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ABSTRACT

Motivation: Genetic variation in cis-regulatory elements is an import-

ant cause of variation in gene expression. Cis-regulatory variation can

be detected by using high-throughput RNA sequencing (RNA-seq) to

identify differences in the expression of the two alleles of a gene. This

requires that reads from the two alleles are equally likely to map to a

reference genome(s), and that single-nucleotide polymorphisms

(SNPs) are accurately called, so that reads derived from the different

alleles can be identified. Both of these prerequisites can be achieved

by sequencing the genomes of the parents of the individual being

studied, but this is often prohibitively costly.

Results: In Drosophila, we demonstrate that biases during read map-

ping can be avoided by mapping reads to two alternative genomes

that incorporate SNPs called from the RNA-seq data. The SNPs can

be reliably called from the RNA-seq data itself, provided any variants

not found in high-quality SNP databases are filtered out. Finally, we

suggest a way of measuring allele-specific expression (ASE) by cross-

ing the line of interest to a reference line with a high-quality genome

sequence. Combined with our bioinformatic methods, this approach

minimizes mapping biases, allows poor-quality data to be identified

and removed and aides in the biological interpretation of the data as

the parent of origin of each allele is known. In conclusion, our results

suggest that accurate estimates of ASE do not require the parental

genomes of the individual being studied to be sequenced.

Availability and implementation: Scripts used to perform our ana-

lysis are available at https://github.com/d-quinn/bio_quinn2013.

Contact: fmj1001@cam.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Recently, high-throughput RNA sequencing (RNA-seq), in

which a library of millions of short cDNA fragments are

sequenced in parallel, has emerged as the preferred method for

genome-wide studies of gene expression (Stevenson et al., 2013;

Wang et al., 2009). Gene expression polymorphism is the result

of differences in either cis- or trans-regulatory elements. As trans-

regulatory changes affect the expression of both alleles equally,

the role of cis-regulatory variation can be determined by exam-

ining differences in expression between alleles, termed allele-

specific expression (ASE) (Babak et al., 2010; Fraser et al.,

2011; Wang et al., 2009).

Detection of ASE from RNA-seq data involves mapping se-

quence reads to their region of origin and assigning them to

separate alleles. Both of these steps are non-trivial and in need

of further development. Reads can be mapped to a single refer-

ence genome; however, this method is inherently biased (Satya

et al., 2012). Reads representing reference alleles are more likely

to map correctly than those representing non-reference alleles

because they contain fewer mismatches, yielding estimates of

ASE that favor the reference (Degner et al., 2009; Satya et al.,

2012; Stevenson et al., 2013). Degner et al. (2009) illustrated this

problem by generating a simulated human RNA-seq dataset that

contained an equal number of reference and non-reference reads.

The authors found that reads carrying the single-nucleotide poly-

morphism (SNP) allele found in the reference genome were

significantly more likely to be mapped. Increasing the error

rate in the sequence reads increases the bias by introducing add-

itional mismatches to the reference genome (Degner et al., 2009).

In both humans and Drosophila, the degree of bias is unequal

across genes (Degner et al., 2009; Stevenson et al., 2013), with

loci containing clusters of SNPs showing a strong bias toward

the reference sequence. Therefore, even if the average bias across

all genes toward mapping reads matching the reference genome

is just a few percent, individual loci may have far greater biases

(Stevenson et al., 2013). The importance of clusters of SNPs also

means that the problem is expected to be greater in species like

Drosophila melanogaster that have a far greater density of SNPs

than humans (Li and Sadler, 1991).
One way in which researchers have attempted to overcome the

bias is by aligning reads separately to maternal and paternal

genomes (Coolon et al., 2012; Graze et al., 2012; McManus

et al., 2010) or to transcriptomes (Pandey et al., 2013). These

methods are effective, but are not useful in cases in which par-

ental genotypes cannot be readily or cost-effectively obtained

(Stevenson et al., 2013). Another strategy involves aligning

reads to a reference genome supplemented with all possible

haplotypes within one read-length (Satya et al., 2012). Again,

this technique has been shown to reduce the reference bias; how-

ever, it is impractical for use in systems that contain many poly-

morphisms, as the number of haplotypes increases exponentially

with the number of polymorphic sites (Stevenson et al., 2013).

