
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

APPROXIMATE TRACKING OF PERIODIC REFERENCES IN A

CLASS OF BILINEAR SYSTEMS VIA STABLE INVERSION

Josep M. Olm

Department of Applied Mathematics IV
Universitat Politècnica de Catalunya
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Abstract. This article deals with the tracking control of periodic references
in single-input single-output bilinear systems using a stable inversion-based

approach. Assuming solvability of the exact tracking problem and asymptotic
stability of the nominal error system, the study focuses on the output behavior
when the control scheme uses a periodic approximation of the nominal feedfor-

ward input signal ud. The investigation shows that this results in a periodic,
asymptotically stable output; moreover, a sequence of periodic control inputs

un uniformly convergent to ud produce a sequence of output responses that,
in turn, converge uniformly to the output reference. It is also shown that, for
a special class of bilinear systems, the internal dynamics equation can be ap-

proximately solved by an iterative procedure that provides closed-form analytic
expressions uniformly convergent to its exact solution. Then, robustness in

front of bounded parametric disturbances/uncertainties is achievable through
dynamic compensation. The theoretical analysis is applied to nonminimum
phase switched power converters.

1. Introduction. Bilinear control systems are a class of nonlinear systems mod-
elled by linear differential equations with the control inputs appearing as coefficients.
A number of processes arising in engineering and sciences admit a description or an
approximation in terms of bilinear models. The interested reader is referred to [1]
for a survey on theory and applications of bilinear control theory. It is also worth
mentioning the recently published text [2], which contains remarkable up-to-date
material on this topic.

Power electronics is an area in which bilinear systems are specially interesting,
because the state-space averaged models of basic DC-DC nonlinear switched con-
verters are indeed bilinear [3]. This type of converters possess a very simple struc-
ture, and considerable research effort has been directed to study the possibility of
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using them in DC-AC conversion schemes. Step-down AC conversion by means of a
linear buck-derived converter is actually solved [4]. However, step-up inversion is a
challenging problem because it requires the use of boost or buck-boost converters,
which are nonminimum phase systems. This means that when the output voltage
undergoes a direct control action the internal variable, i.e. the inductor current,
becomes unstable.

The standard proposal to overcome this problem is indirect control of the output
voltage through the inductor current [5]. This might be seen as a stable inversion-
based procedure [6] in which, given a voltage profile, the key problem consists of
finding a stable reference for the nonminimum phase variable that arises as a so-
lution of an Abel ODE in the normal form. Then, the control action forces the
current to track such a reference and the internal dynamics yields the output volt-
age expected behavior. However, the general methods for the computation of stable
inverses reported so far [6, 7] involve backwards time numeric integration, which
makes exact output tracking controllers extremely sensitive to plant parameter dis-
turbances and/or uncertainties. Additionally, both general and specific techniques
such as the one used in [5] need an off-line calculation of the inverse reference profile,
thus making robustness a main concern of the approach.

Robust tracking control of periodic output voltage references for nonlinear power
converters is usually addressed obtaining bounded, closed-form analytic approxima-
tions of the unstable internal variable reference and later using them in dynamic
compensation schemes. Nonetheless, the validity of the approaches proposed so far
is constrained by different reasons. In [8] the stable inverse is computed from the
expression of the equilibrium current in the regulation case, just replacing the set-
point voltage reference by the actual time-varying one: this yields a severe trade-off
between system parameters and command profile in order to keep the tracking error
between acceptable bounds. The proposal in [9] obtains a bounded reference for the
inductor current as a solution of the linearized internal dynamics, which reduces its
effectiveness to a vicinity of the operating point. The method introduced in [10]
exploits the differential flatness of the system to obtain an iterative sequence of
bounded approximations of the nonminimum phase variable reference; however, no
convergence proof is provided. Finally, [11] obtains a uniformly convergence se-
quence of Galerkin approximations of the inductor current reference, but two main
handicaps appear. On the one hand, only the first Galerkin approximation is avail-
able in closed-form and, therefore, useful for dynamic compensation. On the other
hand, the efectiveness of the control scheme depends on a number of hypotheses for
which sufficient conditions are not provided.

These last issues are partially solutioned in [12] with the introduction of a Ba-
nach’s fixed-point theorem-based iterative technique that produces an L∞-norm
convergent sequence of periodic functions that are analytically computable in the
closed form. The method is further refined in [13], the result being a procedure
which depends on the fulfillment of few and rather easily checkable constraints over
the system parameters and the voltage reference profile that provides robustness
to piecewise constant load disturbances lying in a known compact set by means of
dynamic compensation. However, the use of a state feedback control law rather that
a pure feedforward action, as proposed in [6], results in two concerns. The first one
deals with possible control saturation during transients, this yielding restrictions on
the set of admissible initial conditions. The second one is related to the fact that
output voltage dynamics is studied assuming that the controlled variable, i.e. the
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input current, has reached the control target and is in the steady state tracking its
reference; this approximation may result in unpredicted problems during transients.

This article intends to overcome the lacks of the approach proposed in [13] by
using the approximate references obtained therein in pure feedforward control laws,
thus following the original solution procedure for the exact tracking problem [6].
Then, the dynamics of the closed-loop system is fully analyzable and, at the same
time, unexpected transient behavior and possible saturations of the control action
are avoided as well.

The approach proposed in the preceding paragraph is certainly applicable to a
wider class of bilinear systems sharing equivalent control targets. Hence, the paper
tackles the situation from a generic viewpoint and deals with the tracking control
of periodic references in Single-Input Single-Output (SISO) bilinear systems us-
ing stable inversion. Then, assuming that the exact tracking problem is solvable
and that the nominal error system is asymptotically stable, the study considers
the output behavior when the control scheme uses a periodic approximation of the
nominal feedforward input signal ud. It is shown that this results in a periodic,
asymptotically stable output; moreover, a sequence of periodic control inputs un

uniformly convergent to ud produce a sequence of output responses that, in turn,
converge uniformly to the output reference. Furthermore, it is proved that, for the
special class of bilinear systems such that its internal dynamics equation can be
written as an Abel ODE in the normal form, this may be approximately solved
by an iterative procedure that provides closed-form analytic expressions uniformly
convergent to its exact solution. Then, robustness in front of bounded paramet-
ric disturbances/uncertainties is achievable through dynamic compensation. The
theoretical analysis is finally applied to the nonminimum phase switched power
converters boost and buck-boost.

