

LabVIEW
Digital Signal

Processing

http://dx.doi.org/10.1036/0071469664

This page intentionally left blank.

LabVIEW
Digital Signal

Processing
and Digital Communications

Cory L. Clark
Motorola

McGraw-Hill
New York Chicago San Francisco Lisbon London Madrid

Mexico City Milan New Delhi San Juan Seoul
Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071469664

Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States
of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may
be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

0-07-146966-4

The material in this eBook also appears in the print version of this title: 0-07-144492-0.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every
occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the
trademark owner, with no intention of infringement of the trademark. Where such designations appear in this
book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts
to use as premiums and sales promotions, or for use in corporate training programs. For more information,
please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright
Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell,
publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for
your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the
work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO
BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE
ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill
and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall
be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the
work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071469664

http://dx.doi.org/10.1036/0071469664

������������

Want to learn more?
We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

http://dx.doi.org/10.1036/0071469664

To Z, who always shows me what’s important;
to my parents, who started me out right; and
to my sister Holly, who taught me to read

This page intentionally left blank.

vii

Contents

Preface xi

Part 1. Getting Started

Chapter 1. Digital Communications and LabVIEW 3

1.1 Conventional Digital Receiver 5
1.2 Subsampling Receiver 6

Summary 11
References 12

Chapter 2. Getting a Signal into LabVIEW 13

2.1 Conventional Digital Receiver 13
2.2 Subsampling Digital Receiver 19

2.2.1 Choosing a sample rate 21
2.2.2 Subsampling SNR 23
2.2.3 Subsampling signal placement 29

2.3 Other Sampling Methods 30
2.3.1 Digital oscilloscope 30
2.3.2 RF spectrum analyzer 31
2.3.3 Analog sampling card 31
2.3.4 Soundcard 35
Summary 35
References 36

Part 2. Building Blocks

Chapter 3. Spectral Analysis 39

3.1 Low-Level Frequency Domain Functions 39
3.1.1 Simple FFT 41
3.1.2 Improved FFT 43

3.2 Analyzing the DFT Results 44
3.2.1 Spectral leakage 46
3.2.2 Sampling window shape 46

3.3 High-Level Spectral Functions 50

For more information about this title, click here

http://dx.doi.org/10.1036/0071469664

3.4 Adding C Routines to LabVIEW 53
3.5 Spectral Measurements Toolset 56

Summary 59
References 59

Chapter 4. Digital Filters 61

4.1 Filter Types 61
4.2 FIR Filters 63

4.2.1 FIR filter design by windowing 63
4.2.2 Equiripple FIR filters 69

4.3 IIR Filters 73
4.4 Comparing IIR and FIR Filters 74

4.4.1 IIR versus FIR magnitude 76
4.4.2 Effects of filter-phase response 76

4.5 Pulse-Shaping Filter 78
Summary 82
References 82

Chapter 5. Multirate Signal Processing in LabVIEW 83

5.1 Upsampling 83
5.2 Downsampling 85
5.3 Resampling Filters 85

5.3.1 Halfband filters 88
5.3.2 Polyphase filters 90
Summary 93
References 93

Chapter 6. Generating Signals with LabVIEW 95

6.1 Basic Functions 95
6.2 Sinusoids 97

6.2.1 Complex mixer 98
6.2.2 Sinc function 101
6.2.3 Chirp sequence 103

6.3 Generating Channel Models 103
6.3.1 Rayleigh fading 103
6.3.2 White gaussian noise 107

6.4 Generating Symbols 107
Summary 112
References 112

Part 3. Building a Communication System

Chapter 7. Assembling the Pieces 115

7.1 Modulator 115
7.2 Demodulator 118
7.3 Channel Impairments 122
7.4 Signal Detection and Recovery 127

7.4.1 Matched filter detection 129
7.4.2 Threshold decisions 129

viii Contents

7.5 Synchronization 133
7.5.1 Time synchronization 133
7.5.2 Frequency synchronization 133

7.6 NI Modulation Toolset 134
Summary 137
References 137

Chapter 8. System Performance 139

8.1 Performance Measurements 139
8.1.1 Bit-error rate 139
8.1.2 Error vector magnitude 142

8.2 Improving System Performance 142
8.2.1 Channel estimation 145
8.2.2 Channel coding 145
8.2.3 Viterbi decoder 151
Summary 154
References 154

Chapter 9. Optimizing LabVIEW Signal Processing 155

9.1 General LabVIEW Coding Guidelines 155
9.2 Signal Processing Tips 157

9.2.1 Linear convolution with the FFT 157
9.2.2 Fast real FFT 159

9.3 More LabVIEW DSP Applications 159
9.3.1 Roots of difference equations 159
9.3.2 Linear predictive speech coder 163
Summary 167
References 167

Appendix A. VI Reference 169

Appendix B. Hardware Resources 201

Index 203

Contents ix

This page intentionally left blank.

Preface

About This Book

This is not a book about how to use LabVIEW or even a book on learning digital
signal processing (DSP). Instead it is more of a practical guide on how to enable
LabVIEW to tackle some real-world DSP and communication problems. This
book assumes that the reader has a good grasp of many of the complex issues
encountered in DSP and digital communications and also is at least skilled
enough in LabVIEW to build a VI. When necessary, the book will dive into the
heart of signal processing topics and their implications will be explored. Certain
topics will be explained in enough detail so that the reader will know there is
no hand waving or mystery involved. This material is meant to bridge the gap
between obtaining theoretical knowledge and actually exercising that knowl-
edge. LabVIEW provides us with an excellent set of tools for examining all sorts
of DSP and digital communication topics. Its graphical nature allows us to
quickly and efficiently get to the core of a communication problem without all
the overhead that generally accompanies a digital communication system. This
book will start out at the beginning of the DSP realm—sampling a signal. The
intermediate chapters will cover some basic building blocks and the final chapters
will put it all together as a digital communication system.

A lot of signal processing books start out describing what a discrete time
sequence is, the advantages of DSP over analog methods, and the like. This
book skips all that and assumes that you already know enough about DSP to
get started and you probably have some very good references regarding where
to go when you do not understand something. Instead this book focuses on
putting that DSP knowledge to work using LabVIEW. Also, at the end of each
chapter is a list of references for the specific topics covered in that chapter. Of
course the reader is encouraged to look at those references for any concept that
is not quite clear. If your DSP is a little rusty, or if you are new to the topic, a
good starting place would be to read Understanding Digital Signal Processing
by Rick Lyons before moving to the more advanced texts such as Discrete-Time
Signal Processing by Oppenheim and Schafer. The book by Lyons should give you
a good intuitive feel for many complicated DSP subjects while the Oppenheim
and Schafer book will give you all the gory details on how and why.

xi

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

As with any subject, you can read about DSP all day long and not quite under-
stand it until you actually put it into practice. Hopefully, after working your way
through this book, you will not only get better at using LabVIEW, but your
signal processing skills will be more instinctive. Most engineers and students
are familiar with Matlab because it is the most common DSP simulation envi-
ronment. But this book attempts to show that almost everything that Matlab
can do, LabVIEW can do just as easily (and perhaps more easily). LabVIEW has
two distinct areas where it excels over Matlab: (1) its graphical nature—you can
look at what is going on, not just interpret words on a page—and (2) its inter-
face to external hardware and instruments. LabVIEW combines these charac-
teristics with some very useful built-in functions to perform all sorts of signal
processing. All of the examples in this book are compatible with LabVIEW 7.0
express evaluation version. This software may be downloaded free of charge from
the National Instruments website and the software will run for 30 days. All
references and built-in VIs are included in the 7.0 evaluation version and are
not guaranteed to work on any other version of LabVIEW. The only exceptions
to this will be the special toolsets that National Instruments ships with some
of their RF measurement hardware. These VIs will not be necessary to experi-
ment with any of the VIs in this book, but certain functions may be mentioned
for completeness.

Organization of the Book

This book tries to take the following approach—begin at the beginning and
build strong fundamentals with each chapter building on the previous ones.
Following that theme, the book is divided into three parts: Getting Started,
Building Blocks, and finally, Building a Communication System. In this case,
the beginning will be, “Why LabVIEW?” Here the book moves slowly through
Chapters 1 and 2 covering the intricate details of actually acquiring a signal.
Chapter 3 explores the LabVIEW spectral processing tools such as DFT and also
touches on some of the impairments associated with DFT computation.
Chapter 4 shows how to design digital filters in LabVIEW and Chapter 5 uses
those filter design concepts in the context of multirate sampling. Next, some very
useful signals are generated in Chapter 6, and we look at mapping of bits to sym-
bols for building a modulated waveform. In Chapters 7 and 8 we build and eval-
uate our digital communication system. Finally, Chapter 9 reveals a few
techniques for optimizing the speed of signal processing computations in
LabVIEW.

Acknowledgments

You may not know this, but writing a book is hard work. You scrutinize every
word and worry that you have said something completely wrong. Because of the
monumental nature of researching, writing, organizing, editing, and publish-
ing, no book is a single-handed effort. As such, I would like to acknowledge the

xii Preface

following people for their part in helping me through this: Mark Goldberg and
Stephen Shiao for being fantastic mentors; Steve Einbinder for showing me the
power of LabVIEW; Arun Kumar and Hua Li for being great technical resources,
sounding boards, and friends; Fred Harris, Bernard Sklar, and Jim McClellan
for being the three instructors who I learned the most DSP from; and last but
not least, DP for all his creative inputs and edits.

Finally, I would like to say that I have made every effort to put only correct
information in this book, but I am sure that I made at least a few mistakes. If
you find an error, I would be happy to hear about it. Also, please send any com-
ments or suggestions to me at coryc85@gmail.com. Thanks and enjoy the book.

Cory L. Clark

Preface xiii

This page intentionally left blank.

LabVIEW
Digital Signal

Processing

http://dx.doi.org/10.1036/0071469664

This page intentionally left blank.

Part

Getting Started

1

1

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank.

Chapter

1
Digital Communications

and LabVIEW

When most people think of digital communications, they probably imagine that
it has something to do with computers talking back and forth. However, what
they do not realize is that digital communications is really about sending digi-
tal data through some kind of medium that is much more suited to analog
signals. Let’s face it—the world is an analog place and, in fact, digital com-
munications actually involves the transmission of a set of discrete analog
waveforms. Perhaps digital communications should be renamed discrete
communications. At least we can say that each discrete waveform has an asso-
ciated digital representation. So in this book a digital communication system
means any system where digital data are transmitted from one place to another
using some finite signal set. Digital communication systems are everywhere.
Cellular telephones, hard disk drives, DSL modems, satellite television, CD
players, and even your garage door remote are all examples of a communica-
tion system where digital data are transmitted. For the many different com-
munication applications that exist, there are even more digital communication
protocols: GSM, CDMA, OFDM, 802.11(b and g), Ethernet, APCO-25, as well as
emerging protocols such as EDGE and W-CDMA.