This problem can be reduced by phasing the data using popula-

tion genetic data, provided that genotypes are available from

multiple individuals (Turro et al., 2011). A third solution has

been proposed by Stevenson et al. (2013), in which analysis of

ASE is restricted to genomic regions with fewer differentiating*To whom correspondence should be addressed.
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sites than the number of mismatches allowed. This solution is not

ideal, however, as it requires one to discard useful data, ultim-

ately decreasing statistical power. Finally, altering the alignment

parameters can reduce the bias but does not eliminate it, while a

comparison of different alignment software packages revealed

little difference among them (Degner et al., 2009; Stevenson

et al., 2013).
Once reads have been mapped to the reference sequence, they

are assigned to separate alleles and counted. This can be accom-

plished by identifying SNPs between alleles. Unfortunately, SNP

calls from RNA-seq data are not reliable because of the fact that

there is no a priori expectation regarding read frequencies for

each SNP allele, as there is when sequencing genomic DNA from

a diploid individual (Stevenson et al., 2013). Therefore, it is un-

clear whether unequal frequencies of reads from the two alleles

are because of strong ASE or an incorrect SNP call.

Furthermore, RNA editing can alter the sequence of RNA

after transcription, and these changes can be mistaken for

SNPs (Bahn et al., 2012). Accurate SNP calls are important

for obtaining reliable estimates of ASE because errors in SNP

calling, like mapping errors, will introduce bias toward one allele.

Thus, SNPs are typically called from genomic data (Bullard

et al., 2010; Fraser et al., 2011). Although this method is gener-

ally effective, there are situations in which one would want to

determine ASE without the extra time and cost associated with

acquiring genomic sequences.
Here we present a protocol for obtaining accurate ASE esti-

mates in D.melanogaster, which involves creating an alternate

reference sequence featuring SNPs called directly from an

RNA-seq dataset after filtering out SNPs not observed in a

high-quality SNP database. Our methodology is advantageous

in that it only requires a single reference sequence, can be used in

systems that contain many polymorphisms and does not involve

discarding data based on the number of mismatches in a region.

2 METHODS

2.1 Datasets

We used three RNA-seq datasets. The first was produced by Massouras

et al. (2012), and downloaded from the EMBL-EBI ArrayExpress Web

site (accession number E-MTAB-1266). The dataset we used comprised

10 million 79-bp Illumina single-end reads generated from a cross be-

tween lines 362 and 765 of the Drosophila Genetic Reference Panel

(DGRP), which is a set of highly inbred lines derived from a natural

population (Mackay et al., 2012).

The second dataset was RNA-seq data simulated from the same cross

as the first dataset (lines 362 and 765) and contained 10 million 79-bp

single-end reads. The simulated data included SNPs reported in DGRP

freeze 2 for each line but lacked indels or ASE. Reads were simulated

separately for each line with an overall sequencing error rate of 1%, and

the expression levels for each transcript were weighted by the expression

levels observed in the first dataset. Reads were then merged together to

mimic the cross.

The third dataset was our own RNA-seq data made up of 18 293076

101-bp Illumina paired-end reads generated from a cross between a

D.melanogaster genotype from Innisfail, Australia, and the isogenic ref-

erence stock used for the original genome sequence (Adams et al., 2000).

The approach we took was to effectively isolate a single haploid genome

from the Australian isofemale line (C12) and cross this to the reference

stock. Specifically, we crossed virgin females from the Australian line to

males of a T(2;3)CyO-TM6/pr cn; mwh ry[506] e balancer stock in

which the second and third chromosomes co-segregate. A single male

from the progeny exhibiting the balancer phenotype was then crossed

with y; cn bw sp virgin females from the reference stock, and offspring

not exhibiting the balancer phenotype were collected for sequencing. Six-

to nine-day-old females were homogenized in Trizol and frozen on liquid

nitrogen. RNA was extracted using Direct-zol RNA MiniPrep kits ac-

cording to the manufacturer’s protocol (Zymo Research, Irvine, CA).

Libraries were constructed following poly-A selection using the standard

non-strand-specific TruSeq RNA library preparation protocol and

sequenced using Illumina HiSeq2000.

The D.melanogaster genomic sequence (Ensembl build BDGP5.25)

and GTF transcript annotation files for coding and non-coding genes

were downloaded from the TopHat Web site http://tophat.cbcb.umd.

edu/igenomes.shtml. Variant data from DGRP freeze 2 were downloaded

from the Baylor College of Medicine Web site http://www.hgsc.bcm.tmc.

edu/projects/dgrp/freeze2_Feb_2013/.

2.2 Software

RNA-seq data were simulated using RNASeqReadSimulator (https://

github.com/davidliwei/RNASeqReadSimulator). To ensure the

expression level of genes in the real and simulated data was the same,

reads mapping to each transcript in the default parameter alignment

of the Massouras et al. dataset were enumerated using HTSeq (Anders

et al., 2014) and used to weight simulations.