The paper is organized as follows. Section 2 poses the exact tracking problem
for SISO bilinear systems and summarizes its solution through a classical stable
inversion process that uses partial linearization techniques. A study of the approx-
imate tracking of periodic references is carried out in Section 3. Section 4 contains
an iterative procedure to solve one-dimensional internal dynamics equations that
can be written as Abel ODEs in the normal form. The developed theory is ap-
plied to nonminimum phase bilinear switched power converters in Section 5, while
simulation results are presented in Section 6.

2. Stable inversion by partial linearization in SISO bilinear systems. The
material of this section has been adapted from [6, 14].

Consider the nth-dimensional, SISO bilinear system1

ẋ = Ax+ δ + (Bx+ γ)u, (1)

y = h(x), (2)

where A, B are square real matrices, δ, γ are R
n vectors and h : D ⊆ R

n −→ R is
a smooth scalar map.

The stable inversion problem may be posed as follows: given a smooth output
reference trajectory yd(t), find a bounded state reference trajectory xd(t) and a

1Systems matching (1) may also be called inhomogeneous bilinear systems or biaffine systems;

see Chapter 1.4 in [2].
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bounded nominal control action, ud(t), such that the triple (xd, ud, yd) satisfies:

ẋd = Axd + δ + (Bxd + γ)ud, (3)

yd = h(xd). (4)

Let us denote by Lfh(x) the Lie derivative of h with respect or along a vector
field f : R

n −→ R
n, and let us use the following notation:

L0
fh(x) = h(x), Lk

fh(x) = Lf

(

Lk−1
f h(x)

)

, k ≥ 1.

Definition 2.1. System (1)-(2) is said to have relative degree ρ, 1 ≤ ρ ≤ n, in a
region D0 ⊆ D iff

LBx+γL
i
Ax+δh(x) = 0, i = 0, 2, . . . , ρ− 2, and LBx+γL

ρ−1
Ax+δh(x) 6= 0.

The assumption of a well-defined relative degree ρ for (1)-(2) in D0 allows a
partial linearization of the system therein. This is possible due to the fact that the
expressions of y, ẏ, . . . , y(ρ−1) calculated along the system trajectories are indepen-
dent of the control action u, while y(ρ) effectively depends on u. As a consequence,
the input-output map can be reduced to a chain of ρ integrators by means of state
feedback. Namely, let us set

ξ = ψ(x) =
(

y, ẏ, . . . , y(ρ−1)
)

=
(

h(x), LAx+δh(x), . . . , L
ρ−1
Ax+δh(x)

)

,

and select η = ϕ(x) as an n− ρ dimensional functional on D in such a way that
(

η

ξ

)

=

(

ϕ(x)
ψ(x)

)

= T (x) (5)

is a diffeomorphism on D0. In these new coordinates, (1)-(2) become

η̇ = LAx+δϕ(x) + uLBx+γϕ(x),

ξ̇i = ξi+1, i = 1, . . . , ρ− 1,

ξ̇ρ = L
ρ
Ax+δh(x) + uLBx+γL

ρ−1
Ax+δh(x),

y = ξ1.

(6)

A further compaction may be achieved defining

ϕ1(η, ξ) = [LAx+δϕ(x)]x=T−1(η,ξ) ,

ϕ2(η, ξ) = [LBx+γϕ(x)]
x=T−1(η,ξ) ,

β(η, ξ) =
[

LBx+γL
ρ−1
Ax+δh(x)

]

x=T−1(η,ξ)
,

α(η, ξ) = −
[

L
ρ
Ax+δh(x)

LBx+γL
ρ−1
Ax+δh(x)

]

x=T−1(η,ξ)

,

and using the canonical form representation of a chain of ρ integrators:

Ac =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















, Bc =















0
0
...
0
1















, Cc =















1
0
...
0
0















.
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Thus, (6) may be written as

η̇ = ϕ1(η, ξ) + ϕ2(η, ξ)u,

ξ̇ = Acξ +Bcβ(η, ξ) [u− α(η, ξ)] ,
y = Ccξ.

Notice that the control law

u = β−1(η, ξ)v + α(η, ξ) (7)

linearizes the input-output map. Also, recall that y = yd(t) denotes the output

command profile. Then, the setting v = y
(ρ)
d (t) in (7) produces the exact tracking

ξ = ξd(t). As a consequence, the internal dynamics is governed by the ODE

η̇ = ϕ1(η, ξd(t)) + ϕ2(η, ξd(t))
[

β−1(η, ξd(t))y
(ρ)
d (t) + α(η, ξd(t))

]

. (8)

Remark 1. Systems with unstable internal dynamics are said to be nonminimum
phase.

Let η = ηd(t) be a solution of (8). Then, the corresponding state reference xd(t)
and nominal control ud(t) are given by:

xd = xd(t) = T−1 (ηd(t), ξd(t)) , (9)

ud = ud(t) = β−1 (ηd(t), ξd(t)) y
(ρ)
d (t) + α (ηd(t), ξd(t)) . (10)

Let also

ė = [A+B(ud(t) + eu(t))] e+ [Bxd(t) + γ] eu(t), (11)

be the error system associated to (1)-(3), with e = x− xd, eu = u− ud.

Assumption 1. yd(t) is a smooth, bounded output reference, and there exists a
bounded solution η = ηd(t) for (8) such that, ∀t ≥ 0,

T−1(ηd, ξd) ∈ D0 and β(ηd, ξd) =
[

LBx+γL
ρ−1
Ax+δh(x)

]

x=T−1(ηd,ξd)
6= 0.

Assumption 2. The zero-input system associated to (11), i.e. that with eu = 0,
admits e = 0 as a Globally Asymptotically Stable (GAS) equilibrium point.

