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Abstract. By using Riemann surface theory we obtain results on quadrature domains and identities for 
analytic functions, e.g., existence of multiply-connected quadrature domains, descriptions of their algebraic 
boundaries and results on the multitude of quadrature domains associated to a fixed quadrature identity. 
The main idea is to characterize quadrature domains in terms of meromorphic functions and differentials 
on Riemann surfaces conformally equivalent to the Schottky doubles of the domains. 
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1. Introduction 

The present paper, which is a slightly revised version of unpublished paper [ 11 ], deals 
with so-called quadrature domains and quadrature identities for analytic functions. Let 
us make the following (preliminary) definition. 

Let fl be a domain in C, LP~(~) (1 ~<p ~< oo) the subspace of the Lebesgue space 
LP(f2, dx dy) (dx dy denotes two-dimensional Lebesgue measure) consisting of analytic 
functions in t) and let A(Q) be a subset of Ll(l)). Then t) is a quadrature domain for 
the test class A if there exist points zt . . . . .  zm in f2 and complex numbers akj for 
1 ~< k ~< m and 0 <~j <~ nk -- 1, say, such that the quadrature identity 

f d xdy=  ~. akjfO~(Z~) (1.1) 
"~ k = l  j=O 

holds f o r f e  A(fi). The integer n = Ekm__ ~ n k is called the order of the quadrature identity 
(provided ak, ,~- ~ ~ 0 for all k and the z k are distinct). 

Quadrature identities (1.1) are only of interest if the test class A is sufficiently large 
in some sense. Usually A(f~) will be dense in Ll(f2) or, possibly, dense in L~s(~), where 
L~s(f~ ) (1 ~< p ~< oo) is the subspace of L~(~) consisting of those functions which have 
a single-valued integral in II. Until otherwise stated in this introduction, A will be L~. 

The principal example of a quadrature domain is any disc, in which case m = 1, n = 1, 
z~ is the center and a~.o the area of the disc. This particular quadrature identity 
(sometimes with harmonic functions as test functions) has drawn some attention for a 
couple of decades and different authors have shown, under varying apriori assumptions, 
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that discs are the only domains which satisfy such a simple quadrature identity. See [ 1 ] 
or [6] for short accounts of this and other references. 

More general quadrature identities for analytic functions seem to have been first 
studied by Davis ([8] and papers referred to there) and, in more depth, by Aharonov 
and Shapiro [1]. Later came [6] and [11] and, more recently, [18] and [19]. Beside 
these works of a general character, there are works dealing with various particular 
quadrature identities (other than discs): [7, 14, 17, 21, 22]. 

The present work originates from [ 1 ] in the sense that it is inspired by [ 1 ] and that 
the kinds of problems we consider come from [1]. On the other hand, our work is 
technically independent of [1] and uses other methods. 

Let us briefly review some of the results in [1]. 

(1) f~ is a quadrature domain if and only if there exists a meromorphic function H(z) 
in f~ such that 

H(z) = ~ on ~f~. (1.2) 

([1], Lemma 2.3, see also [8], Theorem p. 154.) 
(2) A simply-connected domain is a quadrature domain if and only if it is the 

conformal image of the open unit disc D under a rational function (with the poles off 
D- ) .  In particular, there exist plenty of simply-connected quadrature domains ([ 1 ], 
Theorem 1 and [8], Theorem p. 158.) 

(3) If t2 is a quadrature domain, ~t2 is part of an algebraic curve. ([ 1 ], Theorem 3). 
In all three cases, the test class of functions is L,~ (t2) and the domains ~ are assumed 

a priori to fulfill 

f dxdy< (z= +iy). (1.3) x 
. IzE 

(When f~ is unbounded, (1.2) has to be accompanied by a growth condition at infinity.) 
Among the questions left open in [1] are: 

(4) Do there exist multiply-connected quadrature domains? 
(5) Is it possible for two different domains to satisfy the same quadrature identity 

(1.1)? 

In the present paper we do, among other things, the following: 
(a) We settle question (4): for any bounded domain 141, bounded by finitely many 

disjoint analytic curves, there exist quadrature domains ~ arbitrarily close to W and 
conformally equivalent to W (Theorem 4). This result, which was new when [ 11] 
appeared, is proved by Riemann surface technique. Today, similar results can also be 
proved by other methods, due essentially to Sakai [18, 19]. We have included such a 
result here (Theorem 9 with corollary). 

(b) As to uniqueness question (5), we have no answer in the simply connected case 
(i.e., we do not know whether two simply connected domains can satisfy the same 
quadrature identity) but we prove that, in general, there exist continuous families of 
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multiply connected domains satisfying one and the same quadrature identity 
(Theorems 11 and 12). 

(c) Further, point (3) above is elaborated a little: We show that the boundary of a 
quadrature domain must be a whole algebraic curve (Theorem 5) and explicit relations 
between the coefficients of the polynomial function of that curve and the data of the 
quadrature identity are obtained (Theorem 10). 

The general idea underlying most results in this paper is that of completing a plane 
domain f~ with a 'back side' t~ so that a compact Riemann surface 

the Schottky double of f~, is obtained (see [20], Ch. 2.2). 
From this point of view (1.2) simply means that the pair (z, H(z)) defines a meromor- 

phic function on ~, namely that function which equals z on f~, equals H(z) on ~ and 
extends continuously over t3fl by (1.2). This gives rise to a generalization of (2) to the 
multiply connected case: 

(d) Let W be a standard domain representing a certain conformal type. Then all 
quadrature domains conformaUy equivalent to W are conformal images of W under 
functions meromorphic on the Schottky double 1~" = W ~ t?W ~ I~ of W (Theorem 3). 
(Another generalization of (2) has been given by Avci [6].) 

It will be convenient at certain stages to also consider more general types of quadrature 
identities than (1.1), namely quadrature identities also involving curve integrals: 

f dx dy = ~ a~jf 0) (zk) + b k f dz + c k f dz, (1.4) 
k = l  j = 0  k = l  ~'k k = l  ~k 

to hold for all f • A(f~). Here 71 . . . . .  7r are arcs in f~, 0~ 1 . . . . .  ~p are closed curves in 
f~ and b k, c k are complex numbers. Identities of the kind (1.4) will be called quadrature 
identities and the domains ~ appearing there, quadrature domains. While a quadrature 
identity (1.1) holds iff the function z on f~ extends to a meromorphic function on fi, as 
indicated above, a quadrature identity (1.4) holds iffthe differential dz on ~ extends to 
a meromorphic differential on ~ (Theorem 3 with corollary). 

A limitation with our methods of working with the Schottky double is that we have 
to require our domains to have finite area and to be bounded by finitely many continua 
(Lemma 1). In [1] they are able to work with the weaker assumption (1.3). However, 
as far as the largeness of f~ is concerned, the difference in assumptions is insignificant 
because Sakai [ 18], Theorem 11.2, has shown that any quadrature domain f~ which a 
priori only fulfills 

f n  dx dy < (1.5) oo 
\ D  IZI 2 

actually has finite area (provided the test class is Ll(t))). 
Another difference is that our methods 2 make the test class La(t~ ) more natural than 

L~(f~). However, the assumption of finite area implies that L2(t)) c Ll(fl)  and it can 
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be shown (according to [1], Section 1.3) that the assumption that f~ is bounded by 
finitely many continua implies that L](~)  is dense in L~(t)), so also this difference is 
insignificant. 

1.1. NOTATIONS AND TERMINOLOGY 

D(a; r) = {ze C: [z - al < r}. 
D = D(0; 1). 
P = C u { ~ } = the Riemann sphere. 
domain: An open, connected and non-empty subset of a Riemann surface. 
analytic: Holomorphic (about functions and differentials). 
conformal map: A map between two Riemann surfaces which is analytic, one-to- 

one and onto. 
continuum: A closed connected set consisting of more than one point. 
analytic curve, regular analytic curve: see Remark 2 after Lemma 1. 
f~- = ~ = f~ w 0f~: The closure of the point set f~ in the Riemann surface it is 

regarded as a subset of. (Also: ~ = the complex conjugate of 
z~C.) 

j, ~, f,  df  and other notations for symmetric Riemann surfaces are defined at the 
beginning of Section 2. 
X': The dual space of a Banach space X. 
H(f~): The space of holomorphic functions on f~ provided with the 

topology of uniform convergence on compact subsets (f~ may be 
any Riemann surface). 

M(O): The space of meromorphic functions on f~ (any Riemann 
surface). 

LP,(f~) and L~s(f~ ) were defined above for f~ = C, 1 ~< p ~< ~ .  
L](f~) and LZs(f~) are complex Hilbert spaces with the inner product 

(f' g) = ~ta f~ dx dy = - --2il ~c~ f g  dz dz" 

When f~ is a Riemann surface there is no natural substitute for the Lebesgue measure 
dx dy, so L2(f~) and L2s(f~) then have to be replaced by spaces of differentials: 
Fa(f~): the Hilbert of square-integrable holomorphic one-forms (differentials) on f~ 

with inner product 

1 t '  
(~ol, co2) / = - -  - -  (.01 A ~ 2  

2i J o  

Fae(f~): the subspace of Fa(O ) consisting of exact forms, i.e., forms of the kind 09 = d f  
with f a single-valued holomorphic function on f~. 

(We are following the notation of [3] here.) 
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In case f~ is a domain in C Fa(f~) and Fae(f~) are isometrically isomorphic with L](f~) 

and L]s(f~) respectively, namely via the map 

LZ~(f~) ~ f ~ f dz ~ F~(f~). (1.6) 

Since a holomorphic differential is always locally exact, we fiend it convenient to 
denote holomorphic and meromorphic differentials by symbols such as d f,  dg, . . .  
even when they are not exact. One then has to keep in mind that the symbols f,  g . . . .  
may stand for functions which are additively multiple-valued. (The work 'function' 
without further attributes will, however, always mean 'single-valued function'.) 

It will be convenient to have names for the kinds of functionals appearing in the right 
members of (1.1) and (1.4). A functional on LZ(fl) or L~Zs(~), which can be written in 
the form of the right member of (1.4), will be called a finite functionaL If all bk and c k 
can be chosen equal to zero, i.e., if it can be written in the form of the right member 
of (1.1), it will be called a point functionaL The number n = Y,~'= ~ n k in (1.1) is called the 
order of the point functional, provided ak, nk- ~ ~ 0 for all k and the z k are distinct. It 
is easy to see that every finite functional is continuous. In Remark 4 after Theorem 1, 
we define finite functionals and point functionals on F~(f~) in a way which is consistent 
with the above definition under the identification (1.6). 

