
Communities of InterestCorinna Cortes, Daryl Pregibon & Chris VolinskyAT&T Shannon Research LabsFlorham Park, New Jersey, USAAbstract. We consider problems that can be characterized by large dy-namic graphs. Communication networks provide the prototypical exam-ple of such problems where nodes in the graph are network IDs and theedges represent communication between pairs of network IDs. In suchgraphs, nodes and edges appear and disappear through time so thatmethods that apply to static graphs are not su�cient. We introduce adata structure that captures, in an approximate sense, the graph andits evolution through time. The data structure arises from a bottom-uprepresentation of the large graph as the union of small subgraphs, calledCommunities of Interest (COI), centered on every node. These subgraphsare interesting in their own right and we discuss two applications in thearea of telecommunications fraud detection to help motivate the ideas.1 IntroductionTransactional data consists of records of interactions between pairs of entitiesoccurring over time. For example, a sequence of credit card transactions consistsof purchases of retail goods by individual consumers from individual merchants.Transactional data can be represented by a graph where the nodes represent thetransactors and the edges represent the interactions between pairs of transac-tors. Viewed in this way, interesting new questions can be posed concerning theconnectivity of nodes, the presence of atomic subgraphs, or whether the graphstructure leads to the identi�cation and characterization of \interesting" nodes.For example, Kleinberg (1998) introduces the notion of \hubs" and \authori-ties" as interesting nodes on the internet. The data used by Kleinberg di�ersigni�cantly from the data we consider in that he uses static links to induce agraph over web pages. In our case, we use actual network tra�c, as captured byinteractions between pairs of transactors, to de�ne our graph. Thus in a veryreal sense, the graph we consider is dynamic since nodes and edges appear anddisappear from the graph through time.There are many challenging issues that arise for dynamic graphs and we haveused a speci�c application to focus our research, namely the graph induced bycalls carried on a large telecommunications network. This application is inter-esting, both because of its size (i.e., hundreds of millions of nodes) and its rateof change (i.e., hundreds of millions of new edges each day). Like all networks, itis also diverse in the sense that some nodes are relatively inactive while othersare superactive.



In thinking about dynamic graphs, the �rst question that arises concerns thede�nition of Gt, namely the graph G at time t. The intuitive notion is that Gtconsists of the nodes and edges active at time t, or in a small interval aroundt. We consider discrete time applications where new sets of nodes and edgescorresponding to the transactions from time step t to t+1 only become availableat the end of the time step, for example once a day. Associated with every edgeis a weight that is derived from an aggregation function applied to all (directed)transactions between a pair of nodes at time step t. For example, the aggregationfunction can be the \total duration of calls" or the \number of calls" from onenode to another.Let the graph corresponding to the transactions during time step t be gt. Wecan de�ne Gt from gi where i = 1; : : : ; t in several ways. Let us �rst de�ne thesum of two graphs g and h G = �g � �hwhere � and � are scalars. The nodes and edges in G are obtained from theunion of the nodes and edges in g and h. The weight of an edge in G isw(G) = �w(g) + �w(h)where the weight of an edge is set to zero if the edge is absent from the graph.If one de�nes Gt = gt, Gt is very unstable as it might change dramatically ateach time step. On the other hand, if one de�nesGt = g1 � g2 � : : :� gt = tMi=1 gi;Gt is perhaps too stable, as it includes all historic transactions from the beginningof time. To allow the graph Gt to track the dynamics of the transactional datastream, one can de�ne Gt as a moving window over n time steps:Gt = gt�n � gt�n+1 � : : :� gt = tMi=t�n gi:However, this de�nition su�ers from two problems: �rst, one needs to store thegraphs gi corresponding to the last n time steps to compute Gt, and second, itgives equal weight to all time steps.To allow for a smooth dynamic evolution of Gt without incurring the storageproblems of the moving window approach, we adopt the recursive de�nition:Gt = �Gt�1 � (1� �)gt (1)where 0 � � � 1 is a parameter that allows more (� near 1) or less (� near 0)history to inuence the current graph. An alternative representation of (1) isobtained by expanding the recursion:Gt = !1g1 � !2g2 � : : :� !tgt = tMi=1 !igi (2)



