O − E)2/E 1.13 0.59 0.06

O 8 18 20 46
C E 15.33 18.40 12.27 46

(O − E)2/E 3.48 0.01 4.82
Total 50 60 40 150

Using (9.1), we obtain a test statistic value of:

3∑
i=1

3∑
j=1

(Oij − Eij)2

Eij
= 7.48 + 0.41 + · · ·+ 4.82 = 23.13.

Since r = c = 3, we have (r − 1)(c− 1) = (3− 1)(3− 1) = 4 degrees of freedom. For
α = 0.05, using Table 8 of the New Cambridge Statistical Tables, we obtain an
upper-tail critical value of 9.488. Hence we reject H0 since 9.488 < 23.13. Moving to
the 1% significance level, the critical value is now 13.28 so, again, we reject H0 since
13.28 < 23.13. Therefore the test is highly significant and we conclude that there is
an association between the factors.

Looking again at the contingency table, comparing observed and expected
frequencies, the interpretation of this association becomes clear – burglary is the
main problem in area A whereas car theft is a problem in area C. (We can deduce
this by looking at the cells which large test statistic contributors, which are a
consequence of large differences between observed and expected frequencies.)

Incidentally, the p-value for this upper-tailed test is (using a computer)
P (23.13 ≤ χ2

4) = 0.000119, emphasising the extreme significance of this test statistic
value.

The conclusions in Example 9.5 are fairly obvious, given the small dimensions of the
contingency table. However, for data involving more factors, and more factor levels, this
type of analysis can be very insightful. Cells that make a large contribution to the test
statistic value (i.e. which have large values of (O − E)2/E) should be studied carefully
when determining the nature of an association. This is because, in cases where H0 has
been rejected, rather than simply conclude that there is an association between two
categorical variables, it is helpful to describe the nature of the association.
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9.7.7 Extending to an appropriate test of proportions

If we had a 2× 2 contingency table, then there are two ways of testing an equivalent
hypothesis – (i.) a χ2 test as outlined above, and (ii.) a test of the difference in
proportions as detailed in Chapter 8. See the fourth Learning activity at the end of this
chapter for an example to practise.

9.8 Goodness-of-fit tests

In addition to tests of association, the chi-squared distribution is often used more
generally in so-called ‘goodness-of-fit’ tests. We may, for example, wish to answer
hypotheses such as ‘Is it reasonable to assume the data follow a particular
distribution?’. This justifies the name ‘goodness-of-fit’ tests, since we are testing
whether or not a particular probability distribution provides an adequate fit to the
observed data. The null hypothesis will assert that a specific hypothetical population
distribution is the true one. The alternative hypothesis is that this specific distribution
is not the true one.

‘Goodness-of-fit’ tests are covered in detail in ST104b Statistics 2 for a variety of
probability distributions. However, there is a special case which we shall consider in
ST104a Statistics 1 when you are only dealing with one row or one column. This is
when we wish to test that the sample data are drawn from a (discrete) uniform
distribution, i.e. that each characteristic is equally likely.

Example 9.6 Is a given die fair? If the die is fair, then the values of the faces (1, 2,
3, 4, 5 and 6) are all equally likely so we have the following hypotheses:

H0 : Score is uniformly distributed vs. H1 : Score is not uniformly distributed.

9.8.1 Observed and expected frequencies

As with tests of association, the goodness-of-fit test involves both observed and
expected frequencies. In all goodness-of-fit tests, the sample data must be expressed in
the form of observed frequencies associated with certain classifications of the data.
Assume k classifications, hence observed frequencies can be denoted by Oi, i = 1, . . . , k.

Example 9.7 Extending Example 9.6, for a die the obvious classifications would be
the six faces. If the die is thrown n times, then our observed frequency data would
be the number of times each face appeared. Here k = 6.

Recall that in hypothesis testing we always assume that the null hypothesis, H0, is true.
In order to conduct a goodness-of-fit test, expected frequencies are computed
conditional on the probability distribution expressed in H0. The test statistic will then
involve a comparison of the observed and expected frequencies. In broad terms, if H0 is
true, then we would expect small differences between these two sets of frequencies,
while large differences would indicate support for H1.
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We now consider how to compute expected frequencies for discrete uniform probability
distributions – the only goodness-of-fit distributions considered in ST104a Statistics
1.

For discrete uniform probability distributions, expected frequencies are computed as:

Ei = n× 1

k
, i = 1, 2, . . . , k

where n denotes the sample size and 1/k is the uniform (equal, same) probability for
each characteristic.

Expected frequencies in goodness-of-fit tests

Expected frequencies should not be rounded, just as we do not round sample means,
say. Note that the final expected frequency (for the kth category) can easily be
computed using the formula:

Ek = n−
k−1∑
i=1

Ei.

This is because we have a constraint that the sum of the observed and expected
frequencies must be equal,5 that is:

k∑
i=1

Oi =
k∑
i=1

Ei

which results in a loss of one degree of freedom (discussed below).

9.8.2 The goodness-of-fit test

Having computed expected frequencies, we now need to formally test H0 and so we need
a test statistic.

For a discrete uniform distribution with k categories, observed frequenices Oi and
expected frequencies Ei, the test statistic is:

k∑
i=1

(Oi − Ei)2

Ei
∼ χ2

k−1 approximately under H0. (9.2)

Goodness-of-fit test statistic

Note that this test statistic does not have a true χ2
k−1 distribution under H0, rather it is

only an approximating distribution. An important point to note is that this
approximation is only good enough provided all the expected frequencies are at
least 5. (In cases where one (or more) expected frequencies are less than 5, we merge
categories with neighbouring ones until the condition is satisfied – this point is covered
in greater depth in ST104b Statistics 2.)

5Recall the motivation for computing expected frequencies in the first place – assuming H0 is true,
we want to know how a sample of size n is expected to be distributed across the k categories.
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As seen in (9.2), there are k − 1 degrees of freedom when testing a discrete uniform
distribution. k is the number of categories (after merging), and we lose one degree of
freedom due to the constraint that: ∑

i

Oi =
∑
i

Ei.

As with the test of association, goodness-of-fit tests are upper-tailed tests as, under
H0, we would expect to see small differences between the observed and expected
frequencies, as the expected frequencies are computed conditional on H0. Hence large
test statistic values are considered extreme under H0, since these arise due to large
differences between the observed and expected frequencies.

Example 9.8 A confectionery company is trying out different wrappers for a
chocolate bar – its original, A, and two new ones, B and C. It puts the bars on
display in a supermarket and looks to see how many of each wrapper type have been
sold in the first hour, with the following results.

Wrapper type A B C Total
Observed frequencies 8 10 15 33

Is there a difference between wrapper types in the choices made?

To answer this we need to test:

H0 : There is no difference in preference for the wrapper types6

H1 : There is a difference in preference for the wrapper types.

How do we work out the expected frequencies? Well, for equal preferences, with
three choices each (k = 3), the expected frequencies will be:

Ei = 33× 1

3
= 11, i = 1, 2, 3.

Applying (9.2), our test statistic value is:

3∑
i=1

(Oi − Ei)2

Ei
=

(8− 11)2

11
+

(10− 11)2

11
+

(15− 11)2

11
= 2.364.

The degrees of freedom will be k − 1 = 3− 1 = 2. At the 5% significance level, the
upper-tail critical value is 5.991, using Table 8 of the New Cambridge Statistical
Tables, so we do not reject H0 since 2.364 < 5.991. If we now consider the 10%
significance level7 the critical value is 4.605, so again we do not reject H0 since
2.364 < 4.605. Hence the test is not significant. So it looks as if there are no strict
preferences for a particular wrapper type based on the choices observed in the
supermarket during the first hour.

6This is the same as testing for the suitability of the discrete uniform distribution, i.e. that each
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9.9 Summary

You should regard this chapter as an opportunity to revise your work on hypothesis
testing in Chapter 8 and also revisit your work on testing proportions. The only new
material here is a way of testing the significance of countable figures as opposed to their
attributes.

9.10 Key terms and concepts

Association Categorical variable
Chi-squared distribution Contingency table
Cross-tabulation Discrete uniform distribution
Expected frequency Goodness-of-fit test
Observed frequency

9.11 Learning activities

1. A survey has been made of levels of satisfaction with housing by people living in
different types of accommodation. Levels of satisfaction are high, medium, low and
very dissatisfied. Levels of housing type are public housing apartment, public
housing house, private apartment, private detached house, private semi-detached
house, miscellaneous (includes boat, caravan, etc!). Give:

(a) the null and alternative hypotheses

(b) the degrees of freedom

(c) the 5% and 1% critical values for a χ2 test.

(Remember that you will reject the null hypothesis if your calculated test statistic
value is greater than the critical value obtained from Table 8 of the New Cambridge
Statistical Tables.)

2. Draw the χ2 curve and put in the rejection region for 5% and 1% significance levels
with 6 degrees of freedom. Make sure you understand which calculated values of χ2

will lead you to reject your H0.

3. In a survey made in order to decide where to locate a factory, samples from five
towns were examined to see the numbers of skilled and unskilled workers. The data
were as follows.

wrapper is equally popular.
7Remember if the test is not significant at the 5% significance level, we should then test at the 10%

significance level. See Figure 8.1.
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9. Contingency tables and the chi-squared test

Area Number of Number of
skilled workers unskilled workers

A 80 184
B 58 147
C 114 276
D 55 196
E 83 229

(a) Does the population proportion of skilled workers vary with the area? (Be
careful to ensure you know what you are doing!)

(b) Test:
H0 : πD = πothers vs. H1 : πD < πothers.

Think about your results and what you would explain to your management
team who had seen the chi-squared results and want, for other reasons, to site
their factory at area D.

4. Look at the following table taken from a study of gender differences in perception.
One of the tests was of scores in verbal reasoning.

High Low Totals
Male 50 150 200
Female 90 210 300

Do these figures show a difference in verbal reasoning by gender?

Try to do this:

(a) using chi-squared

(b) using the test of differences in proportions.

Make sure you get the same results! (Hint: make sure you think about H0 and H1

in each case.)

5. Set out the null and alternative hypotheses, degrees of freedom, expected
frequencies, and 10%, 5% and 1% critical values for the following problem. The
following figures give live births by season in town X.

Season Live births
Spring 100
Summer 200
Autumn 250
Winter 180

Is there any evidence that births vary over the year?

The number of days per season in this country are 93 (Spring), 80 (Summer), 100
(Autumn) and 92 (Winter).

(Hint: You would expect, if the births are uniformly distributed over the year, that
the number of births would be proportionate to the number of days per season. So
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9.12. Further exercises

work out your expected frequencies by taking the number of days per season
divided by the number of days in the year and multiplying by the total number of
births over the year.)

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk

In addition, attempt the ‘Test your understanding’ self-test quizzes available on the
VLE.

9.12 Further exercises

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060].
Relevant exercises from Sections 14.1 and 14.3.

9.13 A reminder of your learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

set up the null and alternative hypotheses appropriate for a contingency table

compute the degrees of freedom, expected frequencies and appropriate critical
values of chi-squared for a contingency table

summarise the limitations of a chi-squared test

be able to extend from chi-squared to an appropriate test of proportions, if
necessary

be able to work with a one-row or one-column contingency table as above.

9.14 Sample examination questions

1. You have carried out a χ2 test on a 3× 4 contingency table which you have
calculated to study whether there is an association between advertising and sales of
a product. You have 4 levels of advertising (A, B, C and D) and 3 levels of sales
(low, medium and high).

Your calculated χ2 value is 13.5. Giving degrees of freedom and an appropriate
significance level, set out your hypotheses. What would you say about the result?

2. The table below shows a contingency table for a sample of 1,104 randomly selected
adults from three types of environment (City, Town and Rural) who have been
classified into two groups by the level of exercise. Test the hypothesis that there is
no association between level of exercise and type of environment and draw
conclusions.

153



9

9. Contingency tables and the chi-squared test

Level of exercise
Environment High Low

City 221 256
Town 230 118
Rural 159 120

3. Two surveys have collected information on adult and teenage cigarette use. The
results of the first survey are given in the first table below (sample size 4,000) and
the results of the second survey, carried out two years later on a new sample of
1,000 households, are underneath it.

(a) Without doing any further calculations, comment on any association between
rows and columns for the first survey.

(b) Calculate the chi-squared statistic for the second survey and test for
association between rows and columns.

(c) Write a short report explaining what the first survey table shows about the
nature of the association, if any, between adult and teenage cigarette use in a
household, and (by comparing the two tables) discuss whether or not the
extent of any association changed over the years.

Survey 1 Adult cigarette use Total
Yes No

Teenage Yes 198 (8.4%) 170 (10.4%) 368
cigarette use No 2,164 (91.6%) 1,468 (89.6%) 3,632
χ2 = 4.61 Total 2,362 (100.0%) 1,638 (100.0%) 4,000

Survey 2 Adult cigarette use Total
Yes No

Teenage Yes 48 (8.1%) 45 (11.0%) 93
cigarette use No 544 (91.9%) 363 (89.0%) 907

Total 592 (100.0%) 408 (100.0%) 1,000

4. You have been given the number of births in a country for each of the four seasons
of the year and are asked whether births vary over the year. What would you need
to know in order to carry out a chi-squared test of the hypothesis that births are
spread uniformly between the four seasons? Outline the steps in your work.

