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is minimized where W is an arbitrary positive definite weighting matrix 
and where the expectation, & [ .], is conditioned on all previous measure- 
ments. As is well known, the solution to this optimization problem is 
obtained from [3] 

1 = A x + z ( r ) C ’ P - ~ { y - C i }  (16) 

i ( O ) = O  (17) 

where 

~ ~ r ~ = ~ 9 2 1 ~ r ~ + ~ 2 2 R o ~ ~ 9 1 1 ~ t ~ + 9 1 2 ( r ) R o ~ ~ L  (18) 

and where the 9, are  partitions of the exponential matrix of 

Furthermore, the solution is independent of W and 

Z = & [ ( x - i ) ( x - i ) ’ I .  (20) 

It may be difficult to  obtain Q, R,  accurately. The sensitivity of the 
performance to R, is studied here. Define the sensitivity matrix 

Use basic properties of the trace function [ l ]  to show 

S= - tr { W E } .  a 
aR0 

Use (18) to show that  the differential of tr( FVX} is  given by 

tr{ W 9 ~ d R 0 [ 9 1 1 + 0 1 2 R 0 1 - ’ }  

+tr{ W ~ 9 , , + ~ ~ R o ~ d ~ ~ , l + c P 1 2 R o ~ ~ ~ } .  (23) 

Use MM - = I to show that for any nonsingular M 

so that 

d~9~l+9l,Ro~~’=-~9ll+9l,Ro~~~~l,dRo~9,l+9l,Ro1~’. (24) 

Combine (18), (23), and (24) and invoke (5 )  to show 

-tr{~~,l+~l,R,l~lWZ~l,W,}. (25) 

Now use Theorem 1 to show that the sensitivity 

S=Sh+So-diagSo (26) 

where 

so& ~ ~ , , + 9 , , R 0 1 - ’ W ~ ~ , - z ~ , , 1 .  (27) 

Notice that the sensitivity is not independent of the weighting matrix W. 
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On the Instability of Largescale Systems 

M. VIDYASAGAR 

Abstract-A set of sufficient conditions for  the instabiliQ of large-scale 
systems is presented. These conditions are much less restrictive than 
similar conditions derived in [l]. 

In a  recent  paper [I], Grujic and Siljak derive a set of sufficient 
conditions for a large-scale interconnected system to be unstable in the 
sense of Lyapunov. Reference [ I ,  theorem 51 appears  to be of limited 
application, since it requires all subsystems to be completely unstable. In 
this note, we study conditions  under which an interconnection of some 
stable and some unstable subsystems is  itself unstable. The set of 
assumptions on  the interconnections, as well as the method of proof, are 
very closely related to  the corresponding items in [I]. However, by a 
slight modification of the technique of [I], we come up with results 
having a significantly larger scope of application. 

The class of large-scale systems under study is described by a collec- 
tion of equations of the form 

x ; ( t ) = f . ( t . x , ( t ) ) +  h q ( t : x j ( t ) ) ,  i = l  ... m 
m 

, 1  (1) 
j =  I 

where xi E R 4 ,  f; : R X R q j R q ,  and h, : R X R?+R* are continuous 
functions. We assume that f . ( t ,O)=O,  h,-(t ,O)=O, Vi , j .  Since we are 
interested in large-scale systems that consist of an interconnection of 
some  stable and some unstable subsystems, we assume without loss of 
generality that for i =  1; . . , k, the equilibrium point xi=O of the system 

x i ( t ) = f . ( r , X ; ( t ) )  (2) 

is asymptotically stable, while for i = k +  1; . . ,m, the equilibrium point 
x i = O  of (2) is unstable. We further assume that there exist Lyapunov 
functions Vi : R X R4+R satisfying the following conditions. 

(AI)  For i= 1;. . , k ,  there exist +,,, +;,, Qi3, and ef4: R+R which are 
functions of class K (see [I]), such that 

where, as usual, 5 is defined by 

and Si is an open neighborhood of the origin. 

tions of class K .  such that 
(A2) For i =  k + 1,. . . ,m, there exist Qi3, Gj4:  R + R ,  which are func- 

- 9 , 3 ( l l ~ , l i ) <  V ; ( t , X i )  < -+i4(llx;ll), VI .  V x ; E S j .  (6) 

Moreover, V , ( O ,  .) assumes negative values arbitrarily close to the origin; 
i.e., given any E>O, there is an xi with l l x i l l  <E, such that V,(O,x,)<O. 