The list of wireless digital communication standards in Table 1.1 is only a frac-
tion of the digital communication systems in use today and each of them has its
own unique frequency band, signaling format, and multiple access method. These
systems are becoming so ubiquitous that every company involved in communi-
cations has to sell a product that supports Bluetooth, 802.11, Infrared, IEEE-1394,
USB, and more. It seems as if there is a convergence of communication devices
but a divergence of communication protocols. Test and development systems to
cover all of these standards are expensive and inflexible—it is difficult to buy
equipment that can keep up. So what can we do to keep up with the rapidly
evolving technologies in digital communications? Better simulation and proto-
typing might be one solution, but how do you really test the whole system?

3

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Many engineers turn to MATLAB or perhaps even to C to simulate their com-
munication designs before starting production. Both are excellent tools and are
extremely powerful. However, for the whole package, hardware to bits, LabVIEW
really outshines both of them. From a general point of view, LabVIEW’s graphi-
cal environment is easy to pick up and understand. Looking a little deeper you
can see that LabVIEW has a powerful built-in signal processing toolset, no
coding requirements such as memory allocation or variable declarations, no
compiling, highly integrated instrument control or data acquisition, and excel-
lent display utilities for viewing these digital signals at various points in the
communication system. We will see how simple LabVIEW virtual instruments
(VIs) can be built and combined to produce a flexible and powerful digital com-
munication test system. Building such a LabVIEW-based communication system
will allow for new interface standards to be quickly and easily integrated. Let
me also say that LabVIEW has come a long way as far as speed in the last sev-
eral years is concerned, but it is by no means a real-time environment. As we
develop the pieces of our digital communication system it is important to real-
ize that this system is really too slow for real-time communications, but is per-
fect for instrument-type measurements. Building this system in LabVIEW is a
trade-off in speed for rewards in flexibility, ease of coding, and excellent user
interface and data display.

LabVIEW has always been one of the premiere tools for instrument control
and data collection or display and this book will show how LabVIEW can be
adapted to process any of these digitally modulated signals—effectively becom-
ing the test instrument itself. We will see that the line between instrument and
virtual instrument (VI) can be blurred. To accomplish this we will examine the
pieces of a digital communication system in a LabVIEW environment and assem-
ble those pieces into a digital receiver. Of course the LabVIEW tools that are
developed in this book are by no means considered real time. There will be a lot
of overhead due to the PC running Windows, then overhead from LabVIEW—
all on top of the computations and display updates involved in demodulating our

4 Chapter One

TABLE 1.1 Wireless Digital Communication Standards

Communication Channel
protocol Frequency band(s) bandwidth Modulation

GSM 800/900 MHz 200 kHz GMSK
CDMA 800/900 MHz and 1.9 GHz 1.25 MHz QPSK
Digital cellular 800/PCS 30 kHz π/4-DQPSK
TETRA 400/800 MHz 25 kHz π/4-QPSK
802.11b 2.4 GHz 22 MHz CCK
802.11g 2.4 GHz 22 MHz OFDM
Bluetooth 2.4 GHz 1 MHz GFSK
APCO-25 VHF, UHF, 800 MHz 12.5/25 kHz C4FM
GPS 1.2 GHz and 1.5 GHz 20 MHz Binary biphase
CDMA2000 1.9 GHz 1.25 MHz 4-PSK
UMTS 900 MHz and 1.9 GHz 1.25 MHz GMSK/8-PSK
EDGE 900 MHz and 1.9 GHz 200 kHz GMSK/8-PSK

signals. So we may sacrifice the speed of a stand-alone dedicated instrument to
gain the flexibility of demodulating any signal we choose. The point is that this
digital communication system is really more of a testbed than a radio. We will
be able to simulate, test, and measure the critical aspects of a real communi-
cation system. Throughout the book, some ways to optimize the speed of
LabVIEW’s processing will be mentioned and Chap. 9 will offer some helpful tips
for maximizing throughput.

Let us start by exploring exactly how LabVIEW can be used for receiving digi-
tal communication signals. This book will focus on the implementation of two
different digital communication structures. The first is a typical digital receiver,
discussed in Sec. 1.1. Section 1.2 covers the second type, which is an all-digital
receiver. Both receivers are used in practice today and both have their positive
and negative qualities. The following sections will outline the advantages and
disadvantages of each type of digital receiver and give the reader a better idea
of how exactly LabVIEW fits into these structures.

Before getting into the specifics, let us review how digital frequency relates
to analog frequency. Digital frequency will be denoted by Ω, where

(1.1)

Since digital samples themselves are nothing but a sequence of numbers, they
possess no inherent time information. Therefore, by specifying the sample period
(the time between successive samples), we can relate the analog frequency f to
the digital frequency Ω, where the unit of Ω is radian per sample. Therefore, in
the following figures Ω will imply any processing that is done in the digital
domain and f will imply any processing that is done in the analog domain.

1.1 Conventional Digital Receiver

Figure 1.1 is the block diagram of a typical “digital” receiver. In reality this receiver
is only partially digital because there is analog processing that takes place at the
front end of the receiver. Before the desired signal can make it to the digital world
for processing by the DSP, it must first be sampled by the analog-to-digital (A/D)
converter. A standard A/D can sample up to 20 megasamples per second (Msps),
which means it probably has a front-end filter (not shown) limit of 10 MHz. Unless
the desired radio frequency (RF) signal is below 10 MHz, the A/D will not pass the
signal through to the digital processing section. It is for this reason that heterodyne
is necessary. The incoming RF signal is first mixed with a local oscillator (LO)
signal to shift the carrier frequency from some high range down to an intermedi-
ate frequency (IF) range more suitable for the limits of the A/D. This IF signal is
then passed through an analog IF filter before digitization to remove any unwanted
signal energy and thereby improve the sensitivity of the receiver.

Ω = 2p f
fS

Digital Communications and LabVIEW 5

Assuming that the mixer has a method to reject the images, this type of
receiver will preserve the signal-to-noise ratio (SNR) of the original signal [1].
This property may be necessary for applications where the SNR is low to begin
with.

The conventional digital receiver described previously, although widely used,
becomes cumbersome to implement in a software environment such as
LabVIEW. The downconversion from RF must be done in hardware with an
analog mixer. The LO signal is typically generated by some voltage controlled
oscillator circuitry and amplified to provide the appropriate drive level for the
mixer. This requires external hardware in addition to the sampling card. Also,
any impurities in the LO signal immediately affect the quality of the mixer
output. Additionally, LO stability and its tuning range place hard limits on the
signal bandwidth and carrier frequencies that can be analyzed with this type
of receiver. However, these types of receivers are available. In fact, National
Instruments, as well as other companies, offer RF downconverter products that
provide a complete black box solution to LO generation, RF mixing, and IF fil-
tering. A few of these products and vendors are listed in App. B. Chapter 2 will
take an in-depth look at the National Instruments PXI-5660 RF Signal Analyzer.
It is worth noting that the PXI-5660 is in some sense a hybrid device in that
aspects of both the conventional digital receiver and the subsampling receiver
are used to acquire the desired signal. The details of the PXI-5660 operation will
be explained later in more detail; however, from the casual user’s point of view
the 5660 device appears to be a conventional digital receiver and this book will
treat it as such.

1.2 Subsampling Receiver

While the conventional digital receiver is perfectly acceptable for performing
each and every function in this book, we can modify the structure in Fig. 1.1
to eliminate much of the hardware. This is done by moving the A/D over to the

6 Chapter One

Figure 1.1 Conventional digital receiver.

high-frequency side of the LO mixer and sampling the RF directly, creating an
all-digital receiver. Figure 1.2 shows an example structure of what this all-digital
receiver might look like. In this type of system, the A/D must now sample
the RF signal directly and the LO has become a simple digital mixer. All of this
implies that the A/D has the bandwidth and speed necessary to capture the
desired signal. As before, if the RF carrier frequency is low enough, standard
A/D converters can easily capture the signal, but many modern communication
systems operate with spectrum in the 800 MHz to 1 GHz range. Without vio-
lating the Nyquist rate, the A/D must be able to sample at twice the largest
input frequency, potentially over 2 gigasamples per second (Gsps). While that
is a staggering sampling requirement, there are A/Ds available with plenty of
bandwidth and sample rates up in the gigasamples per second. In fact, Acqiris
makes a digitizer that has 1 GHz of analog bandwidth and captures up to
2 Gsps. Chapter 2 will make use of this particular device to capture a digital
communication signal.

One headache that always arises when we start sampling signals in the
gigahertz range is the huge amount of memory space required to store those
samples. Assuming the samples are 8-bit real samples and the sample rate
is 1 Gsps, we can fill a gigabyte of memory space up with RF samples just cap-
turing a 1 s time record. This does not leave much room in the memory for
the operating system or any other applications. On top of that, any process-
ing on that enormous number of samples requires long periods of time, which
is an undesirable result for any pseudo real-time testing. So how can we
simultaneously take advantage of the large analog bandwidth of some of
these A/D converters without incurring the costs associated with processing
billions of samples per second? One way is to deliberately violate the Nyquist
sampling theorem and sample at a rate much less than twice the highest fre-
quency component in our signal. This technique is known as subsampling,
bandpass sampling, or undersampling and there are tight limits on the range
of sample rates that will produce the desired result without distorting the
spectral replications.

Digital Communications and LabVIEW 7

Figure 1.2 All-digital receiver.

Let us start by examining the spectrum of a real signal shown in Fig. 1.3. For
descriptive purposes only the positive half of the spectrum is displayed. This
signal has a bandwidth B that extends from fL to fH. We can see from the pic-
ture that the signal is centered at an arbitrary carrier frequency fC. Clearly,

(1.2a)

(1.2b)

The conventional rule of thumb for sampling the analog signal in Fig. 1.3
would be to sample at a rate greater than twice the highest frequency contained
in the signal fH. This is exactly the scenario shown in Fig. 1.4a. Here both pos-
itive and negative frequencies as well as the first spectral replications due to
the periodic sampling are shown. We can see that sampling at some fS greater
than twice fH will leave a guard band between the spectrum of the sampled signal
and the half sample rate π. The sample rate drops to exactly 2fH in Fig. 1.4b and
the spectral replications slide closer to the half-sample rate or away from

f f
B

H C= +
2

f f
B

L C= −
2

8 Chapter One

Figure 1.3 Spectrum of real signal
in analog world.

