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Summary 

Modularity is a major design principle in interaction networks. Various studies have 
shown that protein interaction networks in prokaryotes and eukaryotes display a modular 
structure. A majority of the studies have been performed for the yeast interaction 
network, for which data have become abundant. The systematic examination of the 
human protein interaction network, however, is still in an early phase. To assess whether 
the human interaction network similarly displays a modular structure, we assembled a 
large protein network consisting of over 30,000 interactions. More than 670 modules 
were subsequently identified based on the detection of cliques.  Inspection showed that 
these modules included numerous known protein complexes.  The extracted modules 
were scrutinized for their coherency with respect to function, localization and expression, 
thereby allowing us to distinguish between stable and dynamic modules. Finally, the 
examination of the overlap between modules identified key proteins linking distinct 
molecular processes.  

1 Introduction  

Molecular interaction networks mirror the astonishingly complex interplay between numerous 
biological processes in living cells. To gain insights in these networks, major efforts have 
been undertaken to obtain comprehensive lists of interactions between biomolecules. 
Especially for the interactions between proteins, there has been a rapid growth of data due to 
large-scale screens, systematic review of literature and computational approaches. After initial 
efforts which targeted model organisms such as S. cervisiae, D. melanogaster and C. elegans 
(1-3), the assembly of the human interaction network has become a focal point of current 
research projects (4-10).   

While the systematic mapping has produced a wealth of data, the elucidation of the 
underlying processes on a system-wide scale is still lagging behind. Major hurdles such as 
high false positive rates and experimental biases have to be overcome (11). Nevertheless, a 
few analyses in this direction have revealed interesting links between protein interactions and 
phenotypes for humans (12,13). 

Many molecular functions require the interactions of several proteins. It is therefore important 
to identify modules of interacting proteins. Modules can be defined as clusters of proteins that 
are highly connected to each other, but sparely interact with the rest of the network. 
Modularity in protein interaction networks reflects both the tight interaction between proteins 
to perform a specific functions as well as the need for separation of interfering processes.  
Here, we aimed to gain an overview of the modular structures in the human protein 
interaction network. We merged several large literature-based interaction networks and 
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identified subsequently tightly connected clusters of interacting proteins.  Whereas previous 
studies concentrated on specific subsets of modules, our aim was the systematic assessment of 
coherency of function, localization and expression of the proteins in the identified modules.   

2 Methods and Materials  

2.1 Human protein-protein interaction data 

Data on the human protein interaction network were collected from the Unified Human 
Interactome database (UniHI) (14,15). UniHI is a web-based publicly available database 
(www.mdc-berlin.de/unihi) which integrates human protein interaction data obtained from 
different sources. For our analysis, we extracted interactions included in the Human Protein 
Reference Database (HPRD), Biomolecular Interaction Network Database (BIND) and 
Database of Interacting Proteins (DIP) (4,8,16). These interactions were derived from the 
review of published literature. To ensure non-redundancy, we considered only interactions 
between proteins which could be mapped to their respective EntrezGene identifiers in the 
UniHI database. Altogether, over 35,000 interactions were extracted. Self- and redundant 
interactions were excluded from the obtained data leaving a total of over 31,000 interactions 
between more than 8,400 unique proteins for further analysis.  

Note that we only considered binary interactions, i.e. direct interactions between proteins to 
ensure the reliability of the detected complexes. Complex interactions were excluded as they 
could otherwise interfere with the computational approach taken here for detection of 
modules.  

2.2 Identification of modules in the protein interaction network 

The identification of modules was based on the detection of k-cliques, i.e. fully connected 
subgraph of k vertices. Such k-cliques can form densely connected structures termed as k-
clique communities. These communities are the union of all k-cliques that can be reached 
from each other through a series of adjacent k-cliques, where cliques sharing k-1 nodes are 
defined as adjacent. Pella and co-authors previously developed a powerful tool Cfinder based 
on clique percolation method (CPM) for detecting overlapping k-cliques communities in 
networks (17). CPM first locates all k-cliques in a network and then identifies communities by 
carrying out standard component analysis of the clique-clique overlap. This method has been 
successfully applied to uncover the complex structure of overlapping communities in several 
types of networks (18). For our analysis, we applied Cfinder to identify highly connected 
modules in the human protein interaction network.  

