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Abstract

We identify two properties of the human vision
system, the foveated retina, and the ability to sac-
cade, and show how these two properties are suffi-
cient to simultaneously learn both the structure of
receptive fields in the retina, as well as a saccade
policy that centers the foveal region on points of
interest in a scene.

We consider a novel learning algorithm under
this model, sensorimotor embedding, which we
evaluate using a simulated roving eye robot on
synthetic and natural scenes, and physical pan/tilt
camera. In each case we compare learned geome-
try to actual geometry, as well as the learned mo-
tor policy to the optimal motor policy. In both the
simulated roving eye experiments and the physi-
cal pan/tilt camera, our algorithm is able to learn
both an approximate sensor map and an effective
saccade policy.

The developmental nature of sensorimotor em-
bedding allows an agent to simultaneously adapt
both geometry and policy to changes in the phys-
ical model and motor properties of the retina. We
demonstrate adaption in the case of retinal lesion-
ing and motor map reversal.

1. Introduction

In the human eye, the retina is a non-uniform array of
photoreceptive rod and cone cells. The human retina has
a foveal pit, a single region of maximum density of cone
photoreceptors. In addition, a human can change the lo-
cation of the retina relative to a scene through ballistic
actions known as saccades (Palmer, 1999). The combi-
nation of a small, high-resolution fovea with the ability
to saccade to regions of interest is an economical strategy
for both humans and robots to achieve high-resolution vi-
sion across large fields of views.

Gathering and interpreting visual information requires
a motor map and a sensor map of the retina. The mo-
tor map encodes the motor commands necessary to move
the eye to new locations in the visual scene and is used
in generating saccades, whereas the sensor map repre-
sents the geometric structure of the retina, specifically the

positions of sense elements within the sensor array, and
can be used to perform geometric operations on the visual
signal such as edge detection. We show how, by exploit-
ing the relationship between motor commands and sensor
geometry, an autonomous agent with foveated vision can
simultaneously learn both the motor and sensor maps.

For simple sensors, these maps can be manually spec-
ified, but as sensors become more complex and adap-
tive, learning approaches such as ours are of increasing
value to robotics. In addition, as lifetimes of autonomous
robots increase the robust nature of this developmental
approach will allow robots to adapt to changing sensors
and motors.

2. Related Work

2.1 Learning Motor Maps

In previous work on learning motor maps for saccades,
the learning was driven by the two-dimensional differ-
ence between the pre-saccadic and post-saccadic position
of a target on the retina. These models assume that the
structure of the retina is known when learning the motor
map, allowing for calculation of the distance between a
target and the fovea.

In (Pagel et al., 1998) the authors use learning to im-
prove upon rough predictions made by first-principle ge-
ometric calculations. They represented the motor map
using growing neural gas. Using a training scheme that
involves corrective saccades, the agent experiences more
training examples in the foveal region, causing an in-
crease in the density of units in the region of the motor
map that represents the fovea.

In (Rao and Ballard, 1995) the authors also used a
strategy based on corrective saccades. They relied on the
ability to locate a point of interest in the post-saccadic im-
age using multiscale spatial filters, though the ability to
locate interest points using multiscale spatial filters may
be too strong an assumption for a young infant with an
immature visual cortex (Slater, 1999).

In (Shibata et al., 2001), the authors use fifth order
splines and saliency maps (Itti and Koch, 2001) to gener-
ate realistic saccade trajectories and that closely resemble
human motion. In this work, we opt for a simpler saccade



model that allows us to learn both sensor and motor maps
simultaneously.

The model used in (Weber and Triesch, 2006) is one of
the most recently published models and is the most sim-
ilar to ours. Like us and unlike previous work, they use
an error signal based on total retinal activation, exploit-
ing cases where the total activation of a foveated retina is
proportional to the degree of success of a saccade. Their
model treats learning the horizontal and vertical compo-
nents of saccades separately in accord with the experi-
mental results of (Noto and Robinson, 2001).