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk
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Chapter 10

Sampling design

10.1 Aims

If you are using this subject guide in the order in which it is presented, you can now
take a break from learning any more new statistical ideas for a while. Now is your
chance to consolidate these ideas by looking at their applications in business and the
social sciences. You should aim to consider the following types of question.

What are your choices when you design a survey?

How reliable are results of surveys reported in the media?

Are random samples the best we can do in every circumstance?

10.2 Learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

define random, simple random and quota sampling and describe the implications of
using them

explain the reasons for stratifying and clustering samples

describe the factors which contribute to errors in surveys, including:

• inaccurate and poorly-judged frames

• sampling error

• non-sampling error (non-response, biased response, interviewer error)

discuss the various methods of contact that may be used in a survey and the
related implications:

• interviewer

• postal

• other self-administered

• telephone.
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10. Sampling design

10.3 Essential reading

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060]
Section 6.1 and Chapter 17.

In addition there is essential ‘watching’ of this chapter’s accompanying video tutorials
accessible via the ST104a Statistics 1 area at http://my.londoninternational.ac.uk

10.4 Further reading

Office for National Statistics Social Trends. (Basingstoke: Palgrave Macmillan,
2009) [ISBN 9780230220508].

Those taking SC1021 Principles of sociology should reread Chapter 2 in that
subject guide and look at Chapter 3 to give context to their studies for ST104a
Statistics 1.

10.5 Introduction

This chapter describes the main stages of a survey and the sources of error at each
stage. Remember that a first treatment and background to this subject matter is given
earlier in this subject guide in Chapter 3. It makes sense to reread that now before
continuing. This part of the course is the foundation for your future work in applied
social science, business and management. There is not much point in learning the
various techniques we have introduced you to in the rest of the subject guide unless you
understand the sources and limitations of the data you are using. This is important to
academics and policymakers alike! The material in this chapter and Chapter 12 is a
useful preparation or companion for SC1021 Principles of sociology.

You should find Newbold et al. Chapter 17 useful background. Note, however, that
while the ideas presented are important conceptually, the computations included in
Chapter 17 of Newbold et al. will not be required for ST104a Statistics 1.

10.6 Motivation for sampling

In Chapter 3, we introduced the term target population as representing the collection
of units (people, objects, etc.) in which we are interested. In the absence of time and
budgetary constraints we conduct a census, that is a total enumeration of the
population. Examples include the population census in the UK and in other countries
around the world. Its advantage is that there is no sampling error because all
population units are observed, and so there is no estimation of population parameters –
we can, in principle, determine the true values exactly.

Of course, in the real world, we do need to take into account time and budgetary
constraints. Due to the large size, N , of most populations, an obvious disadvantage with
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10.6. Motivation for sampling

a census is cost. So a census is not feasible in practice because there is only a limited
amount of information which is economical to collect. Also, non-sampling errors may
occur. For example, if we have to resort to using cheaper (hence less reliable)
interviewers, then they may erroneously record data, misunderstand a respondent, etc.
So we select a sample, that is a certain number of population members are selected
and studied. The selected members are known as elementary sampling units.

Sample surveys (hereafter ‘surveys’) are how new data are collected on a population
and tend to be based on samples rather than censuses. However, in practice, surveys are
usually conducted under circumstances which cannot be fully controlled. Since the
sample size, n, can be very large, the design and implementation of surveys requires
considerable planning and teamwork.

Example 10.1 Examples of sample surveys include:

Demography: study of births, deaths, families, etc.

Government: study of crime, education, employment, housing, health, etc.

Market research: study of consumer preferences, attitudes, etc.

Political science: study of voting intention.

Selected respondents may be contacted in a variety of methods such as face-to-face
interviews, telephone, mail or email questionnaires. Sampling errors will occur (since
not all population units are observed, so we resort to estimating population parameter
values, which means there will be some uncertainty attached to our point estimates),
but because of the smaller numbers involved (n� N)1 resources can be used to ensure
high quality interviews or to check completed questionnaires. Therefore non-sampling
errors should be less and consequently researchers can ask more questions.

So a census is difficult to administer, time-consuming, expensive and does not guarantee
completely accurate results due to non-sampling errors. In contrast, a sample is easier,
faster and cheaper, although it introduces sampling errors while non-sampling errors
can still occur. Unsurprisingly, we would like sampling (and non-sampling) errors to be
small.

Before proceeding, it is worth spending a moment thinking about the classification of
data into primary data and secondary data:

Primary data are new data collected by researchers for a particular purpose.

Secondary data refer to existing data which have already been collected by others
or for another purpose.

Of course, if secondary data exist, then there would be no need to collect new data! In
ST104a Statistics 1, the focus will be on the collection of primary data using various
sampling techniques.

1The symbol � means ‘much less than’.
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10. Sampling design

10.7 Types of sample

We seek a sample which is representative of the whole population to ensure our
estimated parameter values are good approximations of the true parameter values. A
particular difficulty is how to select a sample which yields a ‘fair’ representation.
Fortunately, there are many different sampling techniques (reviewed below) from which
to choose. As expected, these all have relative advantages and disadvantages, hence
each will be suitable in particular situations. Knowledge of these techniques is
frequently examined in this course, so it is strongly advised that you become very
familiar with this material.

Of course, consideration also needs to be given to the choice of sample size, n. In
practice we face a trade-off – n should be large enough to give a fair representation of
the population, yet be sufficiently small to be practical and cost-effective. Section 6.11
considered this problem in the context of setting a tolerance on the maximum permitted
sampling error. Qualitative factors to take into consideration when determining n are
study objectives, budget, time constraints, type of data analysis planned and
non-sampling errors.

We proceed by partitioning sampling techniques into two groups:

Non-probability (non-random) sampling

Probability (random) sampling.

Types of sample

10.7.1 Non-probability sampling

Non-probability samples are characterised by the following properties:

Some population units have no chance (zero probability) of being selected.

Units which can be selected have an unknown (non-zero) probability of selection.

Sampling errors cannot be quantified.

Non-probability samples are used in the absence of a sampling frame.2

We shall consider three types of non-probability sampling:

Convenience sampling – individuals are selected from the members of the
population which happen to be in the vicinity. For example, those people in a
shopping mall at the time of the survey, say a school day. This technique is
convenient, hence the name! Of course, such an approach is unlikely to yield a
representative sample. (In the mall example, children and working professionals are
unlikely to be in the mall at the time.)

2Sampling frames (lists) were discussed at length in Chapter 3.
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10.7. Types of sample

Judgement sampling – this uses expert opinion to judge which individuals to
choose. An example would be a research firm selecting people to participate in a
focus group3 by telephoning people and identifying who matches the target profile
through a series of questions developed by an expert.

Quota sampling – this attempts to obtain a representative sample by specifying
quota controls on certain specified characteristics, such as age, gender, social class
and any other variables relevant to the investigation being undertaken. The
(approximate) distribution of such characteristics in the population is required in
order to replicate it in the sample.

Of these, quota sampling is the most important type which we will consider now in
greater depth.

Quota sampling

Quota sampling is useful in the absence of a sampling frame, since non-probability
sampling techniques do not require a sampling frame. Another reason for conducting a
quota sample, instead of a random sample, might be speed. We may be in a hurry and
not want to spend time organising interviewers for a random sample – it is much
quicker to set target numbers (quotas) to interview.

As with any form of sampling, the objective is to obtain a sample which is representative
of the population. Quota sampling is no exception and to do so the interviewer:

seeks out units which satisfy some control characteristics (known as quota
controls), such as age, gender and social class

requires the distribution of these characteristics in the population in order to
replicate it in the sample.

Quota sampling is cheap, but it may be systematically biased by the choice of
interviewee made by the interviewer, and their willingness to reply. For instance,
interviewers might avoid choosing anyone who looks threatening, or too busy, or too
strange! Quota sampling also does not allow us to measure the sampling error – a
consequence of it being a non-probability sampling technique.

Each of the three techniques above (convenience, judgement and quota) has an appeal;
however, in all cases we have no real guarantee that we have achieved an adequately
representative sample – we might do by chance, of course, but this would be highly
unlikely! For example, were the women we interviewed only those working in local
offices? Were the young adults all students?

Basically, since we do not know the probability that an individual will be selected for
the survey, the basic rules of inference which we have been learning to use (confidence
intervals and hypothesis tests) do not apply. Specifically, standard errors (a key
ingredient in inferential procedures) are not measurable. However, in the absence of a
sampling frame then we will have to resort to non-probability sampling methods.

3Focus groups are used for qualitative research by asking a group of individuals about their opinions
toward a new product or advertising campaign, consumer preferences, etc.
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That said, non-random samples are also frequently used by market research
organisations or companies when speed (if not accuracy) is important. They are rarely
used by governments.

Example 10.2 You would likely use a quota sample (the main non-probability
sample considered in ST104a Statistics 1) in the following situations:

When speed is important. Clearly, an interviewer with a target to reach a
certain number (quota) of people on a given day is likely to be quicker than one
which requires a specific person or household to be contacted (as determined by
a random sample). Typical quota controls for the interviewer to meet are:

• age

• gender

• socio-economic group, or social class.

Note the more controls the interviewer is given, the longer it will take to
complete the required number of interviews (and hence it will take longer to
complete your study).

No available sampling frame covering the target population. If you
think obtaining a list is likely to be very complicated, then a sensible targeting
of the population by taking a quota sample might be helpful. You might, for
example, wish to contact drivers of coaches and buses over a set of routes. There
are a lot of bus companies involved, and some of them will not let you have
their list of employees for data protection reasons, say. One of the things you
could do in these circumstances is to carry out a quota sample at different times
of the day.

There are often random alternatives though, using lists you may not have
thought of. In the case above, you might be able to make a list of scheduled
journeys on the routes you wish to study and take a random sample of routes,
interviewing the relevant driver as he or she completes their journey.

When you need to reduce cost. Clearly, time-saving is an important
element in cost-saving.

When accuracy is not important. You may not need to have an answer to
your question to the high – and known – level of accuracy that is possible using
a random sample; rather you merely require an idea about a subject. Perhaps
you only need to know if people, on the whole, like your new flavour of ice
cream in order to judge whether or not there is likely to be sufficient consumer
demand to justify full-scale production and distribution. In this case, asking a
representative group of people (quota) would be perfectly adequate for your
needs.

Although there may be several reasons to justify the use of a quota sample, you should
be aware of the problem caused by the omission of non-respondents. Because you
only count the individuals who reply (unlike random sampling where your estimate has
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to allow for bias through non-response), the omission of non-respondents4 can lead to
serious errors as your results would be misleading. For this reason, members of the
British Market Research Association have now agreed to list non-response as it occurs
in their quota samples, and this is regarded as good practice.

One possible remedy to this problem is to introduce more detailed quota controls. For
example, we might ask for age, gender, employment status, marital status and/or the
particular age of the respondent’s children. However, this can take away a lot of the cost
advantages of using a quota, rather than a random sample. Imagine the time you would
take locating the last woman for your sample aged 35–44, married with teenage children
and a full-time job! There is the additional expense of paying interviewers more for a
smaller number of interviews (on the basis of the time they spend on the job). If this is
not done, the temptation to cheat, and therefore make results completely invalid, will
be strong.

10.7.2 Probability sampling

Probability sampling means that every population unit has a known (not necessarily
equal), non-zero probability of being selected in the sample. In all cases selection
is performed through some form of randomisation. For example, a pseudo-random
number generator can be used to generate a sequence of ‘random’ numbers.

Relative to non-probability methods, probability sampling can be expensive and
time-consuming, and also requires a sampling frame. We aim to minimise both the
(random) sampling error and the systematic sampling bias. Since the probability of
selection is known, standard errors can be computed which allows confidence intervals
to be determined and hypothesis tests to be performed.

We shall consider five types of probability sampling:

Simple random sampling (SRS) – a special case where each population unit
has a known, equal and non-zero probability of selection. Of the various probability
samples, its simplicity is desirable and it produces unbiased estimates, although
more accurate methods exist (i.e. those with smaller standard errors).

Systematic random sampling – a 1-in-x systematic random sample is obtained
by randomly selecting one of the first x units in the sampling frame and then
selecting every subsequent xth unit. Though easy to implement, it is important to
consider how the sampling frame is compiled. For example, the data may exhibit a
periodic property such as sales in a shop. All Monday sales are likely to be similar,
as are all Saturday sales, but Saturdays are traditionally much busier shopping
days. So sales from a 1-in-7 systematic sample will have a large variation between
days, but a small variation within days. This would lead us to underestimate the
true variation in sales. A 1-in-8 systematic sample would be better. Can you say
why?5

4Non-response is discussed later in this chapter.
5A 1-in-7 systematic sample would lead to only one day of the week being represented in the sample,

such as Mondays. A 1-in-8 systematic sample would have different days of the week. For example, if the
first day chosen was a Monday, the next day selected would be 8 days later, i.e. Tuesday of the following
week, followed by a Wednesday etc.
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Stratified random sampling – this sampling technique achieves a higher level of
accuracy (smaller standard errors) by exploiting natural groupings within the
population. Such groupings are called strata6 and these are characterised as having
population units which are similar within strata, but are different between strata.
More formally, elements within a stratum are homogeneous while the strata are
collectively heterogeneous.

A simple random sample is taken from each stratum, thus ensuring a representative
overall sample since a broad cross-section of the population will have been selected
– provided suitable strata were created. Hence great care needs to be taken when
choosing the appropriate stratification factors, which should be relevant to the
purpose of the sample survey such as age or gender.