2.3 Generation of random graphs  

To asses the significance of the identified cliques, we generated 100 random networks 
containing the same number of nodes and edges as in original network but with repeated 
random exchange of interactions. For instance, in such a procedure, two pairs of interacting 
proteins are randomly picked. The link between the nodes A and B (A-B) and between the 
nodes C and D (C-D) were changed to A-C and B-D, if such edges are not present in the 
original network. Note that since this is an undirected network, swapping of edges could 
happen between any pair of non-interacting nodes in the original network. Though there are 
several procedures to generate random networks, the current procedure which we adopted 
allows us to generate random networks with the same degree distribution as the original 
network. These random networks were used to obtain the expected number of cliques and 
were compared to the number of cliques obtained in the original interaction network.  
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2.4 Protein annotation  

For the annotation of proteins, we utilized the Gene Ontology (GO) database supplying 
information about the assigned molecular function, biological process and cellular location 
(19). We assessed the significance whether the detected modules are enriched for proteins of 
certain functions, processes or locations by application of Fisher’s exact test. Since multiple 
testing was applied, the significance was adjusted by the Benjamini-Hochberg procedure 
delivering false discovery rates (20).  

The coherency of modules with respect to cellular location was examined by an assessment of 
average pair-wise similarity of annotation of the participating proteins. To capture the 
similarity between two proteins, the induced GO graphs were compared. Subsequently, the 
size of their intersection divided by the size of their union was taken as a similarity measure 
(simCC). The values can range between 0 and 1 with larger values indicating larger similarity.  

To facilitate the examination of localization of modules, we reduced the set of possible GO 
terms to so called informative categories. This previously introduced scheme selects GO 
categories which contain more than 100 genes while each of their children contains less than 
100 genes (21) . 

The GO analysis was carried out using the R/Bioconductor package GO and GOstats (22). 

2.5 Expression data  

To assess co-expression of proteins, we utilized a large human tissue expression dataset 
derived by 158 microarray measurements of 79 different tissue samples (23). Altogether, the 
expression level of over 16,000 genes was measured using Affymetrix HG-U133A and 
GNF1H arrays. Corresponding transcript levels were derived using Microarray Analysis Suite 
(MAS) and were provided by the authors. To improve the data consistency, we additionally 
applied quantile normalization. Using EntrezGene IDs, we could assign expression levels to 
approximately 8,000 proteins in our network. Co-expression was measured by the Spearman’s 
rank correlation. 

3 Results 

3.1 Identification of modular structures in the human interaction network  

For the identification of modular structures, we applied the described CFinder algorithm for 
detection of k-cliques to the assembled human protein interaction network. Altogether, 671 
distinct k-clique communities were detected with k ranging from 3 to 11 (see supplementary 
table S1). Most of the communities were based on 3- and 4-cliques (k = 3: 355; k = 4: 200). 
To assess the statistical significance, we constructed 100 random graphs with the same 
number of nodes and degree distribution and scrutinized them for the existence of cliques. 
Figure 1 shows the distribution of individual protein communities for different k in the 
original and random interaction networks. For k = 3, 4 and 5, similar numbers of cliques were 
found in random networks. However, for k = 6, only an average of 0.1 cliques were detected 
in the random networks, which is in sharp contrast to the 23 cliques found in the original 
network. Remarkably, no cliques of size larger than six were found in the random networks 
indicating the presence of a highly statistically significant modular structure in the human 
protein interaction network. This also confirms the findings in a previous study of the yeast 
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Figure 1: Identification of k-clique communities. The number of identified k-clique communities 
is shown for the original and random networks.  

interaction network that highly interconnected enriched communities did not emerge by 
chance (24).  

Next, we analysed the size of the individual communities for all k-cliques. As illustrated in 
supplementary figure S1, we found 267 k-cliques communities which have less than 5 
proteins, most of them were based on 3- and 4-cliques. Only few communities included more 
than 15 proteins.  

The number of communities in which a protein participates is highly variable (Supplementary 
figure S2). Most proteins are found in only one community (2,008) whereas TP53 - as a 
classical hub in protein interaction networks - is integrated in more than 20 different modules 
(Supplementary table S2).  

3.2 Functional annotation of the detected modular structures 

We detected a large number of protein communities (or modules) based on k-cliques. But do 
these cluster structures reflect functional modules in the protein interaction network? To 
address this question, we used annotation information supplied by the Gene Ontology. Each 
detected modules was subsequently tested for enrichment of proteins assigned to specific GO 
categories. Examples of detected modules with annotation information are shown in table 1.  
To facilitate the interpretation, only GO categories are shown that were both significant and 
representative. 

Many detected modules could be linked to known physical protein complexes. The largest 
identified module contained the TATA-binding protein (TBP) and multiple evolutionarily 
conserved TBP-associated factors (TAFs). The eleven included proteins are all known 
members of the transcription factor TFIID. Notably, this was also the largest fully connected 
clique discovered by Spirin and Mirny in the yeast interaction network (24).  