Proposition 2.1. Let Assumption 1 be fulfilled; then, the input-state trajectory
(xd, ud) given by (9)-(10) is bounded and solves the exact tracking problem. Fur-
thermore, if Assumption 2 is additionally satisfied, the use of the feedforward control
law u = ud in (1) yields asymptotically the desired output response, i.e.

lim
t→+∞

[y(t) − yd(t)] = 0. (12)

Proof. The first statement is straightforward. Assumption 2 entails x− xd → 0 for
t→ +∞, and (12) follows from the assumed smoothness of h(·).

Remark 2. It is worth pointing out the following issues about Assumption 2:
(i) In case that Assumption 2 is verified not globally but locally, the fulfillment of
Proposition 2.1 is restricted to a set of initial conditions for the state sufficiently close
to xd(0). Nonetheless, if Assumption 2 is not verified, (1) might still be stabilized
with different techniques: see, for example, [15] and the references therein.
(ii) Assumption 2 is equivalent to say that (11) satisfies the 0-GAS property or that
is 0-GAS.
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3. Approximate tracking of periodic references. Consider (1)-(2), and let
the control goal be the tracking of a certain T -periodic output reference yd, i.e.
yd(t+T ) = yd(t). Recall that Assumption 1 is sufficient to guarantee that a bounded
input-state trajectory (xd, ud) satisfying (3)-(4) may be obtained by means of stable
inversion via partial linearization, i.e. following the exposition in Section 2, while
Assumption 2 assures that the use of the feedforward control action u = ud in
(1)-(2) may yield the desired output response y = yd in the steady state.

Next result establishes that if (1) does not receive an exact control action u =
ud(t) but a continuous, T -periodic approximation u(t) = ud(t) + eu(t), the system
answers with a continuous, T -periodic, GAS output y = y(t). For, let us previously
define the set U ⊂ C([0, T ]) as follows:

U = {u ∈ C([0, T ]); ė = [A+Bu(t)] e is GAS}. (13)

Assumption 3. Assumptions 1 and 2 are satisfied, and both the output command
profile yd and the input-state trajectory (xd, ud) are continuous and T -periodic,
with xd ∈ C1([0, T ]) and ud ∈ C([0, T ]).

Theorem 3.1. Let Assumption 3 be fulfilled. Then, when (1) undergoes a contin-
uous, T -periodic feedforward control action u(t) = ud(t) + eu(t) ∈ U , there exists
one and only one continuous, T -periodic and GAS output response y(t).

Proof. As h(·) is assumed to be Lipschitz continuous, it is sufficient to prove the
existence of one and only one C1, T -periodic, GAS error state for (11). The system
being linear and taking into account the continuity and T -periodicity of xd and ud

derived from Assumption 3, a necessary and sufficient condition for this to happen
[16] is that e = 0 be a GAS equilibrium point of the linear part of (11), which is
true by hypothesis. Globallity is due to the linear character of (11).

Theorem 3.1 ensures that, under Assumption 3, a sequence un of continuous,
T -periodic approximations of ud such that un ∈ U , ∀n ∈ N, produces, in turn, a
sequence yn of continuous, T -periodic, GAS outputs. By next result, which is based
on Theorem 7.2, the uniform convergence un → ud yields the uniform convergence
yn → yd.

Theorem 3.2. Let Assumption 3 be fulfilled. Let also {un}, with un = ud + eun

be a sequence of continuous, T -periodic feedforward control actions undergone by
system (1) and such that un ∈ U , ∀n ∈ N. If {un} converges uniformly to ud, then
there exists a sequence {yn} of continuous, T -periodic, GAS output responses that
converges uniformly to yd.

Proof. As discussed above, the existence of the sequence yn is ensured by Theorem
3.1. Let us now deal with the convergence issue. Identifying (40) with the equivalent
error system (11) through the assignment

An(t) = A+Bun(t), bn(t) = (Bxd + γ)eun
(t),

the uniform convergence un → ud ensure that

An(t) → A(t) = A+Bud(t), bn(t) → 0,

whilst the hypothesis un ∈ U , ∀n ∈ N, and the linear character of the systems
involved, guarantees the hyperbolicity of the equilibrium solution x = 0 of (41),
(42) also demanded in Theorem 7.2. Hence, the sequence of continuous, T -periodic
and GAS error states {en} converge uniformly to 0 as the control error {eun

} → 0.
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Finally, h(x) being Lipschitz-continuous, the output sequence {yn}, with yn(t) =
h(en + xd), is such that {yn} → yd = h(xd).

Remark 3. Notice that the 0-GAS hypothesis included in Assumption 3 assures
ud ∈ U . Therefore, by continuity arguments, there exists an open neighborhood Ud

of ud such that Ud ⊆ U . In case that U = Ud, Theorem 3.1 follows from a standard
result on periodic perturbations of periodic systems [16]. In turn, the uniform
convergence hypothesis un → ud entails the existence of n0 ∈ N such that un ∈ Ud,
∀n ≥ n0; therefore, Theorem 3.2 may follow for the subsequence {un}n≥n0

.
Alternatively, Local Input-to-State Stability (LISS) theory [17] also appears to

be an appropriate framework to prove Theorems 3.1 and 3.2 for U = Ud, because
0-GAS is a sufficient condition for a system to be LISS. Roughly speaking, the
LISS approach copes with the stability of the mapping u(·) → x(·) and accounts
for asymptotic tendency and transient behavior as well. Indeed, the LISS concept
encompasses the properties that inputs which are bounded or convergent produce
states with the respective property; at the same, it provides estimates of the mag-
nitude of the transient as a function of the initial state. The reader is also referred
to [18] for an excellent survey on ISS, the global version of LISS.

4. Iterative solution of a class of internal dynamics equation. Consider a
second order, bilinear control system (1)-(2), with x, γ, δ ∈ R

2, A,B ∈ M2(R), the
output being one of the state variables. Assume that y = x2 and also that the
relative degree of the system with respect to such an output is 1, i.e. there exists
D ⊆ R

2 with

LBx+γL
0
Ax+δx2 = (1, 0)⊤ · (Bx+ γ) 6= 0, ∀x ∈ D.