Sequences were quality trimmed using Trimmomatic version 0.30

(Bolger et al., 2014). Reads were trimmed from the 30 end when average

quality scores in sliding windows of 4 bp dropped below 20 or when

the quality score at the end of the read dropped below 20. Sequences

550 bp in length were discarded.

We used TopHat (version 2.0.8 with Bowtie 2 version 2.1.0) for

read alignment (Trapnell et al., 2012). For the alignment, we input

the GTF file with known D.melanogaster transcripts (setting the –G par-

ameter), instructed TopHat not to consider novel splice junctions (– –no–

novel–juncs), set the length of seed substrings to 20 (– –b2–L 20) and set the

number of mismatches allowed in an alignment during multiseed alignment

to one (– –b2–N 1). In addition, we varied the number of read-mismatches

(–N) and the indel length (––read–gap–length, – –max–insertion–length,

––max–deletion–length, – –read–edit–dist) allowed in the final read align-

ment (see Section 3). SAMtools (version 0.1.19) was used to discard non-

uniquely mapping reads and to produce an mpileup file (Li et al., 2009). To

identify potential SNPs in the RNA-seq data, we used VarScan mpi-

leup2snp (version 2.3.5) (Koboldt et al., 2009). For a potential SNP

to be called by VarScan, the read-depth had to be greater than one

(– –min–coverage 2), and a read had to have an average base quality of

at least 20 to be counted (– –min–avg–qual 20). In addition, we set the

P-value threshold for calling SNPs at 1.0 (– –P-value 1), did not implement

a strand filter (– –strand–filter 0) and set the minimum variant allele

frequency threshold at 1e-10 (––min–var–freq 1e-10). Bedtools intersect

(version 2.17.0) was used to filter SNPs by known variants (by setting

the –wa parameter) and to filter and annotate SNPs according to location

within a gene (by setting –wa –wb) (Quinlan and Hall, 2010). We generated

alternate FASTA sequences via GATK’s FastaAlternateReferenceMaker

(version 2.4.9) (McKenna et al., 2010). HapCUT (version 0.5) was used to

phase SNPs (Bansal and Bafna, 2008).

In-house python scripts were used for all else not covered above.

The scripts and data files required to recreate this analysis are available

at https://github.com/d-quinn/bio_quinn2013. The sequences generated

during this project have been submitted to the Sequence Read Archive

and have the accession number SRP040244.

2.3 Aligning to a single reference

To examine the effects of mapping bias, we used a published RNA-seq

dataset from a cross between DGRP lines 362 and 765 for which the
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genomic sequences are available (Massouras et al., 2012). Reads were

aligned to the D.melanogaster reference sequence using TopHat, and

those that did not align uniquely to the genome were discarded. We

identified candidate SNPs using VarScan mpileup2snp set with the ex-

tremely generous parameters listed earlier (which will have allowed many

false-positive results), identifying any candidate SNP found in at least two

supporting reads with average base quality419. We also removed SNPs

with more than two alleles, as SNPs were being called from a single

individual so these represent errors. We then filtered SNPs according to

a variable and fixed coverage cutoff. Where a gene has been sequenced to

a high depth of coverage, it becomes increasingly likely that the same

sequencing error will occur in multiple reads. To compensate for this, we

required SNPs to have more supporting reads as the depth of coverage

increased. We used a binomial distribution where the probability of an

error in any one read was 1 in 100 (the expected rate with a phred score of

20). A threshold was set for each depth of coverage such that the prob-

ability of observing enough erroneous reads to exceed this threshold

would be50.0001, assuming every read had the lowest possible quality

score (a phred score of 20). In addition to this variable coverage cutoff,

we used a fixed cutoff, which eliminated SNPs at positions with fewer

than 15 total reads. Furthermore, SNPs that were not found in known

transcripts (those that did not intersect with genes in the GTF transcript

annotation file) were discarded, as they are not relevant for measuring

ASE. Finally, SNPs were filtered by a set of known variants, retaining

only SNPs that have been previously reported (see Section 3).

2.4 Aligning to multiple references

To reduce mapping bias, we aligned reads to both the original reference

genome as well as an alternate version that featured SNPs called from the

RNA-seq data. The protocol was similar to that for aligning to a single

reference, with the addition that the filtered SNPs identified from the

initial alignment were then used to create an alternate reference sequence,

using GATK’s FastaAlternateReferenceMaker and an in-house python

script to fix FASTA headers. FastaAlternateReferenceMaker replaces

reference bases at variant positions with bases supplied by a file in variant

call format (VCF). Raw reads were realigned to this alternate sequence,

and SNPs were identified in the same manner as before. Finally, we

combined unique reads from both alignments to get per-SNP ASE esti-

mates. A flow chart summarizing these steps and some others explained

later is shown in Supplementary Figure S1.

