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Point processes,
spatial-temporal

A• spatial–temporal• point process (also calledQ1

Q2 space–time or spatio-temporal point process) is a
random collection of points, where each point rep-
resents the time and location of an event. Examples
of events include incidence of disease, sightings or
births of a species, or the occurrences of fires, earth-
quakes, lightning strikes, tsunamis, or volcanic erup-
tions. Typically the spatial locations are recorded in
three spatial coordinates, for example, longitude, lati-
tude, and height or depth, though sometimes only one
or two spatial coordinates are available or of inter-
est. Figure 1 is an illustration of a realization of a
spatial–temporal point process with one spatial coor-
dinate depicted. Figure 2 displays some point process
data consisting of microearthquake origin times and
epicenters in Parkfield, CA, between 1988 and 1995,
recorded by the US High-Resolution Seismographic
Station Network [1]. Figure 3 displays the centroids
of wildfires occurring between 1876 and 1996 in Los
Angeles County, CA, recorded by the Los Angeles
County Department of Public Works (times of the
events not shown).

Characterizations

A spatial–temporal point process N is mathematically
defined as a random measure on a region S ⊆ �×
�3 of space–time, taking values in the nonnegative
integers �+ (or infinity). In this framework the mea-
sure N(A) represents the number of points falling
in the subset A of S. For the set A in Figure 1,
for example, the value of N(A) is 2. Attention is
typically restricted to points in some time interval
[T0, T1], and to processes with only a finite number
of points in any compact subset of S.

Traditionally the points of a point process are
thought to be indistinguishable, other than by their
times and locations. Often, however, there is other

Based in part on the article “Point processes,
spatial-temporal” by Frederic Paik Schoenberg, David
R. Brillinger, and Peter Guttorp, which appeared in
the Encyclopedia of Environmetrics.

important information to be stored along with each
point. For example, one may wish to analyze a list
of points in time and space where a member of a
certain species was observed, along with the size
or age of the organism, or alternatively a catalog
of arrival times and locations of hurricanes along
with the amounts of damage attributed to each. Such
processes may be viewed as marked spatial–temporal
point processes, that is, random collections of points,
where each point has associated with it a further
random variable called a mark.

Much of the theory of spatial–temporal point
processes carries over from that of spatial point
processes (see Point processes, spatial). However, vap021.pub2

the temporal aspect enables a natural ordering of
the points that does not generally exist for spatial
processes. Indeed, it may often be convenient to view
a spatial–temporal point process as a purely temporal
point process (see Point processes, temporal), with vap018.pub2

spatial marks associated with each point. Sometimes
investigating the purely temporal (or purely spatial)
behavior of the resulting marginalized point process
is of interest.

The spatial region of interest is often a rectangular
portion of �2 or �3, but not always. For the
data in Figure 2, for example, the focus is on
just one spatial coordinate, and in Figure 3 the
region of interest is Los Angeles County, which has
an irregular boundary. Cases where the points are
spatially distributed in a sphere or an ellipse are
investigated by Brillinger [2, 3]. When the domain of
possible spatial coordinates is discrete (e.g., a lattice)
rather than continuous, it may be convenient to view
the spatial–temporal point process as a sequence {Ni}
of temporal point processes that may interact with one
another. For example, one may view the occurrences
of cars on a highway as such a collection, where Ni

represents observations of cars in lane i.
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Figure 1 Spatial–temporal point process.
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2 Point processes, spatial-temporal
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Figure 2 Epicenters and times of Parkfield microearthquakes, 1988–1995.

Any analytical spatial–temporal point process is
characterized uniquely by its associated conditional
rate process λ [4]. λ(t, x, y, z) may be thought of
as the frequency with which events are expected
to occur around a particular location (t, x, y, z) in
space–time, conditional on the prior history, Ht , of
the point process up to time t . Note that in the statis-
tical literature (e.g., Refs 5–8), λ is more commonly
referred to as the conditional intensity rather than the
conditional rate. However, the term intensity is also
used in various environmental sciences, for example,
in describing the size or destructiveness of an earth-
quake, so to avoid confusion, the term rate may be
preferred.