2.2 Learning Sensor Maps

In previous work on learning sensor maps, Pierce and
Kuipers (Pierce and Kuipers, 1997) demonstrated how
sensor maps for a mobile robot can be discovered from
uninterpreted high-dimensional sensor streams while mo-
tor babbling, and Olsson et al.(Olsson et al., 2006) later
extended these results to physical robots with visual
perception. These studies generate sensor maps using
dimensionality reduction algorithms that discover low-
dimensional sensor arrangements that approximate dis-
tances between sensor trace histories. In other words, two
sensors are close in the sensor map if their corresponding
sense histories are highly correlated.

In this work, we take a complementary but related ap-
proach and exploit some additional available structure,
namely the availability of motor commands. We base our
embedding, which we call sensorimotor embedding, on
the motor system’s ability to change the sensory signal.

The algorithm we present here utilizes the relationship
between sense and action to simultaneously extract use-
ful geometric features (i.e. sensor position) along with
primitive animate vision behaviors. Our method is appro-
priate for cases with an easily identifiable reward signal
(e.g. activation), linear ballistic motor commands, and a
high number of sense elements. We exploit the structure
of the sensorimotor domain to produce an explicit map-
ping between motor commands and sensor features. This
map has two interpretations, one as a primitive behav-
ior that maximizes reward (the policy interpretation), and
another as a structure for the sensor array (the geometric
interpretation).

3. A Foveated Retina

3.1 Model

Our abstract model of the foveated retina is inspired by
the anatomy of the human retina. In our model, a retina
is a collection of receptive fields, or sense elements, with
fixed geometry arrayed across a two dimensional surface.
Each receptive field responds to sensory input from a por-
tion of an image or scene according to its own activa-
tion function. Our learning rule requires that the distribu-
tion of activations across the retina be non-uniform and
achieve a single maximum at the fovea. In addition, un-

Figure 1: Our implementation of the fovea consists of overlap-
ping layers of receptive fields. As the layer resolution increases,
the extent of each receptive field decreases, and the number of
bits necessary to describe the layer state remains constant.

der our model, ballistic motions instantaneously change
the location of the retina in an image or scene.

Many implementations of a foveated retina satisfy
this model. In biological systems, receptive fields are
often distributed according to a log-polar distribution
(Schwartz, 1977) and many computational models of
saccade generation build upon this model of foveation
(Weber and Triesch, 2006, Rao and Ballard, 1995). For
this work, we view the specific distribution of receptive
fields as an implementation issue, and expect that any dis-
tribution that satisfies the modeling assumptions above
will behave similarly to our implementation.

3.2 Implementation

In our implementation, the learning agent has a foveated
retina with N layers of receptive fields (Figure 1). Each
layer has receptive fields of uniform extent and resolu-
tion. Layers with higher resolution and smaller extent
overlap layers with lower resolution in the center of the
retinal field of view. The fovea is the region with the high-
est concentration of overlapping receptive fields, and is
also the region of maximal activation, so this implemen-
tation satisfies the model assumptions specified above.
We stress that alternative implementations satisfying the
model assumptions should behave similarly.

The implementation of each individual receptive field
may also vary. In this case, each receptive field must map
a patch of underlying pixel or sensor values to an activa-
tion level. Let Ik denote the image patch that affects the
state of the kth receptive field. Let I denote the set of all
such patches.

In addition to the image patch associated with each re-
ceptive field, the activation depends on the global state of
the entire retina. In the case of a pan/tilt camera, we can
describe the retina state using the horizontal and vertical
angle of the camera lens (θ, φ). In the case of the roving
eye, we can describe the state of the retina in terms of the
horizontal and vertical offsets (u, v) that describe the po-
sition of the retina in the larger image. However the state
space is parametrized, we denote the set of all states by
S.

We require that the receptive field implement an activa-
tion function δ : I × S → [0, 1]. In our implementation,
δ(Ik, s) is the total activation of the pixels in the image
patch Ik given the current retina state s, normalized to



[0, 1] as a fraction of the maximum possible activation.
The activation over the entire retina is the sum of the

activations for each receptive field for the current retina
state,

RI(s) =
∑
Ik∈I

δ(Ik, s). (1)

4. Reinforcement Learning Problem

In our computational model, saccades result in 2D dis-
placements of the image on the retina or pan/tilt changes
for a physical camera. Each action or saccade a : S → S
is described by two-element vector denoting horizontal
and vertical motion and results in a single globally rigid
transformation of the image or scene.