Then, setting η = x1, ξ = x2, (8) can be written as an Abel ODE of the second
kind:

[f0(t) + f1(t)η] η̇ = g0(t) + g1(t)η + g2(t)η
2, (14)

with
fk(t), gl(t) ∈ span{1, ξd(t), ξ2d(t), ξ̇d(t), ξ̇d(t)ξd(t)}.

Moreover, using a standard transformation [19] and abusively keeping the notation
for the internal variable η, (14) may take the normal form:

ηη̇ = η − g(t), (15)

with g(t) = g (ξd(t)).

Remark 4. The below developed technique is applicable to any generic system

ẋ = F (x) +G(x)u,

y = h(x),

with relative degree ρ = n− 1 and such that its internal dynamics equation (8) can
be written as -or transformed into- an Abel ODE in the normal form (15).

Theorem 4.1. [20] Let g(t) be T -periodic, smooth and such that g(t) > 0, ∀t ≥ 0.
Then, equation (15) has one and only one T -periodic solution φ(t), which is positive
and unstable.

Let us obtain an iterative sequence of T -periodic approximations of φ(t).
Denote as Cn

per([0, T ]), n = 0, 1, . . . ,∞, the subset of elements of Cn([0, T ]) that
allow a continuous and T -periodic extension in R, i.e.

Cn
per([0, T ]) = {η ∈ Cn([0, T ]); η(0) = η(T )},
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with Cper([0, T ]) = C0
per([0, T ]). It is well known that (Cper([0, T ]), ‖·‖), where ‖·‖

stands for the uniform norm, i.e.

‖η‖ = sup
[0,T ]

{|η(t)|}, η ∈ C([0, T ]),

is a Banach space.
Let us denote as P0 : Cper([0, T ]) −→ R the map that extracts the mean value of

periodic functions:

P0(η) =
1

T

∫ T

0

η(t)dt, η ∈ Cper([0, T ]),

and let X̄ denote the subset of Cper([0, T ]) that contains the elements with zero
mean value:

X̄ = {η ∈ Cper([0, T ]); P0(η) = 0}.
Then, any η ∈ Cper([0, T ]) can be uniquely decomposed as

η = η0 + η̄, with η0 = P0(η) and η̄ ∈ X̄. (16)

Finally, X̄ being closed by integration, for all η̄ ∈ X̄ there exists a unique element
η̂ ∈ X̄ such that ˙̂η = η̄.
Assumption A. Let ξd(t) be smooth, T -periodic, positive and such that the cor-
responding function g(t) = g (ξd(t)) is positive and verifies:

g0 >
T

2
+

√

2‖ĝ‖. (17)

Lemma 4.2. Let us define

α =
1

g0

√

(

g0 −
T

2

)2

− 2‖ĝ‖, L− = g0(1 − α) − T

2
, La = ag0 −

T

2
.

If Assumption A holds, then:
(i) 0 < α ≤ 1 − T (2g0)

−1.
(ii) ∀a ∈ (1 − α, 1), 0 ≤ L− < La.

Theorem 4.3. [13] If Assumption A holds, then ∀a ∈ (1−α, 1) and ∀L ∈ (L−, La],
there exist a closed, nonempty subset ML of Cper([0, T ]) defined as

ML = {η̄ ∈ X̄; ‖η̄‖ ≤ L}, (18)

such that the sequence {ηn}={g0 + η̄n}, obtained by means of the iterative procedure

η̄n+1 = Ā(η̄n) =
1

g0

[

η̂n − ĝ − 1

2

(

η̄2
n − P0

(

η̄2
n

))

]

, η̄0 ∈ML, (19)

converges uniformly to the hyperbolic, T -periodic solution φ(t) of (15).

Corollary 1. Assume that

g(t) = g0 + ḡ(t) = g0 +
r

∑

k=1

Ak cos kωt+Bk sin kωt, (20)

and let η̄0 ∈ML be selected as a

η̄0(t) =

s
∑

k=1

α0k cos kωt+ β0k sin kωt. (21)
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Then, ∀n ≥ 1, the successive approximations ηn = g0 + η̄n obtained from (19) follow
the assignment

ηn(t) = g0 +
m

∑

k=1

αnk cos kωt+ βnk sin kωt, m = max{2n−1r, 2ns},

with αnk = αnk(α0j , β0j , Aj , Bj), βnk = βnk(α0j , β0j , Aj , Bj).

Remark 5. When the hypotheses of Corollary 1 are satisfied and Fourier expan-
sions of g(t) and η̄0 (see (20) and (21)) are finite, the coefficients αnk, βnk are not
only numerically but analytically computable in closed form.

5. Application to nonminimum phase switched power converters. The
state-space averaged model of the DC-to-DC switched power converters boost and
buck-boost is given by the SISO system

L
diL

dτ
= −vC + µvC + Vg [1 + k(µ− 1)] , (22)

C
dvC

dτ
= iL − vC

R
− µ iL, (23)

where the inductor current iL and the capacitor voltage vC act as state variables and
the control action µ = µ(t) takes values in the interval (0, 1). Recall that the control
action in the physical converter is actually carried out by means of a switch; hence,
µ(t) is implemented through a PWM signal. The constant voltage source Vg, the
inductance L and the capacitance C are considered well known parameters, while
perturbations may affect the load resistance R. Boost and buck-boost converters
are modelled, respectively, by k = 0 and k = 1. Finally, the capacitor voltage is
considered as the control output.

An appropriate change of state variables and a time re-scaling yield a dimen-
sionless model with a minimum number of parameters that simplify a systematic
analysis. Namely, using

x1 =
1

Vg

√

L

C
iL, x2 =

vC

Vg
, t =

1√
LC

τ, λ =
1

R

√

L

C
, u = 1 − µ,

(22), (23) and the output become

ẋ1 = 1 − u(x2 + k), (24)

ẋ2 = −λx2 + ux1, (25)

y = x2. (26)

Since L, R and C take positive values, λ is always positive. Meanwhile, u :
[0,+∞) −→ (0, 1). Assigning

A =

(

0 0
0 −λ

)

, B =

(

0 −1
1 0

)

, δ =

(

1
0

)

, γ =

(

−k
0

)

(27)

and h(x) = x2, (24)-(25)-(26) may be written as (1)-(2).
Assume that a smooth, T -periodic output reference candidate yd = x2d is se-

lected. Let us solve the tracking problem by means of the stable inversion procedure
detailed in Section 2.

