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Abstract

This paper examines the potential of ASTER data in mapping the geology of an arid area in Africa using spectral analysis techniques.
Equipped with a relatively broad spectral range, fine spatial resolution, and a large number of bands, ASTER data are especially attrac-
tive to many geological researchers in Africa, due to their open availability and associated minimal costs for academic use. The spectral
analysis of an ASTER dataset covering part of the Neoproterozoic Allaqi-Heiani suture, Southern Egypt has demonstrated it to be more
effective in detecting lithological units than traditional multispectral analysis procedures, such as the maximum likelihood classifier. The
effectiveness of these spectral analysis techniques used in this study lies in their ability to compare a pixel spectrum with the spectra of
known pure materials, extracted from the spectral endmember selection procedures, including minimum noise factor (MNF), pixel purity
index (PPI) and n-dimensional visualization. Among the three spectral analysis algorithms employed, spectral angle mapping (SAM) and
spectral feature fitting (SFF), produced accurate classifications that were close to the ground reference data. Linear spectral unmixing
(LSU), although failing to achieve a satisfactory overall classification accuracy, demonstrated potential in depicting intercalation of lay-
ered rocks. It is concluded that these spectral analysis techniques have proven to be useful tools in geological mapping of the arid regions
in Africa, with their abilities to capitalize on the enhanced spectral information of ASTER data.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: ASTER data; Spectral analysis; Allaqi-Heiani suture; Geological mapping
1. Introduction

The recent developments in remote sensing technology
have witnessed two major trends in sensor improvement.
One trend is the refinement of spatial resolution of satellite
borne imagery (approximately 1 · 1–4 · 4 m), character-
ized by commercial sensor systems such as IKONOS,
QuickBird, and OrbView-3. These sensor systems have in
mind a target market primarily in urban and suburban
applications, where the major data sources had been aerial
photographs. The other trend is the enhancement of spec-
tral resolution from a few broad spectral bands, to tens
or hundreds of relatively narrow, contiguous and/or non-
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contiguous bands. This trend is evidenced by the increasing
utilization of various suborbital and satellite imaging spec-
trometers (i.e., hyperspectral sensor systems), such as air-
borne visible/infrared imaging spectrometer (AVIRIS),
compact airborne spectrographic imager (CASI), and the
moderate resolution imagine spectrometer (MODIS) on
board the NASA’s EOS Terra and Aqua satellites (Jensen,
2000; Zhang et al., 2000). Imaging spectrometry technology
is especially welcomed by many earth scientists because it is
sensitive to the physical and chemical properties of materi-
als, making it possible to identify the mineral constituents
of the surface within the instantaneous-field-of-view
(IFOV) (Chabrillat et al., 2000).

The advent of hyperspectral data sets with a large
number of bands has pushed the limits of the traditional
multispectral classifiers such as maximum likelihood,
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ISODATA, and even artificial neural network approaches
(Leica Geosystems, 2003), although their usefulness in
hyperspectral data has not been obviated completely. As
a result, various spectral analysis techniques have been
employed, which make use of the imaging spectroscopy
model for approaching hyperspectral data sets. The opera-
tion of these techniques often requires the ability to analyze
the spectrum of a pixel and compare them with those of
pure (i.e., endmember) materials. Some of these techniques
were not specifically devised for processing hyperspectral
images (Green et al., 1988), and in many respects, are sim-
ply an extension of the techniques that were originally used
for multispectral data sets. Many other techniques, despite
their primary design for use with hyperspectral data, can
be applicable logically to multispectral data (Research
Systems, Inc., 2002).

As a matter of fact, there is no universal agreement cur-
rently on the minimum number of bands beyond which a
dataset can be called hyperspectral, although it is often
assumed that hyperspectral data should contain at least
10 spectral bands with relatively narrow and often contin-
uous bandwidths in the visible and near infrared (VNIR)
spectral regions (Baltsavia, 2002). To date, the most widely
used hyperspectral data are probably acquired by airborne
hyperspectral systems such as AVIRIS (developed by JPL)
and HyMap (manufactured by Integrated Spectronics).
The value of these datasets lies in its extremely high spec-
tral resolution (for example, AVIRIS has 224 spectral
channels, each 10 nm wide, and spanning the electromag-
netic region from 400 to 2500 nm) (NASA AVIRIS,
2004), and also in its capability to achieve a possibly very
fine spatial resolution when the flight height is arranged
sufficiently low. In spite of these advantages, these datasets
often incur a relatively high cost per data acquisition mis-
sion, having limited availability as with all airborne sys-
tems. Therefore, it may not be the ideal choice for many
earth science studies in Africa, where economic constraints
Table 1
ASTER data characteristics compared with those of Landsat TM/ETM+

Region ASTER

Band no. Spectral (lm) Spatial (m) Radiometric

VNIR 1 0.52–0.60 15 8 bits
2 0.63–0.69
3N 0.78–0.86
3B 0.78–0.86

SWIR 4 1.60–1.70 30 8 bits
5 2.145–2.185
6 2.185–2.225
7 2.235–2.285
8 2.295–2.365
9 2.360–2.430