If the receptive fields in the retina are of uniform size
and distribution, and they are exposed to input consist-
ing of a small spot of light against a uniform background,
then RI(s) would be approximately constant for all reti-
nal states s, regardless of where the spot of light falls.
However, with a foveated retina, RI(s) will have a dra-
matic maximum for retina states that cause the spot of
light to fall on the fovea, due to the larger density of re-
ceptive fields there.

Using the total activation of all the receptive fields for
the current retina state, RI(s) in Equation 1 as the re-
ward, combined with saccade actions, we can define a
simple reinforcement learning problem, the goal of which
is to find a policy, or choice of action, that maximizes reti-
nal activation.

We factor the global learning problem into an individ-
ual learning problem for each receptive field. The goal
of each receptive field is to learn a policy that greedily
maximizes the total retinal activation RI(s),

πk(s) = arga maxRI(a(s)). (2)

The problem is episodic and spans a pre- and post-
saccadic state. The collective policy π∗ for the entire
retina is the weighted average of the actions preferred by
the individual receptive fields,

π∗(s) =
1

RI(s)
∑
Ik∈I

δ(Ik, s) · πk(s). (3)

In this factored learning problem, the only information
a receptive field has about the state of the retina is the
intensity level for that receptive field’s visible patch Ik.
If the intensity is high (δ(Ik, s) is close to 1), then the
policy πk(s) will have a large impact on the global policy
calculated in Equation 3. In this case, we want the policy
to suggest an action πk(s) = a that maximizes the reward
RI(a(s)). The action that accomplishes this takes the
activation that the current receptive field sees and shifts
it to the fovea, where the density of receptive fields is
higher.

If the intensity is low, then the policy for that receptive
field will have little impact on the policy for the entire
retina since δ(Ik, s) is close to zero. As a consequence,

we can treat πk(s) as a constant. So in the factored prob-
lem, each receptive field only needs to estimate the opti-
mal action and observe its own intensity level.

We predict that (after sufficient training), the action
specified by πk will approximate the saccade that moves
an image-point from receptive field k directly to the
fovea. Consider the inverse −πk of the policy estimate
for each receptive field. This is the action that would
move an image-point from the fovea to the receptive field
k. In other words, the inverse of the policy is a posi-
tion for the receptive field relative to the fovea. We ex-
pect that physically proximate receptive fields will have
similar saccade policies, and hence similar learned posi-
tions. Note that we have not used any knowledge of the
location of receptive fields within the fovea. In fact, that
knowledge has been learned by the training process, and
is encoded in the policy πk. Spatial knowledge that was
implicit in the anatomical structure of the retina becomes
explicit in the policy.

The reinforcement learning problem described above
has two unusual properties that constrain the choice of
learning algorithm. First, the action space is continuous
(as opposed to small and discrete). Second, the problem
is episodic, and each episode spans only one choice of
action.

During learning, each receptive field maintains an es-
timate for πk, the current best action, and Rk, the current
maximum estimated reward after performing the current
best action. Initially, each πk is set to a random action,
and the reward estimate is initialized to zero.

At the beginning of each iteration or training, we ran-
domly reposition the retina. For exploration, some noise
ε is added to the current greedy policy. The retina agent
executes π∗(s) + ε, and measures the reward (R). Each
individual receptive field’s reward estimate and current
policy are updated proportional to its state activation prior
to the saccade (δk = δ(Ik, s)) since the optimal policy
π∗ is weighted according to those activations. We use a
moving average learning rule to update both the reward
estimate and current policy. For each receptive field k,
we update the reward as follows

Rnew
k =

{
Rold

k + δk · α · (R−Rold
k ) if R > Rold

k

Rold
k otherwise.

(4)
If the reward received, R, is greater than our current re-
ward estimate, we move the current policy πk for that
receptive field closer to the global policy responsible for
the increased reward

πnew
k = πold

k + δk · α · (π∗ − πold
k ). (5)

By varying the learning rate α, we can change how
much recent experience affects both the estimate of re-
ward (Rk) and the estimate of the optimal saccade (πk)
itself.
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Figure 2: This figure plots the mean geometric error as a func-
tion of training time. The mean and standard errors are shown
for ten independent training runs using a single dot image. The
subfigure shows the result of interpreting learned receptive field
policies as positions. Each line represents the error between the
true position and learned position — the head (dot or diamond
depending on the layer) is the true location of the field. The tail
is the learned position. For clarity, only two layers are shown.