2. A Preparatory Result on Symmetric Riemann Surfaces 

The usual construction of the Schottky double applies only to domains bounded by 
analytic curves (or, more generally, to bordered Riemann surfaces). This is too 
restrictive for our purposes. Therefore, we introduce the concept of a symmetric 
Riemann surface which allows us to take the double (in a slightly more abstract sense) 
of a larger class of domains, namely those which are conformally equivalent to 'one half 
of' a (compact) symmetric Riemann surface. 

By a symmetric Riemann surface we mean a pair (S,j)  consisting of a Riemann 
surface S and an anticonformal involution j on S (cf. [4, 20]). The latter means that j: 
S ~  S is an anti-analytic map w i t h j . j  = id (the identity map). The principal example 
for us is the symmetric Riemann surface obtained by taking the Schottky double of a 
plane domain. The construction of this is briefly as follows. (See [20], Section 2.2 or 
[3], II.3E for details.) 

Let W be a domain in C with F = 8W consisting of finitely many disjoint regular 
analytic curves. Take copy I~ of W and weld W and I~ together along F so that a 
compact surface 1~ = W u F w 1~" is obtained. If z ~ W let ~ denote the corresponding 
point on 1~. Then an involution j on 1~" is defined by 

](z) = ~ and 

j ( ~ ) = z  f o r z e W ,  

j(z) = z for z s F. 
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The conformal structure on IV, inherited from C, extends in a natural way across F 
to a conformal structure on all of ffV. This makes if," into a Riemann surface. The 
conformal structure on IT" will he the opposite to that on W, which means that the 
function ~ ~ ~ serves as a local variable on if', and j  becomes anti-analytic. Thus (if,', j) 
is a symmetric Riemann surface; in fact, even a compact symmetric Riemann surface 
(i.e., I,V is compact as a topological space). 

Let (S,j)  be the compact symmetric Riemann surface obtained by taking the double 
of a plane domain W, so that S = 1~" = W u F u 1~. Then it is easy to recover W, if" 
and F from (S,j): F is the set of fixed points of j, and Wand if'are the two components 
of S \  F. The surfaces W and 1~ are, however, indistinguishable in the sense that when 
looking only at (S,j), it is impossible to decide whether (S, j) was constructed as the 
double of W or as the double of a domain conformally equivalent to I,V. (Notice that 
W and I~" need not be conformally equivalent. ~ is, e.g., conformally equivalent to 
{ 2 e C : z ~  W} if W c C.) 

Let (S,j)  be a compact symmetric Riemann surface in general and let F be the set 
of fixed points ofj. Then S \ F consists of either one or two components. That the first 
case can occur is shown by the example S = P, j(z) = - 1/2, in which case F is empty 
(although S \ F  may consist of only one component, even if F is nonempty). In the 
second case, let Wbe one component of S \ F .  Then Wis a Riemann surface, though 
not necessarily (conformally equivalent to) a plane domain, and (S, j) can be considered 
as the double of W, the 'back side', and remaining component of S \  F, being ~ = j (W).  

In the rest of this paper we shall only consider symmetric Riemann surfaces of the 
second kind stated above, i.e., with S \  F consisting of two components. We will then 
often express ourselves in a somewhat abbreviated way and write, e.g., 'let 
I,V = W u F u t~ be a compact symmetric Riemann surface' to mean 'let (14,', j) be a 
compact symmetric Riemann surface such that I,V\ F consists of two components, W 
and if', F being the set of fixed points o f f .  

We will always denote the involution on a symmetric Riemann surface by the letter 
j or by putting a - over the argument. Thus,j(z) = ~. z and ~ are called conjugate points. 
For meromorphic functions f and differentials d f  we define 

f ( z )  = f(~), d f =  d(f) .  (2.1) 

Thus, f and d f  are also meromorphic. The set of fixed points of j  will always be denoted 
F, and is also called the symmetry line of the symmetric Riemann surface. 

The following lemma shows, among other things, which plane domains can be 
doubled in the above sense of being identifiable with one half of a compact symmetric 
Riemann surface. 

LEMMA 1. Let I'~ be a domain in P. Then a necessary and sufficient condition that there 
exists a compact symmetric Riemann surface (S,j) such that, with F the set of fixed points 
of j, S \  F consists of two components and such that f~ is conformally equivalent to one of 
them, IV, is that 
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(a) the number of components of P \ ~ is finite and at least one, and 
(b) no component of P \ f~ consists of a single point. 

Suppose (a) and (b) hold and let f:  W ~ f~ be a conformal map. Then 

(i) ~ has a finite area if and only if  d f  ~ F a e ( W  ). 
(ii) I f  f extends to a meromorphic function in a neighbourhood of W u F then 8~ is a 

finite union of analytic curves. 
(iii) I f  f extends to a meromorphic function on S then Of~ n C is part of an algebraic curve. 

If, moreover, f~ u Of~ ~ P then 8f~ c~ C is a whole algebraic curve, possibly minus 

a finite number of points. 

REMARKS. (1) The conditions (a) and (b) can be summarized as 'Sf~ (or P \ f ] )  
consist of finitely many, and at least one, continua'. 

(2) (ii) requires a definition of'analytic curve'. We shall use the following terminology. 
A connected subset F o fa  Riemann surface Wis a regular analytic curve if for each ~ ~ F 
there exists a conformal map f from D onto a neighbourhood U of ~ such that f maps 
D & ~ onto U c~ F. This is the same as saying that F is a one-dimensional real analytic 
submanifold of W(with the subset topology on F and regarding Was a two-dimensional 
real analytic manifold). Note that we do not require F to be closed so that F may be 
an 'arc' only. It is easy to see that, e.g., the symmetry line of a compact symmetric 
Riemann surface is a finite disjoint union of regular analytic curves. 

A subset o fa  Riemann surface is an analytic curve if it is the image of a regular analytic 
curve under some nonconstant analytic map defmed in some neighbourhood of that 
regular analytic curve. 

(3) An analytic curve, as defined above, may have various kinds of singular points. 
It is, however, easy to see that the singularities on 0f~ that can appear in (ii) of the 
theorem, are of very restricted types due to the fact that the map f in the lemma (which 
parametrizes Of~) is univalent in W. In fact, the only possible singularities are cusps 
pointing inwards to f~ and different parts of 8f~ having points or segments in common 
(this includes, e.g., rectilinear slits). 

(4) By an algebraic curve (in C) we mean a subset of C of the kind 
{x + iy ~ C : Q(x, y) = 0}, where Q is a nonconstant polynomial with real coefficients 
and irreducible over the complex numbers. 

(5) The hypothesis that f~ w Of~ 4 P in (iii) is necessary for the last conclusion to 
hold. An example which shows this is 

S = P, j(z) = 2, W = {z ~ C : Im z > 0}, f ( z )  = Z 2. 

Here f is univalent on W and meromorphic on S, but fl  = f ( W )  = C \ [ 0 ,  oo) so that 
Of~ c~ C = [0, oo), which is not a whole algebraic curve ([0, oo) = {x ~ R : x >/0}). 

Proof of Lemma 1. Iff~ satisfies (a) and (b), then f~ can be mapped conformally onto 
a domain W c P bounded by regular analytic curves by repeated use of the Riemann 
mapping theorem in a well-known manner, and this domain can be doubled in the usual 
way. 
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Conversely, if t2 is conformally to W with W as in the lemma, then OW = F, and F 

has only finitely-many components, and at least one, and therefore the same must be 
true for Off. Therefore (a) holds. (Clearly, connectivity (ff) = genus (S) + 1 ; cf. [20], 
Section 2.2.) Moreover, F consists of regular analytic curves, in particular no component 
of F consists of a single point. This proves (b), since the property of having an isolated 
boundary component which consists of a single point is a conformally-invariant property 
for subdomains of compact Riemann surfaces. 

(i) Follows from 

l fodZd , 1 I d f ^  d f =  Ildfll 2 area (f~) 2i 2i w 

(ii) If f extends to a meromorphic function in a neighbourhood of W ~ F f ( F )  is 

by definition a finite union of analytic curves (since F is a finite union of regular analytic 
curves). Since f ( F )  = 0f~, as is easily checked, this proves (ii).. 

(iii) Suppose f extends to a meromorphic function on S and put g = J~ Then f and 
g are two nonconstant meromorphic functions on the compact Riemann surface S. 
Hence, by the classical theory [9], Proposition IV.11.6, there exists a non-trivial, 

irreducible polynomial 

P(z, w) = ~ akjZkW j (2.2) 

such that P(f ,  g) = 0 on S. Since g = f on F this shows that 

P(z, 5) = 0, for z e f ( F )  c~ C. (2.3) 

(If oo e f ( F )  (2.3) has no obvious interpretation at z = 0% so we exclude that point from 
consideration.) 

The polynomial P with the above properties is uniquely determined up to a constant 
factor and it is not hard to see that this factor can be chosen so that 

akj = ajk" (2.4) 

We shall call polynomials P with the property (2.4) self-conjugate. Equation (2.4) is 
equivalent to the polynomial Q(x,  y) = P(x  + iy, x - iy) having real coefficients. 

Thus, choosing P in (2.3) to be self-conjugate, the first conclusion of (iii) follows from 

(2.3) since 0ff~ = f (F) .  
To prove the second statement of (iii) a more detailed investigation is necessary. Let 

m be the order of f ,  that is the number of times it takes almost every value. Then g also 
has order m and the polynomial (2.2) is of degree at most m in each ofz and w separately. 
This follows from the classical construction of P (see [3], Ch. V.25 or [9], Ch. IV. 11). 
Actually, the degree of P in each of z and w is exactly m as we shall see in a moment. 

Put V = {z e C : P(z, 5) = 0}, Vo = {isolated points in V}, V1 = V \  V o . Then it is easy 
to see that V o is a finite set. (More generally, V has only finitely-many components.) 
Now, under the assumption ff u Of ~ P, we shall prove that Off c~ C = VI, which will 
complete the proof of (iii). 
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We have already seen that 0fl c~ C c V, which, of course, implies 0~ n C c VI. 
Therefore, and since all = f (F) ,  it only remains to prove that f ( F )  c~ C D Vl, or simply 

f ( F )  = 1/1. (2.5) 

Our fwst step is to prove that f and g generate the field of meromorphic functions 
on S (that f and g are a primitive pair, in the terminology of [9]). By assumption, 
P\(f~ w 0~) = P \ f ( W u  F) is a nonempty open set. Therefore there exists a point 
zc  P \ f ( W u  F) whose pre-image under f,  f - l ({z}),  consists of m distinct points, 
~l, - . . ,  ~,, (because, quite generally when f has order m, there are only finitely-many z 
for which there are less than m points in the pre-image of z). Clearly 
~l, . . . ,  ~,,,e W = j ( W )  (since z q ~ f ( W u  F)). Now, since f is univalent on W, g is 
univalent on I~. Therefore, g(~l) . . . .  , g(~m) are distinct and it is well-known ([3 ], Ch. V, 
25D and 25F) that the existence of a point z such that g takes m ( - order o f f )  distinct 
values on f -  1 ({z}) is sufficient (and necessary) f o r f  and g to generate the function-field. 