where !i = �t�i(1 � �). This representation highlights the fact that more re-cent data contributes more heavily to Gt than older data. Figure 1 displays thisgraphically. If processing occurs daily, then a value of � = 0:85 roughly corre-sponds to Gt capturing a moving month of network activity. Finally note that theconvex combination de�ned in (1) is \smoother" than a simple 30 day movingwindow as network peaks and troughs, induced say by holiday tra�c patterns,are e�ectively moderated by �.

Fig. 1. Damping factor of edge weights as a function of time steps (days) in the recur-sive de�nition (2) of Gt. The values of � correspond to e�ectively no inuence from anedge after 1 (� = 0:40), 2 (� = 0:65), 3 (� = 0:77), or 4 weeks (� = 0:83).The paper is organized as follows. Section 2 describes the data structurethat we use to capture network activity and to evolve it through time. We alsobriey discuss the strategy we employ to traverse this data structure to quicklyand e�ciently build graphs around individual nodes. Section 3 introduces a pairof examples that illustrate how these subgraphs are used in practice. Section 4summarizes the �ndings and discusses future work.2 Data StructureWe propose a constructive approach to evolving a large time-varying graph. Con-sider a node in the graph, its associated directed edges, and weights associatedwith each edge. A data structure that consists of these weighted directed edgesets for each node is a representation of the complete graph. This data structureis redundant since it is indexed by nodes so that edges must be stored twice,once for the originating node and once for the terminating node. In contrast, adata structure that stores each edge once must be doubly indexed by nodes. The



cost of edge duplication is often mitigated by gains in processing speed whensubgraphs around nodes are expanded. For this reason we have chosen to repre-sent our graphs as a singly indexed list of nodes, each with an associated arrayof weighted directed edges.The data structure outlined above is complete in the sense that it capturesthe entire graph. However in the applications that we are familiar with, the com-putational horsepower to maintain complete graphs with hundreds of millionsand nodes and billions of edges is neither feasible nor desirable. Instead we de-�ne a new graph where the atomic unit is the subgraph consisting of a nodeand its directed top-k edges to other nodes. The meaning of \top" is relative tothe aggregation function applied to transactions associated with each edge, soit might be the top-k edges in terms of the \number of calls." In addition tothe top-k inbound and top-k outbound edges, we also de�ne an overow node,called \other", for aggregating tra�c to/from nodes not contained in the top-kslots. While the value of k determines how well our data structure approximatesthe true network graph, it is worth noting that larger is not necessarily betterwhen network graphs are used to study connectivity of the nodes. For example,assuming that a few percent of all calls are misdialed, do we really want thecorresponding edges reected in the graph? In our experience we have found theanswer to this question to be \no" and have used a value of k that balancescomputational complexity (e.g., as regards speed and storage) with empiricallydetermined accuracy (see below).In practice, the edges may not always be retained in a symmetric fashion.If one node receives calls from many nodes, like 800CALLATT, it overows itstop-k slots so most callers will �nd their edges absorbed by the \other" node.However, any single node making calls to 800CALLATT may not have edges tomore than k other nodes, and the edge will be contained in its top-k edge set.Duplication of edges becomes complete only in the limit as k !1. For all �nitek, the only invariance over the set of subgraphs is that the sum of the outboundedge weights equals the sum of the inbound edge weights, where the sum includesnode \other". For most of our applications, we use k= 9 since most residentiallong distance accounts do not exceed this number of edges (see Figure 2).To accommodate the time evolution of the network graph, the data structuresare updated at �xed time steps. Between updating steps, transactions are col-lected and temporarily stored. At the end of that time period, the transactionsare aggregated and the subgraph updated. The length of the time period rep-resents another trade-o� in accuracy: the longer the time period, the better anestimate of the top-k edge set, but the more outdated the resulting subgraph.In the applications discussed in Section 3, we perform daily updates, therebymaintaining reasonable accuracy while requiring temporary disk space for onlyone day of data. For a more detailed discussion see Cortes and Pregibon (1999).Let Ĝt�1 denote the top-k approximation to Gt�1 at time t � 1 and let gtdenote the graph derived from the new transactions at time step t. The ap-proximation to Gt is formed from Ĝt�1 and gt, node by node, using a top-kapproximation to Eq. 1:
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Fig. 2. Edge set sizes for a random sample of residential accounts. Black bars indicatethe size of the inbound edge set and gray bars indicate the size of the outbound edge set.
Ĝt = top-kf�Ĝt�1 � (1� �)gtg (3)Thus, we �rst calculate the edge weights for all the edges of �Ĝt�1 � (1 � �)gt.The overow node \other" is treated as any other node in the graph. Then foreach node we sort the edges according to their weight. The top-k are preserved,and if there are more than k edges in the edge set for that node, the weights ofthe remaining edges are added to the weight of the edge going from the nodeto node \other". These operations are displayed pictorially in Figure 3 using�= :85.