TIR 10 8.125–8.475 90 12 bits
11 8.475–8.825
12 8.925–9.275
13 10.25–10.95
14 10.95–11.65
are often a concern. Additionally, the geometric distortions
present in AVIRIS datasets can sometimes be hard to rec-
tify due to the airborne nature of the sensor. A seemingly
possible alternative is the remotely sensed data acquired
by satellite borne imaging spectrometers, such as MODIS.
Although equipped with a high radiometric capability that
collects remotely sensed data in 36 spectral bands, MODIS
has coarse spatial resolutions ranging from 250 · 250 m to
500 · 500 m and 1 · 1 km, which have limited its primary
use to the monitoring of land ecosystems, and atmospheric
and ocean variables at the global level (NASA MODIS,
2004).

The advanced spaceborne thermal emission and reflec-
tion radiometer (ASTER) is of special interest to geological
remote sensing in that it has a relatively broad spectral
range, fine spatial resolution, and a large number of bands
among the five sensor systems (i.e., ASTER, CERES,
MISR, MODIS, and MOPITT) on board the NASA’s
Terra platform. As shown in Table 1, ASTER is sensitive
to emissions in the thermal infrared region, which goes
beyond the 2500 nm upper limit of many contemporary
hyperspectral sensor systems (Rowan and Mars, 2003).
Another advantage of ASTER data is that band 3 (NIR)
of the sensor has an additional back-looking telescope that
allows the collection of stereoscopic images at 15 m spatial
resolution. This along-track stereoscopic capability makes
ASTER ideal for geological and geomorphological inter-
pretation (Welch et al., 1998; Yamaguchi et al., 2001; Liu
et al., 2004). The most appealing aspect of ASTER data
for African geoscientific studies is the open availability of
its data, including on-demand standard products for
research use at a very low cost (Rowan and Mars, 2003).

While not a typical hyperspectral sensor system, ASTER
does provide substantial improvements over the traditional
multispectral sensor, such as Landsat thematic mapper
(TM), in spatial, spectral and radiometric resolutions. To
many researchers, ASTER has become a vital data source
Landsat TM/ETM+

Band no. Spectral (lm) Spatial (m) Radiometric

1 0.450–0.515 30 8 bits
2 0.525–0.605
3 0.630–0.690
4 0.750–0.900
Pan. 0.52–0.90 15 (ETM+)
5 1.55–1.75 30
7 2.08–2.35

6 10.40–12.50 120/60 (ETM+)
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for geological mapping because of resolution improve-
ments and the free-of-cost data availability. This is espe-
cially true given the possible interrupted availability of
Landsat TM/ETM+ sensor data in the future (NASA
LANDSAT 7, 2004).

The objective of this paper is to employ spectral image
processing techniques that have been used often to process
hyperspectral data to analyze ASTER data for the purpose
of mapping lithological units in arid regions of Africa, with
the hope that these techniques will make effective use of
the richer information content furnished by ASTER’s
relatively high spectral resolution. To this end, we have
concentrated our geological study on part of the Neoprote-
rozoic Allaqi-Heiani suture in Southern Egypt. The follow-
ing section is devoted to introducing the regional setting of
the Allaqi-Heiani suture and to the geology of the study
area, followed by a description of the ASTER sensor
system and the remote sensing dataset used in this research.
The spectral image analysis techniques applied to the
ASTER dataset are then explained and the results are
described. Finally, these results are discussed in terms of
their geological implications.
Fig. 1. The general geology map in the study area covering the Allaqi-H
2. The Allaqi-Heiani suture and the geology of the study area

The Allaqi-Heiani suture is aWNW-ESE trending defor-
mation zone in the northern part of the Arabian-Nubian
shield defined by a S-verging fold and thrust belt. It is dom-
inated by volcano-sedimentary rocks, dismembered ophio-
lites, and syn- and post-tectonic granitoids as shown in
Fig. 1 (Stern, 1994; Abdelsalam and Stern, 1996; El-Nisr,
1997; Abd El-Naby et al., 2000; El-Kazzaz and Taylor,
2001; Ramadan et al., 2001; Abdelsalam et al., 2003). It is
comprised of a 30 km wide zone of highly deformed ophio-
litic assemblages, shelf metasediments, arc volcanics and
volcaniclastics, and granitoids (Abdelsalam et al., 2003).
It extends for more than 250 km from the N-trending Hami-
sana shear zone in the east to Lake Nasser in the west.

Multispectral remote sensing data have long been
employed for geological mapping in arid regions. Several
studies have attempted to use the spectral channels from
Landsat TM to map the Allaqi-Heiani suture. For exam-
ple, Ramadan et al. (2001) used Landsat TM images to
map gold-bearing massive sulfide deposits in the western
part of the Allaqi-Heiani suture. Kusky and Ramadan
eiani suture, Southern Egypt (modify after Abdelsalam et al., 2003).