Figure 1.4 Spectral translation.

multiples of 2π, leaving no guard band at all. In Fig. 1.4c, the sample rate has now
crossed a threshold and is actually violating the Nyquist criterion by sampling
below fH. At this point, there is a range of sample rates that will result in unde-
sired aliasing; however Fig. 1.4d has continued the reduction in the sample
rate and fS is now safely below fH with no aliasing. Interestingly, from the figure
we can see that the spectral replications have now swapped places and are
inverted in frequency. In fact, in [2] Liu shows that the orientation of the spec-
tral replications switches from normal to inverted at each integer reduction of
the sample rate. As the sample rate drops, the spectral replications continue to
march away from multiples of 2π and are inverted at times. The range of accept-
able rates at which we can sample our signal without aliasing is given by [3]:

(1.3)

n will be denoted as the subsampling factor and is given by [3]:

(1.4)

where is the largest integer contained in the argument.
From Eq. (1.3) it is clear that there are many possibilities for choosing how

much to undersample the desired signal. One obvious choice would be to sample
at the absolute lowest possible rate, or said another way, choose the largest pos-
sible n. Substituting Eq. (1.2b) in Eq. (1.3), we can rearrange the lower limit in
Eq. (1.3) to show the absolute minimum sample rate as

(1.5a)

using Eq. (1.4), we know that the largest value for n will always be and
again substituting for fH using Eq. (1.2b) we will get the following:

(1.5b)

now we can rearrange the denominator by factoring out the 1/2B term

(1.5c)

finally, we can move the 2B term to the numerator and cancel the (2fC + B) terms
leaving only

fS ≥ 2B (1.6)

which tells us that the absolute minimum rate at which we can sample a signal
is twice the information bandwidth B.

f
f B

B f BS
C

C

≥ +
+

2
12 2/ ()

f
f B

S
C

fC B

B

≥ +

()+

2
2/

[]fH
B

f
f B

nS
C≥ +2

Ig
fH
B

[]

1 ≤ ≤












n I
f
Bg
H

2 2
1

f
n

f
f

n
H

S
L≤ ≤

−

Digital Communications and LabVIEW 9

Why would I not just sample at the lowest possible rate given in Eq. (1.6) as
2B? Well there are several considerations for choosing the subsampling factor n.
First of all, it is important to understand the effect of odd and even factored
reductions. As mentioned earlier from [2], if n is even the resultant signal spec-
trum will be inverted and the spectrum will be normal if n is odd. Depending
on the application, one or the other orientation may be desired. In the case
where the subsampled signal ends up in the wrong orientation, the spectral
inversion should be easy to fix but may need some additional processing steps.
Secondly, the choice of n will affect the frequency where your aliased image will
end up. Akos et al. in [1] shows that the IF frequency can be computed from

(1.7)

where is simply the integer portion of the argument.
This means that you as the designer will have a measure of control over

where to put the aliased spectra. The third and possibly the most influential con-
sideration for choosing n is the resultant degradation in SNR produced by the
subsampling. As with almost everything in engineering, we do not get something
for nothing. In this type of sampling, the trade-off is in SNR [3]. By undersam-
pling, we also alias noise into the translated passband of our signal; this reduc-
tion in SNR is unavoidable, but can be acceptable for the conducted signals that
we are going to encounter in this book. In [3], the degradation in SNR D is
given by

(1.8)

From Eq. (1.8), it is evident that as we increase n (or decrease the sample rate)
we are folding more and more noise into the passband of our signal. In Chap. 2,
when we start using some hardware we will actually take a look at a real-world
signal sampled both at a rate above the Nyquist rate and undersampled to a rate
consistent with Eq. (1.2). We will be able to clearly see the implications of the
undersampling on our signal. The overall effect of the signal degradation D will
depend on the required SNR for the specific communication system.

With all these restrictions on valid sampling rates and SNR reduction, sub-
sampling seems much more complicated than the plain old Nyquist rate sam-
pling method; however, this approach has two wonderful results. First, we can
enormously reduce the required sample rate and therefore use much less
memory space to capture and process the same RF signal. Second, if we choose
our sample rate appropriately, our aliased signal will end up right at the IF of
our choice and we will have completely eliminated the need for the digital LO
mixer operation shown in Fig. 1.2. The only question will be whether or not we
can accept the reduced SNR without a severe impact to our recovered signal.

Example 1.1: Subsampling a GSM Signal Assume that you are trying to sample
a GSM cellular signal. The carrier frequency is 1 GHz and the signal bandwidth is

D n≈ 10 log

fix
/

()fC
fS 2

fix
even rem

odd rem
IF

IF

f
f

f f f

f f f f
C

S

C S

S C S/

, (,)

, (,)2







=

= −







10 Chapter One

30 kHz. If we obey Nyquist, we must sample above 2 Gsps, but with subsampling,
we can use Eq. (1.3) to choose a much lower sample rate. The sample rate floor is still
determined by Nyquist; remember that fS must always be at least twice our signal’s
information bandwidth, or in this case 60 kHz. The GSM standard calls for 9-ms slots
with a call interleave of 3:1. If we want to sample 10 occupied slots, the capture
length would have to be 270 ms. At 2 Gsps, this amounts to 540 million samples, but
using subsampling, our sample rate and the number of samples can be reduced
according to Eq. (1.4) as

or 1 ≤ n ≤ 33,333 (a)

If we choose n = 10,000 that means we can sample the SAME 270-ms time signal in
only 54,000 samples!

Summary

LabVIEW provides an ideal environment for simulating and testing digital com-
munication systems for several reasons. First of all, its graphical nature allows the
engineer to quickly test components without all of the overhead found in typical code
or compiler systems. Second, LabVIEW was conceived to interact with physical
instruments and thus the acquisition of real signals is typically straightforward and
efficient. And third, we will see that LabVIEW has loads of built-in signal process-
ing tools that are simple to drop into a VI and start using. And finally, you will find
that most of the hardware available out there is compatible with LabVIEW.

We have seen that LabVIEW can accommodate both a conventional digital
receiver and an all-digital receiver. Both receivers are capable of analyzing
every digital signal presented in this book. However, each receiver has unique
subtleties that may or may not be important to your particular application. We
have also discussed the usefulness of subsampling receivers. Because of the
limitations on the speed of processing millions (or billions) of samples and
memory requirements, subsampling is an attractive way to acquire a digital com-
munication signal. There are some very specific restrictions on valid sample
rates for these types of receivers and there is also a cost associated with under-
sampling. We will see more on this subject later on, but first we will jump to
building our digital receiver in Chap. 2 by outlining various hardware devices
for acquiring the desired signal. Chapter 3 will focus on LabVIEW’s spectral
analysis capabilities. The concepts and tools developed there will be used later
in Chap. 4 while analyzing digital filters. LabVIEW has an impressive selection
of built-in filtering routines and we will build some complete filter design tools
around those routines. Multirate processing will be covered in Chap. 5 and
Chap. 6 will get us started generating some useful signals such as mixers and
noise. Then Chaps. 7 and 8 will start putting all of this together into a complete
communication system. Finally, Chap. 9 will finish up with some tips to opti-
mize the speed of your LabVIEW processing.

1
1 15

30
≤ ≤ +











n Ig
GHz kHz

kHz
M

Digital Communications and LabVIEW 11

References

1. Akos, D. M., M. Stockmaster, J. B. Y. Tsui, and J. Caschera, “Direct Bandpass Sampling of
Multiple Distinct RF Signals,” IEEE Transactions on Communications, vol. 47, pp. 983–988,
July 1999.

2. Liu, J., X. Zhou, and Y. Peng, “Spectral Arrangement and Other Topics in First-Order
Bandpass Sampling Theory,” IEEE Transactions on Signal Processing, vol. 49, pp. 1260–1263,
June 2001.

3. Vaughan, R. G., N. L. Scott, and D. R. White, “The Theory of Bandpass Sampling,” IEEE
Transactions on Signal Processing, vol. 39, pp. 1973–1984, September 1991.

12 Chapter One

Chapter

2
Getting a Signal

into LabVIEW

Before we can start performing any sort of digital processing with LabVIEW, we
have to somehow obtain the signal that we would like to analyze. Chapter 1 out-
lined two types of digital receivers. The first type was the conventional digital
receiver that heterodynes the radio frequency (RF) signal down to a frequency
suitable for most analog-to-digital (A/D) converters to capture. The second type
was the subsampling receiver that samples the RF signal directly. As men-
tioned before, both receivers are capable of processing the signals that we explore
in this book and both have their pros and cons. This chapter focuses on the imple-
mentation of each of these receiver structures. In later chapters we will see some
methods for testing the receiver using our own test signals within LabVIEW. As
outlined in Chap. 1, LabVIEW is particularly well suited for interfacing to the
physical world. For instance, the interface might be through dedicated instru-
ments over a general purpose interface bus (GPIB) connection. As we develop the
structure of the receiver, we will see that we can use an unlimited number of input
hardware devices to actually sample a signal and the subsequent signal pro-
cessing does not change at all. The virtual instruments (VIs) shown here will be
used as building blocks to create a complete digital communication system. All
VIs are referred to by name and are available for download from the website
http://www.MHEngineeringResources.com. Also Appendix A contains a com-
plete listing of each VI along with a description and block diagram.

2.1 Conventional Digital Receiver

If you have ever looked at the design of a digital receiver before, it probably looks
a lot like Fig. 1.1. In a band-specific RF product, typically the local oscillator (LO)
mixer, intermediate frequency (IF) filter, and A/D converters are combined into a
single receiver front-end IC with RF in and baseband I and Q digital samples out.
This is a very nice solution for a dedicated receiver, but for our flexible LabVIEW

13

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

14 Chapter Two

receiver, it might get a little tricky. To quickly implement this receiver, we need a
black box that takes in a high-frequency RF signal with some specified bandwidth
and pipes digital samples right into LabVIEW. You could also build your own RF
interface to perform the filtering and mixing and present a suitable IF signal to some
off-the-shelf A/D acquisition card. But the focus of this book is really on the digital
communication capabilities of LabVIEW and not on the design of RF hardware.
National Instruments does make some modular equipment to perform the functions
that we need for this receiver. Specifically, we can use the PXI-5600 RF down-
converter and the PXI-5620 IF digitizer. NI packages these two devices together into
the PXI-5660 RF signal analyzer. Before we get too far into details, I want to give
a brief overview of the PXI family of devices. PXI is the National Instruments ver-
sion of compact PCI. The instruments are modular and plug into slots in the PXI
chassis. The chassis itself needs either a self-contained controller, sold as a module,
or a kit that allows a stand-alone PC to act as the controller. NI calls the interface
to an external PC their MXI solution and it requires an expensive copper or fiber
optic cable for communication between the PC and PXI chassis instruments.