Imagine we were investigating student satisfaction levels at a university. If we took
a simple random sample of students we could, by chance, select just (or mainly)
first-year students whose opinions may very well differ from those in other year
groups. So in this case a sensible stratification factor would be ‘year of study’. By
taking a simple random sample from each stratum you ensure that you will not end
up with an extreme (non-representative) sample and also avoid the possibility of
one particular group not being represented at all in the sample. Of course, in order
to perform stratified random sampling, we would need to be able to allocate each
population unit to a stratum. For students this should be straightforward, since the
university’s database of student names would no doubt include year of study too.

Cluster sampling – is used to reduce costs (time and money). Here the
population is divided into clusters, ideally such that each cluster is as variable as
the overall population (i.e. heterogeneity within clusters and homogeneity between
clusters). Next, some of the clusters are selected by SRS. This is where the
economy savings are expected (in face-to-face interviews), since typically the
clusters may be constructed on a geographical basis allowing interviewers to
restrict themselves to visiting households in certain areas rather than having to
travel long distances to meet the respondents required by a simple random sample
who potentially cover a large area. A one-stage cluster sample would mean that
every unit in the chosen clusters is surveyed.

It may be that the cluster sizes are large meaning that it is not feasible to survey
every unit within a cluster. A two-stage cluster sample involves taking a simple
random sample from the clusters which were selected by SRS during the first stage.
When a subsample is taken from a selected cluster, this is known as a multistage
design.

Individual respondents will be identified in a random manner – but crucially within
an area. You will reduce costs (the interviewer will be able to complete a higher
number of interviews in a given time, using less petrol and reducing shoe leather
costs), but will probably have to sacrifice a degree of accuracy, that is the method
is less efficient in general compared to, say, stratified random sampling. However,
cluster sampling is very useful when a sampling frame is not immediately available
for the entire population. For example, individual universities will have databases
of their own students, but a national student database does not exist (admittedly it

6‘Strata’ is the plural form, ‘stratum’ is the singular form.
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may be possible to create a national student database, but it would take a lot of
effort, time and money).

Clustering is clearly useful in an interviewer-administered survey. It is less
important as a design feature for telephone or postal interviews, unless you are
particularly interested in the cluster itself, to the extent that individuals in a
cluster are similar (having intra-class correlation they will be less representative
of other clusters). In other words, the variance (hence standard error) of your
sample estimate will be greater.

A further reason, in addition to cost savings, for cluster sampling, may arise from
your need as a researcher to look at the clusters themselves for their own sake. An
interest in income and educational levels for a group living in one area, or a study
of the children at a particular school and their reaction to a new television
programme, will require you to look at individuals in a cluster.

Multistage sampling – refers to the case when sample selection occurs at two or
more successive stages (the two-stage cluster sample above is an example).
Multistage sampling is frequently used in large surveys. During the first stage, large
compound units are sampled (primary units). During the second stage, smaller
units (secondary units) are sampled from the primary units. From here, additional
sampling stages of this type may be performed, as required, until we finally sample
the basic units.

As we have already seen, this technique is often used in cluster sampling as we
initially sample main clusters, then clusters within clusters, etc. We can also use
multistage sampling with a mixture of techniques. A large government
survey will likely incorporate elements of both stratification and clustering at
different stages. A typical multistage sample in the UK might involve the following:

• Divide the areas of the country into strata by industrial region.

• Sample clusters (local areas) from each industrial region.

• From each local area choose some areas for which you have lists (such as
electoral registers) and take a simple random sample from the chosen lists
(clusters).

Note that from a technical perspective, stratified sampling can be thought of as an
extreme form of two-stage cluster sampling where at the first stage all clusters in the
population are selected. In addition, one-stage cluster sampling is at the opposite end of
this spectrum. We can summarise as follows.

Stratified sampling: all strata chosen, some units selected in each stratum.

One-stage cluster sampling: some clusters chosen, all units selected in each
sampled cluster.

Two-stage cluster sampling: some clusters chosen, some units selected in each
sampled cluster.

Similarities and differences between stratified and cluster sampling
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Example 10.3 You have been asked to make a sample survey of each of the
following. Would you use random or quota sampling? Explain.

i. Airline pilots, for their company, about their use of holiday entitlement in order
to bring in a new work scheme.

In this case as the survey is for the company (and there is therefore no
confidentiality issue) it is quite easy to use the company’s list of personnel. A
quota sample would not be very easy in these circumstances – you would have
to send your interviewers to a venue where most pilots would be likely to meet,
or you would risk a very unrepresentative sample.

So, in this case, a random sample would be easy and efficient to use. You would
be able to collect accurate information and use your statistical techniques on it.
The subject matter, too, means that it is likely the pilots would take the survey
more seriously if they were contacted through the company’s list.

ii. Possible tourists, about their holiday destinations and the likely length of time
and money they expect to spend on holiday in the next year, for a holiday
company planning its holiday schedule and brochure for next year.

The situation for the tourist survey is different from that for airline pilots.
There will be not just one, but several lists of tourists from different holiday
companies, and data confidentiality might well mean you could not buy lists
which do not belong to your company. You might use the register of voters or
list of households, but then you would not necessarily target those thinking
about holidays in the near future. So a random sample sounds like an expensive
option if this is to be a general study for a tourist company assessing its future
offers and illustrations for its holiday brochure. Here, a quota sample makes
more sense: interviewers can quickly find the right respondent for the company’s
needs and get a general picture of holidaymakers’ preferences.

iii. Household expenditure for government assessment of the effect of different types
of taxes.

The government survey will require accuracy of information in an important
policy area. A random sample will have to be used and the national lists of
addresses or voters used.

10.8 Types of error

We can distinguish between two types of error in sampling design7 as follows:

Sampling error: This occurs as a result of us selecting a sample, rather than
performing a census (where a total enumeration of the population is undertaken).
It is attributable to random variation due to the sampling scheme used. For
probability sampling, we can estimate the statistical properties of the sampling

7These should not be confused with Type I and Type II errors, which only concern hypothesis testing
and are covered in Section 8.7.
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error, i.e. we can compute (estimated) standard errors which allow confidence
intervals to be determined and hypothesis tests to be performed.

Non-sampling error: This occurs as a result of the (inevitable) failures of the
sampling scheme. In practice it is very difficult to quantify this sort of error,
typically through separate investigation. We distinguish between two sorts of
non-sampling error:

• Selection bias – this may be due to (i.) the sampling frame not being equal
to the target population, (ii.) the sampling frame not being strictly adhered to,
or (iii.) non-response bias.

• Response bias – the actual measurements might be wrong due to, for
example, ambiguous question wording, misunderstanding of a word in a
questionnaire by less-educated people, or sensitivity of information which is
sought. Interviewer bias is another aspect of this, where the interaction
between the interviewer and interviewee influences the response given in some
way, either intentionally or unintentionally, such as through leading questions,
the dislike of a particular social group by the interviewer, the interviewer’s
manner or lack of training, or perhaps the loss of a batch of questionnaires
from one local post office. These could all occur in an unplanned way and bias
your survey badly.

10.9 Pilot and post-enumeration surveys

Both kinds of error can be controlled or allowed for more effectively by a pilot survey.
A pilot survey is used:

to find the standard error which can be attached to different kinds of questions and
hence to underpin the sampling design chosen

to sort out non-sampling questions:

• Do people understand the questionnaires?

• Are our interviewers working well?

• Are there particular organisational problems associated with this enquiry?

Sometimes, particularly for government surveys, a post-enumeration survey is used to
check the above. Here a subsample of those interviewed are reinterviewed to make sure
that they have understood the questions and replied correctly. This is particularly
useful when technical questions are being asked.

10.10 Non-response and response bias

Bias caused by non-response and response is worth a special entry. It can cause
problems at every stage of a survey, both random and quota, and however administered.

The first problem can be in the sampling frame. Is an obvious group missing?
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Example 10.4 The following are examples of coverage bias in the sampling frame.

If the sampling frame is of householders, those who have just moved in will be
missing.

If the sampling frame is of those aged 18 or over, and the under-20s are careless
about registration, then younger people will be missing from the sample.

In the field, non-response (data not provided by a unit that we wish to sample) is one
of the major problems of sample surveys as the non-respondents, in general, cannot be
treated like the rest of the population. As such, it is most important to try to get a
picture of any shared characteristics in those refusing to answer or people who are not
available at the time of the interview.

We can classify non-response as follows:

Item non-response occurs when a sampled member fails to respond to a
question in the questionnaire.

Unit non-response occurs when no information is collected from a sample
member.

Classifications of non-response

Non-response may be due to any of the following factors:

not-at-home due to work commitments, or on holiday

refusals due to subject matter, or sponsorship of the survey

incapacity to respond due to illness, or language difficulties

not found due to vacant houses, incorrect addresses, moved on

lost schedules due to information being lost or destroyed after it had been
collected.

How should we deal with non-response? Well, note that increasing the sample size will
not solve the problem – the only outcome would be that we have more data on the
types of individuals who are willing to respond! Instead, we might look at improving
our survey procedures such as data collection and interviewer training. Non-respondents
could be followed up using call-backs, or an alternative contact method to the original
survey in an attempt to subsample the non-respondents. A proxy interview (where a
unit from your sample is substituted with an available unit) may be another possibility.
(Note that non-response also occurs in quota sampling but is not generally recorded –
see the earlier discussion.) However, an obvious remedy is to provide an incentive (for
example, cash or entry into a prize draw) to complete the survey – this exploits the
notion that human behaviour can be influenced in response to the right incentives!

Response error is very problematic because it is not so easy to detect. A seemingly
clear reply may be based on a misunderstanding of the question asked or a wish to
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deceive. A good example from the UK is the reply to the question about the
consumption of alcohol in the Family Expenditure Survey. Over the years, there is up to
a 50% understatement of alcohol use compared with the overall known figures for sales
from HM Revenue & Customs!

The main sources of response error include:

Role of the interviewer due to the characteristics and/or opinions of the
interviewer, asking leading questions and the incorrect recording of responses.

Role of the respondent who may lack knowledge, forget information or be
reluctant to give the correct answer due to the sensitivity of the subject matter.

Sources of response error

Control of response errors typically involves improving the recruitment, training and
supervision of interviewers, reinterviewing, consistency checks and increasing the
number of interviewers.

In relation to all these problems, pilot work is very important. It may also be possible
to carry out a check on the interviewers and methods used after the survey
(post-enumeration surveys).

10.11 Method of contact

A further point you should think about when assessing how to carry out a survey is the
method of contact. The most common methods of contact are face-to-face interviews,
telephone interviews and online/postal/mail (so-called ‘self-completion’) interviews. In
most countries you can assume the following:

An interviewer-administered face-to-face questionnaire will be the most expensive
to carry out.

Telephone surveys depend very much on whether your target population is on the
telephone (and how good the telephone system is).

Self-completion questionnaires can have a low response rate.

We now explore some8 of the advantages and disadvantages of various contact methods.

Face-to-face interviews:

• Advantages: Good for personal questions; allow for probing issues in greater
depth; permit difficult concepts to be explained; can show samples (such as
new product designs).

• Disadvantages: (Very) expensive; not always easy to obtain detailed
information on the spot.

8This is not necessarily an exhaustive list. Can you add any more?
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Telephone interviews:

• Advantages: Easy to achieve a large number of interviews; easy to check on
quality of interviewers (through a central switchboard perhaps).

• Disadvantages: Not everyone has a telephone so the sample can be biased;
cannot usually show samples; although telephone directories exist for landline
numbers, what about mobile telephone numbers? Also, young people are more
likely to use mobile telephones rather than landline telephones, so are more
likely to be excluded.

Self-completion interview:

• Advantages: Most people can be contacted this way (there will be little
non-response due to not-at-home reasons); allow time for people to look up
details such as income, tax returns etc.

• Disadvantages: High non-response rate – it requires effort to complete the
questionnaire; answers to some questions may influence answers to earlier
questions since the whole questionnaire is revealed to the respondent – this is
important where the order of a questionnaire matters; you have no control over
who answers the questionnaire.

Example 10.5 Examples of occasions when you might use a particular method are
as follows.

Face-to-face interviewer – a survey of shopping patterns.

Here you need to be able to contact a sample of the whole population. You can
assume that a large proportion would not bother to complete a postal
questionnaire – after all, the subject matter is not very important and it takes
time to fill in a form! Using a telephone would exclude those (for example, the
poor and the elderly) who either do not have access to a telephone, or are
unwilling to talk to strangers by telephone.

Telephone interviewer – a survey of businessmen and their attitudes
to a new item of office equipment.

All of them will have a telephone, and also the questions should be simple to
ask. Here, booking time for a telephone interview at work (once it has been
agreed with the management) should be much more effective than waiting for a
form to be filled in, or sending interviewers to disrupt office routine.

Postal/mail questionnaire – a survey of teachers about their pay and
conditions.

Here, on-the-spot interviews will not elicit the level of detail needed. Most
people do not remember their exact pay and taxation, particularly if they are
needed for earlier years. We would expect a high response rate and good-quality
data – the recipients are motivated to reply, since they may be hoping for a pay
rise! Also, the recipients come from a group of people who find it relatively easy
to fill in forms without needing the help, or prompting, of an interviewer.
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Remember that it is always possible to combine methods. The Family Expenditure
Survey in the UK, for example, combines the approach of using an interviewer three
times over a fortnight (to raise response and explain details), while the respondent
household is required to fill in a self-completion diary (showing expenditure, which
could not be obtained by an interview alone).