2.5 Aligning to parental genomes

We used SNPs from the DGRP freeze 2 dataset to generate parental

genomes for the Massouras et al. (2012) data. Specifically, SNPs in

DGRP lines 362 and 765 were separately used as inputs for

FastaAlternateReferenceMaker, yielding two separate parental genome

proxies. Only homozygous SNPs were included, as the DGRP lines are

highly inbred. We aligned the RNA-seq data to each parental genome,

called SNPs (again, implementing a variable and fixed coverage cutoff)

and calculated ASE values for each position called as a SNP in either of

the parental lines. Unique reads from the two alignments were combined

to get per-SNP estimates of ASE. We refer to this as our benchmark

alignment, as it should produce the most accurate ASE estimates for

the ideal case where both parental genome sequences are known.

2.6 Phasing SNPs

To phase SNPs, we used HapCUT, which uses a max-cut-based algo-

rithm for haplotype assembly (Bansal and Bafna, 2008). We input our set

of filtered SNPs from the alignment, the corresponding alignment (BAM)

file and the D.melanogaster reference sequence (in FASTA format) into

HapCUT and used the output to create two VCF files with an in-house

python script. The logic for the creation of the VCF files was as follows:

(i) if a SNP in the original VCF (the set of filtered variants from mapping

to a single genome) was homozygous (comprises all non-reference reads),

the SNP was included in both VCF files; (ii) if a SNP was heterozygous

(there were reference and non-reference reads) and phased, it was

included in a single VCF along with the other SNPs on that haplotype;

and (iii) heterozygous SNPs that were not phased were all placed into one

of the VCFs. The resulting two VCFs were input into

FastaAlternateReferenceMaker to create two alternate reference se-

quences. Reads were aligned to these separately, SNPs called and

unique reads combined to get per-SNP estimates of ASE.

2.7 Combining SNPs by gene

We wrote a script to combine SNPs across a gene in such a way that reads

spanning multiple SNPs are counted only once. As input, it takes two

VCF files that have been intersected (using the -wa -wb parameters of

Bedtools intersect) with a GTF as well as the corresponding BAM files

used to call those variants. The script iterates through the VCF files and

produces a list of SNPs for each gene. It then uses Pysam, a lightweight

wrapper of the SAMtools C-API, to generate lists of read IDs for each

state of each SNP. For instance, if a SNP on chromosome 2L has two

states, A and G, representing the reference and non-reference bases, re-

spectively, it will generate a list of read IDs that contain an A at that

position and a list of reads IDs that contain G at that position, and it will

repeat this for every SNP in the gene. Lists of reference and non-reference

read IDs are concatenated, the duplicates are removed and the lengths are

used as the new per-gene expression counts.

2.8 Removing conflicts

When a single read contains multiple SNPs, then all the SNPs should

assign the read to the same parent. Errors can therefore be detected when

the SNPs conflict and assign the same read to different parents. On the

first pass through our pipeline, we recorded both which reads were as-

signed to both parents and which SNPs were causing these conflicts.

These reads and SNPs can be ignored on a second pass through the

pipeline, producing a new set of per-gene estimates.

3 RESULTS AND DISCUSSION

3.1 Mapping: alignment to single reference

To examine patterns of ASE, we aligned published RNA-seq

data from the F1 progeny of a cross between two inbred

D.melanogaster lines (Massouras et al., 2012) to the published

reference genome sequence, allowing up to two mismatches be-

tween each read and the genome (the default) [Fig. 1 (i)]. The

genomes of these two lines have been sequenced, so we called

SNPs from the aligned reads but removed any SNPs missing

from the genome sequences. In total, there were 29 999 SNPs

in 5404 genes (of the 14869 genes in the genome). With these

SNPs, we were able to assess the contribution of mapping bias

alone—independent of SNP calling errors—to estimates of ASE.

The mean proportion of reads carrying the reference allele of the

SNPs was 0.535, much higher than the expected value of 0.5

(Table 1). The strength of this bias was strongly correlated

with the density of SNPs (Supplementary Fig. S2), as expected

if the bias is caused by SNPs introducing mismatches to the

reference genome and preventing reads from mapping. In con-

trast, indels seem less important, as there was no difference in the

strength of the bias between genes with or without indels

(t=0.10, df=3564, P=0.92).
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Because mapping biases are being caused by SNPs preventing