Figure 2.1 shows a typical PXI configuration. At a minimum, the PXI chas-
sis needs a controller (either embedded PC or the MXI PC interface), a power
supply, and an instrument for some type of measurement or acquisition. For
building a conventional digital receiver on this platform, the PXI-5600 RF down-
converter and the PXI-5620 IF digitizer along with the PXI chassis itself and
its power supply will be absolutely necessary items. Your choice of controller will

Figure 2.1 PXI chassis with modules.

Getting a Signal into LabVIEW 15

depend on how much you want to spend and the specifics of your application.
The MXI interface to an external PC will be the cheaper route assuming that
you have already got the PC (approximately $1500 cheaper), but will also be the
bulkier route. A National Instruments embedded controller will cost about
$4000, but will also be a more compact solution. One other crucial piece of infor-
mation is that the NI embedded controllers are typically based on laptop com-
puter technology and are not always as powerful as comparable desktop
machines in the market. The top-of-the-line embedded controller, the 8186, cur-
rently has a 2.2 GHz processor with up to 1 GB of RAM while a top-of-the-line
desktop PC has a 3.4 GHz processor and can handle up to 4 GB of RAM. The
performance difference will be noticeable in how fast your signal samples are
processed and in any updates to the displayed data. Please note that NI does
not ship a monitor, keyboard, or a mouse with their embedded PCs and there
is no CD drive and no floppy (although the CD drive is an option). USB or
Ethernet are the best available methods for loading files onto these controllers.

Now that we have explored the various options for building our conventional
digital receiver, let us look at getting a working setup. Since the controller is
transparent to the PXI hardware, we can ignore the actual controller interface
chosen for your specific application. What is common, however, is the LabVIEW
interface to the PXI instruments. In order to use any of the PXI modular instru-
ments, we will need (in addition to LabVIEW) NI Tuner and NI Scope. These
two pieces of software typically ship with all PXI modules and are also down-
loadable from the NI website. National Instruments also bundles the Spectral
Measurements Toolset with the 5660 package. This toolset has some nice zoom
FFT functions, spectrograms, and most importantly offers some very good exam-
ples for developing your own communications-related programs. Chapter 3 will
explore the SMT package in more detail. Once you get all of these items installed
and you reboot, your function palette in LabVIEW should look like Fig. 2.2.

So what are all these new functions? Well, the digitizer pane will contain
all the functions necessary to initialize and use the PXI-5620 digitizer. National
Instruments calls its standard interface to all digitizers NI Scope, which all
the functions here refer to. The radio frequency signal analyzer (RFSA) pane
contains all the functions associated with the PXI-5600 downconverter (generi-
cally called NI Tuner) and RFSA also contains some special functions with
names that begin with SMT. These functions are specific combinations of the
NI Scope and NI Tuner functions designed especially to set up the PXI-5660
hardware for capturing RF signals. Everything that is done inside the SMT
functions is available to you from the digitizer and RFSA subpalettes shown
on the right in Fig. 2.2. For inexperienced LabVIEW users or anyone new to
the PXI platform, the best route for getting the 5660 hardware working will
be to rely on the SMT functions as they provide for fairly quick and effortless
configuration. Later as you gain skill with the 5660, you can always go back
and modify your VIs to use the lower level calls to the hardware. You will prob-
ably find later that your application really does not require all the bells and
whistles provided in the examples and you can easily tailor the example files
to suit your specific needs.

16 Chapter Two

Figure 2.2 Spectral measurements function palette.

The simple VI shown in Fig. 2.3 is a very basic program to capture data from
the 5660 RF signal analyzer. This file is called PXI Capture.vi and works well
for a quick solution to acquire and display a signal. Like most LabVIEW com-
patible instrument drivers, the PXI functions can be categorized into three
groups: initialization, acquisition, and resource deallocation. The two sub-VIs
on the left are Init5660.vi and Config5620.vi. These functions fall into the cat-
egory of initialization. Those two functions are simply reconfigurations of the
standard NI SMT examples to separate the initialization routine from the acqui-
sition. Opening resources in LabVIEW is much the same as opening files in C.
The resource is initialized only once (like fopen in C) and the initialization
returns a handle or an ID to that resource. The handle or ID must be used in
any subsequent calls to access that instrument. This is analogous to a file
pointer in C. Inside the loop, we continually read from that resource and once
the loop terminates, we close the resource. Notice that the PXI instrument
parameters do not allow the user to choose the sample rate. In a minute we will
see why National Instruments decided to keep control over the sample rate. For
now we can live with the fact that we always inherently know the sample rate
because you see that one user input is the time length of the capture and we
can use an array size function to calculate the number of points captured. Hence
the sample rate is the number of samples divided by time in seconds. Later, in
Chap. 5, we will discuss multirate signal processing and build some tools to actu-
ally resample the data to another sample rate. Building a resampler means that
we can work with whatever rate the hardware gives us, but at the expense of
adding more computations to our receiver.

So why does NI control the sample rate? The National Instruments product
information for the PXI-5660 promotes the accelerated throughput time of the
5660 device versus standard instruments. In order to speed up that avail-
ability of samples from the hardware, NI has come up with an optional sampling
scheme called direct digital conversion or DDC. Without knowing specifically
what is going on inside the 5660 package, we can see from the help files that
the samples are output at a rate that is related to the information bandwidth
of the signal and not related to the carrier frequency. In fact, the help file for
one of the NI Modulation toolkit VIs shows the following information.

Going back to the discussion in Chap. 1 about subsampling a signal, it is
clear that the NI hardware is performing the same operations that Eqs. (1.2)
and (1.3) describe. In other words, the sample rate can be reduced and the sam-
pled signal can be directly translated to an IF via the sampling process much
like what we will show in Sec. 2.2 with our own sampling hardware. Thus,
Table 2.1 shows that NI allows you to have limited control over the use of the
DDC feature by setting the desired signal bandwidth of the capture.

For further information on the VIs shown previously, please refer to Appendix A.
Here a complete reference listing of all VIs used in this book is provided along
with a brief description of their function. Probably the best place to start for
anyone new to the PXI world is with the examples provided by National
Instruments. For the PXI-5660, the examples are typically in the folder
C:\Program Files\National Instruments\LabVIEW 7.0\examples\Spectral

Getting a Signal into LabVIEW 17

F
ig

u
re

 2
.3

S
im

pl
e

P
X

I-
56

60
 c

ap
tu

re
 u

si
n

g
P

X
I

ca
pt

u
re

.v
i.

18

Getting a Signal into LabVIEW 19

Measurements Toolset\SMT Examples for RFSA. Browsing around in this
folder, you should find some very useful programs to get you up and running with
the hardware. Many of these examples are made specifically to be generic in
their end use, so be aware that there will be many parts of these VIs that are
completely unrelated to your application. Also remember to make use of the
LabVIEW help files for any functions that are unfamiliar.

2.2 Subsampling Digital Receiver

Chapter 1 referred to the subsampling receiver as an all-digital receiver. That
terminology stems from the fact that the only piece of hardware in the entire
system is the A/D converter and all of the signal processing is done digitally.
Because of this, one of the most important properties of the A/D converter we
choose will be its analog bandwidth. If the A/D converter has any front end fil-
ters that limit the input bandwidth to below our carrier frequency, then we can
never get the signal through the sampler. You might have been thinking that the
sample rate is the most important characteristic, but as discussed in Sec. 1.2,
we can choose almost any arbitrary sample rate down to 2B and still have an
accurate digital representation of our signal. So, when choosing a sampling card,
look first for one with enough analog bandwidth to squeeze your signal through
the front end and then find one that can handle your range of sample rates.

Surprisingly most A/D cards have bandwidths only up to 10 or 20 MHz. This
is an acceptable limitation if your signal’s carrier frequency is low enough; how-
ever, the majority of wireless digital communication is done up in the 800 MHz
to 1 GHz range. That makes it tougher to find a suitable card but certainly not
impossible. To make your search a little easier, Appendix B is a list of sampling
hardware equipment manufacturers and a brief overview of what they have to
offer. I found that Acqiris (www.acqiris.com) offers a line of PCI-based 8-bit
sample cards with bandwidths from 150 MHz up to 1 GHz that provide precisely
what we need for building this subsampling digital receiver. All of these cards
are under $10,000 and the best part is they provide built-in LabVIEW functions
for interfacing to their hardware. The rest of this section focuses on using the

TABLE 2.1 DDC Signal Bandwidth versus Sample Rate

Signal bandwidth Highest available sample rate

1.25 MHz 2 Msps
800 kHz 1 Msps
400 kHz 500 ksps
200 kHz 250 ksps
100 kHz 125 ksps

50 kHz 62,500 sps
25 kHz 31,250 sps

12.5 kHz 15,625 sps

Msps = megasamples per second; ksps = kilosamples per
second; sps = samples per second.

20 Chapter Two

Figure 2.4 Acqiris digitizer functions palette.

Getting a Signal into LabVIEW 21

DP240 8-bit PCI sampling card. This device has two input channels, 1 GHz of
analog bandwidth, and can acquire up to 2 gigasamples per second (Gsps)
(shared over both channels). The card also comes with the necessary drivers for
LabVIEW on a CD. The installation is simple and when it is finished, the
LabVIEW functions palette looks like Fig. 2.4.

In addition to the basic driver functions Acqiris also provides an example VI
to get you started using their card quickly. The example is called Acquire.vi and
is a simple and straightforward program. The VI block diagram in Fig. 2.5
shows a slightly modified version of the standard Acqiris example. In this VI,
the basic Acqiris functions have been separated into the three groups men-
tioned previously and the acquisition subVI is placed inside a loop for continu-
ous acquisition of the signal.