Fig. 2. (a) The color display of the ASTER data (R, G, B = Band 7, 4, 3)
covering the study area. (b) The image draped (R, G, B = Band 3, 2, 1) on
top of a digital elevation model (DEM) derived from the ASTER band 3
stereoscopic data.
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(2002) used Landsat TM images to remotely sense struc-
tures and their controls on mineralization in the western
part of the suture.

This study focused on the Western Allaqi-Heiani suture
because its lithological variation provides an excellent
opportunity for examining the usefulness of spectral analy-
sis of ASTER data for geological mapping in arid regions.
We have collected ample in situ geological information that
can be used to verify the remote sensing investigation. To
this end, we selected a 10 · 10 km study area (as shown
within the black box in Fig. 1) with low-lying relief and
dominantly WNW-ESE trending ridges that follow the
regional foliation of the layered volcano-sedimentary rocks
and ophiolite assemblages. These ridges are sometimes
interrupted by isolated low-lying hills and peaks of granitic
bodies. This study area occupies part of a S-verging fold
and thrust belt comprising a northern allochthon, a central
allochthon, and a southern authochthon (Abdelsalam
et al., 2003). It falls within the central allochthon and is
dominated by the following rock types: (1) volcano-
sedimentary rocks; (2) ophiolitic rocks; (3) granitic intrusions;
(4) quaternary sediments, dominantly sand; and (5) wadi
fill. The volcano-sedimentary rocks are primarily made-
up of amphibole and quartzo-feldspathic schists, which
might have been of mafic volcanic origin, and psammitic
and felsic volcanic origins, respectively. These are mainly
schistose with a WNW-ESE regional foliation. The opio-
litic rocks comprise serpentinites, talc- and talc-carbonate
schist, and gabbros. Similar to the volcano-sedimentary
rocks, the ophiolites are mostly deformed by WNW-ESE
trending foliation. The granitic intrusions form circular
bodies that cross-cut the regional foliation. These are lar-
gely granitic in composition and they are either not foliated
or weakly foliated. The quaternary sediments are domi-
nantly sands derived from the weathering of the granitic
bodies, although these are sometimes mixed with weath-
ered products of other rock types.

3. The ASTER remote sensing data

The ASTER data used in this study are cloud free level
1B data acquired on April 06, 2001. The image has been
pre-georeferenced to UTM Zone 14 North projection with
WGS-84 datum. The ASTER image was then resampled so
that all 14 bands have the same 15 · 15 m pixel size and
then clipped to the study area. The color display of the
ASTER data (R, G, B = Band 7, 4, 3) covering the area
is shown in Fig. 2a. The drape of the image (R, G, B =
Band 3, 2, 1) on top of a digital elevation model (DEM)
derived from the ASTER band 3 stereoscopic data is
shown in Fig. 2b. ASTER DEMs can be ordered online
from NASA as a higher level product. ASTER DEMs
can also be extracted with specialized software such as
AsterDTM (SulSoft Ltda., 2004), as used in this study.
However, the ASTER DEM is not incorporated in the
subsequent analysis as ancillary data because it did not
help to improve the classification.
A comparison between ASTER and Landsat
TM/ETM+ sensor characteristics (Table 1) demonstrates
that ASTER’s spectral, spatial and radiometric resolutions
are endowed with substantial improvements over tradi-
tional multispectral datasets. One of the spectral enhance-
ments in ASTER occurs in the TIR region, which bears a
significant implication in mapping surface materials and
lithological units, when important rock-forming minerals
do not exhibit absorption features in the VNIR and SWIR
regions (Rowan and Mars, 2003; Vaughan et al., 2003). To
capitalize on this improved spectral information, this study
applies various spectral analysis techniques to the ASTER
dataset in an attempt to identify the most appropriate algo-
rithm(s) to be used with ASTER imagery in mapping geo-
logical units.

4. Remote sensing analysis and results

Many commonly used spectral image analysis techniques
are based on the fact that remotely sensed imagery is sam-
pled with numerous spectral bands at narrow bandwidths
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Fig. 3. The MNF eigenvalues plot of the 14 eigenimages of the ASTER
data.
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(often on the order of tens of nanometers), making it possi-
ble to construct a spectrum for each pixel in the image. The
spectrum can then be compared with the spectra of known
pure materials such as minerals, vegetation, and atmo-
spheric gases. These pure materials are often referred to
as endmembers. The spectra of the endmembers primarily
come from three different sources including (1) image
derived ‘‘pure pixels’’; (2) in situ spectroradiometric mea-
surement; and (3) laboratory based spectral libraries such
as those provided by Johns Hopkins University, the US
Geological Survey, and NASA’s Jet Propulsion Laboratory
(ASTER Spectral Library, 2004). The use of in situ mea-
surements and the laboratory-based library often require
the removal of atmospheric and topographic attenuation
from the remotely sensed image (Jensen, 2005). The exis-
tence of possible vertical scaling anomalies in ASTER data
and SWIR crosstalk from band 5 and band 9 makes the
data difficult to use for spectral analysis based on direct
comparisons with library or field spectra (NASA ASTER,
2004). Conducting further rigorous radiometric corrections
to the ASTER data in order to obtain surface reflectance
and radiance is also not feasible because the information
about the atmospheric properties above the study area at
the time the ASTER data were collected (such as baromet-
ric pressure, relative humidity, and visibility) are not avail-
able. Therefore, we have employed the endmembers derived
from the image using pixel purity index and n-dimensional
visualization procedures for the subsequent analyses.