the read from mapping, they are affected by the number of mis-

matches allowed between the read and reference genome during

mapping. To investigate this, we reran the previous protocol with

several different sets of TopHat parameters. We found that

increasing the number of mismatches allowed in an aligned

read (–N) decreased the mapping bias substantially (Table 1

and Supplementary Fig. S3). The potential cost of allowing

more mismatches is that the reads might map to multiple loca-

tions in the genome, decreasing the number of uniquely mapped

reads. As multiple mapping might differentially affect the two

alleles of a gene, the removal of these reads could give a false

signature of ASE. However, although the number of uniquely

mapped reads increased as we allowed more mismatches, the

number of multiply mapped reads remained fairly constant

(Table 1). We also varied the maximum indel length allowed in

an aligned read; however, this had relatively little effect on the

reference bias or the number of mapped reads (Table 1). Altering

other parameters had little effect, so default settings were used

for these [data not shown; number of read-mismatches allowed

in a seed (– –b2–N), the interval between seed substrings (––b2–i)

and the length of the seed substrings (– –b2–L)].
Based on our results in Table 1, we chose to allow up to five

read-mismatches in future alignments and kept the allowed indel

length at the default value of two. In the case of alignment to the

published reference, the mean proportion of reads carrying the

reference allele was 0.505 [Fig. 1 (ii) and Table 1], with this bias

affecting 1.5% of SNPs (51.5% of SNPs have more than half the

reads being the reference allele). Although allowing 10 mis-

matches gave a value closer to 0.5, we reasoned that the gain

was not substantial enough to warrant the reduced stringency,

which could compromise the accuracy of the alignment.
Others have demonstrated that accurate estimates of ASE can

be obtained by aligning RNA-seq data to the genomes of the

parents of the individual under study (Coolon et al., 2012). Using

this technique, we found that the mean proportion of reads car-

rying the reference allele after aligning to the parental genomes

was 0.504, slightly closer to 0.5 than the mean from our single

alignment (0.505). Although these numbers are similar, when we

compared bias among individual sites, it is apparent that there

are many SNPs in the single alignment that remain biased

toward the reference allele (Fig. 2A). Thus, allowing multiple

mismatches greatly reduces the bias toward the allele found in

the reference genome, but does not eliminate it.

The analysis to this point has used real RNA-seq data, so true

ASE might affect our results. To check that this was not the case,

we simulated data with no ASE and repeated our analysis. The

overall pattern was extremely similar to the true data, with map-

ping to a single genome generating a false signal of ASE at some

SNPs (Fig. 2B, mean proportion reference mapping to reference

genome is 0.503 compared with 0.501 when mapping to parental

genomes).
It is unclear why a small bias toward the reference remains

even when aligning to the parental genomes. One possibility is

that there is still a mapping bias because our parental genomes

are incomplete. In particular, these genomes still have the refer-

ence state for indels. However, this can only be a partial explan-

ation, as there is still a small bias for the simulated RNA-seq

reads that lack any indels (Fig. 2B), and the presence of indels is

not correlated with the bias (see earlier text). Furthermore, any

variants not included in the parental genomes are excluded from

our analysis, so they will only create a systematic bias toward the

reference allele at neighboring sites that were analyzed if they are

in linkage disequilibrium. Alternatively, the remaining bias may

result from errors in SNP calling rather than a failure to map

reads.

3.2 Mapping: alignment to multiple references

In an effort to improve our estimates further, we aligned the

Massouras et al. (2012) data to the published reference sequence

and then to an alternate sequence featuring SNPs called from the

RNA-seq data [Fig. 1 (iii)]. Thus, we generated an alternate ref-

erence sequence without having to sequence the genomes of the

parents. Again, for both the alignment to the original reference

Fig. 1. Summary of the effect of different alignment and SNP filtering

methods on measures of allele-specific expression. For (i)–(iv), SNPs were

filtered by those identified from the parental genomic sequences so that

estimates of ASE would be independent of SNP calling errors. For

(ii)–(vii), we allowed five read-mismatches in the alignment, as this sub-

stantially reduced the reference allele bias. The DGRP was used to filter

SNPs in (vi) and (vii)
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sequence and to the alternate sequence, we only analyzed homo-

zygous SNPs found in the parental genomic sequences, allowing

us to separate the contribution of mapping bias from errors in

SNP calling. Initially, we did not phase the SNPs, so the alternate

sequence is a mixture of SNPs identified in both genomes. The

mean proportion of reads carrying the reference allele was 0.504

(Fig. 2C), which is the same as when we aligned the reads to the

parental genome sequences (our benchmark). Furthermore, the

measures of ASE for individual SNPs were nearly identical to

those obtained when we aligned to the parental genomes

(Pearson’s R2=0.999, Fig. 2C). In addition, coverage for

SNPs from aligning to multiple reference sequences is nearly

identical to that for the benchmark (Pearson’s R2=1.00;