Similarly, telephone interviews may be combined with a mail-shot subsampled
individual survey, in the case of offices and businesses faxing additional information. In
the case of the telephone survey of businessmen described above, a description of the
new equipment could be faxed to the businessmen in advance, or as they are telephoned.

Remember also that email surveys are already widespread and becoming increasingly
popular, although they are only appropriate when the population to be studied uses
them heavily and is likely to reply to your questions, such as employees in your office.
An obvious advantage is that this method is very cheap to administer.

10.12 Summary

This chapter has described the main stages of a survey and the sources of error at each
stage. The various techniques in the rest of the subject guide are of little use unless you
understand the sources and limitations of the data you are using. The contents of this
chapter should have helped you to understand how statistical techniques you have
learned about so far can be used in practice.

10.13 Key terms and concepts

Census Cluster sampling
Convenience sampling Judgement sampling
Incentive Method of contact
Multistage design Non-probability sampling
Non-response Non-sampling error
Pilot survey Post-enumeration survey
Primary data Probability sampling
Representative Response error
Quota sampling Sample
Sample survey Sampling error
Sampling frame Secondary data
Selection bias Simple random sampling
Stratified random sampling Systematic random sampling
Target population
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10.14 Learning activities

1. Think of at least three lists you could use in your country as a basis for sampling.
Remember, each list must:

• be generally available

• be up-to-date

• provide a reasonable target group for the people you might wish to sample.

2. Think of three quota controls you might use to make a quota sample of shoppers in
order to ask them about the average amount of money they spend on shopping per
week. Two controls should be easy for your interviewer to identify. How can you
help them with the third control?

3. Find out about one of the government surveys carried out in your own country.

This should help you understand the problems involved in designing a useful survey
and help you with illustrations for your examination questions. (Remember that
your understanding of the general points raised here should be illustrated by
examples. The Examiners are very happy if you give examples from your own
country or area of interest. They are not looking for points memorised from
textbooks!)

4. Your company has five sites and a mixture of managerial, clerical and factory
workers. You want to know what kind of help they would like with their
travel-to-work arrangements. One of the trade unions involved has asked for free
parking for all its members, another has suggested subsidised rail season tickets.

You, as a statistician, have been asked to design a sample survey of employees to
help them decide what to do. You decide to make a random sample; there is no
problem with the list and you have been asked to give statistically reliable advice.
You decide to make a stratified sample.

(a) Give the strata you will use.

(b) Explain how the strata will help you.

Hint: Do not be afraid to use two sets of strata in these circumstances!

5. You have been asked to design a random sample in order to study the way
schoolchildren learn in your country. Explain the clusters you might choose, and
why.

6. Your textbook will have a clear and detailed example of a multistage survey.

(a) Work through it and then find out about one of the government, or other
large-scale, surveys in your country.

(b) Identify the stratification factors and the way in which sampling units are
clustered for convenience.

Make sure you have an example clearly in mind.
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7. What form of contact might you use for your questionnaire in the following
circumstances?

(a) A random sample of schoolchildren about their favourite lessons.

(b) A random sample of households about their expenditure on non-essential
items.

(c) A quota sample of shoppers about shopping expenditure.

(d) A random sample of bank employees about how good their computing facilities
are.

(e) A random sample of the general population about whether they liked
yesterday’s television programmes.

8. (a) Outline the main stages of a random survey. Where do the main dangers of
errors lie?

(b) Why might you carry out a quota survey rather than a random survey?

(c) ‘The designing of questionnaires and the training of interviewers is a waste of
money.’ Discuss.

(d) When would you carry out a telephone survey rather than using a face-to-face
interview?

(e) You have been asked to survey the interest of a population in a new type of
audiotape. How might you stratify your sample? Explain.

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk

In addition, attempt the ‘Test your understanding’ self-test quizzes available on the
VLE.

10.15 Further exercises

Try the following example exercises in the subject guide for course SC1021 Principles
of sociology: 2.2, 2.9 and 2.12.

10.16 A reminder of your learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

define random, simple random and quota sampling and describe the implications of
using them

explain the reasons for stratifying and clustering samples
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describe the factors which contribute to errors in surveys, including:

• inaccurate and poorly-judged frames

• sampling error

• non-sampling error (non-response, biased response, interviewer error)

discuss the various methods of contact that may be used in a survey and the
related implications:

• interviewer

• postal

• other self-administered

• telephone.

10.17 Sample examination questions

1. (a) Define a ‘quota’ sample.

(b) What are the main reasons for using such a sample, and what are the
alternatives?

(c) What are the main sources of error in a quota sample, and how would you deal
with them?

2. Given the data from Chapter 7, Sample examination question 3 part (b) and
Chapter 8, Sample examination question 5, you decide to look at these results
further and contact the customers concerned in each company that you have
already selected.

(a) Outline your survey procedure, giving and explaining your preferred method of
contact and how you would prevent non-response.

(b) Give examples of the questions you might ask.

3. You are carrying out a random sample survey of leisure patterns for a holiday
company, and have to decide whether to use interviews at people’s homes and
workplaces, postal (mail) questionnaires, or telephones. Explain which method you
would use, and why.

4. Discuss the statistical problems you might expect to have in each of the following
situations:

(a) Conducting a census of the population.

(b) Setting up a study of single-parent families.

(c) Establishing future demand for post-compulsory education.

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk
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Chapter 11

Some ideas underlying causation –
the use of control groups and time
order

11.1 Aims

As with Chapter 10, this chapter does not introduce any new statistical calculations.
However, it addresses the key ideas of causation in non-experimental science. It also
prepares you for the final ideas – namely regression and correlation – you need to know
in order to complete ST104a Statistics 1.

11.2 Learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

distinguish between an experiment in the natural sciences and the observations
possible in social science, business or management studies

determine sensible controls for a given experiment or trial

set up a panel study

explain the merits and limitations of a longitudinal/panel survey compared with a
cross-sectional survey.

11.3 Essential reading

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060]
Section 13.2.

In addition there is essential ‘watching’ of this chapter’s accompanying video tutorials
accessible via the ST104a Statistics 1 area at http://my.londoninternational.ac.uk
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11.4 Further reading

Shipman, M. The Limitations of Social Research. (London: Longman, 1997) fourth
edition [ISBN 9780582311039] Part 2.

Those taking SC1021 Principles of sociology should reread Section 2.4 and Chapter
3 with care!

11.5 Introduction

So far, we have looked at ways of collecting and describing data. Chapters 3 and 10
introduced you to the basic ideas of sampling from populations. The main ways of
describing and presenting data were covered in Chapter 4. Chapters 6 to 8 dealt with
the ways we can assess the relevance or significance of these figures, while Chapter 9
introduced the idea of ‘association’ between categorical variables. Chapter 12 will
complete the process, so far as ST104a Statistics 1 is concerned, by covering
correlation and regression.

Before we look at the ideas of correlation and regression more formally, it is important
to take stock of the limitations of assuming causation when working in social research.
Anyone who studied science at school will be familiar with the idea of an experiment.
Subjects are measured (observations are made), a treatment is administered, then
further observations are made. Providing that we can be sure that nothing else has
happened between observations, apart from the treatment (scientists write ‘other things
being equal’1), the assumption is made that the treatment has caused the change
between the first and second set of observations.

If we are dealing with such a controlled experiment, the meaning of our statistical
measures and work is very clear. However, in social science, business and management
fields, things are rarely that simple. We are generally faced with figures that show
changes in variables but the treatment given is not easy to assess.

Example 11.1 Consider determining the effectiveness of an advertising campaign
for your new chocolate bars with improved wrappers. Your company measures the
sales of the old chocolate bars, product A, in two areas, X and Y, before introducing
the new chocolate bars, product B, and running a four-month advertising campaign.

Imagine your marketing manager’s joy when sales of product B are much higher than
for product A in area X. Clearly, the changes have worked! But, oh dear, product B
is achieving a lower level of sales than product A in area Y. How can this be? Well,
on closer investigation, we find that our main rival has withdrawn their product
from area X and concentrated their sales focus on area Y (where they have realised
that a larger number of their target population lives). So your success with product
B in area X is not necessarily related to your advertising campaign, rather it may be
entirely due to your rival’s actions. Clearly, whatever measures you use, there is a
problem with the measurement of your results. ‘Other things’ are no longer equal,
since the behaviour of the rival changed while you were conducting your experiment.

1Or ‘ceteris paribus’, in Latin.
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So it is important to control for confounding factors, that is, factors which are
correlated with the observed variables (such as the rival’s actions in Example 11.1).
Failure to properly control for such factors may lead us to treat a false positive as a
genuine causal relationship.

11.6 Observational studies and designed experiments

In medical, industrial and agricultural applications of statistics, it is possible to control
the levels of the important factors that affect the results. Bias from the factors that
cannot be controlled is dealt with by randomisation. These investigations are designed
experiments.

In economic and other social science applications of statistics, one usually just observes
a sample of the available population, without controlling for any of the factors that may
influence the measures observed. Such studies are observational studies.

Much of the methodology of statistics is devoted to disentangling the effects of different
factors in such observational studies, but it is better to have a designed experiment,
whenever possible. Of course, the social sciences do not really lend themselves to
designed experiments. For example, we do not have multiple versions of an economy to
which we can apply different mixtures of fiscal and monetary policies. Instead, we have
one economy to which we apply a particular mix and observe what happens.

In ST104a Statistics 1, we will only look at regression and correlation as ways of
studying the connections between variables, but analysis of variance (covered in
ST104b Statistics 2) is also very relevant in this context.

Even if it is possible to experiment, there may be ethical objections. The ethical
questions raised by medical trials are still a lively area of debate. There can be strong
objections from patients (or their relatives) to their treatment by an established method
(or a placebo) when a new treatment is available. After the trial is complete, if the new
treatment is shown to be worse than the established one, there may be complaints from
those who were given the new treatment. Some of these difficulties can be resolved by
the use of sequential methods, which try to discontinue a trial at the earliest
opportunity when one treatment has been shown to give better results than others.

When we come to study regression in Chapter 12, it will be important to remember its
limitations. It is easy to be too optimistic about its use. There is a big difference
between a randomised experiment and an observational study, even if regression is used
to allow for some of the distorting factors in the latter. The long-standing difficulties in
proving that smoking causes lung cancer or, more recently, in demonstrating the
positive effects of seat belts in cars, or of investigating the possible increase in
leukaemia cases in children of workers at nuclear power plants, should be enough to
show how the problems arise. It is difficult to allow for all the distorting factors; even to
say whether a factor should be eliminated is hard.

So how do statisticians try to measure causal relationships in the social sciences? They
use two main weapons:

the control group
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time order.

We now proceed to consider both of these.

11.7 Use of the control group

We are often limited in the social sciences because we are unable to perform
experiments either for ethical or practical reasons. Imagine, for example, that you need
to assess the likely effect on tooth decay of adding fluoride to the water supply in town
X. There is no possibility of being allowed to experiment, as you are afraid that fluoride
might have harmful side effects. However, you know that fluoride occurs naturally in
some communities. What can you do, as a statistician?

11.7.1 Observational study

In an observational study data are collected on units (not necessarily people)
without any intervention. Researchers do their best not to influence the observations
in any way. A sample survey is a good example of such a study, where data are collected
in the form of questionnaire responses. As discussed in Chapter 10, every effort is made
to ensure response bias is minimised (if not completely eliminated).

Example 11.2 To assess the likely effect on tooth decay of adding fluoride to the
water supply, you can look at the data for your non-fluoridated water population
and compare it with one of the communities with naturally-occurring fluoride in
their water and measure tooth decay in both populations. But be careful! A lot of
other things may be different. Are the following the same for both communities?

Number of dentists per person

Number of sweet shops per person

Eating habits

Age distribution.

Think of other relevant attributes that may differ between the two. If you can
match in this way (i.e. find two communities that share the same characteristics
and only differ in the fluoride concentration of their water supply), your results may
have some significance.

So, to credibly establish a causal link in an observational study, all other relevant
factors need to be adequately controlled, such that any change between observation
periods can be explained by only one variable.

11.7.2 Experimental study

In an experiment, an intervention or treatment is administered to some or all of
the experimental units (usually people). Allocation of the treatment (or perhaps a
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combination of treatments) is determined by using a form of randomisation.2 Some
time after the treatments are given, the outcomes are recorded by the researchers.
Data analysis involves comparing outcomes across all treatments.

Occasionally it is possible and permissible to carry out experiments in business
situations. There are still difficulties caused by the sheer number of variables which will
need to be taken into consideration, but at least it is possible to distinguish those who
had the treatment (the experimental group) from those who did not (the control
group).

In order to avoid bias in assessing the effects of the treatments, blinding and double
blinding are recommended. In blind experimentation the experimental units are
unaware of whether they receive a treatment or a placebo, while in a double-blind set-up
the people administering the treatment and placebo also do not know which is which.
The sample size in each treatment group must be large enough to ensure that medically
(or socially) important differences can be detected. Sample size determination (as
previously discussed for observational studies in Section 7.11) to ensure adequate power
is a routine part of experimental design.

On the whole, such methods are associated with medical statistics more often than with
other applied areas, but they are also used in marketing and test marketing when
possible.

11.8 Time order

Another way we might attempt to disentangle causal relationships is to look at the
order in which events occurred. Clearly, if we eat more, we gain weight, other things
being equal. For example, if we do not exercise more to offset the extra consumption of
calories!