By incorporating a power spectral density VI from the signal measurements
palette inside the Acqiris samples sub-VI, the spectrum of our signal can be
computed for each time record captured and displayed on the front panel. In
addition, the frequency axis sub-VI is added to generate the x-axis frequency
values for a given sample rate. These two functions can then be used to create
a display such as the one shown in Fig. 2.6. The main point here is that with
some very simple modifications, the standard example program can be modi-
fied to include whatever functionality that we need in our application. The
VIs shown in this section will be used later as we build the other pieces of our
digital receiver.

Let us take a closer look at Fig. 2.6 before moving on. The resource name
(PCI::INSTR0) is specific to your device. In this case, the Acqiris card is PCI device 0.
If you are unsure of your hardware setup, you can use the National Instruments
Measurement & Automation Explorer (MAX) to view all installed NI compati-
ble hardware. The figure shows controls for the desired number of samples and
the sample rate. Just how do you determine the sample rate? Chapter 1 gave
some guidelines for appropriate subsampling rates and the impact of those rates
on the captured signal. The next three sections explore those topics in more detail.

2.2.1 Choosing a sample rate

In contrast to the National Instruments PXI interface, the Acqiris digitizer
functions allow the user to specify the sample rate of the acquisition. This abil-
ity is of utmost importance when building a subsampling receiver. The only con-
cern for the user is what sample rate to choose. The lowest usable sampling rate
is given by Eq. (1.5) as 2B, but we can also choose any arbitrary rate up to the
limit of our sample card, as long as the chosen sample rate does not fall into one
of the forbidden zones where the aliased images overlap. These zones are defined
by the Eqs. (1.3) and (1.4) and are depicted graphically in Ref. [1]. Depending
on the processing that is done after the signal is digitized, there may be a need
to sample the data at a particular rate. Outside of those specific processing
requirements, why don’t we just go right to the absolute lowest rate possible?
There are really two major considerations for choosing a good subsampling rate:

F
ig

u
re

 2
.5

M
od

if
ie

d
A

cq
ir

is
 e

xa
m

pl
e.

22

Getting a Signal into LabVIEW 23

signal-to-noise ratio (SNR) degradation and subsampled signal placement.
Chapter 1 presented the theoretical implications of subsampling both in the SNR
that is shown in Eq. (1.8) and the signal placement given by Eq. (1.7). The fol-
lowing sections reveal the practical results of those concepts and what impact
they may have on the recovered signal.

2.2.2 Subsampling SNR

As we found out in Chap. 1, the trade-off for this reduction in sample rate shows
up as loss in the SNR. Why does the sample rate affect the SNR? Remember
that subsampling is actually taking advantage of the phenomenon of aliasing.
Any noise in our communication system will also alias into our band of interest,
meaning that noise normally out of band is now aliased to occupy the same
band as our desired signal. In a conducted environment such as a laboratory
there should be negligible out-of-band noise so we will ignore the aliased noise
and consider only the noise introduced in the A/D process. Typical A/D noise
sources include quantization noise, thermal noise, and sample clock jitter.

Figure 2.6 Front panel for Acqiris acquire.

24 Chapter Two

Assuming that all the noise sources are constant, what we really want to know
is the change in noise floor that occurs when we lower the sample rate.
Oppenheim and Schafer [2] have shown that the quantization noise can be
assumed to be a wide-sense stationary white noise process. Such a process has
the power spectral density shown in Fig. 2.7a.

Figure 2.7b shows another power spectral density of the same white noise
process but with a lower sample rate. In Ref. [2] the authors show that the total
noise power does not depend on the sample rate. Therefore, the area under the
curves in Fig. 2.7a and b is a constant. For the total noise power to remain con-
stant over the smaller range of frequencies in Fig. 2.7b, the amplitude A2 must
be greater than A1. Conversely, increasing the sample rate reduces the ampli-
tude of the noise to keep the same total noise power over the increased band-
width and hence one of the benefits of oversampling. For our subsampling
receiver, this increased noise amplitude has the effect of raising the noise floor
of the A/D. The noise floor in an A/D can be calculated from Ref. [3] as

(2.1)

where B is the number of bits in the A/D converter and fS is the sample rate.
From Eq. (2.1) the change in NF seen by lowering the sample rate from f1 to f2

is given by

(2.2)

In fact we can easily see this change in the noise floor by examining Figs. 2.8
and 2.9. Figure 2.8 is the spectrum of a real 16-QAM signal with carrier fre-
quency, fC = 99.003 MHz and a bandwidth of 6 kHz, sampled at 200 Msps, which

∆NF dB() log log log=




 −





 =







10

2
10

2
101 2 1

2

f f f
f

NF dB() . . log= × + +






6 02 1 8 10
2

B fS

Figure 2.7 Quantization noise power spectral density.

Getting a Signal into LabVIEW 25

is just above the traditional Nyquist rate. The noise floor in this figure looks to
be approximately −70 dB. Figure 2.9 is the spectrum of the same 16-QAM signal
subsampled at a rate of 100,000 sps. Clearly the noise floor is now higher than
before and from the figure, we can approximate the new noise floor to be around
−36 dB. This is an increase of 34 dB in the noise floor level estimating from the
figures. Using Eq. (2.2), the increase in noise floor can be calculated as

(2.3)

The rise in noise floor just described is the minimum loss in SNR that will be
experienced by a subsampling receiver. It is the minimum because here we
have excluded any other noise sources such as aliased out-of-band noise or
spurs in the A/D conversion process. The effect of the loss of SNR (or an increased
noise floor) is an increased probability of error in our demodulated signal. The
relationship between SNR per symbol and the probability of a symbol error for

∆NF dB=






=10 200 000 000
100 000

33log , ,
,

Figure 2.8 16-QAM signal sampled at 200 MHz (fC = 99.003 MHz).

26 Chapter Two

an M-QAM signal is developed in Ref. [4]. For a 16-QAM signal, the symbol error
probability is given by

(2.4)

where EAV/N0 is defined as the average SNR per symbol.
The Q() function, remember, is known as the complementary error func-

tion and has the property of monotonically increasing with its argument.
Indirectly, this means that as our signal’s SNR per symbol (or EAV/N0)
increases, 1 – Q(SNR) decreases and drags down the probability of a symbol
error. Now the big question is how do we know when we have undersampled
our signal too far and completely destroyed our SNR? One way to know would
be to just monitor your bit error rate by transmitting a known sequence of
bits and simply adding up the bit errors at the demodulator. A better way
would be to make sure that the chosen modulation and symbol rate can accom-
modate the reduced SNR. In Ref. [5] there is a wealth of information on the
subject of how EAV/N0 relates to the overall SNR and why EAV/N0 (or really

P Q
E
NM = − −























1 1
3
2

3
15 0

2

AV

Figure 2.9 16-QAM signal sampled using subsampling at 100 KHz (fC = 99.003 MHz).

Getting a Signal into LabVIEW 27

Eb/N0) is a good measure of performance for a digital communication system.
This relationship is given by

(2.5)

where W is the signal bandwidth, RS is the symbol rate, Rb is the bit rate, EAV

is the energy in a symbol, Eb is the energy contained in 1 bit, and N0 is the noise
power spectral density. Now we can work Eq. (2.4) backward to get the required
EAV/N0 for a specified symbol error probability and then solve Eq. (2.5) to give
us the necessary SNR for that error rate. As long as we can maintain that SNR,
we can transmit data at a given rate and keep our probability of a bit error below
our required threshold. Let us take a look at the following example, which illus-
trates the relationship between PM and SNR.

Example 2.1: SNR versus Probability of Error For this example, we will use the signal
shown in Figs. 2.7 and 2.8. That waveform was a 16-QAM signal generated by an
arbitrary waveform generator with the following parameters: Symbol rate RS = 4800
symbols per second, excess bandwidth factor α = 0.2. We want the system to have a
maximum symbol error rate of 10−3. The first step will be to rearrange Eq. (2.4) to solve
for the Q() function in terms of the symbol error probability.

(a)

Now we substitute for PM

(b)

Now we use a table for the Q() function such as the one in Ref. [5] to reverse look-up
the argument of the complementary error that yields the number shown in Eq. (b). You
will notice that the table lists values only to four decimal places, and several arguments
of the Q() function yield the same 0.0003 result. We can easily resolve this by choosing
the largest argument value that will yield 0.0003 based on the assumption that the
largest argument value will yield the largest required EAV/N0 and hence yield the
lowest probability of error. So we read a value of 3.48 from the table and now solve
the following equation for EAV/N0.

(c)

Finally we have to normalize the given SNR per symbol to the symbol rate divided by
bandwidth as in Eq. (2.5). To use Eq. (2.5) though, we must first know the bandwidth W.
Again we can look at Ref. [5], which gives us the useful formula:

(d)W RS= +1
2

1()a

E

N
QAV

0

2 15
3

60 552= × =(arg ()) .

Q
E

N
PM

3
15

2
3

1 1 0 0003334
0

AV








 = − −() = .

Q
E

N
PM

3
15

2
3

1 1
0

AV








 = − −()

SNR AV= × = ×E
N

R
W

E
N

R
W

S b b

0 0

28 Chapter Two

Now we use α = .2, the excess bandwidth, from Eq. (c) and insert Eq. (d) into Eq. (2.5)
for W. The RS parameter cancels and we end up with

or approximately 20 dB.
This exercise is mostly academic in that many digital communication texts contain

plots of the required SNR per symbol (or per bit) versus probability of a bit error for
some of the more common modulation schemes. Rather than calculating this for each
system or modulation it is useful to refer to those plots. From this example, we have
determined that this 16-QAM system requires 20 dB of signal to noise in order to stay
at or below one symbol error in 1000.

At first glance, this section presents two converse views of the relationship
between SNR and the sample rate. On the one hand, we have Ref. [2] saying that
the total noise power does not depend on the sample rate. On the other hand, a
16-QAM signal was presented with a rise in the noise floor and the authors in Ref. [1]
tell us that the SNR is degraded in an undersampled signal. But if the total
noise power remains constant, how can the SNR be affected when it is simply the
ratio of signal power to noise power? Figure 2.10a shows a signal with one-sided
bandwidth B and with corresponding A/D quantization noise levels A1 and A2 at
respective sample rates 2ω1 and 2ω2. In order to maximize the SNR in the recov-
ered signal, most receivers would follow the A/D conversion with a lowpass filter
to remove any excess noise. Figure 2.10b shows an ideal version of such a low-
pass filter with cutoff B. After applying the ideal lowpass filter the resultant
signal and quantization noise are shown in Fig. 2.10c. With sample rate 2ω1, the
total noise power is given by A1 × 2B. And similarly, at sample rate 2ω2 the total

SNRreq
AV= × =E

N0

2
1 2

100 92
.

