PICARD GROUPS: REAL AND COMPLEX,
ALGEBRAIC AND CONTINOUS

ULRICH KRAHMER

ABSTRACT. An algebraic vector bundle on a smooth variety over
R or C can also be considered as a continous bundle over the cor-
responding Hausdorff space. The aim of this note is to consider an
elementary example showing the difference this makes.

1. INTRODUCTION

Let £ be a field and consider the set
X ={(z,y,2) € ¥’ |z —y —y* = 0},

Below you can view a piece of X for k£ = R from two angles:

Essentially every branch of mathematics would consider this surface
as a prototypical example of its theory, it can be made in the obvious
way into a measure space, topological space, smooth manifold and by
very definition real affine variety. So there is a choice to make, and
when it comes to the study of certain invariants such as K-theory,
Picard groups, cohomology and so on, these will heavily depend on the
choice you make. We are going to demonstrate this by considering a
certain line bundle on X in the various categories and will see that in

some settings it is trivial but in others not.
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2. TOPOLOGICAL PICARD GROUPS

From now on we only consider £ = R and & = C. The topologist’s
version of the story is governed by characteristic classes and homolog-
ical arguments. For k = R our space is contractible to a circle S* (just
look at the picture). So real line bundles over X correspond to real line
bundles over S', and they are classified by their first Stiefel-Whitney
class which lies in H'(X,Z,) = H*(S',Zy) = Zs, so there is up to iso-
morphism the trivial line bundle X x R and one nontrivial one which
corresponds to the Mobius bundle over S*.

If we work over k = C we can make a change of coordinates

1 1 1
x:§(2a+b), y25(6_1)7 Zzé(la_b)v

then the defining equation of X becomes

A+ +cF=1
so we are talking about a complexified S? here. If we write a = ag+ia;
and similarly for b, ¢, then the defining equation is equivalent to

ag + by +cg=1+al +bl+ci, apar + boby + cocy = 0.
From this one sees that X is homeomorphic to the tangent bundle

TS? of the two-sphere: the homeomorphism maps (a,b,c) € X to the
tangent vector (ay,b1,c;) € T,5? at the base point

1
= ao, bo, o) € S2.

\/1+a%+b%+c§( 0-bo. o)

In particular, X is contractible to S2, and if we now study complex
line bundles over X then they are classified by their first Chern class
and from H?*(X,Z) = H?*(S* Z) = Z we see that over C there are
infinitely many nonisomorphic line bundles.

p

3. ALGEBRAIC PICARD GROUPS

There is no difference to the above when we consider X as a smooth
manifold and classify smooth bundles, but purely algebraically the
story changes. Let us abbreivate A := k[X] for the coordinate ring
of the affine variety X. We shall mean by this the ring of polynomial
functions on X and hence the quotient of k[x,y, z] by the ideal gener-
ated by xz —y — y?. For k = C Hilbert’s Nullstellensatz implies that a
polynomial function which has no zero on X is an invertible element of
A, but for k = R this is not true. Some authors cure this by defining
R[X] as the ring of formal fractions § of polynomial functions, where

¢ has no zero on X. We will denote this localisation of A by A.
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Let now M be an invertible A-module, that is, one for which there ex-
ists an A-module N such that M ®4 N ~ A as an A-module. Note that
A is as a finitely generated algebra over a field Noetherian by Hilbert’s
basis theorem. This implies (see [1, 2]) for example the folloing:

(1) N ~ M* := Homu(M, A).

(2) M is finitely generated projective.

(3) Every localisation M,, p € Spec A, is isomorphic to A,.
(4) A% M =0 for n > 1.

What this means is that M is the module of sections of an algebraic
line bundle over X which is locally trivial even in the Zariski topology.
We can view such a bundle also as a topological bundle. One way to
describe this is this: put B := C(X, k), the ring of k-valued continuous
functions on the space X with its Hausdorff topology. This is a ring
extension of A because polynomials are also continous with respect to
the Hausdorff topology. It thus makes sense to define B4 M, and if M
is finitely generated projective over A, then this module will be finitely
generated projective over B and hence corresponds by the Serre-Swan
theorem to a topological vector bundle.

As a concrete example, let M be the A-module with generators
X,Y, Z and the relations

yX =zY, 2X=(01+vy)Y, yY=2Z, 2zY=(1+y)Z

The inverse module can be given in terms of generators X , }7, 7 and
the relations

A A

Y =(1+yX, yY=2X, 2Z=0+y)Y, yZ==zY.
The isomorphism
0M®AN—>A
is then given by
X@aX — 22 X®@4Y — 2(1+y), XQ4Z — (14y)?
Z®AX'_>y27 Z®AY'—>Z/27 Z®AZ'_>ZQ'

It follows by direct computation that this extends to a well-defined
module homomorphism 6 (one has to prove that a tensor of the form
something ®,4 relation or relation ®,4 something is mapped to zero).
Furthermore, 6 is surjective since

X®@2Z-2Y QuY +Z@,4X — 1.
To prove injectivity, one has to check that the inverse map

07" A—>MesN, a—aX @47 —2aY @Y +aZ @4 X
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inverts 6 (clearly § 0o #~! = id4, but one has to check 7' 0§ = idyg , ¥
on all nine generators, which is lengthy but straightforward). This
finishes the proof of the invertibility of M.

The above form of 6 also provides us with an embedding of M as a
direct summand into A® which is given by

X (2, 2(14y), 14y)?), Y — (zy,y(1+y), (1+y)2), Z — (4, yz, 2°).
From this one can see that
w=X+Z

is for £ = R an element of M which does not vanish in any point of
our surface since under the embedding into A2 it becomes

(2" + %2l y) +yz (L y)* + 2.

And that is now the crucial point: a continous real or complex line
bundle on a is trivial if it admits a nowhere vanishing section, the map

B—)B@AM, b|—>b®Aw

is an isomorphism. Hence the topological line bundle over X described
by M is for k = R trivial (it is the tensor square of the nontrivial one).

There is an analogous algebraic statement, but one has to interpret
“vanishing nowhere” appropriately: let M be an invertible module over
a Noetherian ring A and w € M. As mentioned above, the invertibility
implies that for all maximal ideals m C A we have M, ~ A,. If the
image +(w) = ¢ of w in My, is not mapped to an element of mA,, under
this isomorphism, then w does not vanish in the “point” m, and the
map Ay — My, a — at(w) is an isomorphism. And if this is true for
all m then A — M, a — aw is an isomorphism since a module map is
an isomorphism if it is locally so (in the Noetherian world).

But this does not apply to our concrete M over A = R[X] since
t(w) does vanish for some maximal ideals of A, these simply do not
correspond to real points on the variety X C R3. To see that M is
indeed not free one can use characteristic classes living in algebraic de
Rham cohomology, see our joint article [3] with N. Kowalzig where we
used this example to construct a Lie-Rinehart algebra whose universal
enveloping algebra is not a Hopf algebroid.

Over k = C the element w vanishes precisely on the subset

{(£iy,y, Fi(1 +y)) € X |y € C},

so here w is by no means an indicator for the triviality of M.

So we see that when we describe a real affinve variety in terms of
polynomial functions, then the topology we detect resembles rather
that of the Hausdorff space underlying its complexification than that
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of the variety itself. If we rather would work with A and define algebraic
line bundles as invertible modules over A, then this changes and the
algebraic geometry of A has much more to do with the topology of
X C R3, see for example the extensive work on the subject by Bochnak,
Kucharz and their coworkers.
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