To effectively extract endmembers from high dimen-
sional remote sensing data and to effectively process the
data, it is often necessary that the dimensionality of the ori-
ginal data be decreased and noise in the data be segregated
first, so the visualizing complexity and computational
requirement for the subsequent analyses can be reduced.
This is often achieved through applying a minimum noise
fraction (MNF) transform to the high dimensional data.
Once the inherent dimensionality of the image data is
determined using the MNF transform, endmembers can
then be derived by using PPI and n-dimensional visualiza-
tion techniques from the higher-order MNF eigenimages.
These endmembers can be compared subsequently with
the remote sensing data to determine the surface materials
of each pixel by employing one of the spectral analysis
algorithms, such as spectral angle mapper (SAM), spectral
feature fitting (SFF), or linear spectral unmixing (LSU).
The methodology of the spectral image analysis techniques
applied to the ASTER data are explained below. The
results from these techniques are described and compared
with each other, and with those obtained from traditional
multispectral image classification techniques, such as max-
imum likelihood classification.

4.1. Minimum noise fraction (MNF) transform

The MNF transform is composed of two consecutive
principal component (PC) transforms (Green et al.,
1988). The first PC transform focuses on whitening noise
by decorrelating and rescaling the noise in the data, pro-
ducing data in which the noise has unit variance and no
band-to-band correlations. The transformed noise-whit-
ened data are then subjected to a second standard PC
transform, giving rise to final outputs that are not corre-
lated and are arranged in terms of decreasing information
content (Research Systems, Inc., 2002). The eigenvalues
of the 14 output MNF eigenimages of the ASTER data
are displayed in Fig. 3.

In a common practice, MNF components with eigen-
values less than 1 are usually excluded from the data as
noise in order to improve the subsequent spectral process-
ing results, since eigenimages with near-unity eigenvalues
are normally noise-dominated (Jensen, 2005). However,
Fig. 3 shows that all the eigenvalues of the transformed
ASTER data are greater than 1, although the actual value
does drop off with increasing component order. Conse-
quently, all the 14 bands of the ASTER data were retained
for subsequent data processing. The dimensionality of the
data, however, is still very manageable compared to most
hyperspectral analyses.

The MNF transform applied to the ASTER data
achieved a reasonable separation of coherent signal from
complementary noise, therefore the MNF transformed
eigenimages were employed and coupled with pixel purity
index and n-dimensional visualization techniques to facili-
tate the extraction of the endmembers. As in many studies,
decorrelation and scaling of the noise in the MNF trans-
form provide good insight into the relationship between
different endmembers of the image and their spatial distri-
bution of coherency.

4.2. Pixel purity index

Identifying endmember pixels whose spectra are extreme
(or spectrally pure) is not a simple task, especially in
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high-dimension image datasets. This is because most pixels
often contain varying proportions of different materials of
more than one type. Unlike training sites in multispectral
data, which are usually arithmetic mean spectral vectors
that can be selected easily manually or with regional
growth tools (Jensen, 2005), the extraction of endmembers
often has to be based on rigorous mathematical algorithms,
such as pixel purity index.

Pixel purity index (PPI) is a means to determine auto-
matically the relative purity of the pixels from the higher-
order MNF eigenimages using the convex geometry
argument (Boardman, 1993; Boardman et al., 1995). By
repeatedly projecting n-dimensional scatter plots of the
MNF images onto a random unit vector, a PPI image is
formed in which the digital number (DN) of each pixel cor-
responds to the total number of times that the pixel was
judged as ‘‘extreme’’ (i.e., falling onto the ends of the unit
vector) in all projections. Typically, the brighter the pixel in
the PPI image the higher the relative purity because it was
more frequently recorded as being a spectrally extreme
pixel. To reduce the number of pixels to be analyzed for
endmember determination and to facilitate the separation
of purer materials from mixed, a 10,000-projection of the
scatter plot and a threshold factor of 2.5 is applied to the
PPI image to select the most pure PPI pixels.

4.3. n-Dimensional endmember visualization

After applying PPI thresholding, the data volume to be
analyzed has been effectively reduced. However, it is still
possible that many less ‘‘pure’’ pixels have crept in as candi-
date endmembers during the automatic selection process.
To further refine the selection of the most spectrally pure
endmembers from the derived two-dimensional PPI image
and more importantly, to label them with specific endmem-
ber types (i.e., to assign these endmembers to specific rock
types), it is essential to reexamine visually the selected pixels
in the n-dimensional feature space and to assign them man-
ually to appropriate types (Boardman, 1993; Boardman and
Kruse, 1994). This is accomplished by using two or more
MNF eigenimages to form a n-dimensional scatter plot.
All the pixels that were previously selected using the PPI
thresholding procedure are displayed as pixel clouds in the
n-dimensional spectral space. To make possible the visuali-
zation of a scatter plot with more than two dimensions, the
pixel clouds of high dimensions are cast on the two-dimen-
sional display screen. With interactive rotation and visuali-
zation by an image analyst in the spectral space, the convex
corners of the pixel clouds can be located and designated as
the purest spectral endmembers. As a result, the number of
endmembers to be analyzed is further reduced. The actual
spatial locations of these final spectral endmembers are then
determined in the two-dimensional image space of theMNF
or the original dataset, and they are labeled with the specific
endmember types for these locations.