.

Figure 2.10 Effect of undersampling on total noise power.

Getting a Signal into LabVIEW 29

noise power is given by A2 × 2B. Since we know that A2 > A1, the total noise power
after filtering has increased by lowering the sample rate from 2ω1 to 2ω2. Assuming
that the signal power has not changed, the SNR therefore decreases (since the
noise power increases) with the sample rate.

2.2.3 Subsampling signal placement

Another very important aspect of subsampling is the spectral placement of the
undersampled translated image. Figure 2.11 shows a zoomed version of the same
signal captured in Fig. 2.8. Notice that the signal is centered at fC = 99.003 MHz
and the sample rate is 200 MHz. Taking a close look at the subsampled signal
in Fig. 2.9 reveals that the signal is now translated to a center frequency of 3000 Hz.
Using Eq. (1.7),

(2.6)fix fix
MHz

kHz/2
f

f
C

S/
.

2
90 003
100

1800












=












=

Figure 2.11 16 QAM real signal sampled at 200 MHz (fC = 99.003 MHz).

30 Chapter Two

which is an even number. Then the new IF frequency, fIF is given by Eq. (1.8)

fIF = rem(fC, fS) = 3000 (2.7)

If you are paying close attention, you might notice that the carrier frequency
was chosen as 99.003 MHz and 0.003 MHz is really what gave us the 3000 Hz
offset in fIF. In this configuration, we are now going to have to mix the fIF-
centered waveform down to dc in software. The mixing is an extra step, so why not
just move the carrier frequency over to exactly 99 MHz and let the subsampling
process alias the waveform right to dc? There is a very deliberate reason for this
and it is illustrated in Fig. 2.12.

As shown in Fig. 2.11a, a real signal will have an even-symmetric spectrum.
If we allow the subsampling process to alias our signal all the way to dc, then
the two halves of the signal’s spectrum will interfere. It is for this reason that
we must choose an IF frequency appropriately and then perform any necessary
final mixing in software.

2.3 Other Sampling Methods

The two implementations just described in Secs. 2.1 and 2.2 are not the only pos-
sible scenarios for getting your signal into LabVIEW. There are so many other
methods that this book could not possibly capture them all. Here some other pos-
sible methods are mentioned, but without the elaborate explanation afforded to
the previous two methods and the focus is on simply discussing the generali-
ties of each.

2.3.1 Digital oscilloscope

This is a nice clean way to quickly get something working. If you already have
LabVIEW and a digital storage scope, you are halfway there. Many scopes these
days have built in Ethernet and/or GPIB interfaces. If your scope has one of these
ways to communicate back to your PC then you should be able to easily set up
a VI to read the data buffer from the instrument. The main limitations of this
method will be the bandwidth of the oscilloscope and the speed of the GPIB or

Figure 2.12 Spectral placement of aliased replications.

Getting a Signal into LabVIEW 31

Ethernet for transferring the captured data. There are some instrument specifics
such as data format and capture record size that you need to know. You may also
have to digitally mix the sampled signal down to baseband in your VI and some
methods for actually doing this mix are shown in Chap. 6. Many scopes have
only a single sample rate option, typically near 100 Msps. This means large
amounts of data to work with. One caution is that this method can be extremely
slow over GPIB or even Ethernet. Again, this is a rudimentary method, but can
get you up and running quickly. The downside here is that the analog bandwidth
of the oscilloscope is usually limited to 100 or 200 MHz.

2.3.2 RF spectrum analyzer

This is a very nice method that I like to talk about because a lot of the work is
done for you by the spectrum analyzer. Unlike the oscilloscope, most spectrum
analyzers have excellent RF specifications and large input bandwidths. Of
course, the unit will need to have Ethernet or GPIB capabilities so you can cap-
ture the data. Since you set the span and resolution, you know the frequency
spacing and therefore the sample rate of the data. Also the data is already in
the frequency domain, which may make some filtering operations easier to
implement in your processing VIs (see Chap. 9 for tips on filtering in the fre-
quency domain). The key point here is that you control the span and resolution,
so in effect you are choosing the sample rate. Another thing to remember here
is that by setting the carrier frequency, the instrument hardware is mixing
your signal to some IF frequency for you. There may be a lot of latency here
because of data delay over the GPIB bus and any processing time that the
instrument itself may require. But, despite the speed, this is a very easy way
to start capturing data and doing some processing in LabVIEW.

2.3.3 Analog sampling card

National Instruments (among many other manufacturers) makes several
analog sampling devices. Some are designed to plug into a PCI slot in your PC,
others are external boxes with USB interfaces. The advantage of most of these
products is the ease with which LabVIEW can communicate with them and
the abundance of ready-to-run examples both built into LabVIEW and on the
NI website. However, none of the NI cards have analog bandwidths above 150 MHz,
which severely limits the range of signals you can analyze without some
additional RF hardware to translate the signal to a range that can be captured
by the A/D converter.

As shown in Fig. 2.13, LabVIEW has an entire palette dedicated to inter-
facing with analog input devices. Depending on the manufacturer, these may
be able to control your particular device—unless the manufacturer has devel-
oped his own LabVIEW drivers. These particular functions are fairly easy
to implement. There is a configuration to set up the sample parameters such
as the number of samples, channel number (for multichannel devices), and
type of coupling, and to allocate a buffer for the data. The start-and-read

32 Chapter Two

Figure 2.13 LabVIEW analog input palette.

Getting a Signal into LabVIEW 33

Figure 2.14 Sound input functions palette.

F
ig

u
re

 2
.1

5
S

ou
n

dC
ar

dC
ap

tu
re

.v
i b

lo
ck

 d
ia

gr
am

.

34

functions pretty much do what they suggest—start an acquisition and read
from the buffer. The actual use of these functions will depend a lot on your
particular hardware. The best place for information here will be the user
manual and hopefully plenty of LabVIEW examples to get started. Again,
please refer to Appendix B for a list of hardware manufacturers and a gen-
eral description of their offerings.

2.3.4 Soundcard

LabVIEW also has the capability to record data from the audio soundcard
installed in your PC (Windows only). There are some limitations to this method,
but since almost all PCs now have soundcards, this is a realizable method for
sampling real-world signals with LabVIEW. Keep in mind there may be hard-
ware limitations here since the soundcard will have an upper limit on the pass-
band and allowable sample rate, but LabVIEW allows sample rates up to
44.1 kHz with two channels of input and 8 or 16 bits per sample. Of course, the low
bandwidth of the soundcard will not allow you to directly capture most RF sig-
nals, but you may be able to experiment with sampling other types of signals
with this method.

Figure 2.14 shows the location of the LabVIEW sound input functions. As with
all of the sampling devices, there is a configuration, a start, a read, and even a
stop function. This input method may be acceptable if your signal is already at
baseband, such as at the output of your transmitter device’s DSP.

The block diagram of a generic soundcard capture VI is shown in Fig. 2.15.
Here the input setup control allows the user to select the sample rate, bits per
sample, and whether the capture is mono or stereo. By default the capture
buffer is 8192 bytes in length, although this can be user defined. Once the
soundcard is configured, the loop continually reads from the buffer until the
user presses stop.

Summary

This chapter has described several methods for acquiring digitally modulated
signals using LabVIEW and various types of hardware. As with everything in
engineering, there are trade-offs between the types of hardware, the complex-
ity, cost, and performance of each system. National Instruments PXI products
are off-the-shelf, LabVIEW-friendly instruments that are really well suited for
digital communications. The downside to these products is price and flexibility.
In Sec. 2.2, a stand-alone sample card was used to show how to build a com-
pletely digital receiver with a single piece of hardware. The obvious advantage
here is price, but at the expense of increased complexity. One thing that further
chapters will make clear is that no matter how the signal is acquired, the dig-
ital processing in LabVIEW does not change and those chapters will focus on
building important processing blocks into sub-VIs for incorporation into diverse
types of communication systems.

Getting a Signal into LabVIEW 35

36 Chapter Two

Now that you are more aware of what types of sampling hardware are out
there, which method do you choose? Starting from scratch sometimes can be
overwhelming because of all the available choices. Choosing to use LabVIEW
to process a digital signal should narrow down your choices quite a bit though.
Starting with prices, the PXI system starts around $12,000 (excluding the con-
troller) and can easily run over $20,000 depending on your options and config-
uration. The PXI-5660 does implement undersampling, so it too will have some
degradation in SNR, although not as much as with the subsampling receiver.
This is simply because the 5660 first mixes the RF to an intermediate frequency
and so generally speaking the undersampling factor n will be a smaller number.
The Acqiris digitizer used in this chapter costs around $10,000 and is a multi-
faceted product in that it is capable of 2 Gsps with 1 GHz of bandwidth, but we
can also use it to undersample a signal—we get less control over the PXI devices.
Ultimately your budget and your own preferences will have to decide which
device is right for you.

References

1. Vaughan, R. G., N. L. Scott, and D. R. White, “The Theory of Bandpass Sampling,” IEEE
Transactions on Signal Processing, vol. 39, pp. 1973–1984, September 1991.

2. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2d ed.,
Prentice Hall, Upper Saddle River, NJ, 1998.

3. Brannon, B., Basics of Designing a Digital Radio Receiver: Analog Devices, 1999. Available at
www.analog.com.

4. Proakis, J. G, Digital Communications, 4th ed., McGraw-Hill, New York, 2001.
5. Sklar, B., Digital Communications, 2d ed., Prentice Hall, Upper Saddle River, NJ, 2001.

Part

Building Blocks

37

2

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank.

Chapter

3
Spectral Analysis

Before going any further into the processing of digital communication signals,
it is important to stop and explore some of LabVIEW’s spectral analysis capa-
bilities. These tools will be important later when we examine the spectrum of
our input signals in various stages of the communication system. And of course
the tools will also be useful when looking at the frequency response of the fil-
ters that we design in Chap. 4. Most versions of LabVIEW include all the
spectral processing functions you should ever need. Among the standard functions
are the real fast Fourier transform (FFT), complex FFT, power spectrum, and the
Hilbert and Hartley transforms as well as the inverses of those functions.
There are also many expanded spectral functions that build on the aforemen-
tioned standard functions. The following sections will develop some of the
common standard spectral functions into useful virtual instruments (VIs). In
the case where you are required to use your own FFT algorithm or your
LabVIEW package does not include the spectral capabilities that you require
(such as discrete cosine transforms or wavelet functions), LabVIEW allows for
the incorporation of your own compiled C code through a code interface node.
This topic is worth mentioning here because of the wealth of C libraries avail-
able on the Internet to perform some of these complex spectral operations.