�
Old top-k edgesnode{labels wts0BBBBBBBBBBBB@
XXX6525467 5:2XXX7562656 5:0XXX6524132 4:5XXX6534231 2:3XXX6243142 1:9XXX7354212 1:8XXX4231423 0:8XXX5342312 0:5XXX5264532 0:2Other 0:1

1CCCCCCCCCCCCA + (1� �)
Today's edgesnode{labels wts0BBBBBBBBBBBB@

XXX6525467 2:0XXX7562656 6:2XXX6524132 0:8XXX5436547 10:0
Other 0:0

1CCCCCCCCCCCCA =
New top-k edgesnode{labels wts0BBBBBBBBBBBB@
XXX7562656 5:2XXX6525467 4:6XXX6524132 3:9XXX6534231 2:0XXX6243142 1:6XXX7354212 1:5XXX5436547 1:5XXX4231423 0:7XXX5342312 0:4Other 0:3

1CCCCCCCCCCCCAFig. 3. Computing a new top-k edge set from the old top-k edge set and today's edges.Note how a new edge enters the top-k edge set, forcing an old edge to be added to Other.



The subgraph consisting of the top-k inbound and the top-k outbound edgesof a node is ideal for fast extraction of larger subgraphs centered on the node.The data structures can be queried recursively for each node in the top-k edgesets of the center node. We grow such subgraphs in a breadth-�rst traversal ofthe data structure. For notational purposes, we denote the edge set of the nodeitself by d1 (depth of 1). Similarly let d2 denote the edge set formed by the unionof d1 and the edge sets of all nodes contained in d1. We rarely explore edge setsgreater than d2 in our applications as they become unmanageably large andremarkably uninformative. Indeed we often apply a thresholding function to theedge weights, even for d2, to further reduce \clutter" in a subgraph. Thus anyedge with weight less than � need not be expanded if one feels that such edgesare inconsequential for the application at hand.In the next section we introduce two applications that exploit the indexstructure of our representation. This is critical since we often need to computeand compare many subgraphs on a daily basis. We have tuned our algorithms sothat the average time for retrieving and rendering a d2 edge set from our datastructure of close to 400M nodes is just under one second (on a single processor).3 ApplicationsIn the telecommunications industry, there are many di�erent types of fraudulentbehavior. Subscription fraud is a type of fraud that occurs when an account isset up by an individual who has no intention of paying any bills. The enabler insuch cases involves either awed processes for accepting and verifying customersupplied information, or identity-theft where an individual impersonates anotherperson. In either case, if left undetected, the fraud is typically only discoveredwhen the bill is returned to sender, often after thousands of dollars have beenlost. In the �rst example we use COI and a \guilt by association" argument todetect new cases of fraud in the network. The second example uses a distancemetric between COI to suggest that a fraudster has assumed a new networkidentity.
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Fig. 4. Guilt by association - what is the shortest path to a fraudulent node?