It can be easily verified [2] that (AI) implies that x, = O  is an asymptot- 
ically stable equilibrium point of (2) for i= 1;. . , k ,  while (A2) implies 
that x, = O  is an unstable equilibrium point of (2) for i =  k +  1; . . ,m. 

We now state  the assumptions on the  “interconnection” terms h,. 
(A3) For i . j= 1; .. .m. there exist real constants Q such that 

With these definitions, we can state the first instability result. 
Theorem I: Assume (AIHA3) hold, and define the “test matrix” P 
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bY Assume that  the interconnection terms g,  and g2 in (13) are of the  form 

P,=6,-max{O,$,} (8) g , = a l x 1 x 2 , s i n x U + a 2 x ~ s i n x 2 ,  

where ag denotes the Kronecker delta.. Then  the equilibrium point xi = 0, g 2 = ~ y I x 2 1 s a t ~ x l + x U ~ + ~ 2 x u s a t ~ ~ l + x 2 1 ~ ~ r  
Vi of the interconnected system (1) is unstable if the leading principal 
minors of P are all positive. where a l ,  a2. yl. y2 are nonnegative. and "sat" denotes the  saturation 

Prooj Consider the function  function  defined by 

- 1 ,  i f u < - l  

1, if u> 1. 
a Lyapunov function  candidate where the ais  are positive constants 

to be selected later. Calculating the derivative of V ,  we see that, provided Let the 'I and '2 be defined by 
xi E Si, Vi, we have s ~ = { x I : I x I I G  I }  

S2={X2:x;l+x~2< I }  
m 

V ( t , x , , - . , x , ) =  x a,v;(r,x,)+ 2 2 ai[vvict,xi,l'h,(t,xj) 
m m  

i =  1 i = l  j = 1  

m m m  
Finally, choose the Lyapunov functions 

G --%+i4(lbiIl)+ E c ~'~~4j4(11xjll) 
i =  1 ; = I  j = l  v, = x: 

r n m  

are also positive. Since 

v ( t , X , , .  . . ,x,) G - 2 L3&!!(lbjIl), 
m 

(12) 

it follows that V is negative definite. Moreover, it is clear that V(0,.  . . ) 
assumes negative values arbitrarily close to the origin. Hence, the 
equilibrium point at the origin is unstable [2] .  H 

In the above theorem and proof, it should be noted that the formula- 
tion of the test matrix P. the  conditions on P ,  as well as the method of 
proof, exactly follow the development in [ I ] .  Thus, the  major difference 
between [ I ,  theorem 51 and the present note is  in the assumed nature of 
the uncoupled subsystems. Whereas the assumptions in [I] lparticularly 
the inequahties (43)] require each of the subsystems to be completely 
unstable, the present setup permits some of the subsystems to be stable. 
and requires a more natural type of instability on the part of the 
remaining subsystems. It is also clear that  Theorem 1 can be applied to 
systems of the form 

J =  1 

m 

i i ( r ) = f i ( t , x i ( t ) ) +  2 g i ( t . x i ( t ) : .  . , . x m ( t ) )  (13) 
J=  I 

in which case  the inequality (7) should be modfied  to 

The existence of a  Lyapunov  function Vi satisfying (A2) is only one of 
several known sufficient conditions  for instability. By replacing (a) by 
other conditions, it is possible to generate  alternate instability criteria for 
large-scale systems. 

Example I :  Consider two subsystems described by 

and 

x,= - x 1  

= - x21 + x2p12 

iu = x u  + x:Ix22- 

Then 

C V 1 = 2 x 1  

v vz = [2x21  - 2x,I 

With no interactions, we have 

V I -  - - 2 4  A -+14(x1) 

v 2 =  -2x;1-2x:2 2 -924(x2). 

With the  interaction terms present, we have 

~ 2 a , x ~ + 2 a ~ ( x ~ + x ~ ) * ~  f o r x l E S l , x 2 E ~ 2  

= a 1 ~ 1 4 ( x I ) + ~ 2 ~ 2 4 ( x ~ ) .  

Hence, (14) is satisfied with 

t l l = a l .  t 1 2 = a 2 .  