3.1 Low-Level Frequency Domain Functions

Let us start by looking at the basic frequency domain functions shown in Fig. 3.1.
Of these functions, probably the most used for digital communications are
the complex Fourier transform F(x) and the real Fourier transform F(x). In dig-
ital communications, we deal with both real and complex signal types and there-
fore we will use both the LabVIEW Fourier transform functions. As long as the
size of the input signal is a power of 2, these functions implement a split radix
FFT, otherwise they perform the discrete Fourier transform. Since the two oper-
ations yield identical results, we will generally try to force the more efficient FFT

39

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

40 Chapter Three

Figure 3.1 Low-level frequency domain functions.

computation by adjusting the input length. Besides operating on complex input,
what is the difference between the real and complex versions? Remembering the
properties of Fourier transforms, a real signal will have a Fourier transform that
is symmetric about 0 Hz in the region from −fs/2 to fs/2. That means that the two
halves of the spectrum are mirror images. A complex signal on the other hand
will have a Fourier transform with completely independent frequency content
in each half band. That being said, the LabVIEW real Fourier transform out-
puts only the positive half of the signal’s spectrum and the complex Fourier
transform outputs both halves. The two halves of the spectrum in the complex
case are output in the frequency range 0 to 2p, and therefore require some slight
shifting in order to view the signal in the range −p to p. This sort of operation
will be shown in more detail in the next section.

3.1.1 Simple FFT

The simple FFT routine shown at the top of Fig. 3.2 tells us a couple of interest-
ing points about the use of the LabVIEW complex FFT. First of all, the output from
the complex FFT starts with the dc component and builds up from there to the
half sample rate and then continues onward to the full sample rate component.

Spectral Analysis 41

Figure 3.2 Simple FFT computation VI.

This is typical of many FFT outputs and is easily adjusted by splitting the output
array and reconcatenating the two pieces as shown at the top right of Fig. 3.3.
The other notable feature (or lack thereof) in this example is that the input size
is not a power of 2. In this case, the complex FFT routine is actually implement-
ing a complex discrete Fourier transform (DFT). If we want to ensure that an FFT
is always performed, we will have to pad the data size up to the next power of 2
as shown in the improved VI in Fig. 3.3. Does it really matter whether the func-
tion performs an FFT or a DFT? From the discussion in [1], we can estimate that
the computation of the DFT generally requires N2 complex multiplications,
where N is the number of points in the DFT. Conversely, the FFT requires only
(N/2) log2 N complex multiplications. As an example, suppose that the size of the
input signal is 200,000 samples. If we want to examine the spectrum of the entire
signal by using the DFT, it requires 40,000,000,000 complex multiplications. That
is quite a lot of operations for any computer to perform. By using the power of the
FFT, we can cut the number of complex multiplications down to about 1,760,000. There
is a difference of more than a factor of 10,000 between the two implementations,
and thus we can easily see the advantage of using the FFT whenever possible.

42 Chapter Three

Figure 3.3 AdvFFT.vi.

3.1.2 Improved FFT

Figure 3.3 shows the block diagram and front panel for an improved FFT VI
called AdvFFT.vi. As mentioned previously, this function now has the capabil-
ity to force the LabVIEW FFT routine to always compute the FFT by append-
ing the appropriate number of zeros to the input in order to bump N up to the
next power of 2. Notice too that the spectrum displayed on the front panel is now
altered so that it has the property of being centered at the dc component with
increasing negative frequencies to the left and increasing positive frequencies
to the right. In addition to these features, AdvFFT.vi also has the ability to
accept real or complex input and will call the corresponding FFT function. Now
we have a pseudopolymorphic input VI to handle the real or complex FFT and
plot the resulting shifted spectrum for us. We will call upon this particular VI
regularly to view the signal at various points in the communication system as
well as to examine the output of the filters in Chap. 4.

At this point, we will really need one more piece of the puzzle to finalize the
use of AdvFFT. That piece is the generation of the values for the frequency axis.
As is, we have no knowledge of the relationship between the signal components
plotted in Fig. 3.3 and their corresponding frequency values. Recall that the DFT
is computed by [1]

(3.1)

Using Eq. (3.1), we can see that the DFT is calculating the frequency content
of the input signal x(n) at N equally spaced frequencies determined by e−j(2πk/N)

for k = 0, . . . , N − 1. That means then that there will be N discrete frequencies
(typically known as DFT bin frequencies) where the frequency content of x(n)
will be evaluated. Keep in mind that if we were to compute the continuous
Fourier transform of a signal, we would evaluate the frequency content of the
signal at an infinite number of frequencies. And so for this reason, many sources
refer to the DFT as a sampling of the continuous Fourier transform. Because
we only look at the frequency content of x(n) at those N discrete frequency
values, any spectral content of x(n) not at those discrete values will not be prop-
erly accounted for. Is there anything we can do about this? One way to allevi-
ate part of this problem is to put those N discrete frequencies closer together
by increasing the value of N. This is easily done by zero padding the input
signal as was done in the AdvFFT VI to force the FFT function. So here we get
two benefits of zero padding: (1) the speed improvement of the FFT and (2) the
increased spectral resolution by sampling the continuous Fourier transform at
a higher rate. As always, there will be a trade-off between the spectral resolu-
tion that we desire and the time it takes to compute the FFT. And so finally, this
brings us to the question, how exactly do we relate the e−j(2πk/N) spacing of the
DFT to frequencies that make sense to us? Here we absolutely must know the
sample rate of the signal x(n). Assuming x(n) is sampled at fs, we can determine

X k
N

x n e k N
j

nk

N

n

N

() () , . . . ,= = −
−

=

−

∑1
0 1

2

0

1 p

Spectral Analysis 43

the frequency spacing between successive samples of the DFT to be

(3.2)

Using Eq. (3.2), we can easily generate the frequency axis for our plotted
spectrum in AdvFFT. The VI shown in Fig. 3.4 is called FreqAxis.vi and its only
function is to generate the frequency axis values based on the spacing between
samples given in Eq. (3.2). The inputs are N (the number of samples), fs (the
sample rate), and a Boolean to determine whether to generate a single-sided or
two-sided frequency axis.

With the addition of the FreqAxis VI, the final block diagram for AdvFFT.vi
is shown in Fig. 3.5. The signal spectrum plot is changed from a waveform
graph to an XY graph in order to accommodate the two-axis inputs. Now if we
edit the connector pane to tie complex input, real input, sample rate, and force
FFT to the input terminals and signal spectrum to one of the output terminals
we can use AdvFFT in other applications as a sub-VI.

3.2 Analyzing the DFT Results

Just as important as being able to use the DFT is being able to understand the
results that you get. Earlier, I mentioned that any spectral components of the input
signal x(n), not precisely at one of the N DFT frequency bin centers, will not be
properly accounted for in the DFT computation. The interesting things about
any spectral component away from the bin center frequency are: (1) that compo-
nent’s amplitude will not be correctly accounted for because of the shape of the
sampling window at that DFT bin, known as scalloping loss and (2) there will be
energy from that component in all other DFT bins, known as spectral leakage [2].
Let’s take these two astounding facts one at a time starting with the latter.

∆f
f
N

s= Hz

44 Chapter Three

Figure 3.4 FreqAxis.vi generates the frequency axis based on Eq. (3.2).

F
ig

u
re

 3
.5

F
in

al
 f

or
m

 f
or

 a
dv

F
F

T.
vi

.

45

3.2.1 Spectral leakage

Spectral leakage is a term used to describe the phenomenon of energy from one
DFT bin leaking into another DFT bin (or more generally into many other DFT
bins). Leakage happens because of the lack of orthogonality between some fre-
quency components in our signal and the set of basis vectors in the DFT [2]. The
DFT is essentially a computation of the projection of the input signal x(n) onto
the orthogonal DFT basis set made up of the sines and cosines at N discrete fre-
quency values evenly spaced from 0 to fs. It turns out that the projection of any
spectral component of x(n) not exactly at one of those N discrete frequency
values in the DFT basis set will have nonzero projections on all frequency values
in the basis set [2]. This all means that unless we do something to reduce the
spectral content of x(n) at non-DFT bin center frequencies, the results of the
entire DFT calculation could be grossly inaccurate. And the way we reduce any
part of spectral content of a signal is to use a filter. Interestingly, there is a class
of filters commonly used for just this purpose known as windowing functions.
The following section discusses exactly what is meant by windowing.

3.2.2 Sampling window shape

You might be saying to yourself, “What sampling window?” And the truth is that
even no sampling window is a sampling window. What is important here is that
a rectangular sampling window is implied even when you do not want a window.
The implied window comes from the fact that the DFT is a finite sum.

Considering the windowing, we can enhance the DFT equation from Eq. (3.1)
to include the window term w(n)

(3.3)

We know from the properties of Fourier transform, that multiplication in the
time domain is circular convolution in the frequency domain. We can thus inter-
pret the time domain window as a filter in the frequency domain. In this case,
a window is really nothing more than a filter centered at each DFT frequency
bin. This filter provides much needed amplitude reduction for any spectral com-
ponent of x(n) away from the bin center. Although the rectangular window has
a very narrow main lobe, its major problem as a filter is that the side lobes are
only 13.5 dB down and do not do a good job of minimizing the impact of the spec-
tral leakage described previously. Since we have no choice but to use a window,
we might as well choose a decent window. There has been much research in the
design of windows for the DFT (among other uses), and as a result there are
many windows to choose from—Hamming, Hann, Blackman-Harris, and more.
Typically, the trade-off is in the height of the side lobes versus the width of the
main lobe. The window that you choose should be the best window suited to your
signal. A window that may work particularly well for speech processing may not
be as desirable for digital communications. Some windows have a pedestal while
some taper to zero at the edges. All the various windows have subtle differences,

X k
N

x n w n e k N
j

nk

N

n

N

() () () , . . . ,= = −
−

=

−

∑1
0 1

2

0

1 p

HHHHHHHH

46 Chapter Three

with the main classification being side-lobe attenuation and main-lobe width.
For a thorough listing of window side-lobe heights and main-lobe widths along
with a more detailed explanation, please refer to [3]. Before we go on, let us
briefly take a look at Fig. 3.6 to get a visualization of what this windowing filter
is doing in the frequency domain.