The pixel values of all the 14 MNF eigenimages are used
to form a display of the n-dimensional visualization projec-
tion of the PPI thresholded pixels. Any number of combi-
nations of bands may be displayed to create the n-
dimensional feature plot (e.g., a combination of only two
or three coherent MNF eigenimages produces a two- or
three-dimensional scatter plot). However, to enable the
interactive and automatic random rotation of the axes, at
least three bands must be selected. During rotation, groups
of pixels at the corners of the rotating scatter plot that can
be isolated from other data clouds will be chosen as differ-
ent endmembers that correspond to specific rock types.
With reference to their actual locations in the image space,
these different types of endmembers are then labeled with
the appropriate rock types and highlighted with different
colors. The mean spectra (reflectance values) of all end-
member groups or the spectra of individual endmembers
are then derived from the original images based on their
spatial location.

For the ASTER dataset covering the study area, five
major types of endmembers including sand, gabbro and
mafic meta-volcanic rocks, talc-carbonate schist, wadi fill,
and granite and felsic meta-volcanic rocks were extracted.
The profile of the spectral characteristics of these endmem-
bers is presented relative to the band numbers in Fig. 4.
The five image spectra derived from the n-dimensional end-
member visualization procedure are used as reference spec-
tra for subsequent spectral image analysis. In general, the
overall shapes of the spectral curves of the reference end-
members are similar. However, they can be distinguished
easily from one another based on the differences in both
the angles of the curves and the magnitude of digital num-
ber. The difference in digital number between the extracted
endmembers is more significant though, especially in the
VNIR and SWIR bands (Fig. 4).

4.4. Spectral angle mapper

In order to extract thematic information from the
ASTER image it is often necessary to compare individually
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each unclassified pixel of the image with the image-derived
reference spectra and then determine which reference spec-
trum most closely resembles the spectral characteristics of
the pixel. Spectral angle mapper (SAM) is a procedure that
determines the similarity between a pixel and each of the
reference spectra based on the calculation of the ‘‘spectral
angle’’ between them (Kruse et al., 1993). Both the pixel
and reference spectra are considered as vectors in the fea-
ture space with its dimensionality (n) equal to the number
of bands. The ‘‘angular distance’’ between a reference spec-
trum vector (t) and the unknown pixel measurement vector
(r) in n-dimensional space is computed using the following
equation (Research Systems, Inc., 2002):

a ¼ cos�1

Pn
i¼1tiriPn

i¼1t
2
i

� �1
2
Pn

i¼1r
2
i

� �1
2

0
@

1
A

For each reference spectrum (r) chosen as endmember,
one output image is created with every pixel containing a
value representing the spectral angle (a) between the pixel
Table 2
Accuracy assessment matrices for the four different classification methods use

Sand Gabbro Talc G

(a) Classification accuracy assessment for the spectral angle mapper (SAM) a

SAM

Sand 30 0 0 7
Gabbro 0 34 9 2
Talc 0 0 48 0
Granite 0 4 0 52
Wadi fill 0 11 2 2
Total 30 49 59 63
Percent 100.00 69.39 81.36 82

(b) Classification accuracy assessment for the spectral feature fitting (SFF) ap

SFF

Sand 27 2 0 3
Gabbro 0 33 0 9
Talc 0 5 43 0
Granite 3 1 0 43
Wadi fill 0 8 16 8
Total 30 49 59 63
Percent 90.00 67.35 72.88 68

(c) Classification accuracy assessment for the linear spectral unmixing (LSU)

LSU

Sand 30 1 0 18
Gabbro 0 37 4 8
Talc 0 10 51 3
Granite 0 1 2 33
Wadi fill 0 0 2 1
Total 30 49 59 63
Percent 100.00 75.51 86.44 52