In passing we remark that the fact that f and g generate the function field on S implies 
that the polynomial (2.2) is of a degree exactly m in z and w separately ([9], Proposition 
IV. 11.9). 

Now take a point Zo c Vl. In order to prove (2.5) we have to find a point ~o • F with 

f(~o) = Zo. 
By the definition of V l , there exists a sequence {zn} (n = 1, 2 . . . .  ) of distinct points 

in V converging to z o. For each n (n = 1, 2, . . .) there is a point ~n • S with 

f (~ , )  = z,,  g(~,) = ~,. (2.6) 

In fact, because P is irreducible there is for any pair (z, w) • C z with P(z, w) = 0 a point 
c S with f(~)  = z, g(~) = w (see e.g. [9], proof of Theorem IV. 11.4), and (z,, 2~) is such 

a pair. Since S is compact, we may assume that {¢,} converges to some point ~oe S 
and, by continuity, (2.6) then will also hold for n = 0. 

From (2.6) we have 

f(~, ,)  = g(~,)  = f (~ , ) ,  g(~,,) = f(~,,)  = g(~,,) (2.7) 

for all n, that is both f and g take the same value at ~'n as at ~, (n = 0, 1, 2, ...). We aim 
at showing that this implies ~'o = ~o. Since f and g generate the function field on S, every 
meromorphic function h on S can be written in the form 

h(~) = Ro( f (~ ) )  + R l(f(~))g(~) + " '" + R m -  l ( f (~) )g(~)m-  l, (2.8) 

where Ro, . . . ,  R,, _ 1 are rational functions ([9], Proposition IV. 11.10). Equation (2.8) 
holds in the point-wise sense for all ~ • S for which the right member makes sense, the 
exceptional set being those finitely-many ~ for which there appear expressions such as 
0/0, ~ / ~ ,  ~ _+ ~ ,  0" ~ in the right member. In particular (2.8) holds for almost all 

= ~,. Therefore, by (2.7), h(~',) = h(~,) for almost all n and hence, by continuity, 
hCo) = h(~o). 

Thus, every meromorphic function on S takes the same value at ~'o at ~o. But this 
clearly implies ~'o = ~o since, e.g., the Riemann-Roch theorem implies that the 
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meromorphic functions on S separate points on S. Therefore, ~o e F and since 
f(~o) = Zo and z o e V~ was arbitrary, we have established (2.5). This completes the proof 
of (iii) (and Lemma 1). 

3. Some Basic Results on Quadrature Identities 

We now begin the study of quadrature identities. This section contains some basic 

results on quadrature identities on compact symmetric Riemann surfaces. 

TH E OR EM 1. Let IYV = W u F w 14"be a compact symmetric Riemann surface of  genus 
p with W con formally equivalent to a plane domain, and let dg be a meromorphic differential 
on W with no singularities on W u F (in particular dg ~ Fa(W)). Then, for all d f  e Fa(W) 

f w  d f A d g = 2 n i ~ r e s ( f d ~ , ) -  ~ k=, ~kdff~kd~" (3.1) 

where e 1 , i l l , . . . ,  ap, tip is a canonical homology basis for W such that each ek lies in W 
and such that each fig avoids the poles of  dg. Here, f denotes any single-valued integral of 
d f  in W \ U £ =  , ilk. 

REMARKS. (1) That ~l, fll . . . . .  ctp, fin is a canonical homology basis for l~'means that 
it is a system of closed oriented curves in 14"which defines a basis for the first homology 

group of/,~', and having the further property that, for each k = 1 . . . .  , p, a k intersects flk 
once from the left to the right and that no other curves intersect each other. See [9], 

Ch. Ill. 1, for details. In our applications we will always choose the basis a 1 . . . . .  fin for 
14" such that each ak lies in W. The easiest way to construct such a basis is as follows. 
Let F1 . . . .  , Fn + 1 be the components of F, oriented so that W lies to the left. For each 
k = 1 . . . . .  p take a k to be F k moved slightly into W and take flk such that fl~ c~ Wgoes 
from F n + ~ to F~, such that/~k = fit, (as a point set) and such that flk intersects only a k . 
It is obvious that with al,  . . . ,  fin constructed this way, the surface W \ U ~ =  ~ fit will be 
connected and simply connected. Actually, this holds independently of the construction 

of al . . . .  , tin, as a mere consequence of ct k c W, k = 1, . . . , p .  Of course, the curves 
cq, . . . ,  fin can always be chosen such that they avoid any given finite set (e.g., the poles 
of d~ in the theorem). 

(2) Since W \ U ~ = I  flk is connected and simply connected there exists asingle-valued 

integral f of d f  in W \ U ~ =  l fit,. Here f is uniquely determined up to an additive 
constant, and because Yw res d~ = Y.~ res d~ = 0, the value of Y~w res ( f  d~) does not 
depend upon this constant. 

(3) Suppose the singular parts of d~ are 

~o akj d~ d~(~) = j  (~ S ~ S + ,  + regular, (3.2) 

expressed in terms of suitable local variables ~ at the singular points ~ ,  . . . ,  ~,, of d~, 

and put 

= - t d~. (3.3) Ck 
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Then (3.1) takes the form 

~ nk ~ ~etkCk df  A dg = 2ra ~ akj 
re k=, j=O J! f(j)(~k)+ 

d f, (3.4) 
k = l  

where f~)  ((k) denotes the j th derivative of f at (k with respect to the local variable 
chosen there. Observe that Z~'= ~ ako = X res d~ --- 0 in (3.2) and (3.4). 

(4) Functionals on Fa(W) (with W as in the theorem) of the kind appearing in the 
right member of (3.4) (with Zkm= t ago = 0) will be called finitefunctionals. Those which 
moreover satisfy ago = 0 (k = 1,. . . ,  m) and Ck = 0 (k = 1 . . . .  ,p) will be called point 
functionals. If W happens to be a subdomain of C these notions agree with the 
corresponding notions for L~(W) (see Section 1) when L~(W) is identified with Fa(W) 
via (1.6). (Observe that E~m=tako = 0 implies that there exist arcs ~,~ . . . . .  7r in 
W\U~ '  ~ ~/3~ with end points among ~l . . . . .  (m such that, for suitable coefficients 
b~ . . . . .  b~, Z~'= i akof(~k) = Z~= ~ b k ~ df fo r  every r i fe  Fa(W), w i t h f  a single-valued 
integral of dfin W \ ~  ~ ilk-) It is easy to see that every finite functional is continuous. 

Proof of Theorem 1. It suffices to prove (3.1) for d f  which extend continuously to 
W u F since such d f  are dense in Fa(W) and both members of(3.1) depend continuously 
on df. Let W' = W \ ~ ' =  1 fig. Then W' is a simply connected subdomain of W and 
d f  has a single-valued integral f in W'. Let us split each oriented curve flk c~ W 
(k = 1, . . .  ,p) into two identical copies, flk + and fl~-, in such a way that the oriented 
boundary of W' becomes 

P p 
ew'  = r +  

k = l  k = l  

where F is oriented so that W lies to the left of it. Thus fig + is fig n W regarded as 
bounding the part of W' to the left of flk C~ W, and similarly for fl~-. 

If  ( ~ flk C~ IV, let ( + ~ tiff and ~- ~ fl~- denote the two boundary points of W' arising 
from ~. Then 

= f df. (3.5) f ( ~ + )  
g cx k 

Moreover, we have 

f ~ d ~ = f ~ r e d ~ + f ~  d ~ - - f ~ z , d ~ - f ¢ ~ r e d ~ = f ~  d ~ - f ~  d ~. (3.6) 

Now, using (3.5), (3.6) and the fact that d~ = d~ along F we get 

d f ^  d~=  f d f ^  d~ = ~ f d ~  
re  w '  ~W' 

k l k l 
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=f~w,  f d g - k ~ , ( S ~ , +  f d g - ~ p ; _  f d ~ ) + k ~ l I ~  d f ' f ~  d~ 

= f dg-  ~ 5 d f" d~+ dg 
W' k = l  oc k k = l  

= 2hi ~ res f  dg - 2 dr" dg. 
14 I k = l  L ~t k 

This proves the theorem. 

THEOREM 2. With l~ = W u F w W as in Theorem 1, let dg ~ Fa(W ). Then dg extends 
to a meromorphic differential on l~ if and only if the functional L ~ Fa(W )' defined by 

L(df)= f df^dg (df~ro(w)) 
J W 

is a finite functional. When that is the case the singular parts and periods of d~ and the data 
of L are related according to (3.2)-(3.4). 

Proof The 'only if' part of theorem follows immediately from Theorem 1. To prove 
the 'if' part, suppose L in the theorem is a f'mite functional, say is given by 

L(df)=2nik2ffil  jffiOE ~.akjf(J)(~k)+ k = l  Ck ~k d f  ( d f e  F a ( W ) ) ,  

where ~ ,  fl~ . . . . .  ap, tip is a canonical homology basis for l~as in Theorem 1, and which 
avoids all the ~k" It is a classical result in the theory of compact Riemann surfaces [9], 
Ch. III.2-3, that on I~ (or any compact Riemann surface) there exists a unique 
meromorphic differential dG with 

(i) poles, located outside the curves a~, . . . ,  tip, with arbitrarily prescribed singular 
parts, subject to the only condition that the sum of the residues be zero, and 

(ii) the periods 5~ dG (k = 1, . . . ,p)  (alternatively, the periods ~ dG) arbitrarily 
prescribed. 

In particular, there exists a meromorphic differential dG on I~ such that the singular 
parts and the periods of d(7 are given by 

n~ akj d~ 
dG(~) = ~o + regular 

J=  (~ ~ ~---~+ 1 

at ~k (k = 1 . . . .  , m) and 

f a d G  = (k = 1 p). (3.7) ~ C k 

(It is more convenient to apply (i) and (ii) on d(7 than on dG itself.) 
Now, Theorem 1 together with Remark 3 following it shows that this gives 

df  ^ dG = ~ a .  f~.) (¢k) + C k df  = L (df) for all d f~  F~(W) 
W = jffiO ~ k=l ~k 
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Thus Swdf  A dG = S w d f  A d~ for all d f  e F,(W). Since dg and dGI w both belong 
to F , (W) this shows that dGlw = dg. Hence, dG provides an extension of dg to 14' and 

the theorem is proven. 