For, let us first notice that LBx+γL
0
Ax+δh(x) = x1. Hence, according to Defini-

tion 2.1, the relative degree of (24)-(25)-(26) in D0 = {x ∈ R
2; x1 6= 0} is ρ = 1.
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Then, we select ξ = x2, η = x1, which means that the transformation (5) is the iden-
tity and, thus, a diffeomorphism on D0. Afterwards, a straightforward calculation
shows that the internal dynamics equation (8) is now:

η̇ = 1 −
[ξd(t) + k]

[

ξ̇d(t) + λξd(t)
]

η
, (28)

where ξd(t) = x2d(t). As the system is demanded to evolution in D0 due to relative
degree restrictions, (28) may take the form (15) with

g(t) = g(ξd(t)) = [ξd(t) + k]
[

ξ̇d(t) + λξd(t)
]

. (29)

Therefore, the results about both exact and iteratively approximated solutions of
(28) derived in Section 4 are readily applicable to the present case under appropriate
restrictions on the output voltage reference profile ξd(t).

Hence, the existence of a continuous, T -periodic and positive solution for (28) is
a straightforward consequence of Theorem 4.1.

Proposition 5.1. If ξd(t) is T -periodic, smooth and such that g(ξd(t)) > 0, ∀t ≥ 0,
then (28) has one and only one T -periodic solution ηd(t), which is positive and
unstable.

Remark 6. Notice that:
(i) The hypotheses of Proposition 5.1 ensure the fulfillment of Assumption 1.
(ii) The nonminimum phase character of (24)-(25)-(26) for y = x2 follows immedi-
ately from Proposition 5.1.

Additional restrictions over ξd(t) are needed to ensure that the converter operates
inside the control unsaturation region, that is, 0 < ud(t) < 1. To this end, let

ud(t) =
ξ̇d(t) + λξd(t)

ηd(t)
=
ẋ2d(t) + λx2d(t)

x1d(t)
(30)

be the nominal control input obtained from (10). Next result is proved in [20]:

Proposition 5.2. If x2d > 0 and inf {g (x2d(t))} > sup {ẋ2d(t) + λx2d(t)}, then
ud ∈ C([0, T ]) and 0 < ud(t) < 1.

In order to establish the effective solution of the exact and the approximate
tracking problems, let us study the stability of the zero-input system associated to
(11):

Proposition 5.3. System (11) is 0-GAS for all ud(t) ∈ C([0, T ]), ud(t) 6= 0, ∀t ≥ 0.

Proof. The zero-input system associated to (11) reads as

ė = [A+Bud(t)] e,

with A, B, defined in (27). Let V (e) = 1
2e

⊤e be a Lyapunov function candidate.
Then,

V̇ (e) = e⊤Ae ≤ 0,

because A is negative semidefinite and B is skew-symmetric. Nevertheless, the set
S where V̇ = 0 is S = {e ∈ R

2; e2 = 0}, and the greatest invariant set inside S is
e = 0:

e2 = 0 ⇒ ė1 = −0 · ud(t) = 0 ⇒ e1 = K, K ∈ R;
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however, ė2 = 0 because, otherwise, the system would abandon S immediately, this
yielding

0 = −λ · 0 +K · ud(t) ⇒ K = 0 ⇒ e1 = 0,

due to the hypothesis ud(t) 6= 0, ∀t ≥ 0. The result follows from La Salle’s Theorem
for periodic systems [21].

Remark 7. It is immediate from Proposition 5.3 that the set U defined in (13) is
now

U = {u ∈ C([0, T ]); u(t) 6= 0, ∀t ≥ 0}. (31)

Assumption 4. The output command profile x2d(t) is T -periodic, smooth and
positive, ∀t ∈ [0, T ], and is such that

inf {g (x2d(t))} > sup {ẋ2d(t) + λx2d(t)} . (32)

Theorem 5.1. If Assumption 4 is verified, the feedforward control input u = ud(t)
given by (30) solves the exact tracking problem yd = x2d(t) for system (24)-(25)-
(26).

Proof. Assumption 4 ensures the fulfillment of Assumptions 1 (see Remark 6.i) and
2, as well as 0 < ud(t) < 1, ∀t, because of Proposition 5.2. Hence, the result follows
from Proposition 2.1.

So far, the control problem regarding the exact tracking of periodic references by
the output voltage of nonlinear DC-to-DC power converters is theoretically solved.
Once at this point it is worth recalling that, according to Theorem 5.1, the internal
dynamics periodic reference x1d(t) = ηd(t) that is to be obtained as a solution of
(28) is unstable. Besides, in the general case ηd(t) is not available in closed-form.
It is therefore immediate that any control law of the form (30) should use a more
or less accurate approximation of ηd(t), instead of ηd(t) itself. For such cases, next
result ensures the existence of GAS periodic outputs whenever the actually used
control u(t) does not saturate and belongs to the set U defined in (31).

Theorem 5.2. Let x2d(t) be such that Assumption 4 is fulfilled. Let also ηa
d(t) be

a continuous, T -periodic approximation of ηd(t) satisfying ηa
d(t) 6= 0, ∀t ≥ 0, and

such that the control action

ua
d(t) =

ẋ2d(t) + λx2d(t)

ηa
d(t)

(33)

verifies 0 < ua
d(t) < 1, ∀t ≥ 0. Then, the use of ua

d(t) in (24)-(25)-(26) produces
one and only one T -periodic, GAS output response ya

d(t).

Proof. The control input ua
d(t) can be easily written as:

ua
d(t) = ud(t) + eu(t) = ud(t) + [ẋ2d(t) + λx2d(t)]

ηd(t) − ηa
d(t)

ηd(t)ηa
d(t)

.

Assumption 4 and the hypotheses over ηa
d(t), together with Proposition 5.3, guar-

antee that the hypotheses of Theorem 3.1. As it is also assumed that the control
action ua

d(t) does not saturate, the result follows.