(d) Classification accuracy assessment for the maximum likelihood classificatio

MLC

Sand 30 13 3 16
Gabbro 0 1 0 0
Talc 0 7 50 0
Granite 0 28 6 47
Wadi fill 0 0 0 0
Total 30 49 59 63
Percent 100.00 2.04 84.75 74
(t) and that specific reference spectrum. The resulting spec-
tral angle maps form a brand new SAM image cube with
the dimension equal to the number of reference spectra
(five in this case). Within an image for a specific reference
spectrum the pixels with a smaller spectral angle appear
darker, standing for a close resemblance to that reference
spectrum (Research Systems, Inc., 2002; Jensen, 2005).
To convert the SAM image cube into a classification
map, each pixel is assigned to the reference spectrum class
that yields the closest match (Kruse et al., 1993; Boardman
and Kruse, 1994). Fig. 5a displays the final classification
map derived from the SAM analysis procedure being
applied to the original ASTER dataset. Pixels for sand
are assigned to red, gabbros and mafic meta-volcanic rocks
to green, talc-carbonate schist to blue, wadi fill to cyan, and
granites and felsic meta-volcanic rocks to yellow. Reference
sites with a total of 267 points are collected from visual
image interpretation coupled with in situ verification. Table
2a shows the accuracy assessment matrix of the SAM anal-
ysis results based on the 267 reference sites. In addition to
d in the study

ranite Wadi fill Total Percent

pproach

0 37 81.08
23 68 50.00
0 48 100.00
2 58 89.66
41 56 73.21
66 267

.54 62.12 76.78

proach

0 32 84.38
1 43 76.74
4 52 82.69
0 47 91.49
61 93 65.59
66 267

.25 92.42 77.53

approach

3 52 57.69
22 71 52.11
28 92 55.43
6 42 78.57
7 10 70.00
66 267

.38 10.61 59.18

n (MLC) approach

23 85 35.29
0 1 100.00
7 64 78.13
36 117 40.17
0 0 0.00
66 267

.60 0.00 47.94
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total classification accuracy, detailed producer and user’s
accuracies characterizing measure of omission and com-
mission error, respectively, are also reported in all the accu-
racy assessment tables.

SAM based classification has been impressively accurate
in mapping the talc-carbonate schist (with a very high
user’s accuracy of 100% and a producer’s accuracy of
81.36%), especially for the small bodies that occur in the
central part of the images enclosed within the NW-trending
belt of mafic meta-volcanic rocks. The classification is also
effective in identifying sand in general (with a very high
producer’s accuracy of 100% and a user’s accuracy of
81.08%). Particularly it shows the circular body in the cen-
tral part of the image as dominated by sand, which has
resulted from the weathering of what was once a granitic
mass, the remnants of which are now preserved as isolated
outcrops within the circular structure. In addition, the clas-
sification clearly shows two bands of gabbroic bodies
trending WNW and enclosing a crescent-shaped granitic
body. However, the gabbro and mafic meta-volcanics have
to some extent been overestimated with a user’s accuracy
around 50%.

4.5. Spectral feature fitting

Primarily used for geologic applications, spectral feature
fitting (SFF) is an attempt to directly identify a material by
fitting unknown image spectra to reference spectra (Clark
and Roush, 1984; Clark et al., 1990, 1991, 1992; Crowley
and Clark, 1992; Clark and Swayze, 1995; Swayze and
Clark, 1995). The reference spectra can be extracted either
from the image-derived endmembers or from a spectral
library. As an absorption-feature-based method, both the
reference and unknown spectra should have the continuum
(background reflectance) removed (Clark and Roush, 1984;
Crowley and Clark, 1992; Swayze and Clark, 1995). The
fitting of the image spectra to reference spectra is accom-
plished through two-step spectral matching procedures
including image scaling and least-squares-fit. The first step
involves scaling each reference endmember spectrum to
match the unknown spectrum. For every reference spec-
trum, a ‘‘scale’’ image is created by first subtracting the
continuum-removed-spectra from one, thus inverting them
and making the continuum zero. A single multiplicative
scaling factor is then determined for the reference spectrum
to match the unknown spectrum. The second step is based
on the computation of the least-squares-fit between each
reference endmember and the unknown spectrum on a
band-by-band basis. The total root-mean-square (RMS)
error derived from the least-square-fit is then used to form
an error image for each reference endmember. For each
reference spectrum a ‘‘fitting’’ image is then created based
on the ratio of scale/RMS images indicating how well
each unknown pixel spectrum resembles a reference spec-
trum (Research Systems, Inc., 2002). The higher the pixel
values in the ‘‘fit’’ image, the better the matching of the
corresponding pixels to a reference spectrum. The final
classification image derived from SFF is displayed in
Fig. 5b showing the five classes with the same color scheme
and its corresponding accuracy assessment matrix is given
in Table 2b.

Similar to the SAM image the SFF image is very suc-
cessful in showing the geographic extent of sand covered
regions (with a producer’s accuracy of 90% and a user’s
accuracy of 84.38%), demonstrated especially by the circu-
lar body in the middle of the image. In addition, the SFF
image is more effective than the SAM image in refining
the extent of the regions covered with gabbros and mafic
meta-volcanics (76.74% for SFF vs. 50% for SAM in user’s
accuracy). For example, the relationship between the gab-
bro bands and the crescent-shaped granitic body is better
defined in this image than the SAM image. However, this
method is less effective in showing the actual extent of
the talc-carbonate schist than SAM (82.69% for SFF vs.
100% for SAM in user’s accuracy). This classification
shows more talc-carbonate schist in the NW and SE parts
of the image than the reference data indicate. Moreover, it
fails to show the small talc-carbonate bodies that are pres-
ent in the central part of the image.