REMARK. Given any continuous linear functional L on Fa(W) there clearly exists a 
dg e F~(W) with L (df) = ~ w d f  A d~ (df  ~ ra(W)) since the form - (1/2/) S w d f  ^ d~ 
is an inner product on F.(W). Theorem 2 says that this dg extends meromorphically 
to 1~ if and only if L happens to be a finite functional. 

4. Main Theorems 

By means of conformal mappings the results of Section 3 lead quickly to our principal 
theorems, 

Let g: W---, f~ be a conformal map between two Riemann surfaces W and ~. Then 
g gives rise to an isometric isomorphism 

g*: Fa(~)--, F , (W) 

by pull-back of differentials, i.e., 

g* (df) = d ( fog )  for d feFa( f2  ). 

Further, g* has an adjoint 

g**: Fa(W )' -~ F~(O)' 

defined by 

g**(L)= Log* f o r L e r a ( w ) ' .  

Now suppose L ~ Fa(W)' is a finite functional. Then the same holds for g**(L). 
Indeed, if L is given by 

L ( d f )  = ~ akjf(J)(~k) + c k d f  (d fe  F.(W)), (4.1) 
k = l  j = O  k = l  k 

then, for d F e  F~(f~), 

g**(L) (dF) = L(g* (dF)) = L (d(Fog)) 

= ~ ~ akj(Fog)(J)(~)+ ~ c k f d(Fog) (4.2) 
k = l  j = O  k = l  ~k 

k = 1 j = O k ~ 1 (0tk) 

where z k = g(~g) and the bkj are linear combinations of the akj with coefficients involving 
the derivatives of g at the (k" 

After these preliminaries, we now state one of our main theorems. 

THEOREM 3. Suppose f2 is a domain in C bounded by finitely many continua and of finite 
area, 1~" = W u F u 1~ is a compact symmetric Riemann surface and g: W--, f~ is a 
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conformal map. Then dg extends to a meromorphic differential on ~ if and only if the 
functional 

In  f dx dy (4.3) L(f)  

on L~(~) is a finite functional. Moreover, the integral g of dg is single-valued on I;V if and 
only if L is a point functional. 

Proof. Regarding L as a functional on Fa(~ ) instead of L~(f~) via (1.6) it takes the 
form L ( f  dz) = -(1/2i)  Sn f dz A d~" ( f  dz e r'a(~'~)) , or 

L ( d f ) = - l f n d f A d 5  (dfeFa(f~)). (4.4) 

Let ~p: f~ ~ W be the inverse map offi  Then 

1 f d(fo ~b) A d5 q~**(L) (d f )  = L (d(fo  ~)) = 2i 
J n  

- 2i d ( fo  ~b) n d(g o--~5) (4.5) 

af 
- 2i d f  ^ d~ ( d f e  Fa(W)). 

W 

Now L is a finite functional if and only if (p**(L) is a finite functional as we saw above 
and, by (4.5) and Theorem 2, this occurs if and only if dg extends to a meromorphic 
differential on 1~'. This proves the first statement in the theorem. The second (and last) 
statement follows from the relations between the singularities and periods of dg and the 
data in the functional L (see Remark 4, below). 

REMARKS.  (1) Notice that when f~, as a subdomain of C, is bounded by fmitely-many 
continua and has finite area, then it is: bounded by finitely many, and at least one, 
continua regarded as subdomain of P. Therefore it follows from Lemma 1 that when 
f~ satisfies the hypotheses in the theorem the Riemann surface W and the map g always 
exist. Therefore Theorem 3 shows how to generate all quadrature domains of finite area 
and bounded by finitely many continua. 

(2) Disregarding differences in a priori assumptions on the domains, Theorem 3 
generalizes the result ([ 1], Theorem 1; [8], Theorem p. 158) that the simply connected 
quadrature domains (for point functionals) are obtained as images of the unit disc D 
under rational functions with all poles outside D - .  In fact, when f~ is simply connected, 
W in the theorem can be taken to be D and 1~ can be identified with P, the involution 
being ~b(z)= 1/2. Since the meromorphic functions on 1~ are exactly the rational 
functions, this identifies our result with that of [ 1 ] and [8] in the simply connected case. 

(3) Our technique of considering extensions of functions to the Schottky double can 
be regarded as a kind of reflection method. Another type of reflection method has been 
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used by Avci [6], Theorems 13 and 14, to obtain results analogous to our Theorem 3. 
(4) The relations between the singular parts and periods of dg on the one hand, and 

the data of L on the other hand, are obtained by combining (3.2)-(3.4) with (4.1)-(4.2) 
and (4.4)-(4.5). This yields that if dg is given by (3.2)-(3.3) the quadrature identity of 
f~ = g ( W )  is 

1 f ,  d f A d 2 =  ~ ~ bkjf (J)(zk)+ ~ c k fg  d f  ( d f rFa ( f l ) )  (4.6) 
2i t, = ~ j = o k = ~ (~,,,~ 

for suitable bkj and cj, or (with akj = bkj+ 1) 

f dx dy = Z akjf •) (Zk) + bk f dz + 
,~ k = l  j = O  k = l  )'k 

+ ~ C k ~  f d z  (f~L](f2)) .  (4.7) 
k = 1 J g ( ~ k )  

Here ~l, fll . . . . .  ~p, tip is a canonical homology basis for I~" as in Theorem 1, 
m, n l , . . . ,  nm and p are the same integers as in (3.2)-(3.3), z k = g((k), akj are linear 
combinations of the akj in (3.2) and the Ck in (4.7) are - (1/2/) times the ck in (3.3). 
Further, 71,-. . ,  ~', are arcs in f l \ U P =  l g([3k) with end points among Za . . . . .  z,, and 
b~ . . . . .  br coefficients such that (with the bko in (4.6)) 

bkof(Zk) = ~ b k f df (4.8) 
k = l  k = l  7k 

for all d f e  Fa(f~ ). In (4.6) and (4.8) f denotes any single-valued integral of d f  in 
f~\U~= 1 g(fl~). Equation (4.8) is possible to satisfy because 
Z~'= 1 bko = - ~ E res dg = 0 (it is easy to see that bko = - rc resc~ d~). 

It follows from these relations between (3.2)-(3.3) and (4.7) that the second term in 
the right member of (4.7) vanishes if and only if dg has no residues and that the last 
term vanishes if and only if dg has no 'fl-periods'. Since dg, moreover, has no 'a-periods' 
(because g is single-valued on W), it follows in particular that the right member of (4.7) 
is a point functional if and only if the integral g of dg is single-valued on all of l,V. 

By restating Theorem 3 in another form, we obtain the following result similar to [ 1 ], 
Lemma 2.3. 

COROLLARY 3.1. Suppose f2 is a domain in C bounded by finitely many continua and 
of finite area. Then the functional (4.3) on L](t~) is a finite functional if and only if there 
exists a meromorphic differential h(z) dz in f~ such that 

dz = h(z) dz along O~. (4.9) 

Moreover, (4.3) is a point functional if and only if there exists a meromorphic function H ( z) 
in f~, extending continuously to f~ w O~ such that 

z = H(z) on 0f~. (4.10) 
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REMARKS. (1) (4.9) is to be interpreted as follows. There exists a single-valued branch 
H(z) of the integral of h(z) dz in some neighbourhood of Of~, extending continuously to 
0D such that z = H(z) + const, on each component of 0f~. 

(2) Equation (4.10) shows that H(z) is the so-called Schwarz function for OD (see 
[8]). 

Proof of Corollary 3.1. For simplicity we prove only the second half of the corollary. 
The proof of the first half is similar, the only difference being that one has to handle a 
multiple-valued meromorphic function H(z) instead of a single-valued one. 

Take a compact symmetric Riemann surface W = W w F w 1$" and a conformal 
map g: W ~  ~. This is possible by Lemma 1. Let (p be the inverse map ofg. 

Suppose that (4.3) is a point functional. Then g extends meromorphically to W by 
Theorem 3 and the function H = ~ o @ is seen to have the required properties. 

Conversely, suppose that H exists such that (4.10) holds and put f = H o g. Then f 
is a meromorphic function on W which extends continuously to F and, by (4.10), 
satisfies f = ~ there. Hence, f yields an extension ofg to W, namely by setting g(~) = f(z) 
for ~ ~ I~ u F. By applying Theorem 3 again the desired conclusion follows. 

Now, let us return to Theorem 3. It gives a method of producing quadrature domains 
for the class L](f2) of arbitrary conformal types (subject to the usual restrictions given 
by Lemma 1): take a bounded domain W ~ C bounded by regular analytic curves and 
of the desired conformal type. Let W = W u F u 1~ be the Schottky double of W. If 
we can find a meromorphic differential dg on W such that dgl w ~ Fae(W) and such that 
its integral g is univalent on W then fl = g(W) will be a quadrature domain by 
Theorem 3. 

The condition dgl w ~ Fae(W) means exactly that dg shall have all its singularities on 
the back side I~ and that g shall be single-valued on W. These conditions are easily 
satisfied. In fact, the poles and singular parts (with sum of redidues equal to zero) of 
dg as well as the periods S~ dg can be arbitrarily prescribed. The problem is to get g 
univalent on W. 

This problem can be solved by an approximation argument as follows. There certainly 
exist functions which are defined and are univalent in some neighbourhood of W u F 
in W. One can, for example, take the identity function z: W ~  C which embeds W in 
C. Since F consists of regular analytic curves, both regarded as a subset of C and 
regarded as a subset of W, z extends by reflection in F to an analytic function f from 
a neighbourhood of W ~ F in 1~ to C. It is easy to see that f will also be univalent in 
some neighbourhood of W w F. 

Now there is a Runge approximation theorem for compact Riemann surfaces, stating 
that if Uis any open subset of a compact Riemann surface S then M(S) c~ H(U) is dense 
in H(U) in the toplogy of uniform convergence on compact subsets of U ([ 5 ], [ 10], [ 13], 
Satz 1). Applying this theorem with S = W and U = (a neighbourhood of W w F in 
which f is defined) we get f approximated uniformly on some neighbourhood of W w F 
by functions in M(W). By making the approximation sufficiently fine we also achieve 
that the approximating function g is univalent in some neighbourhood of W u F (in 
particular in W). 
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This function g (or rather the differential dg) has all the properties we require. Even 

more, since g is single-valued on 1~, the resulting quadrature identity on fl -- g(W)  will 
be of the kind (1.1). Notice also that f~ is close to 141, since g approximates the identity 

function on W. Therefore, we have proved the following. 

T H E O R E M  4. Suppose W is a bounded domain in C, bounded by finitely many disjoint 
regular analytic curves. Then there are domains arbitrarily close to W and conformally 
equivalent to 141, which admit quadrature identities of the kind (1. l ) for the test class L~. 