Similarily, we can confidently link detected modules to the rRNA processing exosome 
complex and the COP9 signalsome, a highly conserved protein complex whose functions 
however are poorly understood. In contrast, modules were difficult to relate to known 
complexes if no prominent association with a specific cellular location existed.  
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Table 1: Examples of detected protein modules: k - size of cliques, N - number of proteins 
included in the module, cor - average correlation of expression.  The false discovery rates are 
shown for representative biological processes and cellular components.  

k N Graph Proteins 
Biological 

process 
Cellular 

component Cor 

  11 11 

 

TAF1 
TAF2 

TAF10 
TAF11 
TAF12 
TAF4 
TAF5 
TAF6 
TAF7 
TAF9 
TBN 

transcription 
initiation 

6.14 · 10-12 

transcription 
factor TFIID 

complex 

7.95 · 10-26 

0.39 

10 10 

 

BRMS1  
BRMS1L  
HDAC1  
HDAC2 

ING1 
RBBP4 
RBBP7 
RBP1 
SAP30     
SIN3A 

chromatin 
modification 

5 · 10-4 

histone 
deacetylase 

complex 

2.84  · 10-05 

0.26 

9 10 

 

EXOSC2  
EXOSC4  
EXOSC5  
EXOSC6  
EXOSC7  
EXOSC8  
EXOSC9  

KIAA1008  
MPP6  

SKIV2L2 

rRNA 
processing 

3.10 · 10-13 

exosome 

8.58 · 10-19 
0.30 

9 9 

 

CBL 
EGFR 
GRB2 

PIK3R1  
PTK2B  
PTPN11  
PTPN6 
SHC1 
SRC 

transmembrane 
receptor protein 
tyrosine kinase 

signalling 

3.71 · 10-9 

 0.11 

7 9 

 

COPS2 
COPS3 
COPS5 
COPS6  

COPS7A  
COPS8 
CUL5 
GPS1 
TP53 

 

signalosome 
complex 

6.86 · 10-20 

0.44 
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Figure 2: Sub-cellular localization of the detected modules. The number of modules is shown for 
which the majority (black bars) or a fraction of the included proteins (gray bars) was assigned to 
the corresponding cellular compartment. The distribution is based on the analysis of 316 
modules which have a clique size k > 3. The following abbreviations are used: CY-cytoplasm, 
MI-mitochondrion, CS-cytoskeleton, IF-intermediate filament, PM-plasma membrane, IP-
integral to plasma membrane, MT-microtubule, CT-cytosol, RB-ribosome, EX-extracellular 
region, EM-extracellular matrix, CH-chromosome, IN-intracellular, MF-membrane fraction, 
ES-extracellular space, NU-nucleus, MI-microsome, GA-Golgi apparatus, LY-lysosome and ER-
endoplasmic reticulum.  

3.3 Localization of modules 

Previous analyses for yeast indicated that modules in interaction networks can be subdivided 
into protein complexes and dynamic functional modules (24). Protein complexes consist of 
tightly interconnected proteins which bind each other at the same time and location. In 
contrast, proteins in dynamic modules can interact at different times and locations despite 
being highly connected.      

To analyse the co-location of proteins in the detected modules, we utilized information about 
their assigned cellular component in the GO. We reduced the set of possible GO terms to 20 
informative categories to facilitate interpretation. Four categories comprised more than 1,000 
proteins: ‘nucleus’ (3,895 proteins), ‘intracellular’ (1,931), ‘cytoplasm’ (1169) and ‘integral 
to plasma membrane’ (1,017). 

Subsequent analysis showed a remarkably high degree of co-localization of proteins in 
modules. Of the 316 modules based on k-cliques (with k > 3), more than half (170) contained 
proteins allocated exclusively to a single cellular location. For over 75% of the modules, a 
majority of the included proteins were assigned to a single location.  

Figure 2 displays the distribution of coherent locations of the modules. Most of the coherent 
modules were assigned to the nucleus (65%). Since proteins in steady complexes are 
necessarily co-localized, this observation may indicate an enrichment of protein complexes 
located in the nucleus.  

3.4 Co-expression of modules 

Besides the coherency of location, stable protein complexes might be distinguished from 
dynamic modules based on expression. We would expect that proteins in complexes underlie 
the same regulatory mechanism and thus would show co-expression. Of specific interest here 
is the question whether such co-expression correlates with the other distinct feature of 
complexes namely the co-localization of included proteins.  
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Figure 3: Coherency of co-expression and location within modules. The similarity of cellular 
localization (simCC) is plotted against the Spearman correlation. The size of the detected 
modules is colour-coded. The number n in the figure legend denotes the number of proteins 
included in the modules. Dashed lines indicate thresholds for different modules sizes where 99% 
of the correlation values in random samples are smaller for n = 5, n = 8 and n > 8.  