5. Experimental Evaluation

5.1 Simulated Saliency

We trained a simulated foveated retina with four layers
of receptive fields on an image with a single white spot
on a black background, meant to simulate the result of
a saliency map. Each retina layer contained 32x32 re-
ceptive fields. The extent of each receptive field varied
by layer, with the largest layer having receptive fields of
size 4x4 (for a total retinal pixel area of 128x128). Ac-
tions corresponded to horizontal and vertical translations
of the retina across the image.

We randomly initialized the policy for each receptive
field and used a training rate α = 0.5. ε was normally
distributed with a mean of 0 and a standard deviation of
10 pixels.

We use two criteria to measure the success of our
learning algorithm. The first computes the mean of the
Euclidean distances between the learned position (inter-
preted as the additive inverse of the policy) and the true
position pos(Ik) of all receptive fields (Equation 6)1. The
results of training are shown in Figure 2.

Egeometry =
1
N

N∑
k=1

|| − πk − pos(Ik)||2 (6)

For the second criterion, we compare the accuracy of

1This analysis compares pixel positions to action space positions.
This is only possible since translations of the roving eye retina are spec-
ified in pixels. In experiments using a pan/tilt camera, we do not have
access to ground truth coordinates in action space.
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Figure 3: The saccade error as a function of the number of train-
ing iterations using the basic learning algorithm (4.). The sac-
cade error is computed over thirty random repositions every 100
timesteps for ten independent trials. Note that even with an op-
timal policy, saccades are not entirely accurate because of low
resolution in the periphery of the retina.

the learned saccade against the optimal saccade, which
would center the retina on the area of high activation. We
also test two-saccade accuracy, where the retina makes a
second saccade after the first during testing but not train-
ing.

During the training process, every 100 training steps,
we stop training and test saccade and two saccade accu-
racy for 30 random repositions. The average and standard
errors of the accuracies over ten training trials are shown
in Figure 3, which also includes comparisons with a ran-
domly initialized policy and an optimal policy (where
each policy is initialized to the inverse of that receptive
field’s position).

The learning algorithm achieves near-optimal saccade
accuracy after 5000 training steps. Comparing Figures 2
and 3, we see that the geometric error decreases as accu-
racy increases, though the final sensor map only approxi-
mates the true positions of the receptive fields. Our algo-
rithms final saccade error of 5 pixels is less than that of
Pagel et al. (Pagel et al., 1998) and requires only a quar-
ter of the number of training steps.

5.2 Lesioning

In natural scenes, or in cases where the number of recep-
tive fields in the fovea changes as with macular degener-
ation, the maximum achievable reward changes. In these
cases, the maximum achievable reward may decrease to a
level below the current reward estimate for each receptive
field, R < Rold

k and so no updates will take place. To ac-
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Figure 4: As a result of lesioning, a retina, with a robust learning
rule as described in this section, adapts its policy to favor sac-
cades to regions just outside the damaged region (see subfigure),
providing higher post-saccadic activation in the case of lesion-
ing than the previous optimal saccades directly to the fovea. We
note that this increases the position error relative to the ground
truth, but provides a coordinate system consistent with the sen-
sorimotor properties of the damaged retina. The basic learning
rule from Section 4. fails to adapt following a lesioning event.

count for this kind of variation over time, we can change
the learning rule to maintain a recency-weighted average
estimated reward, instead of maintaining an estimate of
maximum reward.

This learning rule would require that the reward esti-
mate be updated each timestep

Rnew
k = Rold

k + δk · α · (R−Rold
k ) (7)

instead of only updating during timesteps where R >
Rold

k .
We tested the ability of this modified algorithm to

adapt to lesioning a small off-center part of the foveal
region of the retina after 2000 steps of normal training.
The mean post-saccade activation increases after lesion-
ing when the agent uses the the robust learning rule (Fig-
ure 4). The basic learning rule, however, does not adapt
to the lesioning event.