Fig. 2E). This indicates that a virtually identical set of reads

are mapped when aligning to multiple references

generated from unphased SNPs as when the reads are

mapped to the parental genomes. Overall, this represents a

substantial improvement over the alignment to a single

genome, with fewer SNPs exhibiting a reference bias (Fig. 2C

versus A) because of this approach allowing us to map reads that

would otherwise be missing from the single alignment (Fig. 2E

versus F).
A potential weakness with our protocol for aligning to two

genomes is that we have no information concerning the chromo-

some on which each SNP is found (i.e. its phase). This means

that the alternate genome sequence we generated from the un-

phased SNPs includes variants from both chromosomes, so se-

quence reads may still not be perfect matches to either of the

genomes we are using. It should often be possible to accurately

phase clusters of SNPs because of the co-occurrence of SNPs

within the same read pairs (Bansal and Bafna, 2008). We used

HapCUT (Bansal and Bafna, 2008) to phase SNPs (restricted to

SNPs found in the parental genomes as before) and generated

two alternate genomes from these phased SNPs [Fig. 1 (iv)] After

aligning to these, we found that the mean proportion reference

was 0.504, nearly identical to that of the unphased alignment.

Plotting this against estimates from our benchmark revealed that

phasing has little effect on ASE estimates (R2=0.999, compare

Fig. 2C and D).

The finding that generating alternative reference genomes

using unphased SNPs performs as well as using phased SNPs

is unexpected. Presumably this is because the large number of
mismatches allowed when the reads are mapped circumvents any

need for phasing. For a read not to map to both the reference
and an unphased alternate genome, it must contain six mis-

matches to both genomes (there must be a cluster of 12 SNPs

within the space of one read). Linkage disequilibrium between
nearby SNPs will make this scenario even more uncommon, as

reference and alternate alleles will tend to be found on the same
reads.

3.3 SNP calling: using the RNA-seq data

In the previous sections, we examined patterns of ASE using only

SNPs found in the parental genomic sequences, which allowed us
to isolate the effect of mapping bias from that of SNP calling

errors. By altering our alignment parameters and aligning reads
to multiple reference sequences, we were able to largely eliminate

mapping bias. We next explored how errors in SNP calling can

affect estimates of ASE and developed a strategy to reliably call
SNPs from the RNA-seq data itself.

To investigate how errors in SNP calling from RNA-seq data
can bias estimates of ASE, we aligned the Massouras et al. (2012)

dataset to the published reference sequence as well as to an al-
ternate reference generated using SNPs called from the RNA-seq

data [Fig. 1 (v)]. Again, SNPs were filtered by a fixed and vari-

able coverage cutoff (see Section 2). However, unlike before, we
did not remove SNPs that had not been found in the genome

sequences of these lines. The errors in SNP calling were substan-
tial. Because sequencing errors tend to occur at low frequency,

they inflate the frequency of the reference allele in the same way

as mapping biases. The mean proportion of reads carrying the
reference allele was 0.517 (Fig. 3A).
The strategy we took to improve the quality of our SNP calls

was to remove any SNPs that had not been previously reported

in D.melanogaster. Initially, we filtered our SNP calls from the
RNA-seq data by those found in the DGRP lines, a panel of

highly inbred lines whose genomes have been sequenced [Fig. 1
(vi)]. This resulted in a mean proportion reference of 0.510. This

suggested that although this basic filtering is somewhat effective

at removing errors, many still remain. The DGRP lines are
highly inbred, so SNPs always called heterozygous are likely to

be errors, and singletons may also be of lower quality. Therefore,

Table 1. Effect of varying alignment parameters on the bias toward mapping reads carrying the allele found in the reference genome

Mismatches Indel lengtha Proportion referenceb Uniquely mapped readsc Multiply mapped readsd Unmapped reads

2 2 0.535 8859 264 98028 1 042 708

3 2 0.517 9210 621 101515 697 864

5 2 0.505 9405 429 104288 490 283

10 2 0.502 9506 855 105891 387 254

3 3 0.517 9219 892 101576 678 532

5 5 0.505 9434 418 104457 461 125

10 10 0.502 9598 279 106599 295 122

aIndel length allowed in an aligned read. We specified this by setting the parameters – –read–gap–length, – –max–insertion–length, – –max–deletion–length, – –read–edit–dist,

to the number shown in the table.
bMean proportion of reads carrying the reference allele of SNPs.
cNumber of uniquely mapped reads.
dNumber of reads that mapped to more than one location and were therefore discarded.
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we refined our criteria by keeping only SNPs that were called

homozygous in two or more DGRP lines [Fig. 1 (vii)], giving a

mean proportion reference of 0.505, an estimate that is nearly

identical to that from our benchmark (Fig. 3B).