To examine this issue, we calculated the correlation of expression within detected modules. 
The significance was assessed based on the expected correlation between randomly sampled 
proteins. Additionally, the similarity of cellular location based on GO annotation was derived 
(see section 2.4). Figure 3 displays both co-expression and similarity of location within 
modules. Comparison of the co-expression with co-localization of proteins within modules 
yields only a modest correlation of 0.27. This may indicate that a substantial percentage of the 
detected clusters in the interaction network are dynamic modules. 

Inspection of this plot reveals that a majority of the modules containing 10 or more proteins is 
significantly co-expressed. In fact, 34 out of 51 modules (i.e. 66%) show a correlation 
coefficient larger than 0.20 for which 99% of equally sized random samples have smaller 
coefficients. Modules of smaller size are generally less significantly co-expressed due to a 
higher threshold for significance.  

3.5 Overlap between modules and identification of linking proteins  

Protein interaction networks are organized in multiple levels. Their lowest level is constituted 
by binding proteins to each other. These binding patterns can lead to the emergence of 
modular structures as we observed. Furthermore, the modules themselves can be 
interconnected by functional relationships. One major advantage of the applied algorithm for 
the detection of modules is that it allows modules to overlap. Thus, identified modules may 
constitute a higher level network. We exploited this possibility by creating a network of 
modules to analyse their functional relationship.  Selecting modules based on 6-cliques, a 
highly connected network of 16 modules was detected (Figure 4). The largest module within 
this network contained over 80 proteins of which many are involved in signal transduction. 
Examples of the included proteins are members of the epidermal growth factor (EGF) 
receptor family (EGFR, ERBB2), janus kinases (JAK1, JAK2) and signal modifiers such as 
SOCS1. The second largest module of 51 proteins was enriched by various transcription 
factors such as the CREB-binding protein, forkhead box O1 (FOXO1), MYC, RB1 and TP53. 
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Figure 4: Network of modules.  Nodes signify detected modules based on 6-cliques. The size of 
the nodes represents the number of proteins included in the corresponding modules. Edges 
between nodes indicate the existence of overlap. The width of the edges correlates with the 
number of linking proteins.   

The association of the signal transduction module to the plasma membrane and the 
transcription module to the nucleus was highly significant (FDR = 6.00 · 10-5 and 6.57 · 10-21, 
respectively). Notably, these large modules are linked by four proteins (STAT1, STAT3, 
MAPK1, ESR1) which are known to shuttle between cytoplasm and nucleus.  

In contrast, several modules were linked to the transcription module by single proteins. 
Examples of such sparse interconnections are the linkage of the transcription module to the 
COP9 signalosome complex by TP53 and to the TFIID complex by TBP.   

4 Discussion  

System-wide interaction network analysis offers the possibility to study cellular mechanisms 
in a comprehensive manner. However, there are numerous challenges to overcome. 
Interaction data are still sparse and might be compromised by a large number of false 
positives and by various experimental biases. In fact, we have recently demonstrated that the 
approach used for assembling protein interactions networks has severe effects on the resulting 

Signal transduction  

Transcription   

Transcription 

COP9 signalsome 
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networks. For example, signalling proteins tend to be overrepresented in networks based on 
review of literature. Thus, it is not surprising that the largest module was associated with cell 
signalling since our network was constructed using only literature-based interactions maps.  
We utilized here only such interaction maps to facilitate the interpretation of the results. 
However, this restriction is likely to limit the number and type of possible modules that can 
be identified. Nevertheless, our study demonstrates clearly that the constructed human 
interaction network comprises a large number of functional modules. We further plan to 
incorporate the detected modules in the UniHI to facilitate the interpretation and usability of 
the human interactome.  

Our analysis shows that many modules can be assigned to cellular processes. It also indicates 
that protein complexes and dynamic functional modules can be distinguished based on co-
localization and co-expression, although there exists no rigorous threshold to distinguish 
them.  

Note that the applied method for detection of modular structures is restrictive, since it requires 
fully connected cliques. Alternative methods may therefore be favourable to detect less 
densely connected modules. It should be noted that such restrictive definition of modules 
leads to an increased robustness of the detected modules regarding false positive interactions. 
Even if a substantial percentage of interactions are removed, the identified modules will still 
form highly connected clusters [24].   A further major advantage of the applied method is that 
an overlap between modules is allowed. This enabled us to identify potential key proteins 
linking different cellular processes. The constructed ‘meta-network’ of modules gives us a 
first intriguing image of the complex interplay between different components of the cellular 
machinery.   
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