5.3 Motor Map Reversal

The modified algorithm presented above to deal with
lesioning may require very high sample complexity to
properly adapt to large changes in the motor model of
the foveated retina.

Even though the reward estimates for each receptive
field would adjust downward after a large change in the
semantics of the motor commands, exploration still de-

pends on adding noise to the previous policy estimate
for each receptive field. In cases where the motor model
changes radically, this exploratory bias may handicap any
attempt to learn an alternative motor map.

Humans have shown some capacity for adapting to
similar changes in sensorimotor experience. For exam-
ple, in a self study using prismatic inverting eye-wear
(Dolezal, 1982), Dolezal reports both initial difficulty in
simple reaching tasks followed later by comfortable mas-
tery.

In Dolezal’s inverted perceptual world, pointing up re-
sults in the visual perception of pointing down. By re-
versing the result of a motor command along one axis,
we can simulate a similar (but less complex) change in
the relationship between the motor actions and percep-
tual response. Though our experiment does not capture
the full range of altered sensorimotor contingencies pre-
sented in (Dolezal, 1982), this experiment illustrates the
need for a different kind of adaption in the face of signif-
icant changes in sensorimotor contingencies.

In this modification, each receptive field maintains an
estimate of the optimal reward and policy as in 4.. The
retina also maintains an estimate of the maximum ob-
served reward, a moving average of all the observed re-
wards, along with the reward estimates associated with
each receptive field.

The exploration/exploitation trade-off is driven by a
parameter, δ, that is meant to measure the extent to which
the learned policy for currently active receptive fields will
be able to achieve the maximum observable reward as es-
timated by the retina as a whole.

For a given pre-saccade retina state s, we compute both
the current action estimate a and the reward estimate ra.
δ is then the ratio of ra to rmax, the maximum observed
reward for the entire retina. Intuitively, if ra is close to
rmax then the action a is likely close to optimal, and so
little exploration is necessary. Similarly, if ra is less that
rmax, the action a is likely suboptimal, and so more ex-
ploration is required. The actual action taken is

δa+ (1− δ)aexp

where aexp is a random saccade.
We use a large negative change in the moving average

of all the rewards as an indicator of a major change to the
retina motor or sensor map (Figure 5). When detecting
this kind of change, the retina resets the reward estimates
of all the receptive fields to their original values. This
significantly decreases δ, triggering an increase in explo-
ration and decreasing the contribution of the previously
learned policy.

5.4 Natural Scenes

To recapture the features of the single spot case in natural
scenes, we construct a proto-saliency map from natural
scenes by first blurring the image under the retina using a
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Figure 5: The left figure shows the moving average estimate
of rewards experienced during training. A reversal in the mo-
tor map occurs after 4000 timesteps results in a decrease in the
moving average reward estimate. After decreasing over 1000
timesteps, the retina resets the rewards estimate and the esti-
mates for each receptive field and begins adapting to the new
motor model. This results in a decrease in δ and an increase in
exploration as shown on the right.

Gaussian blur with a 5x5 filter size2, then thresholding the
image and taking pixels that fall into the top one percent
brightness level in the region under the retina. If the num-
ber of active pixels is less than 500 pixels, we proceed to
train on that portion of the image, otherwise the agent
performs a new random saccade without training. This
is to avoid training in situations of homogeneous bright-
ness that wash out any existing progress on learning the
optimal policy.

We note that humans tend to avoid saccading to ar-
eas of high luminance at low spatial scales (e.g. sky,
solid colors) (Tatler et al., 2005). By avoiding training
when the number of active pixels after thresholding is too
high, we avoid training on precisely these kinds of high-
luminance inputs.

Due to the variation in learning performance across im-
ages, we examine how the learning process behaves when
trained over subsets of images randomly chosen from the
Berkeley segmentation dataset (Martin et al., 2001). For
each run, we select a set of images (N=1, 5 or 10) to
train over. We cycle through the images, training 19 times
over each image before moving to the next image in the
cycle to continue training. As before, we evaluate the
learning performance by measuring geometric errors ev-
ery 100 timesteps of training. The results are shown in
Figure 6.