This underpins work on time series data which you will meet if you study EC2020
Elements of econometrics. For now, you should know a little about longitudinal
and panel surveys, where the same individuals are resurveyed over time.

11.8.1 Longitudinal surveys

Policy makers use these surveys over a long period of time to look at the development of
childhood diseases, educational development and unemployment. There are many
long-term studies in these areas. Some longitudinal medical studies of rare diseases have
been carried out at an international level over long periods. One such, very well-known,
study which is readily available is the UK National Child Development Survey. This
began with a sample of about 5,000 children born in April 1948. It is still going on! It
was initially set up to look at the connections between childhood health and
development and nutrition by social groups. The figures produced in the first few years
were so useful that it was extended to study educational development and work
experience. There are several books which describe the survey at its different stages.

2For example, treatment A is administered if a fair coin toss comes up ‘heads’, otherwise treatment
B is administered.
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You should note the advantages and disadvantages of using such methods. The big
advantages are that you:

can actually measure individual change (not just averages)

do not depend on people’s memories about what they did four years ago, say.

The disadvantages are:

on the one hand, drop out – if the subject material is trivial, people may not
agree to be continually resurveyed

on the other hand, conditioning – if the researcher manages to persuade
participants to continue to cooperate, he or she may have altered their perceptions
(the participants may have become too involved in the study).

Despite the disadvantages, such studies are widely regarded as being the best way of
studying change over time.

11.8.2 Panel surveys

In business and management research, we generally use slightly less ambitious surveys
called panels. They also involve contacting the same individuals over a period, but are
generally different from longitudinal surveys in the following ways:

they are more likely to be chosen by quota rather than random methods

individuals are interviewed every 2 to 4 weeks (rather than every few years)

individuals are unlikely to be panel members for longer than two years at a time.

We can use results from such surveys to look at brand loyalty and brand switching. It is
particularly useful for assessing the effectiveness of advertising. For now, make sure you
understand how a longitudinal or panel study is set up.

11.9 Case study: Smoking and lung cancer

In order to clarify the issues raised in this chapter, we will consider a case study. It
describes how control groups were used in order to see what was connected with lung
cancer. You might be interested to know that initially the researchers expected that
pollution in the environment would show the strongest link.

They compared patients in hospital diagnosed as having lung cancer with a control
group who did not. (They were likely to have had accidents or non-chest diseases such
as appendicitis or, in the case of women, be pregnant.) Each lung cancer patient was
matched with a control by:

age

sex
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occupation

home area

being in hospital at roughly the same time.

Using the measures that you will meet in Chapter 12, it was found that the main
difference between the two groups was in smoking behaviour – those with lung cancer
were more likely to be heavy smokers than the other group. Although this study was
carried out some time ago, similar studies have confirmed the results.

But what did the study tell us? Consider again Section 11.5. Descriptive statistics alone
cannot distinguish between the following ideas.

Smoking causes lung cancer:

smoking ⇒ lung cancer

Smoking is a symptom of developing lung cancer:

lung cancer ⇒ smoking

Your personality factor leads to smoking and lung cancer:

personality factor X ⇒ smoking + lung cancer.

It is important that you understand this. Although animal experimentation (ethics
aside) may help to resolve the conundrum to some extent, we are really at a stalemate
without an experiment on the people in whom we are interested!

At this point, the original researchers carried out a longitudinal study of 40,000 doctors
in the UK. Their smoking histories were collected and subsequent death rates from lung
cancer checked. The results confirmed the initial findings.

However, although these results make the causal connection ‘heavy smoking −→ lung
cancer’ much more likely, it is still possible that the heavy smokers may have some
other characteristic (for example, genetic) which leads them to contract lung cancer.

Ethically it is not possible to choose individuals to participate in an experiment and ask
them to smoke heavily, so a pure experiment could not be made.

11.10 Summary

This chapter’s focus on causation gives you an opportunity to think of the implications
of the work you have covered in the earlier chapters and prepares the way for the
material in Chapter 12.

11.11 Key terms and concepts

Blinding Causation
Conditioning Confounding factor
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Control group Drop out
Experiment Intervention
Longitudinal survey Observational study
Outcome Panel survey
Randomisation Time order
Treatment

11.12 Learning activities

1. Your government is assessing whether it should change the speed limit on its
motorways or main roads. Several countries in your immediate area have lowered
their limit recently by 10 miles per hour.

What control factors might you use in order to examine the likely effect on road
accidents of a change in your country?

2. (a) List the advantages and disadvantages of making a panel study.

(b) Work out how you might set up a panel of children in order to see whether
they like the television programmes your company is making for under-10s in
the after school/before homework time slot.

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk

In addition, attempt the ‘Test your understanding’ self-test quizzes available on the
VLE.

11.13 Further exercises

For those taking SC1021 Principles of sociology, try Activity 2.6 again in the
subject guide.

11.14 A reminder of your learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

distinguish between an experiment in the natural sciences and the observations
possible in social science, business or management studies

determine sensible controls for a given experiment or trial

set up a panel study

explain the merits and limitations of a longitudinal/panel survey compared with a
cross-sectional survey.
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11.15 Sample examination questions

1. What are the strengths and weaknesses of a longitudinal survey? Describe how you
would design such a survey if you were aiming to study the changes in people’s use
of health services over a 20-year period. Give the target group, survey design, and
frequency of contact. You should give examples of a few of the questions you might
ask.

2. Write notes on the following:

(a) blind trials

(b) control groups

(c) measuring causation.

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk
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Chapter 12

Correlation and regression

12.1 Aims

This final chapter of the subject guide takes us back to the ideas of the formula for a
straight line, which you worked on back in Chapter 2. Here, we are going to use basic
mathematics to understand the relationship between two variables.

If you are taking, or likely to take, ST104b Statistics 2, and later EC2020
Elements of econometrics, you should ensure that you cover all the examples here
very carefully as they prepare you for some work on those courses.

If you do not intend to take your statistics any further, you need, at the very least as a
social scientist, to be able to assess whether relationships shown by data are what they
appear!

Be careful not to confuse the techniques used here – on measurable variables – with
those you worked with in Chapter 9 on categorical variables!

12.2 Learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

draw and label a scatter diagram

calculate r

explain the meaning of a particular value and the general limitations of r and r2 as
measures

calculate a and b for the line of best fit in a scatter diagram

explain the relationship between b and r

summarise the problems caused by extrapolation.

12.3 Essential reading

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060]
Sections 1.6, 2.4, 11.1–11.3 and 14.6.
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In addition there is essential ‘watching’ of this chapter’s accompanying video tutorials
accessible via the ST104a Statistics 1 area at http://my.londoninternational.ac.uk

12.4 Further reading

Aczel, A.D. Complete Business Statistics. (London: McGraw-Hill Higher
Education, 2009) seventh edition [ISBN 9780071287531] Chapters 10 and 11.

Anderson, D.R., D.J. Sweeney, T.A. Williams, J. Freeman and E. Shoesmith
Statistics for Business and Economics. (South-Western Cengage Learning, 2010)
eleventh edition [ISBN 9780324783247] Chapter 14 and Section 15.1.

Wonnacott, T.H. and R.J. Wonnacott Introductory Statistics for Business and
Economics. (Chichester: John Wiley & Sons, 1990) fourth edition [ISBN
9780471615170] Chapters 12–14.

12.5 Introduction

In Chapter 9, you were introduced to idea of testing for association between different
attributes of a variable using the chi-squared distribution. We did this by looking at the
number of individuals falling into a category, or experiencing a particular contingency.

Correlation and regression enable us to see the connection between the actual
dimensions of two or more variables. The work we will do in this chapter will only
involve looking at two variables at a time, but you should be aware that statisticians
use these theories and similar formulae to look at the relationship between many
variables – so-called multivariate analysis. Factor analysis, discriminant analysis,
principal component analysis and some kinds of cluster analysis (not to be confused
with cluster sampling!) all use related ideas and techniques.1

When we use these terms we are concerned with using models for prediction and
decision making. So, how do we model the relationship between two variables? We
are going to look at:

correlation – which measures the strength of a linear relationship

regression – which is a way of representing that linear relationship.

It is important you understand what these two terms have in common, but also the
differences between them.

12.6 Scatter diagrams

Let us assume that we have some data in paired form: (xi, yi), i = 1, 2, . . . , n.

1Though not covered in ST104a Statistics 1, these do appear in MN3141 Principles of
marketing. Regression techniques are also emphasised in EC2020 Elements of econometrics.
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12.6. Scatter diagrams

Example 12.1 An example of paired data is the following which represents the
number of people unemployed and the corresponding monthly reported crime figures
for twelve areas of a city.

Unemployed, x 2,614 1,160 1,055 1,199 2,157 2,305
Number of offences, y 6,200 4,610 5,336 5,411 5,808 6,004

Unemployed, x 1,687 1,287 1,869 2,283 1,162 1,201
Number of offences, y 5,420 5,588 5,719 6,336 5,103 5,268

This dataset will be used repeatedly throughout this chapter.

When dealing with paired data, the first action is to construct a scatter plot (or
scatter diagram) of the data, and visually inspect it for any apparent relationship
between the two variables.2 Figure 12.1 shows such a scatter plot for these data.
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Figure 12.1: Scatter plot of ‘Crime’ against ‘Unemployment’.

Figure 12.1 gives an impression of a positive, linear relationship, i.e. it can be seen that
x (unemployment) and y (number of offences) increase together, roughly in a straight
line, but subject to a certain amount of scatter. So, the relationship between x and y is
not exactly linear – the points do not lie exactly on a straight line.

Data showing a general ‘upward shape’ like this are said to be positively correlated,
and we shall see how to quantify this correlation. Other possible scatter patterns are
shown in Figure 12.2.

2Notice that, in contrast to categorical variables considered in Chapter 9, for the remainder of this
course we will deal with measurable variables only.
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Figure 12.2: Scatter plots – negatively correlated variables (left) and uncorrelated
variables (right).

The left-hand plot shows data that have a negative correlation, i.e. y decreases as x
increases, and vice versa. The right-hand plot shows uncorrelated data, i.e. no clear
relationship between x and y. Note that correlation assesses the strength of the linear
relationship between two variables. Hence uncorrelated data, in general, just means an
absence of linearity. It is perfectly possible that uncorrelated data are related, just not
linearly – for example, x and y may exhibit a quadratic relationship (considered later).

Example 12.2 Below is a list of variables, along with their expected correlation.

Variables Expected correlation
Height and weight Positive
Rainfall and sunshine hours Negative
Ice cream sales and sun cream sales Positive
Hours of study and examination mark Positive
Car’s petrol consumption and goals scored Zero

12.7 Causal and non-causal relationships

When two variables are correlated, an interesting question that arises is whether the
correlation indicates a causal relationship. In Example 12.2, it is natural to assume
that hours of study and examination marks are positively correlated, due to more study
resulting in better examination performance, i.e. a higher mark. In this case, the
relationship is causal.

For the ice cream and sun cream sales, however, the relationship is not causal. It is not
the selling of ice cream that causes sun cream sales to rise, nor vice versa. Rather both
sales respond to warm weather and so these sales are seasonal, with both rising and
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falling together in response to other variables such as temperature and sunshine hours.

It should be clear from this that care needs to be taken in interpreting correlated
relationships. Remember correlation does not imply causality!

Example 12.3 Let us consider a few more examples. In each case we observe
strong correlations.

i. ‘Average salary of school teachers’ and ‘Consumption of alcohol measured by
country’.

ii. ‘Stork population in Bavaria’ and ‘Human birth rate’.

iii. ‘Size of student population’ and ‘Number of juvenile offenders by local area in a
country’.

Would you seriously think there was a causal connection in these cases? Let us look
at them in a little more detail.

i. It would be frivolous to deduce that respect for teachers causes alcoholism! It is
much more likely that buying and consuming alcohol and high salaries are both
signs of a flourishing economy.

ii. This is a bit more difficult – can the fairy stories be true? Again, there is
probably a further variable at play here – are young families living in areas of
natural beauty (to raise their children in pleasant surroundings) which
encourage storks?

iii. The more young people there are, the more juvenile offenders, scholarship
winners, and students there are likely to be. Connecting these two figures is
pretty meaningless.

12.8 Correlation coefficient

The strength of a linear relationship between two random variables is given by the
correlation coefficient. For random variables X and Y , the population correlation
coefficient, denoted ρ, is defined as:

ρ =
E((X − E(X))(Y − E(Y )))√

Var(X)Var(Y )
=

E(XY )− E(X)E(Y )√
Var(X)Var(Y )

and some texts may refer to this as the ‘product-moment correlation coefficient’.
Technically, we say that ρ can only be determined if we have perfect knowledge of the
‘bivariate density function’ of X and Y .3 In practice, it is more likely that we will wish
to estimate ρ, using the sample correlation coefficient, from a set of sample
observations of X and Y , i.e. using sample paired data (xi, yi), i = 1, 2, . . . , n.

3A bivariate density function shows the dependence of two variables (here X and Y ) and is covered
in ST104b Statistics 2.
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The sample correlation coefficient, denoted r, is:

r =
Sxy√
SxxSyy

=

n∑
i=1

xiyi − nx̄ȳ√(
n∑
i=1

x2i − nx̄2
)(

n∑
i=1

y2i − nȳ2
) (12.1)

where:

corrected sum of squares of x-data : Sxx =
n∑
i=1

x2i − nx̄2

corrected sum of squares of y-data : Syy =
n∑
i=1

y2i − nȳ2

corrected sum of cross-products : Sxy =
n∑
i=1

xiyi − nx̄ȳ.