Formally, the conditional rate λ(t, x, y, z) associ-
ated with a spatial–temporal point process N may be
defined as a limiting conditional expectation, as fol-
lows. Fix any point p = (t, x, y, z) in space–time.
Let B� denote the set (t, t + �t) × (x, x + �x) ×
(y, y + �y) × (z, z + �z), where � is the vector
(�t, �x, �y, �z). Then

λ(p) = lim
�→0

E[N(B�)|Ht]/|�| (1)

provided the limit exists•. Some authors insteadQ3

define λ(p) as

lim
�→0

P [N(B�) > 0|Ht]/|�| (2)

For orderly point processes (processes where
lim|A|↓∅ Pr{N(A) > 1}/|A| = 0 for interval A), the

Figure 3 Centroids of recorded Los Angeles County
wildfires, 1878–1996.

two definitions are equivalent. λ is a predictable pro-
cess whose integral C (called the compensator) is
such that N − C is a martingale. There are different
forms of conditioning corresponding to different
types of martingales; see Ref. 9, or Ref. 10.

Models

The behavior of a spatial–temporal point process N

is typically modeled by specifying a functional form
for λ(t, x, y, z), which represents the infinitesimal
expected rate of events at time t and location (x, y, z),
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Point processes, spatial-temporal 3

given all the observations up to time t . Although
λ may be estimated nonparametrically [11–17], it
is more common to estimate λ via a parametric
model.

In general, λ(t, x, y, z) depends not only on t ,
x, y, and z but also on the times and locations
of preceding events. When N is a Poisson pro-vap023.pub2
cess, however, λ is deterministic, that is, λ(t, x, y, z)

depends only on t , x, y, and z. The simplest model is
the stationary Poisson, where the conditional rate is
constant: λ(t, x, y, z) = α for all t , x, y, z. In the case
of modeling environmental disturbances, this model
incorporates the idea that the risk of an event is the
same at all times and locations, regardless of where
and how frequently such disturbances have occurred
previously. Processes that display substantial spa-
tial heterogeneity, such as earthquake epicenters, are
sometimes modeled as stationary in time but not
space.

Stationary spatial–temporal point processes are
sometimes described by the second-order parameter
measure ρ(t ′, x ′, y ′, z′), which measures the covari-
ance between the numbers of points in spatial–temp-
oral regions A and B, where region B is A shifted
by (t ′, x ′, y ′, z′) (see Space–time covariance mod-
els). For example, Kagan and Vere-Jones [18] explorevas036.pub2

models for ρ in describing spatial–temporal pat-
terns of earthquake hypocenters and times. For a
self-exciting (equivalently, clustered) point process,
the function ρ is positive for small values of t ′,
x ′, y ′, and z′; N is self-correcting (equivalently,
inhibitory) if instead the covariance is negative.
Thus the occurrence of points in a self-exciting
point process is associated with other points occur-
ring nearby in space–time, whereas in a self-
correcting process the points have an inhibitory
effect.

Also useful for diagnostic purposes are other
second-order statistics, such as interpoint distances
or the numbers of points within a distance k of an
existing point [19–24]. Typically one compares such
properties with those of a stationary Poisson process,
though weighted second-order statistics can be used
to test against alternative models as well [25–28].
Self-exciting point process models are often used in
epidemiology (see Spatial statistics in environmen-
tal epidemiology) and seismology (see Seismolog-vas042.pub2

ical modeling) to model events that are clusteredvas012.pub2

together in time and space. A commonly used form
for such models is a spatial–temporal generalization

of the Hawkes model, where λ(t, x, y, z) may be
written as

μ(t, x, y, z)

+
∑

i

ν(t − ti , x − xi, y − yi, z − zi) (3)

where the sum is over all points (ti , xi, yi, zi) with
ti < t . The functions μ and ν represent the determin-
istic background rate and clustering density, respec-
tively. Often μ is modeled as merely a function of
the spatial coordinates (x, y, z), and may be estimated
nonparametrically as in Ref. 29. When observed
marks m associated with each point are posited to
affect the rate at which future points accumulate, this
information is typically incorporated into the func-
tion ν, that is, the conditional rate λ is modeled as a
background rate plus

∑
i

ν(t − ti , x − xi, y − yi, z − zi, m − mi) (4)