Similarly, 

~ ~ ~ g ~ = 2 y ~ x ~ ~ s a t ( x , + ~ ~ ) + 2 y ~ ~ ~ ~ s a t ( ~ r ~ + x ~ ~ )  

2Yo(":l+ 4 2 ) =  YoQ24(x2) 

where 

yo max(y1.y2). 

Hence, (14) is satisfied with 

$21 =o, tU= Yo. 
Thus, the test matrix P is  given  by 

P =  [ l:;O]. 

It now  follows, by applying Theorem 1. that instability is assured 
whenever a, < 1. yo< 1. a2 arbitrary. 
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Let 

and 

Stabilizability of the System x( t )  = F . (  t )  + Gu ( f  - h) 
by a  Discrete Feedback Control 

i= / 

After standard manipulations it follows that (5) is stable iff every zero of 
the monic polynomial K. MACIEl PRZYLUSKI 

Abstract-Stabilizability problem for  the  system i ( r ) = F x ( r ) +  G u ( r -  
h)  is considered.  For  appropriate  discrete  model xk + = Axk + Buk- the 
feedback controller  which has the form uk = Z!.=o<xk-i is proposed. It is 
proven that controllabiility of the pair ( A , B )  and  cyclicity of tbe A matrix 
imply stabhbility. Some  extensions and  applications  are also mentioned. 

lies in the  open  disc of the unit radius in the complex plane. It is easy to 
check [from (9) and  (lo)]  that 

I. INTRODUCTION AND PROBLEM STATUlEhT 

In this technical note, a stabilizability problem for  the linear system 

i ( t ) = F x ( t ) + G u ( t - h )  (1) 

where t > O ,  x ( t ) E R " ,  u ( t ) E R m ,  F E R n X " ,  G E R n X m  is considered. 
The positive number h represents time delay in control action. For 
analysis of the problem it is assumed that  the  control u(t )  is constant on 
the intervals [kh, (k+ I)h), k E  N,. Thus, it follows that 

Xk+l'AXk+BUk-l (2) 

where xk=x(kh),   uk=  u(kh) ,  A E R n X n ,  B E R n X m  are  appropriate 
matrices. It is assumed that  the A matrix is cyclic and the  pair ( A , B )  is 
controllable. This implies that there exists a vector b =  Bq such that 
( A , b )  is controllable (see  [2 p. 421). The well-known relations between 
controllability of the pairs ( A , B ) , ( F ,  G)  and the systems (1),(2) are 
recalled briefly in the Appendix. 

The stated problem has the following form. For the system 

It is obvious that exactly one (unique) coefficient of %(A) which is not 
effected by feedback parametersl, i = O ,  1; . . , I  is equal  to a,, the  others 
may by arbitrary chosen numbers. It is known (from Vieti formulas) 
that un must be equal to the sum of all zeros of %(X). Let 

p =  inf {r>lu , l }  
r E N  

and 

zo= %lP. 

Note that lzol < 1 and let 

The monic polynomial #(X) defined by 

gives asymptotically stable closed system 

has  a  representation 

k E No. where 1 > 0 is given  by (14) and all zeros of (16) lie in the open disc of 
the unit radius in the complex pIa?e; hence # is stable. Now it is possible 
to choose feedback parameters {f,}:Ib so that 11. MAIN RESULT 

Theorem: Let ( A ,  b )  be controllable. Then system (3) is stabilizable by 

Proof: From the controllability assumption it follows that  there 
feedback (4). 

exists a (unique) nonsingular matrice S E R n X "  such that 

and the last relation implies stability of (5 )  with 4 =&S. 

A is stable  then (3) is stabilizable by feedback (4) 

smaller zeros in (17) I should be increased. 

Corolfuty: If ( A ,  b )  is not a  controllable but  an uncontrollable part of 

Remark: From proof of the theorem it follows that in order to achieve 
0 1 0 . '  
0 0 1 .. . . .  . . .  111. CONCLUDING REMARKS 

The theorem presented above has the following extensions: 
1) for essentially multiinput (i.e., noncyclic) controllable systems; 
2) for systems 

Xk+l'AXk+BUk-, (18) 
Manuscript received July 23, 1976. 
The author is with the  Politechnika  Warszawska, Instytut Automatyki,  Warsaw, Po- 

land 