REMARKS. (1) It is easy to modify the above construction to obtain quadrature 
domains admitting identities of the kind (1.4) with some bk and/or some Ck different from 
zero. In fact, if we want to have c I ~ 0, then we only have to take meromorphic 
differential dh on 1~" such that dhrw~Fae(W)  and such that S#ldh:/:0. (Such 
differentials exist, since we allow for arbitrarily many poles on if'). Then, with g as above 
and with e :/: 0 sufficiently small, g + eh will be univalent in W and map Wonto a domain 
with the required property. Similarly, if we want to have some b, different from zero, 
we apply the same procedure but with the condition S~1 dh ~ 0 replaced by the condition 
that dh shall have some pole (on if') with nonzero residue. 

(2) Using slightly stronger variants of the Runge approximation theorem ([ 5], cf. also 
[15]) one can prescribe, e.g., the numbers nk or m in (i.1). With U and S as above, it 
is true that not only M(S)  c~ H(U)  but even M(S)  c~ H ( S \ E )  in dense in H(U),  where 
E is any subset of S \  U which intersects each component of S \  U. In our case S \  U can 
be assumed to be connected so that E can be taken to consist of a single point. This 
shows that we can prescribe m = 1 in (1.1). By using another variant of the approxima- 
tion theorem, one can prescribe all n~ to be equal to one (but then one, of course, loses 
the control over m). 

Another consequence of Theorem 3 is that a quadrature domain must have a nice 
boundary. 

T H E O R E M  5. Suppose ~ is a domain in C of finite area and bounded by finitely many 
continua. Then, if f~ admits a quadrature identity of the kind (1.4)for the test class L~(~), 
~ is a -finite union of analytic curves (possibly containing singular points of the kinds 
described in Remark 3 after Lemma 1). If, moreover, all b k and c k in (1.4) vanish, i.e., the 
identity is of the kind (1.1), then df~ is an algebraic curve, possibly minus a finite number 
of points. 

Proof. Combine Theorem 3 with Lemma 1. 

REMARK. It is not true that every domain whose boundary is an algebraic curve is 
a quadrature domain (in our sense). For example, the interior of an ellipse is not (but 
satisfies other kinds of quadrature identities [8], pp. 132-133). 

In the case that 3f~ is an algebraic curve (b~, c k = 0) the relations between the 
coefficients in the polynomial equation of df~ and the data in the quadrature identity can 
be stated explicitly to a certain extent. This is the topic of Section 6. 

The fact that ?f~ is part of an algebraic curve when bk, c k = 0 was t'n-st proven in [ 1 ], 
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Theorem3, where also results about t3f~ when only b k = 0 can be found 
(Theorems 8-10). 

5. Some Special Results 

By Theorem 3, we have set up a relationship between quadrature domains and certain 
meromorphic functions and differentials on compact symmetric Riemann surfaces. A 
consequence of this is that we may get results about quadrature domains as corollaries 
of (old or new) results about functions and differentials on compact Riemann surfaces. 
Theorems 4 and 5 can be said to be results obtained this way. In this section we shall 
give a few other such results, but of a more special character. 

The first of these, Corollary 6.1, is a rather classical kind of converse of the mean- 
value property for analytic functions. Different variants of it have been proved by many 
authors (see [ 1 ], Sections 1.1 and 1.3, for a survey of this and for references) and it has 
been included here only for the purpose of illustrating the technique. 

Corollary 7.1 is, apart from differences in apriori assumptions, a generalization of [ 1 ], 
Theorem 4. It was first proved in [11], Corollary 4.5. Another proof is given in [6], 
Theorem 6, and a special case of Corollary 7.1 is in [21], Theorem 2. 

Corollary 8.1 seems to be a new result. 

In Corollaries 6.1-8.1 the domains f~ are assumed a priori to be of finite area and 
bounded by finitely many continua. 

T H E O R E M  6. Suppose g is a meromorphic function of order one on a compact symmetric 
Riemann surface 1~ = W w F u W. Then g maps l~ conformally onto P and takes W onto 

the interior or exterior of a disc or onto a half-plane. 
Proof The first statement is well-known and the second statement follows by 

considering the symmetric-Riemann-surface structure that ginduces on P: the involution 
must be an anti-m0bius transformation having a nonempty fixed point set C and g(W) 
must be one of the components of P \C .  Since C is easily seen to be a circle or a 

straight line the theorem follows. 

COROLLARY 6.1. Suppose 

~ta f dx = af(zo) for all f ~ L2(f~). (5.1) dy 

Then f~ is a disc and z o its center. 
Proof Take a compact symmetric Riemann surface 1~" = W w F u if" and a conformal 

map g: W ~  f~ as in Lemma 1. Then Theorem 3 shows that g is as in Theorem 6 
(observe that necessarily a # 0 in (5.1), by choosing f = 1). Hence, f~ = g(W)  is a disc 
(since it has finite area). Moreover, it follows from Remark 4 after Theorem 3 that the 
pre-image of z o under g and the pole of g are conjugate on W with respect to the 
involution on 1~, hence, z o and oo are conjugate points on P with respect to the induced 
involution on P, and so are mirror points with respect to the circle Off. Hence, z o is the 
center of the disc D. 
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REMARKS. (1) With the test class L~(f~) the conclusion of Corollary 6.1 holds true 
with the single assumption (1.5) on f~ ([ 18], Example 1.1 together with Theorem 11.2). 
On the other hand, some assumption on D is necessary in Corollary 6.1 because there 
exist domains of infinite area other than the entire complex plane, which satisfy (5.1) 
for the test class L 1 (see [18], Theorem 11.5). 

(2)As is shown in [1], Theorem 7 (and [11], Corollary 4.3) the conclusion of 
Corollary 6.1 still holds if the test class is shrunk to L]s(~), provided f~ is bounded by 
finitely many continua and has finite area. 

THEOREM 7. Suppose W = W w F w I~ is a compact symmetric Riemann swface and 

g a meromorphic function on W such that 

(i) g has order two, 

(ii) g is univalent on W, 

(iii) f~- ¢ P, where D = g(W) .  

Then I4" has genus zero, hence is conformally equivalent to the Riemann sphere. 

Proof Suppose g is as in the theorem. Being of order two g gives rise to an 
automorphism ag: Ig,'~ I~" of order two (i.e., ago ag = id), defined by ag (~ l )  = (~2) 

whenever {~1,~2} = g - l ( z )  for some z~P .  Put U1 = ag(W), U2 = ff'\U1-. Then 
U1 = l~(becausegis univalent on W), W w U~ = g -  1 (D), U2 = g -  ~ (P \ f l  - ) = trg(U2) 
and U2 v L cp (since P \ I ) -  # ~b). We shall, however, see that all this is impossible if the 
genus p of W is greater than zero. 

The casep > 1. In this case l~" is a hyperelliptic Riemann surface and it is known ([9], 
Proposition III.7.9 with corollaries) that ag does not depend upon g (trg is the hyperelliptic 
automorphism). In particular trg = tr¢, which implies that g(~l) = g ( ~ 2 )  if and only if 

g(('~ ) = g(~'2) (~1, ~2 e I$,'). But take ~1 e U2, ~2 = ag(~l) e U2. Then g(~l) = g(~2) and, 
therefore, g(~'~ ) = g(('2). Since, however, ~'~, ~'2 e W and we could have chosen ~1 e U2 
such that (2 ¢ ~ (ag has only finitely many fixed points and U2 is open) this contradicts 
the univalency of g on W. 

The casep  = 1. In this case a different argument is needed since trg now depends on 
g. We may represent W as 1~ = C/G, where G is a discrete group of the kind 
G = o,)1~ --F (.,02 ~ with co 1 , 602 e C linearly independent over ~. 

Let Zl, z 2 e C be (represent) the poles ofg. Then ag(z I ) = z 2 (mod G). Hence, Abel's 
theorem ([2], Ch. 7, Theorem 6) shows that ~1 + ~2 = Zl + z2 (mod G) whenever 
~-2 = ag(~) (mod G). This shows that ag is of the form 

trg(~) = - ~ + a (mod G) (~ ~ C), (5.2) 

where a is a constant (a = Zl + z2). But (5.2) is in conflict with the fact that ag maps 
W (exactly half of 1~') onto U~ (strictly included in the other half of/4') since, e.g., (5.2) 
shows that ag preserves area in C whereas area (U~) < area (W). 

This concludes the proof of the theorem. 

COROLLARY 7.1. Suppose f l  admits a quadrature identity (1.1) of  order two for  the test 
class L](f l ) .  Then f~ is simply connected. 



228 BJORN GUSTAFSSON 

Proof. Take a compact symmetric Riemann surface ~ = W u F u if" and a conformal 
map g: W ~ ~ as in Lemma 1. Then Theorem 3 shows that g has the properties (i)-(iii) 
of Theorem 7. Hence, 1~ has genus zero and W and f~ have connectivity one. 

THEOREM 8. Let S be a compact Riemann surface, dg a meromorphic differential on S 
with two simple poles as its only singularities, and suppose that dg has vanishing periods with 
respect to all curves in a canonical homology basis for S. Then S must have genus zero. 

Proof Let ~o and ~ be the poles of dg, with residues - a and + a say (a ~ 0). If all 
the periods of dg with respect to a canonical homology basis for S vanish, then g is 
multiple-valued only to the extent of additive multiples of 2nia. It follows that 
f = exp (g/a) is a single-yalued meromorphic function on S whose divisor consists of 
a simple pole at ~o and a simple zero at ~. Hence, f is a meromorphic function of order 
one on S, and since such a function exists only ifS has genus zero, the theorem is proved. 

COROLLARY 8.1. Suppose Sta f dx dy = b ~ ~ f dz for all f ~ L 2 (f2), where b ~ C and 
7 is an arc in f~. Then f~ is simply connected. 

Proof. Similar to the proof of Corollary 7.1 (with S = W). 

REMARK. There do exist plenty of simply-connected domains satisfying quadrature 
identities of the above kind. One example is given in [8], p. 162 ff. See also [18], 
Example 9.6, where a uniqueness result is proved. 

The above results can be summarized by saying that no multiply-connected domain 
admits a quadrature identity of any of the following four types for the test class L2(~): 

f n  f dx dy = alf(zl) a 2 f ( z 2 ) ,  
+ 

f f d x d y  = a,f(z,) + azf'(z,), (5.3) 

f f d x d y = a , f ( z , ) +  Z c k f  f d z ,  (5.4) 
k=  1 :t~- 

f f d x d y = b f T f d z "  

Here z~, z 2 • ~'), a~, a2, b, c k ~-C, ~ ,  . . . ,  ~k are closed curves in fl and 7 is an arc in f~. 
In (5.3) and (5.4) al is necessarily nonzero (choose f = 1). (5.4) arises by reformulating 
the assertion of Remark 2 after Corollary 6.1 for the test class LE(f~). 