3.1 Guilt by AssociationWhen a new account is activated on the network, is there any way to label itaccording to its inherent riskiness? In this section we explore this possibilityby de�ning a procedure that assesses risk on the basis of a node's connectivityto other nodes. To illustrate the idea we use data on subscribers from a largemetropolitan city for a one month period. We have labeled the nodes as fraudu-lent or legitimate according to the disposition determined by network security.Figure 4 displays the distribution of the number of edges from a node to theclosest node that is labeled as fraudulent. The �gure shows that fraudsters tendto be closer to other fraudsters than random accounts are to fraud. Speci�callywe see that relatively few legitimate accounts are directly adjacent to fraudulentaccounts. Indeed network security investigators have found that fraudsters sel-dom work in isolation from each other. There are brokers who compromise a legitcustomer's service and then sell this service to their own set of customers. Oreven if there is no organized criminal element operating, fraudsters often cannotstop themselves from sharing their tricks with their friends and family. Becausefraudsters seem to form an a�nity group, we label the network connectivityprocess to catch fraud as \guilt by association."
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Fig. 5. Left Panel. A guilt by association plot. Circular nodes correspond to wirelessservice accounts while rectangular nodes are conventional land line accounts. Shadednodes have been previously labeled as fraudulent by network security associates. RightPanel. Calibration plot. The per cent fraud is plotted against the number of fraudstersin a COI for 105 cases presented to security. The plotting symbol is the number of thesecases at each level of fraud infection. The curve superimposed on the points is the �tof a simple logistic model.



Our process consists of the following steps:{ compute the d2 edge sets for all new accounts one week after they are acti-vated on the network{ label each of the nodes in the resulting COI as fraudulent or legitimate basedon the most recent information from security associates{ rank the new accounts according to how much fraud appears in their COIThe left panel in Figure 5 provides an illustrative example where �ve nodessurrounding a new suspect (labeled XXX8667665) were recently deactivated forfraudulent behavior. The right panel summarizes the performance of the method-ology for 105 cases presented to network security. While there is noise in the plot,it clearly shows that the probability that an account is fraudulent is an increasingfunction of the number of fraudulent nodes in its COI.3.2 Record Linkage Using COI-based MatchingConsider the case where we have information on an account that was recentlydisconnected for fraud and we are looking for a new account that has the sameindividual behind it. Assuming that identity-theft was the root cause of the priorfraudulent account, it is likely that the new account is under a di�erent name andaddress than the old one (i.e., the fraudster has now assumed the identity of a newvictim). We attack this problem with the intuition that while the subscriptioninformation is not useful for matching network IDs to the same individual, thecalling patterns of the new account, as characterized by its COI, should notchange very much from the previous account. The left panel of Figure 6 showsa convincing case where two nodes appear to belong to the same individual. Wenow have a problem of matching COI, with the underlying problem of derivinga reasonable distance function to quantify the closeness of a pair of COI.The matching problem is computationally di�cult because of the size ofour network { each day we see tens of thousands of new accounts. For eachof these, we need to compute their COI, and then the distance from each ofthese to the COI of all recently con�rmed fraudulent accounts. Assuming forthese purposes that we maintain a library of the most recent 1000 fraudulentaccounts, tens of millions of pairwise distances need to be computed. To carryout the computations we use a d2 COI for all accounts in our \fraud library"and d1 COI for all new accounts.The distance between two COI depends on both the quantity and the qualityof the overlapping nodes. The quantity of the overlap is measured by countingthe number of overlapping nodes and calculating the percentage of a COI whichconsists of overlapping nodes. However all overlapping nodes are not equallyinformative, so we need a measure of quality as well. Many graphs will inter-sect at high-use nodes, such as large telemarketing shops or widely advertisedcustomer service numbers. An informative overlapping node is one that has rel-atively low in- and out-degree, and in the best case, is shared only by the nodesunder consideration for a match. We now describe a measure that captures thesenotions.
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1 2 3 4 5 6 7 8 9 10Fig. 6. Left Panel. Visualization of linking accounts by their COI. The two individualCOI are superimposed (in the double-lined oval) to show their similarity. Solid linesindicate edges common to both COI, while dashed lines and nodes indicate subgraphsbelonging to only one COI.Right Panel. Success of COI matching. Observed proportionsof matching node-pairs versus decile of predicted matching probability.Given two COI for nodes a and b with a non-zero overlap, we de�neOverlap(COIa;COIb) =Xo2O waowbowo 1dao 1dbo ;where O is the set of all overlapping nodes in the two COI, wao is the weight ofedges between node a and node o in a's d1 edge set, wo is the overall weight ofnode o (the sum of all edges in the d1 edge set for node o), and dao is the minimaldistance from node a to node o in COIa. [In the case where dao > 1, it is notclear what the weight wao should be, since there is no direct edge between thetwo. For this application we elected to set such a weight at wao = :01 in order tominimize the e�ect of these overlaps]. Intuitively, the numerator measures thestrength of the connection from a and b to the overlap, while the denominatorcorrects for an overlap node which is either common to many nodes or is furtherin the graph from a or b. This measure scores high for overlap nodes that havestrong links to the nodes of interest, but otherwise have low overall volume.A decision tree built with this score, along with several covariates obtainedfrom the information provided by the subscriber, produces a \matching" prob-ability for any list of node pairs. For some of the node pairs that we scored,investigators were able to determine whether the old and new accounts belongedto the same individual. The right panel of Figure 6 shows the performance ofour COI matching model. For the sample of pairs that we validated (n = 1537),