4.6. Linear spectral unmixing (LSU)

Linear spectral unmixing (LSU), also known as sub-
pixel sampling, or spectral mixture analysis, is a widely
used procedure to determine the proportion of constituent
materials within a pixel based on the materials’ spectral
characteristics (Boardman, 1989, 1992). In a geological
environment most of the pixels of an image are not pure.
A pixel value is often a mixture of the energy reflected or
emitted from different materials within IFOV. However,
most classification procedures only report the class of the
dominant constituent of the pixel. Using sub-pixel sam-
pling classification, on the other hand, each unknown pixel
spectrum is represented as a combination of a finite num-
ber of spectrally distinct materials. As a result the abun-
dance of each pure endmember class within the pixel is
informed (Jensen, 2005). A linear combination model is
often assumed to determine the relative contributions of
the different spectral components present in the image,
although it is acknowledged that some non-linear behavior
due to microscopic scale mixing occurs (Chabrillat et al.,
2000).

With all of the theoretically pure endmembers identified
in the image, the linear spectral unmixing is solved for each
unknown pixel spectra and produces a cube of fraction
images of each endmember. The fractions for each pixel
of all derived images are positive and depict a sub-pixel
estimate of the relative abundance for the corresponding
endmember at that pixel and all these fractions will sum
to 1 (Adams et al., 1995). It is also possible to produce a
standard-deviation image or a root-mean-square (RMS)
error image, revealing the units that are not satisfactorily
explained by the proposed model. The fraction image cube
can be similarly collapsed into a hardened classification
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map by assigning each pixel to the class of the dominant
endmember.

Fig. 5c is the final classification image derived from LSU
analysis procedure and Table 2c is the corresponding error
matrix. This image is superior over the SAM and SFF
images in its ability to indicate accurately the nature of
intercalation between different materials, especially in the
layered rocks represented by the meta-volcanic rocks and
the talc-carbonate schist and gabbros. However, this classi-
fication has assigned a greater portion of the image to talc-
carbonate schist (with a user’s accuracy of 55.43%), far
removed from what the reference data suggest. Sand and
gabbros and mafic meta-volcanics are also overestimated
(with user accuracies of 57.69% and 52.11%, respectively).
This may be caused by misclassification of Wadi fill to
other classes, evidenced by its high omission error (i.e.,
10.61% for Wadi fill in producer’s accuracy).

Compared with results obtained from the spectral anal-
ysis procedures, the traditional multispectral image classifi-
cation method (i.e., maximum likelihood) is less effective in
the identification of different lithological units (Fig. 5d), as
evidenced by a very low total classification accuracy of
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47.94% (Table 2d). The spatial distribution detail of the dif-
ferent rock types is completely missing in the maximum
likelihood classification. Much of the study area has been
classified as either sand or granitic and felsic meta-volcanic
rocks (with producer’s accuracies of 35.29% and 40.17%,
respectively). The only relatively accurate classification is
the talc-carbonate (with a producer’s accuracy of 84.75%
and a user’s accuracy of 78.13%), especially for the small
bodies in the central part of the image. This might be due
to the very distinctive spectral characteristics of these rocks
compared to the surrounding rock types. However, even in
the case of such distinctive lithology the talc-carbonate
schist has been somewhat over-estimated especially in the
western part of the study area.

5. Discussion

In general, not one spectral analysis procedure is consis-
tently superior to others judged by the comparison of our
analysis results with the reference data. Each of the three
hyperspectral classification techniques has its unique
strengths and limitations. The spectral analysis method
based on LSU has a relative advantage in terms of better
definition of the intercalation nature of layered rocks. How-
ever, in terms of overall classification accuracy, SAM and
SFF procedures seem to yield classification results closer
to the reference data, with total accuracies of 76.78% and
77.53%, respectively.

SAM classifies most of the rock types used as endmem-
bers accurately, with the exception of only gabrro and
mafic meta-volcanic rocks. SAM also reveals many impor-
tant details of various lithological units such as the small
lessees of talc-carbonate schist within the mafic metavolca-
nic rocks. The advantage of SAM is attributed to the fact
that SAM determines the similarity of two spectra based
on calculating the ‘‘spectral angle’’ between them. As long
as the angles or directions of the spectral vectors, which
determine the ‘‘color’’ of materials, are different, SAM
can differentiate them. The spectral angles of sand and
talc-carbonate schist are quite distinctive compared with
the other three types in the spectral profile (Fig. 4). There-
fore, it is not a surprise that SAM is very effective in differ-
entiating sand and talc-carbonate schist from other
materials. However, given that only the angles or ‘‘direc-
tion’’ of the spectra vector is taken into consideration
and the magnitude of reflectance or ‘‘length’’ of the vector
is ignored, SAM is insensitive to the unknown reflectance
gain factor (Research Systems, Inc., 2002). Since the
‘‘length’’ of a spectral vector is related to the fullness of
the illumination a pixel receives, as long as the colors of
the materials are similar all possible illuminations are trea-
ted equally in SAM. This explains why gabbro and mafic
meta-volcanic rocks are confused with wadi fill in the
SAM based classification. For example, 11 out 49 reference
points for gabbro were misclassified as Wadi fill, and 23 out
66 reference points for wadi fill were misclassified as gab-
bro (Table 2a). These two materials have a close similarity
in the spectrum ‘‘direction’’, although they are still separa-
ble based on the spectral ‘‘length’’ (Fig. 4).