We plotted estimates from variants filtered by SNPs called

homozygous in two or more lines against those from the bench-

mark, which was based on aligning to and SNP calling from

parental genome sequences. We found that the two datasets

are similar (Pearson’s R2=0.999, Fig. 4A). Comparing this

with the plot shown in Figure 2D illustrates that filtering by

SNPs called homozygous in two or more lines gives much the

same results to filtering by SNPs called from the parental gen-

omes alone.

By relying on a high-quality database of known SNPs, we

called SNPs using as little as 15X coverage with two reads sup-

porting the variant. These fairly low coverage data appear to be

sufficient, as there is no correlation between coverage and the

reference bias, which can be used as a proxy for SNP calling

errors (Supplementary Fig. S4).

These analyses have used real data, which may be affected by

factors such as true ASE or our benchmark having SNP calling

errors. We therefore repeated the analysis using simulated data

where these factors are controlled, and again found that SNPs

can be reliably called from RNA-seq data (Figs. 4B versus 2C).

3.4 Per-gene ASE estimates: removing

pseudo-replication and conflicts

Thus far, we have focused on per-SNP estimates of ASE, but

most research questions are concerned with gene-level estimates

of ASE. Gene-level expression could be calculated by simply

adding up ASE estimates from each SNP in a gene. However,

this method is problematic because it leads to pseudo-replication

when a single read overlaps two or more SNPs. To avoid this, we

combined reference and non-reference counts across the gene

without counting a read more than once.
Our technique relies on the data being accurately phased

across the full length of the gene, so phasing using the sequences

themselves may be unreliable. We suggest a simple alternative

approach to phase the variants in Drosophila and other model

organisms: if the genotype of interest is crossed to the homozy-

gous strain used to generate the reference genome, then all the

variants called are inherently phased. With this in mind, we

generated a dataset composed of 100-bp Illumina paired-end

reads from the F1 progeny of a cross between a haploid

genome derived from a fly line collected in Innisfail, Australia,

Fig. 2. The effect of aligning to different reference genomes on the bias

toward the reference allele and the number of reads mapped. Panels A

and B: There is a substantial bias toward the reference allele when map-

ping (A) real or (B) simulated data to the reference genome (Y axes)

compared with mapping to the parental genomes (our benchmark, X

axes) (Panel A: Pearson’s R2=0.993, Panel B: Pearson’s R2=0.972).

Panels C and D: Aligning to genomes including SNPs called from

RNA-seq data substantially improves estimates of allele-specific expres-

sion, regardless of whether SNPs are (C) unphased or (D) phased. In both

cases, the proportion of the reference allele of SNPs is 0.504, and the

correlation with the benchmark of aligning to the parental genomes is

strong (Pearson’s R2=0.999). Panels E and F: Aligning to multiple ref-

erence sequences increases the number of mapped reads. The coverage of

SNPs is shown from aligning reads to (E) the published reference genome

and (F) both the published reference and an alternate reference generated

including unphased SNPs called from the RNA-seq data. In both cases,

the coverage is compared with our benchmark alignment to both parental

genomic sequences. Shading indicates a greater density of superimposed

points

Fig. 3. Filtering out low-quality SNPs using a SNP database reduces

bias. Reads were aligned to the published reference genome as well as

to an alternate reference generated using SNPs called from the RNA-seq

data. (A) Unfiltered SNPs have considerable bias (mean=0.517), while

(B) a substantial portion of the bias is removed by only retaining SNPs

that were called homozygous in at least two DGRP lines (mean=0.505).

Arrows highlight portions of the distributions that change
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and the D.melanogaster y; cn bw sp stock sequenced for the ref-

erence genome (Adams et al., 2000). As in the previous section,

we aligned reads to the published reference as well as to an al-

ternate reference made up of SNPs called from the RNA-seq

data. Again, we filtered variants by a fixed and variable coverage

filter and by those found homozygous in at least two DGRP

lines. The proportion of read-pairs carrying the reference allele

was 0.504 when the SNPs were analyzed independently and 0.503

when they were combined within each gene (Fig. 5). As this bias

is slightly less than what we observed earlier using two DGRP

lines (lines whose genome sequences are included in our database

of high-quality SNPs), this suggests that our approach at SNP

calling can be applied to cosmopolitan populations ofDrosophila

that have not been included in the reference database.