Sample correlation coefficient

It is quite common in examination questions to be given certain summary statistics (for
example,

∑
i xi,

∑
i x

2
i ,
∑

i yi,
∑

i y
2
i and

∑
i xiyi) to save you time from computing all

quantities directly using the raw data. Hence it may be easier for you to remember the
expressions for Sxx, Syy and Sxy (respectively the ‘corrected sum of squares’ for x and y,
and corresponding cross-products), and how they combine to give r.

Example 12.4 For the dataset in Example 12.1, we have n = 12, x̄ = 1665 and
ȳ = 5567, and so:

Sxx = 3431759, Syy = 2584497 and Sxy = 2563066.

Using (12.1), we have:

r =
2563066√

3431759× 2584497
= 0.861.

This is a strong, positive correlation.4 We also note that the value of r agrees with
the scatter plot shown in Figure 12.1.

The sample correlation coefficient measures how closely the points in the scatter plot
lie to a straight line, and the sign of r tells us the direction of this line, i.e.
upward-sloping or downward-sloping, for positive and negative r, respectively. It does
not tells us the gradient of this line – this is what we will determine in regression.

4If you were following ST104b Statistics 2 and were to test the statistical significance of this r,
using the kind of techniques and ideas in Chapter 8, you would find that the result is highly significant
at the 1% significance level. Note that you are not expected to test for the significance of r in ST104a
Statistics 1.
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Both types of correlation coefficient (ρ and r) have the following properties. They:

are independent of the scale of measurement

are independent of the origin of measurement

are symmetric; that is, the correlation of X and Y is the same as the correlation
of Y and X

can only take values between ±1, i.e. −1 ≤ ρ ≤ 1 and −1 ≤ r ≤ 1, alternatively
|ρ| ≤ 1 and |r| ≤ 1 – correlation coefficients always have an absolute value less
than or equal to 1.

Properties of the correlation coefficient

Having defined the correlation coefficient, it is important to remember the following
when interpreting r (or ρ):

An r (ρ) near the top of this range (i.e. near 1) indicates a strong, positive linear
relationship between X and Y .

An r (ρ) near the bottom of this range (i.e. near −1) indicates a strong, negative
linear relationship between X and Y .

Zero correlation indicates that X and Y are not linearly related, i.e. the variables
are uncorrelated.

Example 12.5 To reiterate, correlation assesses the strength of linear relationships
between variables only. ρ = 0 does not imply that X and Y are independent, since
the variables could have a non-linear relationship. For example, if:

y = x(1− x), for 0 ≤ x ≤ 1

then the correlation is zero (as they are not linearly related), but, clearly, there is a
well-defined relationship between the two variables, so they are certainly not
independent. Figure 12.3 demonstrates this point for simulated sample data, where
we see a clear relationship between x and y, but it is clearly not a linear
relationship.5 Data of this kind would have a (sample) correlation near zero (here,
r = 0.148), which emphasises the linear nature of r.

12.8.1 Spearman rank correlation

Just as we saw in Chapter 4 that we can use the median and interquartile range as
measures of location and dispersion, respectively, instead of the mean and standard
deviation (or variance), it is possible to calculate the Spearman rank correlation, rs,
instead of r. Section 14.6 in Newbold et al. covers this in more detail.

5In fact, these data are scattered around a parabola with (approximate) equation y = 2(x−15)(85−x).
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Figure 12.3: Scatter plot showing a non-linear relationship.

To compute rs we rank the xi and yi values in ascending order and use the r formula
above using the ranks of the xis and yis, rather than their actual values. Of course, it
may be that we only have the rankings, in which case we would have to use this method.

If there are no tied rankings of xi and yi, the Spearman rank correlation is:

rs = 1−
6

n∑
i=1

d2i

n(n2 − 1)
(12.2)

where the dis are the differences in the ranks between each xi and yi.

Spearman rank correlation

As with other order statistics, such as the median and quartiles, it is helpful to use the
Spearman rank correlation if you are worried about the effect of extreme observations
(outliers) in your sample. The limits for rs are the same as for r, that is |rs| ≤ 1.

Example 12.6 An aptitude test has been designed to examine a prospective
salesman’s ability to sell. Ten current staff sit the test. Instead of putting achieved
scores in the computer, a research assistant ranks the individuals in ascending order
in terms of the test as well as productivity. The data are:

Staff member A B C D E F G H I J
Rank order in test 2 3 5 1 4 9 10 6 7 8
Rank order in productivity 1 2 3 4 5 6 7 8 9 10

Does it look as if the test is a good predictor of sales ability?
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We first compute the differences in the ranks:

Staff member A B C D E F G H I J
di 1 1 2 −3 −1 3 3 −2 −2 −2
d2i 1 1 4 9 1 9 9 4 4 4

and therefore:
10∑
i=1

d2i = 46.

Hence, using (12.2), we have:

rs = 1− 6× 46

10((10)2 − 1)
= 0.72

which is quite strong, indicating that the test is a reasonably good predictor.

12.9 Regression

In ST104a Statistics 1, we can only hope to review the fundamentals of what is a
very large (and important) topic in statistical analysis – several textbooks and courses
focus exclusively on regression analysis. Here, we shall concentrate on the simple
linear (bivariate) regression model. This will allow calculations to be performed on
a hand held calculator, unlike multiple regression (with multiple variables) which
typically requires the help of statistical computer packages due to the complexity and
sheer number of calculations involved.

In the simple model, we have two variables Y and X:

Y is the dependent (or response) variable – that which we are trying to explain

X is the independent (or explanatory) variable – the factor we think
influences Y .

Multiple regression is just a natural extension of this set-up, but with more than one
explanatory variable.6

There can be a number of reasons for wanting to establish a mathematical relationship
between a response variable and an explanatory variable, for example:

To find and interpret unknown parameters in a known relationship.

To understand the reason for such a relationship – is it causal?

To predict or forecast Y for specific values of the explanatory variable.

6Multiple linear regression is covered in ST104b Statistics 2.
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12.9.1 The simple linear regression model

We assume that there is a true (population) linear relationship between a response
variable y and an explanatory variable x of the approximate form:

y = α + βx

where α and β are fixed, but unknown, population parameters. Our objective is to
estimate α and β using (paired) sample data (xi, yi), i = 1, . . . , n.

Note the use of the word ‘approximate’. Particularly in the social sciences, we would not
expect a perfect linear relationship between the two variables. Hence we modify this
basic model to:

y = α + βx+ ε

where ε is some random perturbation from the initial ‘approximate’ line. In other
words, each y observation almost lies on the line, but ‘jumps’ off the line according to
the random variable ε. This perturbation is often referred to as the ‘error term’.

For each pair of observations (xi, yi), i = 1, . . . , n, we can write this as:

yi = α + βxi + εi, i = 1, . . . n.

The random deviations ε1, ε2, . . . , εn corresponding to the n data points are assumed to
be independent and identically normally distributed, with zero mean and
constant (but unknown) variance, σ2. That is:

εi ∼ N(0, σ2), i = 1, . . . , n.

This completes the model specification.

To summarise, we list the assumptions of the simple linear regression model:

A linear relationship between the variables of the form y = α + βx+ ε.

The existence of three model parameters: the linear equation parameters α and
β, and the error term variance, σ2.

Var(εi) = σ2 for all i = 1, . . . , n, i.e. it does not depend on the explanatory
variable.

The εis are independent and N(0, σ2) distributed for all i = 1, . . . , n.

Specification of the simple linear regression model

You may feel that some of these assumptions are particularly strong and restrictive. For
example, why should the error term variance be constant across all observations?
Indeed, your scepticism serves you well! In a more comprehensive discussion of
regression, such as in EC2020 Elements of econometrics, model assumptions would
be properly tested to assess their validity. Given the limited scope of regression in
ST104a Statistics 1, sadly we are too time-constrained to consider such tests in
detail. However, do be aware that with any form of modelling, a thorough critique of
model assumptions is essential.7 Analysis based on false assumptions leads to invalid
results – a bad thing.

7The validity of certain model assumptions is considered in ST104b Statistics 2.
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12.9.2 Parameter estimation

As mentioned above, our principal objective is to estimate α and β, that is the
y-intercept and slope of the true line. To fit a line to some data, we need a criterion for
establishing which straight line is in some sense ‘best’. The criterion used is to minimise
the sum of the squared distances between the observed values of yi and the values
predicted by the model. (This ‘least squares’ estimation technique is explored in depth
in ST104b Statistics 2.)

The estimated least squares regression line is written as:

ŷ = a+ bx

where a and b denote our estimates for α and β, respectively. The derivation of the
formulae for a and b is not required,8 although you do need to know how to calculate
point estimates for α and β.

We estimate α and β with a and b, where:

b =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
=

n∑
i=1

xiyi − nx̄ȳ
n∑
i=1

x2i − nx̄2
=
Sxy
Sxx

(12.3)

a = ȳ − bx̄. (12.4)

Note you need to compute b first, since this is needed to compute a.

Simple linear regression line estimates

12.9.3 Prediction

Having estimated the regression line, an important application of it is for prediction.
That is, for a given value of the explanatory variable, we can use it in the estimated
regression line to obtain a prediction for y.

For a given value of the explanatory variable, x0, the predicted value of the dependent
variable, ŷ, is:

ŷ = a+ bx0.

Predicting y for a given value of x

Remember to attach the appropriate units to the prediction (i.e. the units of
measurement of the original y data). Also, for that matter, ensure the value you use for
x0 is correct – if the original x data is in 000s, then a prediction of y when the
explanatory variable is 10,000, say, would mean x0 = 10, and not 10,000!

8The derivation is presented in ST104b Statistics 2.
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Example 12.7 A study was made by a retailer to determine the relationship
between weekly advertising expenditure and sales (in thousands of pounds). Find
the equation of a regression line to predict weekly sales from advertising. Predict
weekly sales when advertising costs are £35,000. The data are:

Advertising costs (in £000s) 40 20 25 20 30 50
Sales (in £000s) 385 400 395 365 475 440

Advertising costs (in £000s) 40 20 50 40 25 50
Sales (in £000s) 490 420 560 525 480 510

Summary statistics, representing sales as y and advertising costs as x, are:∑
x = 410,

∑
x2 = 15650,

∑
y = 5445,

∑
y2 = 2512925,

∑
xy = 191325.

So, using (12.3) and (12.4), the parameter estimates are:

b =
191325− (12× (410/12)× (5445/12))

15650− (12× (410/12)2)
= 3.221

a =
5445

12
− 3.221× 410

12
= 343.7.

Hence the estimated regression line is:

ŷ = 343.7 + 3.221x.

The predicted sales for £35,000 worth of advertising is:

ŷ = 343.7 + 3.221× 35 = 456.4, which is £456,400.

Note that since the advertising costs were given in £000s, we used x0 = 35, and then
converted the predicted sales into pounds.

12.9.4 Points to watch about linear regression

Non-linear relationships

We have only seen here how to use a straight line to model the best fit. So, we could be
missing some quite important non-linear relationships, particularly if we were working
in the natural sciences.

Which is the dependent variable?

Note it is essential to correctly establish which is the dependent variable, y. In Example
12.7, you would have a different line if you had taken advertising costs as y and sales as
x! So remember to exercise your common sense – we would expect sales to react to
advertising campaigns rather than vice versa.
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Extrapolation

In Example 12.7, we used our estimated line of best fit to predict the value of y for a
given value of x, i.e. advertising expenditure of £35,000. Such prediction is only reliable
if you are dealing with figures which lie within the dataset. If you use the estimated
regression line for prediction using x0 which lies outside the range of the available x
data, then this is known as extrapolation, for which any predictions should be viewed
with extreme caution.

For Example 12.7, it may not be immediately obvious that the relationship between
advertising expenditure and sales could change, but a moment’s thought should
convince you that, were you to quadruple advertising expenditure, you would be
unlikely to get a nearly 13-fold increase in sales! Basic economics would suggest
diminishing marginal returns to advertising expenditure.

Sometimes it is very easy to see that the relationship must change. For instance,
consider Example 12.8, which shows an anthropologist’s figures on years of education of
a mother and the number of children she has, based on a Pacific island.

Example 12.8 Figures from an anthropologist show a negative linear relationship
between the number of years of education, x, of a mother and the number of live
births she has, y. The estimated regression line is:

ŷ = 8− 0.6x

based on figures of women with between 5 and 8 years of education who had 0 to 8
live births. This looks sensible. We predict ŷ = 8− 0.6(5) = 5 live births for those
with 5 years of education, and ŷ = 8− 0.6(10) = 2 live births for those with 10 years
of education.

This is all very convincing, but say a woman on the island went to university and
completed a doctorate, and so had 15 years of education. She clearly cannot have
ŷ = 8− 0.6(15) = −1 children! And, if someone missed school entirely, is she really
likely to have ŷ = 8− 0.6(0) = 8 children? We have no way of knowing. The
relationship shown by the existing figures will probably not hold beyond the x data
range of 5 to 8 years of education.

12.10 Points to note about correlation and regression

As already mentioned, the Examiners frequently give you the following summary
statistics: ∑

xi,
∑

x2i ,
∑

yi,
∑

y2i , and
∑

xiyi

in order to save you computation time. If you do not know how to take advantage of
these, you will waste valuable time which you really need for the rest of the question.
Note that if you use your calculator, show no working and get the answer wrong, you
are highly unlikely to get any credit. This part of the syllabus leads directly into
EC2020 Elements of econometrics, so it is important that you understand it if you
are taking that course.
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What is the relationship between correlation and regression?