SFF demonstrates better effectiveness in mapping the
extent of the regions covered with gabbros and mafic
meta-volcanic rocks than SAM. It has proven to achieve
the best balance of classification accuracy among different
rock types probably due to the fact that SFF is primarily
reliant on the spectral ‘‘length’’ of the spectrum vectors,
which are relatively more distinguishable in the spectral
profile of the endmembers (Fig. 4). The weakness of SFF
is that it expects image data to be reduced to surface reflec-
tance or emissivity. The continuum corresponding to a
background signal unrelated to specific absorption features
of interest should be removed from the reflectance and the
separation of temperature from emissivity data prior to
analysis are also expected (Clark and Roush, 1984; Green
and Craig, 1985; Kruse et al., 1985). Failing to do so due
to the lack of atmospheric property information may have
caused the misclassification of certain rock types. For
example, the talc-carbonate schist is not separable from
the surrounding wadi fill with 16 out of 59 reference points
for talc-carbonate schist misclassified as wadi fill.

LSU classification has the advantage over other proce-
dures in showing the intercalation nature of the layered
meta-volcanic rocks. However, the LSU classification
result in general is unacceptable with a total accuracy of
only 59.18%. This may be ascribed to the fact that LSU
assumes we have identified all of the theoretically pure clas-
ses (endmembers) in the image data such that their propor-
tions will sum to 1 at each pixel. While the identified
endmembers are the purest pixels relative to all others in
the image, in reality, it is still likely that albedo contribu-
tions from other materials are present in the pixels (for
example, soil background reflectance). Even if the pixels
extracted are spectrally pure many scientists find it difficult
to identify all possible constituent endmembers in each
pixel of the image (Jensen, 2005). An additional explana-
tion could be the existence of possible non-linear combina-
tions in the pixels of the image and the high correlation of
the ASTER SWIR bands, which has violated another
assumption of the LSU algorithm (Chabrillat et al.,
2000).

Compared with traditional multispectral classification
procedures, however, all the spectral analysis techniques
used here have exhibited greater effectiveness in classifying
the ASTER data for the purpose of geological mapping in
arid regions. This is probably because maximum likelihood
classifier has to rely on mean spectrum vectors associated
with the training sites, rather than the extreme spectra of
the pure endmembers derived from PPI and n-visualization
procedures. As a result, it is unable to take advantage of
the rich spectral information provided by ASTER data.

6. Summary and conclusions

This paper has investigated the usage of ASTER data
for mapping the geology of an arid area in Africa. As
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one of the recent developments in remote sensing
technology, ASTER data provide not only improved spa-
tial and radiometric resolutions, but also much richer spec-
tral information content when compared with traditional
multiple spectral remote sensing data such as Landsat
TM/ETM+. The open availability of ASTER data with
an associated minimal cost makes it a very attractive choice
for many earth science researchers in Africa.

ASTER data covering part of the Neoproterozoic All-
aqi-Heiani suture, Southern Egypt were analyzed using
several spectral image processing techniques, which have
demonstrated their potential in estimating lithological units
through a better use of the enhanced spectral characteris-
tics of the ASTER data.

The spectral analysis techniques employed were imple-
mented based on the comparison of a pixel spectrum with
the spectra of known pure materials, which can be effec-
tively extracted using endmember selection procedures
such as minimum noise factor (MNF), pixel purity index
(PPI) and n-dimensional visualization.

Three spectral analysis procedures, including spectral
angle mapper (SAM), spectral feature fitting (SFF) and lin-
ear spectral unmixing (LSU), were applied to the ASTER
data. They resulted in better classification accuracies than
multispectral classifier, such as the maximum likelihood
classifier. Although LSU exhibits potential in depicting
intercalation of layered rocks it fails to achieve a satisfac-
tory overall classification accuracy, possibly due to the vio-
lation of the two LSU key assumptions: the linearity of
mixture model, and the purity and completeness of spectral
endmembers. SAM and SFF, which examine the differ-
ences in either spectral angle or reflectance magnitude of
the spectrum, produced accurate classifications that were
sufficiently close to the reference data. In spite of some lim-
itations, SAM and SFF proved to be effective techniques in
mapping lithological units in an arid area and their results
can be improved further if data calibration can be applied
with the support of atmospheric information.

SAM demonstrated strength in mapping distribution
detail for lithological units, while SFF was good at achiev-
ing the best balance of classification accuracy among differ-
ent rock types. It is envisioned that a new spectral analysis
technique, which makes use of both the spectral angle and
the reflectance magnitude information of the spectrum, will
be able to produce an improved classification. By bringing
together the strengths of both SAM and SFF, while avoid-
ing their respective shortcomings, a superior technique
should ensue. The development of such a technique thus
will be one of our major future academic pursuits.
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