With accurate phasing, read-pairs spanning multiple SNPs can

be used to improve estimates further. Because one set of chromo-

somes in our dataset came from the Australian genome, whereas

the other came from the reference genome, read-pairs should be

assigned to only one genome. Of the 2 456 755 read-pairs span-

ning multiple SNPs, 99.7% were assigned to the same genome,

whereas 0.3% were assigned to both genomes. Across SNPs, we

found that 5% of 45 920 SNPs had a single conflicting read-pair,

and 1.5% had greater than one conflicting read-pair.

These conflicts indicate SNP calling or sequencing errors. If

the conflict is caused by a sequencing error, the read should be

excluded, but if it is caused by a SNP calling error, the SNP

should be excluded. We found that SNPs with fewer than five

conflicting read-pairs – which represented the grand majority of

SNPs with conflicts (Fig. 6D)—had close to the expected

distribution of proportion of reference read pairs (Fig. 6A and

C). This suggests that ASE estimates for most of these SNPs are

nearly correct. We reasoned that the majority of SNPs with a

small number of conflicts were not called in error, and that the

conflict was instead because of sequencing error. In contrast,

those with five or more conflicts did not have the expected dis-

tribution (Fig. 6B and C), and therefore, many of these might be

SNP calling errors. The most conservative course of action

would be to remove all SNPs with conflicts, but this would in-

volve discarding a large amount of data (Supplementary Table

S1). With this in mind, we removed SNPs that contained three or

more conflicts, and removed read-pairs that conflicted with one

or two SNPs. The mean proportion of reference read-pairs did

not change appreciably after removing conflicting SNPs and

read-pairs. However, of the 2 384 931 reads that spanned mul-

tiple SNPs, 99.9% were now assigned to the same genome.

Furthermore, the total number of conflicting SNPs decreased

from 7 to 3.5%, and no SNPs exhibited more than two conflict-

ing read-pairs (SNPs with two conflicts represented only 0.3% of

the 44 643 total SNPs).
Our decision to remove only SNPs with three or more con-

flicting reads was driven by our desire to retain most of the useful

Fig. 5. No bias was observed when applying our pipeline to RNA-seq

data generated from a cross between the D.melanogaster reference line

and a line collected in Australia. The data were aligned to multiple ref-

erences featuring SNPs called from the RNA-seq data and filtered by

high-quality DGRP SNPs [scenario (vii) in Fig. 1]. Proportion reference

allele distribution across (A) SNPs (mean=0.504) and (B) across genes

(mean=0.503)

Fig. 4. Filtering by SNPs called homozygous in two or more lines from

the DGRP produces accurate ASE estimates directly from RNA-seq data

with (A) real and (B) simulated data. Proportion of reference allele in

SNPs from alignment to multiple references and by SNPs called homo-

zygous in two or more lines from the DGRP (y-axis) against estimates

from alignment to parental genomic sequences (our benchmark) (x-axis)

[Pearson’s R2= (A) 0.999 and (B) 0.997]

Fig. 6. The effect of conflicts on ASE estimates. A conflict occurs when a

single read-pair is assigned to both parental genomes. (A) Distribution of

the proportion of read-pairs carrying the reference allele for SNPs with

one or two conflicts and (B) SNPs with greater than two conflicts. (C)

Boxplots of the proportion of read-pairs carrying the reference alleles for

SNPs with different numbers of conflicts (D) Number of SNPs with 1–10

conflicts
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data, and this should be adjusted according to the experimental

design and goals of a given project. For obtaining the most ac-

curate estimates, we suggest removing all SNPs that contain

a read-pair assigned to multiple genomes. For retaining more

data, there is little bias if as many as five conflicts are allowed

(Fig. 6C).

4 CONCLUSION

We have developed a protocol for obtaining accurate per-SNP

and per-gene estimates of ASE from RNA-seq data. The main

advantage of this protocol is that it does not require parental

genomic sequences; SNPs used to get allele counts are called

directly from the RNA-seq data. This can significantly reduce

the time and cost associated with measuring ASE.

Unexpectedly, it does not appear that phased data are required

for getting unbiased per-SNP measures of ASE using our data-

sets. We found that our estimates were nearly the same with and

without phasing. However, phased data are required for combin-

ing SNPs to obtain per-gene measures of ASE, and this also

allows us to remove unreliable reads and SNPs. We show that

the data can be phased if genotype of interest is crossed to the

homozygous strain used to generate the reference genome, al-

though this will only be possible in Drosophila and other

model organisms.
The main drawback to our method is that it requires know-

ledge of variation in the population of the organism of study, as

this allows filtering to remove SNP calling errors. In Drosophila

this data is readily available. As new sequencing technologies

mean that comprehensive SNP databases are available from

increasing numbers of species, this approach will become viable

in even more species, especially those with short generations.
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