Remark 8. Notice that, as 0 < ud(t) < 1 follows from the assumptions in Theorem
5.2, continuity arguments ensure that for ηa

d(t) sufficiently close to ηd(t), it also
happens that 0 < ua

d(t) < 1.
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A rather simple and reliable option to compute ηa
d(t) is numeric integration in

backwards time; alternatively, after a careful determination of ηd(0), one can inte-
grate (28) in [0, T ] and then extend the function periodically in [T,+∞). However,
the use of such noncausal references results in a lack of robustness due to high
sensitivity in front of parametric perturbations or uncertainties.

An alternative way to proceed with the computation of ηa
d(t) is given in Section 4:

as (28) can be readily expressed as an Abel equation in normal form (15), the output
voltage references ξd(t) for which Assumption A is fulfilled allow a straightforward
use of Theorem 4.3. Hence, for this cases it is possible to obtain a uniformly
convergence, iterative sequence of periodic approximations of ηd(t). Consequently,
approximate tracking is achievable following Section 3:

Theorem 5.3. Let x2d(t) be a T -periodic output reference such that Assumption
A and

min

{

T

2
, inf {g (x2d(t)])}

}

> sup{ẋ2d(t) + λx2d(t)} (34)

are fulfilled. Then, the iterative mapping (19) allows to obtain a uniformly conver-
gent sequence {ηn(t)} of continuous, T -periodic approximations of ηd(t). Further-
more, the sequence of feedforward control actions {un(t)}, with

un(t) =
ẋ2d(t) + λx2d(t)

ηn(t)
, (35)

is such that 0 < un < 1, ∀n, and its use in (24)-(25)-(26) produces a sequence of
T -periodic, GAS outputs {yn(t)} that converges uniformly to y = x2d(t).

Proof. According to Theorem 4.3, Assumption A ensures that the sequence of con-
tinuous, T -periodic functions {ηn(t)} = {g0 + η̄n(t)}, where {η̄n(t)} is iteratively
obtained using (19), converges uniformly to ηd(t). Moreover, using Theorem 4.3 and
Lemma 4.2 it is possible to establish a uniform, positive lower bound for {ηn(t)}:

ηn(t) = g0 + η̄n(t) ≥ g0 − ‖η̄n(t)‖ ≥ g0 − L ≥ g0 − La ≥ g0 −
(

g0 −
T

2

)

≥ T

2
.

On the other hand, Assumption A and (34) are sufficient conditions for Assumption
4 to be satisfied. In turn, as ẋ2d(t) + λx2d(t) > 0 follows from Assumption 4 [20],
it is immediate that

0 < un(t) =
ẋ2d(t) + λx2d(t)

ηn(t)
<
ẋ2d(t) + λx2d(t)

T
2

< 1, ∀n ≥ 0.

Furthermore,

‖un(t) − ud(t)‖ =

∥

∥

∥

∥

ud(t)

ηn(t)
(ηd(t) − ηn(t))

∥

∥

∥

∥

≤ 2

T
‖ηd(t) − ηn(t)‖,

which indicates that {un(t)} converges uniformly to ud(t). Then, Theorem 3.2
guarantees that when (24)-(25)-(26) undergoes {un(t)}, a sequence of T -periodic,
GAS output responses {yn} that converges uniformly to y = x2d(t) is produced.

Remark 9. Notice that the output error yn(t) − x2d(t) may be lowered at will by
using a sufficiently high order element of {ηn(t)} as an internal variable reference
in the feedforward control law (35).

Additionally, in sight of Corollary 1, in case that ηd(t) possesses a finite Fourier
series expansion and η̄0 is appropriately selected, the approximations can be com-
puted in closed form, with explicitly parameter-dependent expressions. Thus, it
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Figure 1. The input current approximate reference η1(t) = g0 +
Ā [η̄1G(t)] matching the exact reference ηd(t).

is possible to dynamically compensate the effect of piecewise constant load distur-
bances lying in a known compact set Λ through a real-time updating of the selected
current reference x1d(t) = ηn(t) = ηn(t, λ) according to the instantaneous variation
of λ, which is assumed to be estimated (using, for example, the algebraic estimator
[22]) or measured. Hence, success is subject to the fulfillment of the Assumptions
established in Theorem 5.3 for all λ ∈ Λ.

6. Simulation results. The above developed technique has been tested on a boost
converter with Vg = 15V , L = 0.018H, C = 0.00022F and R = 10Ω. The selected
output voltage reference profile has been vC(τ) = 60+15 sin(2πντ), with ν = 50Hz,
this yielding a normalized

x2d(t) = ξd(t) = A+B sin(ωt) = 4 + sin(ωt), (36)

where ω = 0.6252 and λ = 0.9045.
With these settings, the hypotheses stated in Theorem 5.3 are fulfilled, in par-

ticular inequalities (17) and (34). The contractive constant a is to be selected in
(0.4268, 1); once a is fixed, the possible radius L of the set ML defined in (18) lie in
(L−, La], with L− = 1.3438 and La = 14.9248a− 5.0252. Let a = 0.9 and L = 8.4.
Furthermore, the iterative procedure of Theorem 4.3 provides better convergence
rates with initial conditions closer to η̄d [12]. Hence, let us pick η̄0 = η̄1G, with
η1G denoting the periodic component of the first Galerkin approximation of φ(t),
namely [23]:

η̄1G(t) =
4ABω(1 + λ2Q)

4 + λ2ω2Q2
cosωt+

2λAB(4 − ω2Q)

4 + λ2ω2Q2
sinωt, (37)

with Q = 2A2 + B2. The fact that η̄1G(t) has a λ-dependent closed-form analytic
expression maintains the possibility of achieving robustness by means of dynamic
compensation. Finally, ‖η̄1G‖ = 0.75 < L.

The goodness of the input current reference approximations provided by the
iterative procedure (19) introduced in Theorem 4.3 is revealed in Figure 1, where
η1(t) = g0+Ā [η̄1G(t)] appears matching the exact solution ηd(t) of (28). The reason
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Figure 2. The input current x1(t) tracking the approximate ref-
erence η1(t).

why approximations ηn of order 2 and higher are not included Figure 1 is because
they are visually indistinguishable among them and from ηd.