Even though the final error rates are higher than when
trained with the synthetic scene (Section 5.1), we note
that the fixed point behavior of the policy (allowing re-
peated corrective saccades) does result in accuracy com-
parable to what training achieves on an ideal version of a
saliency map after a similar number of training steps. The
following table shows the accuracy after one and two sac-
cades, as well as after the number needed to reach a fixed
point (or in rare cases, a cycle – in which case the closest
cycle point is counted).

2Blurring is incompatible with the assumption that geometric in-
formation is not available. However, this blurring step is meant to
simulate the optical characteristics of infants during early development
(Slater, 1999), not infant visual processing.
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Figure 6: For this experiment, subsets of natural scene images
were chosen randomly. This graph shows the mean and vari-
ance of ten runs for each subset size and is best viewed in color.
Training across sets of images results in more consistent learn-
ing curves than training over single images, since the variance
is smaller for training that takes place across subsets. Even in
the single image case (where each run drew training examples
from a single image) the mean learning curve was qualitatively
similar to the others, but the high variance suggests that some
images are “bad” sources of training examples.

1 Saccade 2 Saccades Fixed Point
20.4 12.5 7.6

5.5 Pan/Tilt Camera

For the physical pan/tilt experimental setup, we used a
Logitech QuickCam Orbit AF placed 15 feet from a sin-
gle light source. To reduce training time, we modified the
exploration policy to search randomly for a bright light.
The agent performs a random saccade away from the light
source. During training the agent than performs the op-
posite saccade back towards the light source, and uses
the resulting retinal activations to learn a function from
field activation to optimal saccades using the algorithm
described in Section 4. with the proto-saliency method as
described in Section 5.4.

Figure 7 shows the increase in post-saccadic reward (or
activation) after intervals of 100 training steps. Each data
point is the mean of 10 test trials. Each trial randomly
saccades away from the light source, then computes the
return saccade as the activation weighted average of the
learned receptive field policies. For a trained retina, we’d
expect the post-saccadic reward to be independent of the
initial random saccade, since the state of highest reward
is reachable from any random starting position.

In our simulation experiments, the learned policies cor-



Figure 7: Every 100 training timesteps, we perform 10 test tri-
als with the pan/tilt camera, randomly saccading away from the
light source, then using the learned saccade policy to attempt
to recenter on the light source (as opposed to using the inverse
of the random saccade as in training). As training progresses,
each receptive field learns a policy that centers local activation
at the fovea resulting in greater post-saccade reward. The sub-
figure shows the corresponding action space coordinates of each
receptive field for two different layers of receptive fields.

responded well with ground truth pixel geometry, since
actions for the simulated roving eye camera are pixel
unit translations over an image. The action space of the
pan/tilt camera, however, is not represented in pixel unit
shifts. The motor commands represent control signals
sent directly to the piezoelectric motors in the camera ap-
paratus. Camera geometry, along with irregularities in
camera control, make the correspondence between mo-
tor signals and pixel shifts in the field of view necessarily
inexact. We made no attempts to improve the correspon-
dence through any alternative method of system identifi-
cation beyond running our algorithm.

As a result of the learning process, for each region of
interest we have access to the motor coordinates that cen-
ter the camera on the region of interest. The geometry
of these action space coordinates approximates (up to a
scale factor) the ground truth geometry of the receptive
fields in pixels.

Our approach is not limited to finding a sensor map
in the coordinate system of the action space. With ac-
cess to the ground truth pixel geometry for each recep-
tive field, we can also construct a map from ground truth
pixel coordinates to the corresponding action space coor-
dinates, providing the ability to switch between pixel and
motor geometry as a method of controlling the pan tilt
camera. Selecting pixel coordinates (and activating the
corresponding receptive fields) for a region of interest is
sufficient to generate the corresponding motor mapping
that brings those pixels to the center of the field of view.
In other words, the learning algorithm autonomously pro-
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Figure 8: The results of localization in a roving eye domain.
The features and their associated policies where generating us-
ing principle component analysis followed by sensorimotor em-
bedding. The green square depicts the roving eye.

vides a method for going from pan/tilt (or joystick) con-
trol, to point and click control in the view frame.