As we have seen, all the calculations we do for correlation and regression involve similar
summation measures, so they must be connected in some way. This is indeed the case.

For example, a large r2 (the square of the sample correlation coefficient) means that the
standard error of b will be low (in other words, if there is a strong connection between
x and y, the points will be close to the line of best fit). A small r2 means that the
points are scattered (resulting in a large standard error of b).

While you are not expected to determine confidence intervals nor perform hypothesis
tests for the parameters α, β and ρ (these are all part of ST104b Statistics 2), it is
important that you are aware of these ideas. On the other hand, be sure you are clear
that a large |r| does not necessarily mean that the slope of the regression line is steep – a
strong correlation can exist if the points are all close to a line with a moderate gradient.

Multiple correlation and regression

The ideas we have met could be extended to look at the relationship between more than
two variables. Much of the work you will meet in social planning or market research
uses such concepts. These techniques are discussed a little more in ST104b Statistics
2, and their use and limitations are part of the MN3141 Principles of marketing
syllabus.

Make sure you understand the basic variable cases introduced here so that you can
understand the general concepts when you meet them, either further on in this degree,
or in the world of work.

12.11 Summary

This brings us to the end of our introduction to dealing with the estimation of two
variables (bivariate statistics). This chapter has been chiefly concerned with two
important features when modelling the (linear) relationship between two variables: (i.)
correlation – measuring the strength of a (linear) relationship, and (ii.) regression – a
way of representing that linear relationship.

12.12 Key terms and concepts

Causality Correlation
Correlation coefficient Dependent (response) variable
Error term Extrapolation
Independent (explanatory) variable Non-linear relationship
Prediction Regression
Scatter diagram (plot) Simple linear regression
Spearman rank correlation Uncorrelated
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12.13. Learning activities

12.13 Learning activities

1. Sketch a scatter diagram for each of the following situations:

(a) r = 0

(b) r is very strong and positive

(c) r is very strong and negative

(d) r is quite strong, but negative.

2. Think of an example where you feel the correlation is clearly spurious (that is,
there is correlation, but no causal connection) and explain how it might arise.

Now think of a ‘clear’ correlation and the circumstances in which you might accept
causality.

3. The following figures give examination and project results (in percentages) for eight
students.

(a) Find the Spearman’s rank correlation coefficient, rs, for the data.

(b) Compare rs with the sample correlation coefficient, r.

Students’ examination and project marks
1 2 3 4 5 6 7 8

Examination 95 80 70 40 30 75 85 50
Project 65 60 55 50 40 80 75 70

4. Work out b and a in Example 12.7 using advertising costs as the dependent
variable. Now predict advertising costs when sales are £460,000. Make sure you
understand how and why your results are different from Example 12.7!

5. Try to think of a likely linear relationship between x and y which would probably
work over some of the data, but then break down like that in the anthropologist
case in Example 12.8.

This should make sure you understand the difference between interpolation (which
statisticians do all the time) and extrapolation (which they should not).

6. Sketch a scatter diagram with the line of best fit for the following a, b and r.

(a) a = 2, b = 1/2 and r = 0.9

(b) a = −3, b = −2 and r = −0.3.

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk

In addition, attempt the ‘Test your understanding’ self-test quizzes available on the
VLE.
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12.14 Further exercises

Newbold, P., W.L. Carlson and B.M. Thorne Statistics for Business and
Economics. (London: Prentice-Hall, 2012) eighth edition [ISBN 9780273767060].
Relevant exercises from Sections 1.6, 2.4, 11.1–11.3 and 14.6.

12.15 A reminder of your learning outcomes

After completing this chapter, and having completed the Essential reading and
activities, you should be able to:

draw and label a scatter diagram

calculate r

explain the meaning of a particular value and the general limitations of r and r2 as
measures

calculate a and b for the line of best fit in a scatter diagram

explain the relationship between b and r

summarise the problems caused by extrapolation.

12.16 Sample examination questions

1. State whether the following statements are true or false and explain why.

(a) ‘The correlation between X and Y is the same as the correlation between Y
and X.’

(b) ‘If the slope is negative in a regression equation, then the correlation
coefficient between X and Y would be negative too.’

(c) ‘If two variables have a correlation coefficient of minus 1 they are not related.’

(d) ‘A large correlation coefficient means the regression line will have a steep slope
b.’
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12.16. Sample examination questions

2. The following table shows the number of computers in thousands, x, produced by a
company each month and the corresponding monthly costs in £000s, y, for running
its computer maintenance department.

Number of computers Maintenance costs
(in thousands), x (in £000s), y

7.2 100
8.1 116
6.4 98
7.7 112
8.2 115
6.8 103
7.3 106
7.8 107
7.9 112
8.1 111

Note that the following statistics have been calculated from these data:

10∑
i=1

xi = 75.5,
10∑
i=1

yi = 1080,
10∑
i=1

xiyi = 8184.9,

10∑
i=1

x2i = 573.33,
10∑
i=1

y2i = 116988.

(a) Draw the scatter diagram.

(b) Calculate the sample correlation coefficient for computers and maintenance
costs.

(c) Compute the best-fitting straight line for y and x.

(d) Comment on your results. How would you check on the strength of any
relationship you have found?

Solutions to these questions can be found on the VLE in the ST104a Statistics 1 area
at http://my.londoninternational.ac.uk
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Appendix A

Sample examination paper

Important note: This Sample examination paper reflects the examination and
assessment arrangements for this course in the academic year 2014–15. The format and
structure of the examination may have changed since the publication of this subject
guide. You can find the most recent examination papers on the VLE where all changes
to the format of the examination are posted.

Time allowed: 2 hours.

Candidates should answer THREE of the following FOUR questions: QUESTION 1
of Section A (50 marks) and TWO questions from Section B (25 marks each).
Candidates are strongly advised to divide their time accordingly.

A list of formulae and extracts from statistical tables are provided after the final
question on this paper.*

Graph paper is provided at the end of this question paper. If used, it must be detached
and fastened securely inside the answer book.

A calculator may be used when answering questions on this paper and it must comply
in all respects with the specification given with your Admission Notice. The make and
type of machine must be clearly stated on the front cover of the answer book.

* Note these are not included here.
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A A. Sample examination paper

Section A

Answer all eight parts of Question 1 (50 marks in total).

1. (a) Define each of the following briefly:

i. Interviewer bias.

ii. Cluster sampling.

iii. Quota sampling.

(6 marks)

(b) Which of the following is the odd one out? Explain briefly.

Variance, mean, standard deviation, range.

(2 marks)

(c) In an examination, the scores of students who attend type A schools are
normally distributed about a mean of 55 with a standard deviation of 6. The
scores of students who attend type B schools are normally distributed about a
mean of 60 with a standard deviation of 5. Which type of school would have a
higher proportion of students with marks above 70? Explain your answer.

(5 marks)

(d) What does it mean for two variables to be uncorrelated? How is it possible for
two variables to be strongly related, but still uncorrelated?

(3 marks)

(e) The owner of a fish market finds that the mean weight for a catfish is 3.2
pounds with a standard deviation of 0.8 pounds. Assume that the weights of
the catfish are normally distributed.

i. What is the probability that the weight of a randomly selected catfish is
greater than 4.8 pounds?

ii. Above what weight (in pounds) do 89.8% of the weights occur?

iii. You buy a sample of 25 catfish. What is the probability that the mean is
less than 3 pounds?

(10 marks)

(f) Let x1 = 5, x2 = 1, x3 = 3 and x4 = 1. Find:

i.
4∑
i=3

x3i ii.
4∑
i=2

(xi − 3)2 iii.
3∑
i=1

4xi.

(6 marks)

(g) Three fair coins are thrown (and throws are independent of each other).

i. Find the probability that exactly one is a head.

ii. You are told that at least one is a head. What is the probability that all
are heads in this case?

(4 marks)
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(h) State whether the following are possible or not. Give a brief explanation. (Note

that no marks will be awarded for a simple possible/not possible reply.)

i. The correlation coefficient for the relationship between hours of revision
and examination mark is −2.3.

ii. Quota sampling allows us to quantify bias and standard errors.

iii. It is possible to have a chi-squared value of −3.

iv. If the probability that it will rain tomorrow is 1/5 and the probability
that you will not wear a raincoat is given, then the probability that it
rains and you find you have no raincoat is 1/4.

(8 marks)

(i) A company has two machines which produce cupboards. 75% are produced by
the new machine and the remaining 25% by the older machine. In addition,
the new machine produces 8% defective cupboards. The old machine produces
23% defective cupboards.

i. What is the probability that a randomly chosen cupboard produced by
the company is defective?

ii. Given that a randomly chosen cupboard has been chosen and found to be
defective, what is the probability it was produced by the new machine?

(6 marks)
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Section B

Answer TWO questions from Section B (25 marks each).

2. (a) Over a number of years, the demand for daily newspapers in a locality had
been 20% for the Sun, 15% for the Star, 30% for the Times, 20% for the
Examiner and 15% for the Independent. To determine whether demand has
changed, the manager randomly records the papers purchased by 300 readers.
The results are given below:

Paper Sun Star Times Examiner Independent
No. of readers 65 40 75 90 30

Use the χ2 test to determine whether demand for these papers has changed.

(10 marks)

(b) A survey is carried out to determine whether or not there is any association
between age group and being in favour of working from home on two days per
week. The raw results of the survey are as follows:

Age group 18–24 25–35 36–50 Over 50
In favour 20 62 40 40
Against 32 50 46 80

i. Test the claim that there is no association between age group and being in
favour at the 5% significance level.

ii. If the null hypothesis in (i.) is rejected, identify the nature of the
association.

(15 marks)
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3. (a) Fill in the missing entries (??) in the following table:

H0 ??
H1 µ > 50
The decision rule (for α = 0.05) is ??
Sample data: n = 36, x̄ = 56.5, s = 4.5
The test statistic value is ??
Conclusion ??

(8 marks)

(b) Health advisory services state that 50% of heart attack patients die before
reaching hospital – the chances of surviving a heart attack are dramatically
increased by receiving medical help as quickly as possible. A survey of 240
heart attack victims discovered that men sought help more urgently than
women.

Number Sample statistics of those reaching hospital
after the initial attack (in hours)

Men 134 x̄ = 3.40, s = 1.42
Women 106 x̄ = 8.24, s = 4.24

i. Calculate a 95% confidence interval for the difference between the mean
times to reach hospital for men and women.

ii. Is it possible to infer that there is a difference between the mean times
taken to reach hospital from the data given above? Explain your answer.

(12 marks)

(c) According to the Quarterly National Household Survey, the mean weekly
family income is estimated to be £1,250 with a standard deviation of £120.
Assuming incomes are normally distributed, calculate the percentage of
households whose weekly income is between £750 and £1,500.

(5 marks)
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4. (a) The following data give the price in euros of a ten-minute call at 11:00 on a
weekday for a local call. The prices refer to August each year. Normal tariffs
without special rates are used.

1997 1998 1999 2000 2001 2002 2003 2004
Spain 0.20 0.32 0.32 0.28 0.28 0.28 0.28 0.28
Ireland 0.58 0.58 0.49 0.51 0.51 0.51 0.51 0.49

i. Plot, on the same diagram, approximate lines for the price of a local call
in Spain and Ireland from 1997 to 2004. Give a brief verbal comparison of
the trends in prices in the two countries.

ii. Fit a least squares line for prices in Ireland over this period, using x = 0
for 1997, x = 1 for 1998, etc.

N.B. summary statistics for these data are:∑
i

xi = 28,
∑
i

yi = 4.18,
∑
i

x2i = 140,
∑
i

y2i = 2.1934,
∑
i

xiyi = 14.17.

iii. Calculate the sample correlation coefficient.

iv. How appropriate do you think it is to fit a linear trend to these data?

(15 marks)

(b) You run a market research company and have been asked to research the likely
demand for extra sports facilities in your city following a decision by the
government to promote exercise for general health.

Outline your survey design, making it clear whether it is random or not, and
giving appropriate design factors. You have been given generous funding and
are expected to look at all aspects of the question and all groups of the
population.

(10 marks)

[END OF PAPER]
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Sample examination paper –
Examiners’ commentary

Section A

1. (a) Reading for this question

This question asks for brief definitions of various aspects of sample surveys.
Candidates should ensure they are familiar with all aspects of sampling, as
explained in Chapter 10. A good answer would not only describe each term,
but also provide a potential remedy (in the case of interviewer bias) or an
advantage/disadvantage (in the case of the sampling methods).

Approaching the question

i. Interviewer bias – opinion or prejudice on the part of the interviewer
which occurs during the interview process, thus affecting outcomes, or it
may be a consistent reaction to a particular type of interviewer on the
part of the interviewee (for example, interviewers with an upper-class
accent may make the interviewees all respond in a similar way). The
problem is best avoided with well-trained and well-qualified interviewers
to conduct interviews objectively.

ii. Cluster sampling – a form of probability sampling useful for interview
surveys to reduce costs. Achieved by partitioning the target population
into clusters, then sampling the desired number of clusters using simple
random sampling. One-stage cluster sampling would then involve
surveying every member of the chosen clusters. Costs (of travel) are only
saved if the survey is conducted face-to-face (in contrast with mail or
telephone surveys).

iii. Quota sampling – a form of non-probability sampling when no sampling
frame is available. Commonly used for obtaining fast results, when you
need to reduce costs and when accuracy is not too important. Bias can be
caused by the choices made by interviewers when they fill their quota
control allocations.