One might therefore ask what the simplest quadrature identity for a multiply connected 
domain is. One answer is given in [ 14] where Levin has constructed a doubly-connected 
domain l) for which an identity (5.3) holds for all f~LZs(l')), or, equivalently 
S~a f dx dy = al f(z~ ) + a2f' (z~) + Cl ~ ~, f dz for all f ~ LZ(f~). Another answer will be 
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given by Corollary 9.1 below, which, as a special case, shows that there exists a domain 
of connectivity of at least two for which an identity 

f n f  dx dy = al f(z l)  + a2f(z2) + a3f(z3) 

holds for all f ~  L~(fl). 
Theorem 9 below and its corollary are the only results in this paper which are not 

proved by using the Riemann surface theory. It is a drawback of using a Runge 
approximation theorem in the proof of Theorem 4 that it does not yield any information 
about the orders of the quadrature identities obtained. Theorem 9 is really a corollary 
of a result by Sakai about quadrature domains for subharmonic functions ([19], 
Theorem together with Lemma 5 and its corollary or [18], Theorem 3.7; compare also 
[12], Corollary 16.1). 

Theorem 9 and its corollary have been formulated for the test class L~(f~) instead of 
for the usual one, L~(fl), because Sakai's results are stated for Lm-functions. Since, 
however, our theorem and corollary claim the existence of certain quadrature domains 
of finite area, this only makes the results stronger and they, afortiori, also hold for L2a(fl). 

THEOREM 9. Suppose Ag, k = 1 . . . . .  m are disjoint open discs in C such that 
K = U~= i Ak is connected and such that C \ K  has n components. Then there is a domain 

containing K and of connectivity at least n admitting a quadrature identity of the kind 

fn f dx dy = ~ akf(Zk) (5.5) 
k = l  

for all f ~ L~(t)). Here z~ is the center of A k and a k > 0 (k = 1 . . . .  , m). 
Proof The above-mentioned result by Sakai states, among other things, that given a 

domain D in C of finite area and a bounded measurable function/~ on D with # >/1, 
there exists a domain f~ of finite area and containing D such that 

~D s# dx dy <~ ~n s dx dy (5.6) 

for every integrable subharmonic function s on ~). Clearly (5.6) implies that 

f ,  g f l ~ d x d y =  ~ n f  dxdy  (5.7) 

for all f ~  Lal(fl). 
To apply (5.7), let A be the minimum of the areas of the components of C\K.  Clearly 

A > 0. Let D k (k = 1 . . . .  , m) be new discs with the same centers z k as A~ but slightly 
(and strictly) larger, so that 

I Dk\Akl < A  (5.8) 
k - I  
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holds, where I.. I denotes area. Now take 

D = 0 Dk' 
k = l  

#(z) = the number of  discs Dk containing z. 

Then D is connected and # >/1 in D. Applying (5.7) shows that there exists a domain 
f~ containing D such that 

~ fdxdy=:Dfl~dxdy= ~ ~D fdxdy= ~ a~,f(zk) (5.9) 
k = l  k k = l  

for all f ~  L~(f~), where ak = IDkl. 
Now it only remains to prove that f~ has connectivity of at least n. But taking f = 1 

in (5.9) and using (5.8) gives If~l = Y~k m ~ IOkl < Y~k% 1 Iakl + a = IKI + A. Therefore, 
and since K c ~,  ~ has not enough area to cover any of the n components of C \K.  

Thus also C\f~ has at least n components, which proves the theorem. 

COROLLARY 9.1. For each m >>, 3 there is a domain f~ of  connectivity at least 2(m - 2) 
admitting a quadrature identity (5.5) (of order m) for the test class L l(f~). 

Proof In Theorem 9, take first A1, A 2 ,  A 3 to  be three mutually tangent discs. Then 

A1 w A2 u A3 is connected and C\(A l w A2 k.) A3) has two components, which proves 
the corollary for m = 3. Proceeding inductively, suppose we have chosen A 1 . . . . .  A m 
(m ~> 3) such that A1 u . .  • u A,, is connected and such that C\(A1 w • " w Am) has at 
least 2(m - 2) components. Let E be one of these components which is bounded and 

choose A k + 1 to be a disc in E with largest possible radius. Then A k + I must be tangent 
to at least three of the other discs and, therefore, E \Ak÷ 1 must have at least three 

components. Thus AI ~ " "" u Ak÷ 1 is connected and C\(A1 u • • • u Ak÷ 1) has two 
more components than C\(A1 u .. • ~ Ak), that is, at least 2((m + 1) - 2) components. 

By induction and Theorem 9, this proves the corollary. 

6. Quadrature Domains Bounded by Algebraic Curves 

In this section we shall study domains f~ admitting quadrature identities of the kind 

f d x d y =  ~ Ckjf(J)(Zk) ( f e L ] ( f } ) )  (6.1) 
~ k= 1 j=O 

in more detail, namely the relationship between the coefficients Ckj in (6.1) and the 
polynomial equation for the boundary curve Of}. All domains ~ considered will be 
assumed a priori to be bounded by finitely many continua and to have finite area. 
Moreover, we will always assume that Ck, -k- 1 ~ 0 (k = 1 . . . . .  m) and that the z k are 
distinct in (6.1). Let us first summarize what we know about domains f~ satisfying an 
identity (6.1) for the test class LE(f~). 

(1) They are all produced in the following way. Take a compact symmetric Riemann 
surface I~ = W w F u I~ and a meromorphic function g on I~ such that all poles of g 
are in I~ and such that g is univalent on I4:. Then f~ = g(W) is such a quadrature domain, 
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and if ~rl, . . . ,  ~m E W are the poles of g, then (referring to (6.1)) z k = g ( ~ k )  and n k = the 
order of the pole at ~'k- All this follows from Theorem 3 together with Remark 4 which 
follows the theorem. 

(2) With l#', g and f~ as in (1) g and ~ generate the field of meromorphic functions 
on 1~" and they satisfy an equation P(g, ~) = 0, where 

P(z, w) = ~ akjZl"W ~ (6.2) 
k,j= 1 

is a self-conjugate (i.e., ajk = ~kj) irreducible polynomial. The degree n of P in each of 
z and w equals the order ofg  and also equals the order of the quadrature identity. Thus, 
n = Z~'= lnk. Moreover, Of~ = {z e C : P(z, 2) = 0}\Vo, where Vo is a finite set. All this 
follows from Lemma 1 and its proof. 

(3) Working in the domain ~ itself rather than on l~', one can define a function S 
on f~ by 

S(g(O) = g({) for {e W (6.3) 

(i.e., S = g o (gl w)- 1). Then S(z) is meromorphic in f* with poles of order nk at z~ 
(k = 1,.. . ,  m), S(z) = ~ on 0~ and P(z, S(z)) = O. Conversely, if on a given domain f~ 
there exists a meromorphic function S(z) such that S(z) = ~ on 0~, then ~ is a quadrature 
domain of the kind (6.1). These things follow from (1) and (2) above and Corollary 3.1 
where the function S is denoted H. 

Now suppose ~ is a quadrature domain such that (6.1) holds and let S(z) be the 
meromorphic function (6.3). The relations between the coefficients Ckj and the singular 
parts of S(z) are most easily obtained directly as follows. If 

"" bkj S(z) = Y. + holomorphic function, 
k = l  j= ' (Z D-Zky 

(6.4) 

then Stokes' formula gives, for f e  La2(f*), 

f t a f d x d y = l f t a f d z d z =  1 f-2i onf(z)~dz=--2ilfotaf(z)S(z)dz 

~ "~ f O -  ')(Zk) = re res, f(z)S(z)= re y. bkj 
k = l  = k = l  j = l  O-- 1)! 

Hence, 

re 
CkJ =jl .  bk ' j+ l 

for j =  0 . . . .  , n , , -  1, k =  1 . . . .  ,m. 

(6.5) 
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Next, let Pj(z) = Zk= o a~jz  "~ so that  P ( z ,  w)  = " n ]~j = 0 Pj(z)w-' .  Since P ( z ,  S ( z ) )  = 0 we 

have 

P(z, S(z)) Po(z) P.-  2(z) 
0 = - - - + . . . + - -  

s (~)" - '  S(z)"-  ~ S(z) 

= R ( z )  -]- e n _1  ( z )  -[- P n ( Z ) S ( z ) ,  

where 

+ en_m (z) + e.(z)S(z)  

Po(z) P.  - 2 (z) 
R ( z )  - - -  + " " + - -  

S(z) "-1 S(z) 

Clearly, R ( z )  = (9((z - zk) "~) as z--,  zk. In particular P n ( z ) S ( z )  = - R ( z )  - I n _  l ( z )  

is bounded as z ~ z k. This implies that  P~(z )  contains the factor (z  - zk)  n~. Therefore, 

and since Pn(Z)  has degree n = Z~= 1 nk ,  I n ( z )  must  be 

P , ( z )  = a , , ( z  - z l ) n " . . .  • (z  - z , , )  nm. (6.6) 

As a consequence,  a , ,  :~ 0, for otherwise P ( z ,  w) would have a degree less than n in w, 

which it does not have (by 2) above. 
Another  consequence of (6.6) (and R ( z ) =  ( 9 ( ( z -  zk)"~)) is that  R ( z ) / P , ( z )  is 

bounded as z --* z k. Hence,  

S(z)= R(z) P._ , (z)_  Pn-l(z) + (9(1) asz--,zk, 
e.(z)  e .(z)  e.(z)  

showing that  the principal parts  of  S ( z )  agree with those of  - (P,, _ 1 (z)/Pn(Z))" Thus, 

b~j _= Pn-~ (z) + C, (6.7) 

k = l j  1 

where 

C = l i m  P n -  1 (Z) _ an,  n -  I (6.8) 
z ~  P, , (z)  an,, 

Now,  if the polynomial  P ( z ,  w)  is known, (6.7) and (6.8) together with (6.5) give the 
coefficients ckj in (6.1). Conversely, suppose that  (6.1), and, hence by (6.5), Equation 
(6.4) is known. The polynomial  P ( z ,  w), subject to akj = ajk, is still only determined up 
to a nonzero real factor. Since we know that  ann 5/= 0, it is natural  to normalize P(z ,  w) 

by requiring ann = 1. This will be assumed in the following. Then the last column in the 
coefficient matrix A = (akj) of  P ( z ,  w) is obtained from the identity (6.6), that  is 

e n ( z )  = z n  + an- -  l , n  z n - - 1  "[- " ' "  -[- ao,  n =- (Z -- Z l ) n l "  . . ,  "(Z  -- Zm)  nm, 

The condition akj = ajk further gives a . . . .  1 = a n -  1, n. 
The remaining coefficients in the (n - 1)th column of  A = (akj) are now uniquely 
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obtained from (6.7) and (6.8), i.e., 