6. Future Directions

Sensorimotor embedding can be applied to other types
of structure discovery problems. As an example, an
agent can use sensorimotor embedding to visually lo-
calize by associating sensor inputs with ballistic actions
that bring about desired changes in sensor state. This
provides an alternative to action respecting embedding
(Bowling et al., 2007) in continuous action spaces.

We applied sensorimotor embedding to the “roving
eye” domain by first generating a set of 50 principle com-
ponent basis vectors using random samples of a scene.
We then formed a feature set consisting of principle pro-
jections of random samples onto these principle compo-
nents. Associated with each feature is a reward and ballis-
tic policy estimate just like the receptive fields described
above.

During training, the projection of each eye image is
compared to each feature. The winning feature deter-
mines the next (noisy) action. After each action, the re-
ward is the least of the inverse of the distance to a pre-
defined point in the scene or one. Updates to reward
and policy estimates are the same as in Section 4.. Once
trained, a sequence of images can be embedded directly
in the learned motor space by comparing each images
projection with the feature set. An example embedding
for a visual path of a roving eye is shown in Figure 8.



7. Discussion

Our experimental results confirm that, under simple as-
sumptions, an agent can simultaneously discover motor
and sensor maps for a foveated retina. Like Weber and
Triesch, we use total activation as a reward signal to learn
the motor map; however, we demonstrate the ability to
learn without prior knowledge of the sensor map. To
do so, we generate a proto-saliency map directly from
natural scenes in a geometry-free way. After learning
the motor map, we generate the sensor map by exploit-
ing the relationship between sensor geometry and motor
commands. Previous approaches to sensor map construc-
tion use dimensionality reduction techniques and do not
exploit additional available domain structure, namely ac-
cess to motor commands.

Representing the sensor map in motor units may ap-
pear to be a limitation of the approach. However, in
the absence of some external system identification, we
would expect that a developmental agent would have dif-
ficulty discovering sensor geometry in units other than
those which correspond in some way to motor semantics.

Our method is appropriate for cases with an easily
identifiable reward signal (e.g. activation), linear ballis-
tic motor commands, and a high number of sense ele-
ments. We exploit the structure of the sensorimotor do-
main to produce an explicit mapping between motor com-
mands and sensor features. This map has two interpreta-
tions, one as a primitive behavior that maximizes reward
(the policy or motor map interpretation), and another as
a structure for the sensor array (the geometric or sensor
map interpretation).

The sensorimotor embedding algorithm we present
above, and the general approach of utilizing action spaces
to better understand sensor spaces represents a fun-
damental first step in building a computational model
of vision that follows the “seeing is acting” paradigm
(O’Regan and Noë, 2001).

Moreover any developmental process, and more gen-
erally any autonomous robot, needs to depend on robust
sensorimotor primitives that can adapt to changes over
time. We demonstrate the robustness of our learning pro-
cess under both lesioning and motor map reversal. We
believe that focusing on associating structure with mo-
tor commands that bring about desirable changes in per-
ceptual state, as in foveated retina and localization, will
result in precisely the kind of robust sensorimotor primi-
tives that can provide the basis for further development.

References

Bowling, M., Wilkinson, D., Ghodsi, A., and Milstein,
A. (2007). Subjective localization with action re-
specting embedding. Robotics Research, pages 190–
202.

Dolezal, H. (1982). Living in a World Transformed: Per-
ceptual and Perfomatory Adaptation to Visual Dis-

tortion. Academic Press.

Itti, L. and Koch, C. (2001). Computational modelling
of visual attention. Nature Reviews Neuroscience,
2(3):194–203.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A
database of human segmented natural images and its
application to evaluating segmentation algorithms
and measuring ecological statistics. In Proc. 8th
Int’l Conf. Computer Vision, volume 2, pages 416–
423.

Noto, C. and Robinson, F. (2001). Visual error is the
stimulus for saccade gain adaptation. Cognitive
Brain Research, 12(2):301–305.

Olsson, Lars, Nehaniv, Chrystopher, Polani, and Daniel
(2006). From unknown sensors and actuators to ac-
tions grounded in sensorimotor perceptions. Con-
nection Science, 18(2):121–144.
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