The dynamical behavior of system (24)-(25)-(26) subject to the continuous feed-
fordward control law (35), with current reference ηn(t) = η1(t) = g0 + Ā(η̄1G), has
been simulated with MAPLE. Initial conditions have been set to x1(0) = x2(0) = 0.
Figures 2 and 3 show the input current x1 and the output voltage x2 approximately
tracking, respectively, the internal reference x1d = η1(t) and the output reference
yd = x2d(t), in an asymptotic fashion.

The robustness of the control approach in front of piecewise constant load dis-
turbances is observed as follows: at t = 15 normalized time units (ntu), the output
resistance R is assumed to undergo an additive perturbation of a 50% of the nom-
inal value R = RN = 10Ω, thus growing up to R = RP = 15Ω. Assuming output
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Figure 3. The output voltage x2(t) approximately tracking the
reference yd = x2d(t).
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load measurement, a delay of 0.01 ntu between the appearance of the disturbance
and the incorporation of the actual value of λ in the inductor current reference
x1d = η1(t) is considered. This value is in accordance with the sampling frequency
of commercially available sensing devices.

According to Remark 9, the hypotheses stated in Theorem 5.3 have to be now
verified ∀λ ∈ Λ = [λ−, λ+] = [λP , λN ] = [0.6030, 0.9045]. Then, recalling (36), let
us define the auxiliary functions:

B̄(λ) = B

√

1 +
(ω

λ

)2

, K(λ) = A

√

B̄2(λ) + 3B2 +
BB̄(λ)

2
,

where B̄± = B̄(λ±), K± = K(λ±), is adopted for simplicity.

Proposition 6.1. Let A > B > 0.
(i) It is sufficient for the fulfillment of Assumption A in Λ that A > B̄− and also

that:

A2 +
B2

2
>

T

2λ−
+

√

T

4πλ−

(

4K− −BB̄−

)

. (38)

(ii) It is sufficient for the fulfillment of (34) in Λ that:

T

2
> λ+(A+ B̄+) ∧ A−B >

A+ B̄−

A− B̄−

. (39)

Proof. Item (i) is proved in [13]. The first inequality in (39) arises from the fact
that

f1(λ) = sup {ẋ2d(t) + λx2d(t)} = λA+B
√

ω2 + λ2

is an increasing function for λ > 0. Finally, the second inequality in (39) stems from
Chapter 4.6 in [24], after taking into account that B̄− ≥ B̄+ and realizing that

f2(B̄) =
A+ B̄

A− B̄

is an increasing function for all B̄.

The actual settings verify the fulfillment of A > B̄− and also of (38) and (39).
Finally, it has to be checked that η̄1G is selected in the corresponding set ML, for
all λ ∈ Λ. Firstly, it follows from Lemma 4.2 and (37), respectively, that

La(λ) = ag0(λ) − T

2
= aλ

(

A2 +
B2

2

)

− T

2

and

‖η̄1G(λ)‖ =
2AB

√

4ω2Q2λ4 + (16 + ω2Q2)λ2 + 4ω2

4 + λ2ω2Q2
.

As ‖η̄1G(λ)‖ is a decreasing function of λ for all

λ >

√

64 + 4ω2Q2 − 8ω4Q2

(ω2Q2 − 16)
= 0.05,

which encompasses Λ, it must happen that La=1(λ−) > ‖η̄1G(λ+)‖, and this is
indeed true in the present case.

Figure 4 depicts the input current x1 tracking the command profile x1d(t), which
has been updated at t = 15.01 ntu. Figure 5 portrays the output voltage reference
x2d(t) and the output voltage state variable x2. Notice that dynamic compensation
allows effectiveness of the tracking task to be recovered in no more than four periods.
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Figure 4. The input current x1 tracking the approximate refer-
ence η1(t, λ), which is updated according to a load step change
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Figure 5. The output voltage x2 accommodating a load step
change by means of dynamic compensation

7. Appendix. Consider the set of linear, forced periodic systems of the form:

ẋ = An(t)x+ bn(t), (40)

with An(t), bn(t), continuous and T -periodic, for all n ∈ N, and such that the
sequences (An), (bn), converge uniformly to a certain matrix A(t) and to 0, re-
spectively, i.e. An(t) → A(t), bn(t) → 0. For, let Φn(t), Φ(t) be, respectively,
fundamental matrices of the homogeneous systems

ẋ = An(t)x, (41)

ẋ = A(t)x, (42)

satisfying Φn(0) = Φ(0) = I.

Lemma 7.1. The sequence (Φn) converges uniformly to Φ in [0, T ].



APPROXIMATE TRACKING IN BILINEAR SYSTEMS VIA STABLE INVERSION 17

Proof. Notice that

Φ̇n(t)− Φ̇(t) = An(t)Φn(t)−A(t)Φ(t) = [An(t) −A(t)] Φ(t) +An(t) [Φn(t) − Φ(t)] .

Integrating between 0 and t, t ∈ [0, T ], yields

Φn(t) − Φ(t) =

∫ t

0

[An(τ) −A(τ)] Φ(τ)dτ +

∫ t

0

An(τ) [Φn(τ) − Φ(τ)] dτ.

Taking any usual matrix norm | · |,

|Φn(t) − Φ(t)| ≤
∫ t

0

|An(τ) −A(τ)| · |Φ(τ)|dτ +

∫ t

0

|An(τ)| · |Φn(τ) − Φ(τ)|dτ.

Denote ‖ · ‖ := supt∈[0,T ]{| · |}. As (An) is uniformly convergent by hypothesis, it is

also uniformly bounded. Hence, there exists M > 0 such that ‖An‖ ≤M , and

|Φn(t) − Φ(t)| ≤ T‖An −A‖ · ‖Φ‖ +M

∫ t

0

|Φn(τ) − Φ(τ)|dτ.

Using now Gronwall’s inequality,

|Φn − Φ| ≤ T‖Φ‖ · ‖An −A‖eMt.