It turns out that the coefficient a n _ 1, n - 1 automatically becomes real, as the condition 
akj = ~jg requires it to be. In fact, a manipulation (carded out in [ 11 ], p. 5.6f) shows that 

= . 12 1 = n 12 a,,_ I ,  n - -  1 Jan, - -  1 - -  - -  C k O  ) a n ,  - I 
~ k = l  

Using (6.5), the discussion can be summarized as follows: 

T H EOR EM 10. The identity 

1- ~ " ~  1 j!Ck: - - a  . . . .  l ?._l(z) 
: = o  (z  - z y+l e n ( z )  ' 

where 

P, ,_ l (z )  = an, , ,_ lz"  + a n _ l , n _ l  z n - 1  + . . .  + ao, , ,_l ,  

e , ( z )  = z n + a n - l , , z " - I  + . . .  + ao, n, 

sets up a one-to-one correspondence between, on the one hand, the last two columns (and 

rows) of  coefficient matrices A = (akj) (0 <~ k, j <~ n) of  normalized (ann = 1) self-conjugate 
polynomials (6.2) and, on the other hand, quadrature data z I . . . .  , Zm, n l , . . . ,  rim, Ckj 

(0 ~ j <~ n k - 1, 1 <~ k <~ m) with Xkm= I nk = n and Ek'= i Ck, 0 real such that whenever I) is 
a quadrature domain (for apointfunctional) the quadrature identity (6.1) and the normalized 
self-conjugate polynomial equation P(z, 2) = 0 for the boundary of  f~ are related according 
to this correspondence. 

Thus, in the coefficient matrix A = (akS) of P only the last two columns and rows are 
directly related to the data in the quadrature identity, as above. The remaining 
coefficients, (akj) with 0 ~< k, j ~< n - 2, make up a vector space of dimension (n - 1 )  2 

over the reals. Hence, given the quadrature data, this vector space can be thought of 
as a parameter space for all algebraic curves, which are candidates for being boundary 
curves for domains ft admitting a quadrature identity with the given data. Just how 
many of these curves really correspond to the quadrature domains seems to be hard to 
decide in general (cf. Corollary 10.1 below). However, we at least get an upper bound 
for the dimensionality of the space of quadrature domains of the kind (6.1) admitting 
one and the same quadrature identity, namely (n - 1) 2. 

From Theorem 10 we may easily deduce a uniqueness result which generalizes 
Corollary 6.1 and results by Aharonov and Shapiro [ 1 ], Theorem 4 together with the 
statement after its proof, and Ullemar [21], Theorem 3: 

COROLLARY 10.1. I f  (6.1) holds and the right member there, L ( f ) ,  is of  order one or 
two, then f~ is uniquely determined by L. 
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Proof Let us first show that 

= {z ~ C : P(z, 2) < 0} u (a finite set), (6.9) 

where P is as in the theorem. Since P(z, w) is irreducible there are, at most, finitely many 
z for which the equations P(z, w) = 0 and OP(z, w)/Ow = 0 have a common solution in 
w (namely the zeroes of the discriminant of P(z, w) with respect to w). Therefore, 
OP(z, 2)/0-~ ~ 0 on 0f~ = {z ~ C : P(z, 2) = 0}\(a finite set) except possibly at a finite set. 
This shows that P(z, ~) always changes sign over 8D. From this (6.9)follows easily, using 
that f~ is connected and that P(z, 7) > 0 in a neighbourhood of infinity. 

If L is of order one, (6.9) immediately implies the corollary since Theorem 10 shows 
that P is uniquely determined by L in this case (n = 1). Note that the 'finite set' in (6.9) 
is uniquely determined by the fact that f~ shall be bounded by continua. 

If L is of order two, we may write (6.9) in the form 

f~ = {z ~ (. : Q(z, 2) < c} w (a finite set), (6.10) 

where Q(z, 2) = P(z, 2) - aoo and c = - aoo. Then c is real and Q is uniquely determined 
by L (n = 2 in Theorem 10). Moreover, the area off~ is determined by L, namely equal 
to L(1). But the area of the right member of (6.10) strictly increases with c. Therefore, 
c also is uniquely determined by L, and the corollary follows. 

7. Questions of Uniqueness 

In this section we shall study the folowing question: given a point functional 

L(S)= ~ ,,~l akjf~)(Zk) (7.1) 
k = l  j = 0  

on L2(f~) or L2,(f~), how many different domains f~ can there be for which 

f f d x d y = L ( f )  (7.2) 
fl 

holds for all f ~ L 2 (~) 2 9 or f ~ Las(~ ) . As usual, we only consider domains of finite area 
and bounded by finitely many continua. 

Results such as Corollary 10.1 may raise the conjecture that f~ is always uniquely 
determined by L. We shall see in this section tfiat this is definitely false if multiply- 
connected domains are allowed. In fact, Theorem 12, below, shows that it is typical for 
multiply-connected quadrature domains for a fixed functional to appear in continuous 
families. However, if we only allow simply-connected domains, the question seems to 
be open: no one has constructed two different simply-connected domains (of finite area) 
which admit one and the same quadrature identity for the test class L 2 (or LI). More 
generally, 'simply connected' in the last sentence can be replaced by 'conformally 

equivalent'. 
On the other h and, S akal [ 16] has con structed two different simply-connected J ord an 

domains f~l and f~2 such that ~n, f d x  dy = ~n2 f d x  dy holds for all polynomials f,  
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hence for a set of functions which is dense in both L~(f~l) and L~(fl2). This result 
indicates that the answer to the uniqueness question is negative, even in the simply- 
connected case. 

Let us also mention here that without the assumption of the finite area of the domain 
or some similar assumption (e.g., (1.5)), uniqueness is known to fail, even in the simply 
connected case. There are, e.g., a lot of simply-connected domains f~ of infinite area such 
that ~ n f d x d y = O  for all f e L l ( f 2 ) .  (See [17]. Compare also Remark after 
Corollary 7.1 in the present paper.) 

For more results on the uniqueness question, se [18], in particular Section 9. 

THEOREM 11. Given any plane domain W bounded by p + 1 disjoint analytic curves 
(p >~ O) there exist functionals (7.1) such that (7.2) holds for all f ~ L~s(f2) for a family of 
domains f2, conformally equivalent to W and depending on at least q real parameters, where 

0 if p = 0  

q =  2 i f p = l  

3 if p >  1. 

CORRECTION. In [ l l ] ,  Theorem 7.1, it is erroneously stated that q = 1 in the case 
p = l .  

THEOREM 12. For every p >~ 0 there exist functionals (7.1) such that (7.2) holds for a 
family of domains f~ of connectivity p + 1 depending on at least 

(i) 3p real parameters if the test class is L]s(f~), 
(ii) p real parameters if the test class is L](f2). 
Proofs. We begin with Theorem 11. Let fie = W u F w 1~ be the Schottky double of 

W. By Theorem 3, together with Remark 4 following it, any quadrature domain f~ 
conformally equivalent to W and satisfying an identity (7.1) and (7.2) for the test class 
L2as(~) is obtained as f2 = g(W)  for a meromorphic differential dg on fie, all of whose 
poles are residue-free and lie in I~ and which has a single-valued and univalent integral 
g on 141. The proof of Theorem 11, roughly speaking, consists of relating the parameters 
necessary to describe dg to the parameters of L in (7.1) and count the overflow. 

A differential dg on fie of the above kind is uniquely described by specifying the 
singular parts of dg (it is more convenient to specify d~ than dg), say in the form 

nk dt 
d~(t) = ~ bkj + holomorphic differential (7.3) 

k = l  j ~ l  ( t -  tk) j+ l  

for t ¢ W (cf. the proof of Theorem 2; observe that half of the periods of d~, namely the 
'a-periods', are prescribed to be zero by the requirement that dg shall have a single- 
valued integral on I¥). 

Let d g =  dg ¢°~ be a fixed differential of the above kind which moreover has the 
property that its integral g = gem on W is univalent in a neighbourhood of W w F. We 
know by Theorem 4 that such differentials exist. Let (t~ °~, i,~o~ (1 ~<j ~< nk, 1 ~ k ~< m) ~ k j  1 

be the parameters describing dg (°) by (7.3). We may assume that the t~ °) are distinct. 
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Keeping m and n l , n,,, fixed we now vary (tk, bkj) in a neighbourhood U of (t(k °), h(o~a ' ' ' "  U k j  I 

in W m × C n' +""  ÷ rim. It is fairly obvious that if U is sufficiently small the corresponding 

differentials dg defined by (7.3) will also have integrals which are univalent in a 

neighbourhood of W u F. Thus, we have a map (t k,  bkj ) ~ dg from U into the set of 
differentials we are interested in. 

The transition from dg to an integral g of dg on W requires the specification of an 
integration constant. This we do by specifying g(t l ) .  Thus, we have a map 

(tk, b ~ j , c ) ~ d g ~ g ,  defined on U x C by (7.3) and 

g(t) = c + dg. (7.4) 
1 

Now, each g, as above, determines a quadrature domain fl by f~ = g ( W ) ,  ~ determines 

a point functional L by (7.2), and L determines (zk, a~j) by (7.1). (To be precise, the z~ 
are determined only up to a permutation, but since they are the images of the t k under 

g, we may naturally order them so that zk = g(tk).)  
It follows from Remark 4 after Theorem 3 that the integers m, h i ,  . . . ,  n k appearing 

in (7.3) and (7.1) are the same under this correspondence. Thus, we have described a 
map 

z: (tk, b~j, c) ~ (zk, akj ) 

from U x C c W"* x C n x C into C m x C n, where n = Y~= 1 nk. Considered as a map 
between the underlying real spaces, z goes from an open subset V of p2(m + n + 1~ into 

R2(m + n). It is not hard to see that z is smooth and in fact, is even real analytic. 