(b) Reading for this question

A sound knowledge of descriptive statistics is required here. Chapter 4
introduces measures of location and spread, so it should be easy to allocate
each term to one of these categories.

Approaching the question

The odd one out is the mean (which is a measure of location), while all the
other terms are measures of spread.
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(c) Reading for this question

Examination questions involving the normal distribution (covered in Chapter
6) often require standardisation. Note the question does not ask for a
probability, rather just which type of school has a higher proportion of
students with marks above 70. Hence it is not strictly necessary to compute
probabilities here, instead z values would be sufficient.

Approaching the question

Type A schools have a z score of zA = (70− 55)/6 = 2.5, while Type B schools
have a z score of zB = (70− 60)/5 = 2.0. Since the proportion greater than 70
in Type A schools will be less than in Type B schools, due to the higher z
score, then Type B schools have the higher proportion. This could be
accompanied by a sketch of a (standard) normal distribution to illustrate the
point.

Alternatively, candidates could work out the actual proportion of students
achieving above 70: for Type A schools this is 0.00621, while for Type B
schools this is 0.02275. Hence Type B schools have the higher proportion.

(d) Reading for this question

Once again, definitions are needed to answer the question. In (d) candidates
need to understand the concept of correlation, which is the strength of a linear
relationship between two variables. Chapter 12 gives details.

Approaching the question

‘Uncorrelated’ means no linear relationship between two variables and a
correlation coefficient of zero. Two variables can be strongly related, yet still
be uncorrelated, if they have a non-linear relationship.

(e) Reading for this question

Like part (c), this question also concerns the normal distribution (Chapter 6),
although here actual probabilities are required which means candidates will
need to use the New Cambridge Statistical Tables. Note that in (ii.) a form of
reverse standardisation is required, and in (iii.) it is necessary to work with the
sample mean, X̄, rather than X.

Approaching the question

i. P (X > 4.8) = P (Z > (4.8− 3.2)/0.8) = P (Z > 2) = 0.02275. Note that
this is the same z value which appeared in (d)!

ii. P (Z > z) = 0.898. From Table 4, z = −1.27, hence:

P (Z > −1.27) = P

(
X >

x− 3.2

0.8

)
.

Therefore (x− 3.2)/0.8 = −1.27, hence x = 2.184.

iii. The sample mean X̄ ∼ N(µ, σ2/n), hence for n = 25,
X̄ ∼ N(3.2, 0.0256). So:

P (X̄ < 3) = P

(
Z <

3− 3.2√
0.0256

)
= P (Z < −1.25) = 0.1056.
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(f) Reading for this question

This question examines candidates’ competence with the summation operator,
as covered in Chapter 2. It is important to ensure the correct values are used
for the index of summation, i. No marks would be awarded if i values where
used instead of xi values.

Approaching the question

i.
4∑
i=3

x3i = 33 + 13 = 28.

ii.
4∑
i=2

(xi − 3)2 = (1− 3)2 + (3− 3)2 + (1− 3)2 = 4 + 0 + 4 = 8.

iii.
3∑
i=1

4xi = (4× 5) + (4× 1) + (4× 3) = 36.

(g) Reading for this question

Part (g) deals with probability (Chapter 5). There is a helpful hint in the
question, i.e. that the three coins are independent, which means the
multiplicative law can be used. Note, too, that the coins are fair, which means
the probabilities of heads and tails are both equal to 0.5.

Approaching the question

i. Let Hi and Ti denote heads and tails for coin i, respectively, i = 1, 2, 3.
For exactly one head we consider:

P (H1 ∩ T2 ∩ T3) + P (T1 ∩H2 ∩ T3) + P (T1 ∩ T2 ∩H3) = 3×
(

1

2

)3

=
3

8
.

ii. This is a conditional probability problem. Let A denote ‘at least one head’
and B denote ‘all heads’. First note that P (B) = (1/2)3 = 1/8. Now since
Ac is ‘all tails’, we have:

P (A) = 1− P (Ac) = 1−
(

1

2

)3

=
7

8
.

So we require P (B |A) = P (A ∩B)/P (B), but A ∩B = B, so:

P (B |A) =
P (A ∩B)

P (A)
=
P (B)

P (A)
=

1/8

7/8
=

1

7
.

(h) Reading for this question

Each of these statements requires candidates to go back to first principles,
typically involving various definitions. Candidates are reminded of the need to
give a brief explanation in their answer, rather than just answering ‘True’ or
‘False’ which would receive no marks.

Approaching the question

i. False. Correlation coefficient must be in the interval [−1, 1].
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ii. False. Quota sampling is a non-probability form of sampling meaning bias
and standard errors cannot be measured.

iii. False. Chi-squared values cannot be negative.

iv. False. If P (rain) = 1/5 and P (rain ∩ coat) = 1/4 where rain and taking
coat are independent, then this implies P (coat) = 5/4 > 1, therefore this
is impossible since probabilities cannot exceed 1.

(i) Reading for this question

This question involves probability calculations (see Chapter 5). In the first
part, the total probability formula is used, and Bayes’ formula is needed for
the second part.

Approaching the question

i. Let D = defective. Hence:

P (D) = P (D |New)P (New) + P (D |Old)P (Old).

So, P (D) = (0.08 × 0.75) + (0.23 × 0.25) = 0.1175.

ii. Using Bayes’ formula:

P (New |D) =
P (D |New)P (New)

P (D |New)P (New) + P (D |Old)P (Old)

=
0.08× 0.75

(0.08× 0.75) + (0.23× 0.25)

= 0.5106.

Section B

2. (a) Reading for this question

This question requires candidates to perform a goodness-of-fit test using the
historical demand values. Chapter 9 discusses such tests. Note the importance
of testing at two significance levels, starting with 5%.

Approaching the question

First, state the hypotheses:

H0: Demand for these papers has not changed

H1: Demand for these papers has changed.

Next, compute the expected frequencies given historic demand:

• The Sun = 0.2 × 300 = 60.

• The Star = 0.15 × 300 = 45.

• The Times = 0.3 × 300 = 90.

• The Examiner = 0.2 × 300 = 60.
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• The Independent = 0.15 × 300 = 45 (or 300− 255).

Under H0, the test statistic is:

χ2 =
5∑
i=1

(Oi − Ei)2

Ei
∼ χ2

k−1

and there are 5− 1 = 4 degrees of freedom. The test statistic value is 23.47.

For α = 0.05, the critical value is 9.488, hence we reject H0 (since
9.488 < 23.47) and conclude demand has changed.

Setting α = 0.01, the critical value is now 13.28, hence we again reject H0

(since 13.28 < 23.147) and can say that the test result is highly significant.

(b) Reading for this question

As with part (a), this question can be solved using a chi-squared test statistic,
so again refer to Chapter 9. The difference here is that the expected
frequencies will have to be computed using a common proportion.

Approaching the question

i. We wish to test:

H0: There is no association between age group and being in favour of
working from home.

H1: There is association between age group and being in favour of
working from home.

The following table shows the required calculations.

18–24 25–35 36–50 Over 50 Total

O 20 62 40 40 162
In favour E 22.77 49.04 37.65 52.54 162

(O − E)2/E 0.34 3.43 0.15 2.99
O 32 50 46 80 208

Against E 29.33 62.96 48.35 67.46 208
(O − E)2/E 0.26 2.67 0.11 2.33

Total 52 112 86 120 370

The test statistic value is 0.34 + 3.43 + · · ·+ 2.33 = 12.28, on
(r − 1)(c− 1) = (2− 1)(4− 1) = 3 degrees of freedom.

At the 5% significance level, the critical value is 7.815 (obtained from
Table 8 of the New Cambridge Statistical Tables). Since 7.815 < 12.28, we
reject H0 at the 5% significance level. Moving to the 1% significance level,
the critical value is now 11.34. Since 11.34 < 12.28, we again reject H0.

We conclude that the test is highly significant as there is strong evidence
of an association between age group and being in favour of working from
home.

ii. In order to identify the nature of the association, we seek the large
contributors to the (highly significant) test statistic value. These are the
entries of 3.43, 2.99, 2.67 and 2.33. Comparing the observed and expected
frequencies, it is clear that the 25–35 age group tends to be in favour of
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working from home, while the over 50 age group tends to be against
working from home.

3. (a) Reading for this question

The purpose of completing the missing table entries is for candidates to
demonstrate their ability to recognise the core components of a hypothesis test
of a single population mean. Such tests are covered in Chapter 8.

Approaching the question

Table entries:

H0 µ = 50
H1 µ > 50
The decision rule Reject H0 if the test statistic value is > 1.6896
(for α = 0.05) is i.e. this is a one-tailed t-test (note s is given, not σ)

with n− 1 = 35 degrees of freedom
Sample data Sample size, n = 36; x̄ = 56.5, s = 4.5

The test statistic value is t = (x̄− µ)/(s/
√
n) = (56.5− 50)/(4.5/

√
36) = 8.67

Conclusion Reject H0, hence sufficient evidence to suggest µ > 50

(b) Reading for this question

Here a 95% confidence interval for the difference in two means is required.
Chapter 7 covers all the types of confidence intervals which may be asked in
this course. Note since the sample standard deviations for men and women are
very different (and we have large sample sizes), it would be inappropriate to
use a pooled variance here, so we estimate the true variances with the sample
variances.

Approaching the question

First, calculate the difference between the sample means, which is
8.24− 3.40 = 4.84. The confidence interval endpoints are given by:

(x̄2 − x̄1)± z ·

√
s21
n1

+
s22
n2

so, substituting in the data values:

4.84± 1.96 ·
√

1.422

134
+

4.242

106
.

Finally, evaluate the endpoints and report the confidence interval as:

(3.998, 5.682).

Since the confidence interval does not include zero, it is likely that there is a
difference between the times taken to reach hospital for men and women, given
the sample data. A formal hypothesis test need not be carried out (and no
marks would be awarded if actually provided), since we are 95% confident that
the true absolute average difference in population means is in the interval
(3.998, 5.682).
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(c) Reading for this question

This is a straightforward application of the standardisation of a normal
random variable. See Chapter 6 for further examples.

Approaching the question

Let X be weekly income, hence X ∼ N(1250, (120)2) and we require
P (750 ≤ X ≤ 1500). We have:

P (750 ≤ X ≤ 1500) = P

(
750− 1250

120
≤ Z ≤ 1500− 1250

120

)
= P (−4.167 ≤ Z ≤ 2.083)

= Φ(2.08)− Φ(−4.17)

= Φ(2.08)− (1− Φ(4.17))

= 0.9814− (1− 1)

= 0.9814.

4. (a) Reading for this question

Part (a) examines the topics of correlation and regression, which can be found
in Chapter 12. The first task asks candidates to construct a diagram of these
time series data. So remember to adequately label the diagram. The regression
part requires the estimation of the parameters of the simple linear regression
model. Finally, candidates need to interpret the value of r in relation to the
suitability of a linear regression model.

Approaching the question

i. The diagram should look like the following. Note the informative title, key
indicating each country and axis labels.

Price in euros of 10−minute local call at 11am on weekdays

Year

P
ric

e 
in

 e
ur

os

1997 1998 1999 2000 2001 2002 2003 2004

0.
2

0.
3

0.
4

0.
5

Spain
Ireland

213



B

B. Sample examination paper – Examiners’ commentary

We see that Ireland’s cost of local phone calls has steadily decreased since
1997, although it is clearly more expensive than Spain throughout the
time period for which data are provided.

ii. Calculation of least squares regression line: ŷ = a+ bx, where:

b =

n∑
i=1

xiyi − nx̄ȳ
n∑
i=1

x2 − nx̄2
= −0.01095238

a = ȳ − bx̄ = 0.5608333.

Hence the estimated regression line is, rounding appropriately:

ŷ = 0.561− 0.011x.

iii. The sample correlation coefficient is:

r =

n∑
i=1

xiyi − nx̄ȳ√(
n∑
i=1

x2i − nx̄2
)(

n∑
i=1

y2i − nȳ2
) = −0.73.

iv. r = −0.73 suggests a fairly strong, negative correlation between time and
price of local calls in Ireland. This implies that it is indeed appropriate to
fit a linear regression line to these data (and is consistent with the
negative trend).

(b) Reading for this question

This is a typical examination question which asks candidates to devise a
sample survey. Such questions draw on all the material in Chapter 10. Note
the importance of specifying whether or not the survey is random.

Approaching the question

The following are suggested points to make in an answer. These are not
necessarily exhaustive. The Examiners will give credit to any sensible (and
justified) ideas.

• Generous funding is specified, so a random survey design should be used,
and non-probability methods should be rejected.

• Candidates should specify that each unit in a random sample has a known
(although not necessarily equal) probability of being selected.

• Mention of sampling frame/list, for example electoral register, schools (for
children), national list of addresses, etc.

• Recommend using a pilot survey – for example to assess clarity of
questions.

• Question asks to look at all groups of the population, hence candidates
should define stratification and give examples of sensible strata, for
example socio-economic group, age, etc. with a justification for each.
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• For large-scale random surveys, cluster/multistage sampling could also be
considered.

• Discussion of method of contact, for example face-to-face interview,
telephone survey, postal/online questionnaires with discussion of
advantages and disadvantages.

• Potential questions to include in the survey relevant to researching
‘demand for extra sports facilities’.
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B. Sample examination paper – Examiners’ commentary
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