Therefore,

‖Φn − Φ‖ ≤ TeMT ‖Φ‖ · ‖An −A‖ → 0,

and Φn → Φ uniformly in [0, T ].

Theorem 7.2. Assume that x = 0 is a hyperbolic equilibrium solution of (41),
(42). Then:
(i) For every n ∈ N, (40) has one and only one periodic solution xn, which is
T -periodic and hyperbolic.
(ii) The sequence of T -periodic solutions (xn) of (40) converges uniformly to 0.

Proof. On the one hand, (i) is a straightforward consequence of standard results on
linear periodic systems [16]. On the other hand, it is known from [16] that,

xn(t) =

∫ T

0

Kn(t, τ)bn(τ)dτ, (43)

where Kn(t, τ) is the Green matrix function

Kn(t, τ) =

{

Φn(t) [I − Φn(T )]
−1

Φ−1
n (τ), 0 ≤ τ ≤ t ≤ T,

Φn(t+ T ) [I − Φn(T )]
−1

Φ−1
n (τ), 0 ≤ t ≤ τ ≤ T,

The nonsingularity of Φn(t), Φ(t), ∀t, because of their fundamental matrices condi-
tion guarantees the existence and continuity of Φ−1

n (t), Φ−1(t), ∀t. Then, Φ−1
n →

Φ−1 uniformly in [0, T ] from Lemma 7.1. Moreover, the fact that x = 0 be the
only T -periodic solution of (41), (42), entails that µ = 1 is not a characteristic
multiplier of both systems, i.e. an eigenvalue of Φn(T ), Φ(T ) [16]. Then, the ex-

istence of [I − Φn(T )]
−1

, [I − Φ(T )]
−1

is ensured, while the uniform convergence

[I − Φn(T )]
−1 → [I − Φ(T )]

−1
is newly achieved through Lemma 7.1. Finally, re-

calling the fundamental matrix elementary property

Φn(t+ T ) = Φn(t)Φn(T ), Φ(t+ T ) = Φ(t)Φ(T ),
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and using again Lemma 7.1, it is immediate that the sequence (Kn(t, τ)) converges
uniformly to the Green matrix function

K(t, τ) =

{

Φ(t) [I − Φ(T )]
−1

Φ−1(τ), 0 ≤ τ ≤ t ≤ T,

Φ(t+ T ) [I − Φ(T )]
−1

Φ−1(τ), 0 ≤ t ≤ τ ≤ T.

Now, taking norms in (43) results in

‖xn‖ ≤ T‖Kn‖ · ‖bn‖
and, for n→ ∞, it is

lim
n→∞

‖xn‖ ≤ T · lim
n→∞

‖Kn‖ · lim
n→∞

‖bn‖ = T · ‖K‖ · 0 = 0,

which proves statement (ii).
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[8] D. Cortés, Jq. Álvarez, J. Álvarez and A. Fradkov, Tracking control of the boost converter,
IEE Proceedings Control Theory Applications, 151 (2004), 218–224.

[9] Y. Shtessel, A. Zinober, I. Shkolnikov, Sliding mode control of boost and buck-boost power

converters control using method of stable system centre, Automatica, 39 (2003), 1061–1067.
[10] H. Sira-Ramı́rez, DC-to-AC power conversion on a ‘boost’ converters, Internat. J. Robust

Nonlinear Control, 11 (2001), 589–600.
[11] E. Fossas and J.M. Olm, Galerkin method and approximate tracking in a nonminimum phase

bilinear system, Discrete Continuous Dynam. Systems - B, 7 (2007), 53–76.
[12] E. Fossas and J.M. Olm, A functional iterative approach to the tracking control of nonmini-

mum phase switched power converters, Math. Control Signals Syst., 21 (2009), 203–227.

[13] J.M. Olm, X. Ros and Y.B. Shtessel, Stable inversion-based robust tracking control in DC-

DC nonlinear switched converters, in “Proc. 48th IEEE Conference on Decision and Control”,

2009, 2789–2794.
[14] H.K. Khalil, “Nonlinear Systems”, 3rd edition, Prentice Hall, 2002.
[15] F. Amato, C. Cosentino, A.S. Fiorillo and Alessio Merola, Stabilization of Bilinear Systems

Via Linear State-Feedback Control, IEEE Trans. Circ. Syst.-II, 56 (2009), 76–80.
[16] M. Farkas, “Periodic Motions”, Springer-Verlag, 1994.

[17] E.D. Sontag and Y. Wang, New Characterizations of Input-to-State Stability, IEEE Trans.
Automatic Control, 41 (1996), 1283–1294.

[18] E.D. Sontag, Input to state stability: Basic concepts and results, in “Nonlinear and Optimal
Control Theory”, P. Nistri and G. Stefani,Eds., Springer-Verlag, 2007, 163–220.

[19] A.D. Polyanin, “Handbook of exact solutions for ordinary differential equations”, 2nd edition
Chapman & Hall/CRC, Boca Raton, 2003.

[20] E. Fossas and J.M. Olm, Asymptotic Tracking in DC-to-DC Nonlinear Power Converters,
Discrete Continuous Dynam. Systems - B, 2 (2002), 295–307.

[21] S. Sastry, “Nonlinear Systems. Analysis, Stability and Control”, Springer-Verlag, 1999.

[22] H. Sira-Ramı́rez, M. Spinetti-Rivera, and E. Fossas, An algebraic parameter estimation ap-

proach to the adaptive observer-controller based regulation of the boost converter, in “Pro-

ceedings of the IEEE Int. Symp. Industrial Electronics, (2007), 3367–3372.



APPROXIMATE TRACKING IN BILINEAR SYSTEMS VIA STABLE INVERSION 19

[23] E. Fossas, J.M. Olm, A. Zinober and Y. Shtessel, Galerkin-based sliding mode tracking control

of nonminimum phase DC-to-DC power converters, Internat. J. Robust Nonlinear Control,
17 (2007), 587–604.

[24] J.M. Olm, “Asymptotic tracking with DC-to-DC bilinear power converters”, Ph. D thesis,
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