Actually, the image of z is contained in a linear subspace of R 2(m ÷~) of (real) 

codimension one, since Ek% 1 ako is always real in (7.1)-(7.2), namely equal to the area 
of ft. Therefore the maximum value r of the rank of the Jacobian matrix of z in V is, 
at most, 2(m + n) - 1. On the other hand, this maximum is attained on some open subset 

V~ of V, and it now follows from the implicit function theorem that in V~, z takes constant 

values on submanifolds of dimension 2(m + n + 1) - r 1> 3. 
We have proved that there is an open set V~ on which the composed map 

(tk, bkj, c) ~ g ~ f~ ~ L ~ (Zk, aki) (7.5) 

takes constant values on manifolds of real dimension of at least three. What we are really 
interested in is, however, the map f~ ~ (Zk, %-) and we must account for the possibility 

that the map (t,, bkj, c) ~ f~ might not be one-to-one. We have already remarked that 
(tk, bki, C)w,g  is one-to-one (locally). However, g ~  f~, defined by f~ = g ( W ) ,  is not 

necessarily so. 
Indeed, gt (W) = g2(W) if and only if cp = g f  1 o g2 is an automorphism on W. Keeping 

gl fixed, it follows that those g2 for which g2(W)= g l ( W )  stand in one-to-one 
correspondence with the automorphisms cp on W. Since we are only considering gl and 
g2 which are close to each other, we are only interested in the case when there are 
automorphisms arbitrarily close to the identity. It is well-known ([9], Ch. V.4) that this 
is the case only whenp  = 0 andp  = 1 and that the automorphy-group aut(W) in these 
cases are Lie groups of real dimensions three and one respectively. 
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Let M be a typical submanifold of  V, of  dimension 2(m + n + 1) - r, on which z is 

constant. Then the above Lie groups generate orbits in M so that (tk, b~,s, c) and 
(t;,, b;, s, c ' )  lie on the same orbit if and only if they are mapped onto the same fl in (7.5). 

These orbits are submanifolds of  dimension three and one in the cases p --- 0 and p = 1 
respectively. (When p > 1 the orbits consist of  isolated points only.) Now we can take 
a submanifold N of M which is transversal to these orbits and such that 

( 2 ( m + n +  1 ) - r - 3  

dim N--- (2(m + n + 1) r 1 

( 2 ( m + n +  1) r 

t fp  = 0, 

/ f p =  1, 

/ fp>  1. 

Then the map (t k, bkj, c) ~ t) restricted to N is one-to-one and so parametrizes, locally 

and in a bijective way, domains which satisfy the same quadrature identity for the class 
2 L,s .  Since dim N >/q with q as in the statement of the theorem, this proves Theorem 11. 

To prove Theorem 12 we also have to let the conformal type of the domain W vary, 
keeping only its connectivity fixed. Such variations are easily performed by taking W 

to be a horizontal slit domain, i.e., of the kind 

W =  OZ\UPk=o {Wk + trk: - - l~<t~<l}"  (7.6) 

Here w~, ~ C, r k > 0 (k --- 0, 1 . . . . .  p) are parameters, assumed chosen so that the slits 

{w, + tr k : - 1 ~< t ~< 1} are disjoint. 
On each such domain W we have functions g defined by the parameters (t,, bks, c) 

(for fixed m, n 1 . . . . .  nm) as before. We shall consider pairs (W, g) of horizontal slit 
domains and functions in a sufficiently small neighbourhood of some fixed pair 

(W(O), g(O)), chosen in such a way that each g is univalent in a neighbourhood of W w F 
in I~. This yields a map 

(w k, r k, t k, b~j, c) ~ ( W, g) (7.7) 

from an open set V in C p +~ × ~P +1 × C "  x C n x C into the set of domains and 

functions we are interested in. To be precise, (7.7) is defined by (7.6), (7.3) and (7.4). 
Clearly, (7.7) is one-to-one if V is small enough. 

Proceeding as in the proof of Theorem 11, we compose (7.7) with the maps 

( W, g) ~ ~ ~ L ~ (z k, akj), where ~ = g( W), L is defined by (7.2) and (zk, aks) by (7.1). 

The composed map z: (w k, r k, tk, bkj, c ) ~  (z k, akj), regarded as a map between the 
underlying real spaces, then goes from an open subset (still called V) of 
~3Cp + 1)+ 2(m + n + ~) into R 2¢'~ ÷ n), or actually into a subspace of ~z(,, + n) of dimension 

2(m + n) - 1. Just as before, this shows that there must be submanifolds of V of 
dimension of at least 3p + 6 on which z is constant. 

The map (7.7) is one-to-one as we have remarked, but not (W, g ) ~  f~. In fact, 

gl(W1) = g 2 (W2 )  if and only if q~ = g2 1 °gl maps W1 conformaily onto W 2. Keeping 
(Wi, gl)  fixed, it follows that pairs (WE, g2) mapped onto the same t2 = g~(W1) stand 
in bijective correspondence to conformal mappings q~ on W~ such that q~(W~) is also 
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a horizontal slit domain. It is well-known that such maps tp depend on six real 
parameters. 

To be precise, if W is a horizontal slit domain, then, given to ~ W and a, b e C with 
a # 0, there is a unique univalent function ~0 on W with 

a 
q~(t) = - -  + b + (9( t - to)  a s t - t o  (7.8) 

t - t  o 

such that ~o(W) is also a horizontal slit region (cf. [2], Ch. 6, Section 5.3). (For to = 
(7.8) takes the form tp(t) = at + b + (9(t- 1) as t ~  oo.) 

In just the same way as in the proof of Theorem 11, the existence of these maps 
reduces the number of parameters from 3p + 6 to 3p, from which (i) of Theorem 12 
follows. 

To prove (ii) of Theorem 12, recall (Remark 4 after Theorem 3) that (7.1) and (7.2) 
holds for all f e  LE(f~) if and only if it holds for all f ~  L]s(f~) and the differential d~ 
in (7.3) has the further property that 

fB d ~ = 0 ,  f o r k =  1 (7.9) ,P  

(so that g is single-valued on all of t$'). Thus, the requirement that (7.1) and (7.2) shall 
hold for all f ¢ L~(f~) imposes 2p real conditions on g. These conditions can be satisfied 
as we know (Theorem 4). We just have to check that they are linearly independent (to 
rule out the possibility that things get pathological so that (7.9) defines a set of greater 
codimension than 2p). 

Consider the map 

(wk, rk, t~, bky, C)~ g ~  ( f  B' dg . . . .  , f a,,dg) (7.10) 

(the first stepdefined by (7.7)). It can be seen, without too much trouble, that the rank 
of the Jacobian of this map (regarded as a map into •2p) can be less than 2p only at 
points (w k, r k, tg, bkj, c) for which the index of speciality of the divisor Z~'= 1 nk" (tk) (see 
[9], Ch. III.4) is greater than zero. (We have assumed here that bk,~¢ 0 for 
k = 1 . . . .  , m.) However, the degree of this divisor is equal to n = Z~'= 1 nk and the index 
of speciality is equal to zero for all divisors of a degree greater than 2p - 2. Therefore, 
the Jacobian of (7.10) has rank 2p at all points with bk,~ # 0 (k = 1 , . . . ,  m) whenever 
n > 2 p -  2. 

From this it follows that if n is large enough, the conditions (7.9) define submanifolds 
in the (Wk, r k, tg, bkj, c)-space of real codimension 2p. Proceeding now as in the proof 
of (i) but working in such a manifold instead, we reach the conclusion of (ii). This proves 
Theorem 12. 

REMARKS.  (1) Actually Theorems 11 and 12 describe the typical cases, i.e., quadrature 
domains of connectivityp 'in general' occur in families depending on exactly the number 
of parameters given by the theorems. 
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(2) Since, by Corollary 9.1, there exist multiply-connected quadrature domains 
admitting quadrature identities of order three for the test class L 2, Theorem 12(ii) 
indicates that the uniqueness question already has a negative answer for certain f'mite 
functionals (7.1) of order three. A more detailed analysis, not carried out here, shows 
that this actually is the case. 

(3) The results in Theorems 11 and 12 can be made believable in the following way. 
First note that the difference between the number of parameters in Theorem 12 (i) and 
Theorem 11, namely 3p - q, equals the real dimensionality of the space of conformal 
equivalence classes for connectivity p + 1 ([20], Section 2.11) as one might expect. 
Second, the difference between the number of parameters in (i) and (ii) of Theorem 12 
is just the real codimension of L2s(f~) in L2(D). Thus, it only remains to motivate (ii) 
of Theorem 12. 

For this purpose we shall consider a number of moving boundary problems for 
(p + 1)-connected domains. Let f~(o) be a quadrature domain (for L 2) of connectivity 
p + 1 such that aO (°) consists of disjoint regular analytic curves F~ °), r(o) Let Y • . . , , t p +  1 • 

be a neighbourhood off~ (°) in the space of all domains bounded byp + 1 disjoint regular 
analytic curves. This neighbourhood is assumed to be so small so that for each f l e  ./if, 
the boundary components F1, . . . ,  Fp + 1 of fl are unambiguously ordered by the require- 
ment that F k shall be close to F(k °) (1 ~< k<~p + 1). 

For each (p + 1)-tuple of real numbers c --- (cl . . . .  , cv+ ~) and each f~ e X there is 
a (unique) harmonic function u = un on f~ having the boundary values c, on Fg 
(k = 1 . . . . .  p + 1). Let Ou/On denote the outward normal derivative of u on 0f~. Then, 
for c e R p+ ~ fixed, we consider the following moving boundary problem: 

Find a map ( - e, e) 9 t ~ ~,  e X for some e > 0 such that 0f~ t propagates 
with velocity -(Ou~,/On), measured in the direction of the outward (7.11) 
normal of afar, and such that f~o -- f~(o). 

There are reasons to believe that this problem has a unique solution for e > 0 
sufficiently small. Suppose t ~ f~t is a solution. Then 

f n  f dx  dy = const = f f dx  dy 
t o 

for e a c h f  ~ L,Z(u i tl <,  f~t)- In fact, denoting an arc-length parameter along the positively 
oriented boundary of f~t by s, using Green's formula and that Of/On = -i(Of/Os) 
(Cauchy-Riemann), we have 

f dx  dy = a" f "  - Ou"'~ ds = - ds 
, On ] D, 

• Of =i"  ~ c k - - d s = 0 .  
= i" D, uta, Os k = 1 rk), Os 

Thus, for each c e ~ '  ÷ ~ the moving boundary problem (7.11) fields a one-parameter 
family of domains in Y admitting the same quadrature identity for the test class L] as 
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~(o). Observe that any two C ~  p+I that differ by an additive constant (i.e., by 
(~, ~ , . . . ,  ~) for some ct~ R) yield the same problem (7.11). Therefore, by varying 
c e ~P+ ~ there arises exactly ap-parameter family of problems (7.11) and so we get a 
p-parameter family of domains in Y satisfying the same quadrature identity as f~co) as 
claimed in (ii) of Theorem 12. 

One may also notice that the numbers 3p and p in Theorem 12 equal the (real) 
codimensions of Re L2s(f~) and Re L2(f~) respectively in Lh2(f~), where Re L2(s)(I)) 
denotes the set of real parts of functions in L2(~)(f~) and L2(D) is the space of real-valued 
square-integrable harmonic functions. This gives another explanation of the numbers 
3p and p, because quadrature domains for harmonic functions can be expected to be 
more or less uniquely determined by their quadrature functionais (cf. [ 18], Theorem 4.7 
with corollaries). 
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