A variety of forms has been given for the clustering
density ν. For instance, in modeling seismological
data with two spatial parameters (x and y) and a
mark (m) indicating magnitude, Musmeci and Vere-
Jones [30] introduced explicit forms for ν, includ-
ing the diffusion-type model where ν(t, x, y, m) is
given by

C

2πσxσyt
exp

⎡
⎢⎢⎢⎢⎣αm − βt −

(
x2

σ 2
x

+ y2

σ 2
y

)

2t

⎤
⎥⎥⎥⎥⎦ (5)

Ogata [29] investigated the case where

ν(t, x, y, m) = K0 exp[α(m − m0)]

(t + c)p(x2 + y2 + d)q
(6)

as well as a variety of other models and extensions
were proposed in Ref. 31. Several other forms for ν

were suggested by Rathbun [32] and Kagan [33]; see
Ref. 29 for a review. The clustering density may also
be estimated nonparametrically [16, 17, 34].

Sometimes λ is modeled as a product of marginal
conditional intensities

λ(t, x, y, z) = λ1(t)λ2(x, y, z) (7)
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4 Point processes, spatial-temporal

or even

λ(t, x, y, z) = λ1(t)λ2(x)λ2(y)λ4(z) (8)

These forms embody the notion that the temporal
behavior of the process is independent of the spatial
behavior, and in the latter case that furthermore
the behavior along each of the spatial coordinates
can be estimated separably; see Refs 32, 35–37.
Occasionally one subdivides the spatial region into
a finite number of subregions and fits temporal point
process models to the data within each subregion. In
such a case the conditional intensity may be written

λ(t, x, y, z) =
∑

i

λ1(t)1i (x, y, z) (9)

where the 1i are indicator functions denoting the
relevant region. An example is given in Ref. 38.
The introduction of interactions between different
subregions is incorporated into this model by Lu et
al. [39].

Point process models may also depend on spatial
covariates; see, for example, Refs 40–42. For further
remarks on modeling and examples, see Refs 43–45.

Estimation and Inference

The parameter vector θ for a model with conditional
rate λ(t, x, y, z; θ) is usually estimated by maximiz-
ing the log-likelihood function

L(θ) =
∫ T1

T0

∫
x

∫
y

∫
z

log[λ(t, x, y, z; θ)] dN(t, x, y, z)

−
∫ T1

T0

∫
x

∫
y

∫
z

λ(t, x, y, z; θ) dz dy dx dt (10)

Asymptotic properties of the maximum likelihoodvam009.pub2
estimator θ̂ have been derived under various con-
ditions, along with formulas for standard errors;vas054.pub2
see, for example, Refs 46, 47. Alternatively, simu-
lations [48] may be useful for obtaining approximate
standard errors and for other types of inference (see
Resampling methods). Point processes may also bevar038.pub2

estimated via EM-type methods [49] or via partial
likelihoods [50], or in certain cases via regression
and minimum contrast estimation methods [51].

The estimated conditional rate λ(t, x, y, z; θ̂ ) can
be used directly for prediction and risk assessment

(see Risk assessment, seismological). See Refs 4, vas011m.pub2

52, for example.
Spatial–temporal point processes may be evalu-

ated using various types of residual analysis. For
instance, one may compare standardized versions of
the difference between the observed and expected
numbers of points across pixels, as described in
Ref. 53 or Ref. 54. Alternatively, one may obtain
rescaled residuals, by selecting a spatial coordinate
and rescales the point process in that direction. If the
z coordinate is chosen, for example, then each point
(ti , xi, yi, zi) of the observed point process is moved
to a new point (ti , xi, yi,

∫ zi

z0
λ(ti , xi, yi, z; θ̂ ) dz),

where z0 is the lower boundary in the z direction
of the spatial region being considered. The result-
ing rescaled process is stationary Poisson if and only
if the model is correctly specified [55, 56]. Hence a
useful method for assessing the fit of a point pro-
cess model is to examine whether the rescaled point
process looks like a Poisson process with unit rate.
Several tests exist for this purpose; see, for example,
Ref. 57 or Ref. 58. An alternative residual method
based on random thinning, where each point is kept
with a probability inversely proportional to its asso-
ciated conditional intensity, was proposed in Ref. 59.
The thinned residual method is similar to the stochas-
tic declustering technique of [60], in which points
are randomly removing according to their condi-
tional intensities, in order to separate mainshocks
from aftershocks.
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