we display the observed proportion of matching node-pairs for each decile ofpredicted matching probability.4 ConclusionsIn this paper we introduced the concept of a dynamic graph and our de�nitionas an exponentially weighted average of the previous graph and a new edge set.We introduced a data structure that could be used to capture the evolution ofa graph through time that was amenable to the exponential weighting scheme.This data structure allows the subgraph around any particular node to be quicklyand e�ciently expanded to an arbitrary diameter. Several applications wereintroduced that capitalized on this feature.We have concentrated on the computational aspects of building and evolvingthe data structure for real applications. We have not explored the statisticalaspects of treating our data structure and the associated algorithm for traversalas an approximation Ĝkt (d) to the true graph Gt where k denotes the size of thetop-k edge set maintained in the data structure and d the diameter employedby the traversal algorithm. We hope to initiate research to explore these ideasin the near future.Another topic for further research is how to prune an extracted subgraph sothat only informative edges and nodes are retained. A common approach from(static) graph theory is to extract the strongly connected component. However,we feel that certain features inherent to telecommunication networks such asasymmetric edges (due to some customers subscribing to a competitor), sinks(toll-free calling) and sources (large corporations), makes strongly connectedcomponents an inferior choice for pruning back a COI.The updating and storage of the data structures are facilitated by the pro-gramming language Hancock, [Cortes et al (2000)]. Hancock is a domain-speci�cC-based language for e�cient and reliable programming with transactional data.Hancock is publicly available for non-commercial use athttp://www.research.att.com/~kfisher/hancock/:ReferencesKleinberg (1998) Authoritative sources in a hyperlinked environment. J. Klein-berg. Proceedings 9th ACM-SIAM Symposium on Discrete Algorithms, 1998.Cortes and Pregibon (1999) An information Mining Platform. C. Cortes &D. Pregibon. Proceedings of KDD99, San Diego, CA.Cortes et al (2000) Hancock: A language for extracting signatures from datastreams. C. Cortes, K. Fisher, D. Pregibon, A. Rogers, & F. Smith. Pro-ceedings of KDD2000, Boston, MA.