Figure 3.6 shows the spectra of two different window functions, the rectan-
gular window (dashed line) and the Hann window (solid line). The frequency axis
in the figure is shown as multiples of the base DFT analysis frequency fs/N. As
mentioned previously, the multiplication by a time-domain window becomes a
circular convolution in the frequency domain. That means that the response in
Fig. 3.6 will be centered at each discrete analysis frequency (nfs/N, for n = 0, . . . ,
N − 1) in the DFT. We can clearly see that the main lobe of the Hann window
spans a whole other DFT bin (one extra bin on each side when looking at the
two-sided case), but the side lobes fall off rather quickly compared to the rec-
tangular window. For the DFT computation, this means that any signal energy
contained in the next bin higher and the next bin lower gets attenuated slightly
and added into the DFT component calculated for a given bin (here is the cause
of spectral leakage). The upside to the Hann window (or any nonrectangular

Spectral Analysis 47

Figure 3.6 Spectra of a rectangular window (dashed) and a Hann window (solid).

48 Chapter Three

Figure 3.7 LabVIEW windowing functions.

Spectral Analysis 49

window) is that the energy contributions from bins further than one bin away
are attenuated more than those from the standard rectangular window. And
finally the concept of scalloping loss is also illustrated in the figure. Remember
from the earlier discussion that signal amplitudes away from the bin centers
are shaped by the sampling window. Using the rectangular window as an exam-
ple, a frequency component halfway between two bin centers will be attenuated
by almost 5 dB. In reality does it really matter if the DFT output is attenuated
at some frequencies? Well, this could be important in applications such as speech
processing where the amplitudes of certain frequency components need to be
measured precisely. The important thing is to keep these degradations in mind
when using the DFT.

Now that we understand the DFT results a little better, let us take a look at
using windowing in LabVIEW to improve the DFT computation in AdvFFT.vi.
Figure 3.7 shows where the LabVIEW window functions are located. LabVIEW
has already included some of the most common window functions in signal pro-
cessing: Hann, Hamming, Triangle, Blackman, Blackman-Harris, and Kaiser.
Of course you can always add your own algorithm if you require a specialized
window function by using the following examples and substituting your own
window coefficients.

If you look at the block diagram of any of the window functions in Fig. 3.7,
you will see that they are all essentially the same. Each one of them calls the
sub-VIs named General Cosine Window.vi and windowcoefs.vi. All of the previ-
ously mentioned windows are formed by a summation of weighted cosines.
Because of that, all we really need are the coefficients, which are simply con-
stant arrays chosen by a case selector within windowcoefs.vi. We can make use
of this sub-VI ourselves and insert it into a block diagram as shown at the top
of Fig. 3.8. By windowing our input before sending it to AdvFFT.vi we can reduce
the spectral leakage in the DFT computation and also improve the ability of the
DFT to resolve two close frequencies. The figure shows the spectrum of the
input signal with no window applied (i.e., rectangular window) and with a
Blackman-Harris window applied. The dashed line is the rectangular windowed
signal and the solid line is the same signal with a Blackman-Harris window
applied. There are a few observations that we can immediately make about the
effect of the Blackman-Harris window. First of all, the peak magnitude of the win-
dowed spectrum is 5 to 7 dB less than the nonwindowed case. Secondly, the
windowed signal (solid line) is noticeably smoother than the nonwindowed
signal. In this case, our Blackman-Harris window has side lobes that are down
by approximately 61 dB. That side-lobe suppression has cleaned up the signal
shown in the figure and provided us with a smoother spectral plot.

So now we know a little bit more about the window functions and we know
how to generate them in LabVIEW. The big question is which one to choose.
Earlier we talked about the basic trade-off, side-lobe attenuation for main-lobe
width, but those may not be the only factors for you to consider. Some windows
may have trailing side lobes that decay at 6 dB per octave and some may decay
at 18 dB per octave. The important thing to keep in mind here is that whichever
window we choose, it should be better than the rectangular window. It is also

advised that the reader consult [2] for a very thorough comparison of the vari-
ous windows.

3.3 High-Level Spectral Functions

In addition to the low-level signal processing functions described in Sec. 3.1,
LabVIEW also includes some useful higher-level VIs, which extend the basic func-
tionality of the low-level spectral tools with features such as windowing, averag-
ing, and density calculations. The location of these functions is shown in Fig. 3.9.

50 Chapter Three

Figure 3.8 Effect of windowing with rectangular window (dashed) and Blackman-Harris window (solid).

Spectral Analysis 51

Figure 3.9 High-level waveform measurement tools.

F
ig

u
re

 3
.1

0
S

am
pl

eL
oo

p.
vi

 s
h

ow
n

 w
it

h
 p

ow
er

 s
pe

ct
ra

l d
en

si
ty

 f
u

n
ct

io
n

.

52

If you break down the higher-level functions under the waveform measure-
ments subpalette, you will see that at the lowest level they are all built around
the FFT or the Power Spectrum VIs shown in Fig. 3.1. You will have to drill down
several layers to see those basic functions, but they are the core of each of these
high-level functions. The rest of the LabVIEW code handles some formatting and
unbundling clusters and user control. So do you want or really need all that extra
code? Well that certainly depends. All of these LabVIEW functions are designed
to get you up and running as quickly as possible and to that end the NI func-
tions are usually written in a generic fashion to support various uses.

Most of the functions mentioned previously seem written to support quick
measurements on signals captured with an A/D card. That means that those sig-
nals will be real valued and therefore these functions typically accept only
real-valued time-domain inputs. Once we multiply our real-valued signal by a
complex mixer, we convert it to a complex signal and many of these functions
become unusable from that point forward in our communication system. Chapter 2
showed some examples of real signals captured using an A/D card. The spectrum
of those signals was displayed on the front panel using the power spectral density
VI as shown below in Fig. 3.10.

Some of the nice features of the waveform measurement functions are the
weighted averaging, peak hold, and windowing capabilities. These features are
especially useful if you want to simply display or record direct measurements
on the input spectrum without any further processing. As with all of the VIs
developed by National Instruments, these tools are especially helpful as pro-
gramming guides for building your own special purpose spectral tools.

3.4 Adding C Routines to LabVIEW

This section will briefly explain ways to expand the intrinsic capabilities of
LabVIEW with your own C functions. The reason this topic is included here is
because many engineers may have their own tried and true C function for com-
puting the discrete cosine transform or wavelets or perhaps some other type of
transform that is specific and proprietary. This by no means implies that only
spectral processing C functions should be incorporated into your VI, only that
these types of algorithms are typically computationally intense and are commonly
optimized in C. There are also other reasons that you may want to include a C
function within LabVIEW such as speed, compactness, and even ease of devel-
opment. Whatever the case may be, there may come a time when you need to
include that function in LabVIEW. With that in mind, the following paragraphs
will outline the basic steps for incorporating a C routine for computing the FFT.

The first thing you will need to get started is the appropriate dynamic link
library (DLL) for the function that you wish to integrate into LabVIEW. For
our purposes, I did a Web search for FFT libraries and came upon one which
was straightforward and included a DLL with a very simple interface. The
one I chose was written by Murphy McCauley and can be downloaded from
www.fullspectrum.com/deeth.

Spectral Analysis 53

54 Chapter Three

Figure 3.11 Advanced functions palette.

Spectral Analysis 55

To start incorporating this C function into LabVIEW, the first step is to exam-
ine the function prototype in the header file, in this case FFTLib.H. In reading
through the provided documentation for this DLL, you may notice that the
author provided some wrapper functions called fftDouble and fftFloat to load
the DLL and call the necessary functions fft_double() and fft_float(). In our case,
LabVIEW will handle loading the library, so we can eliminate any calls to the
wrappers and go straight to the real function, fft_double(). You can weed through
the FFTLib.c file and see that the function fftDouble() simply passes all of its
arguments to fft_double(). With that in mind, we can determine how to call
fft_double() by looking at the function prototype excerpt from the following
FFTLib.h.

Code Excerpt from FFTLib.h by Murphy McCauley

BOOL fftDouble (

Unsigned NumSamples, /* must be a power of 2 */
Int InverseTransform, /* 0 = forward FFT, 1 = inverse FFT */
Double *RealIn, /* array of input’s real samples */
Double *ImagIn, /* array of input’s imag samples */
Double *RealOut, /* array of output’s reals */
Double *ImagOut); /* array of output’s imaginaries */

Now that we know how to call the FFT function, we are ready to work in
LabVIEW. The first thing to do is to insert the call library function node into
the VI. This node is found in the advanced subpalette as shown in Fig. 3.11.

After inserting the call library function node, right-click on it and choose
configure from the drop-down menu as shown in Fig. 3.12. This will pop up a
window that allows you to define the function interface in a way that LabVIEW
can understand. Most of the required information is straightforward. Obviously
you will have to point LabVIEW to the correct DLL and type the name of the
function appropriately. The tricky part is making sure that you set up all the
input parameters according to the function prototype shown in the code excerpt
given previously.

Notice that as you add each parameter using the add-a-parameter-after
button, LabVIEW automatically builds the function prototype in the bottom
window. A quick look at this prototype should confirm whether you have entered
the function information appropriately and then you can start wiring up the
inputs and outputs.

A completed FFT DLL VI is shown in Fig. 3.13. The inputs are number of
points, transform direction, a pointer to the real part of the input, and a pointer
to the imaginary part of the input. LabVIEW handles the form of the passed
arguments based on the function prototype and all the user needs to do is to wire
the appropriate signals to the terminals. As for the outputs, space is allocated
for the real and imaginary arrays by initializing two arrays with 0s.

The ability to incorporate DLLs directly into a VI makes signal process-
ing in LabVIEW extremely versatile. Typically, engineers will have custom
routines written in C that are algorithmically intense, but do not necessarily

have a decent user interface. By using LabVIEW for the control and graph-
ics capabilities, many powerful signal processing tools can be built around
custom DLLs.

3.5 Spectral Measurements Toolset

At this point it is appropriate to discuss one of the optional National Instruments
Spectral Measurements Toolset. This suite of tools is shipped as part of the
PXI-5660 RF spectrum analyzer package discussed in Chap. 2. The toolset contains
functions for measuring in-band power, occupied bandwidth, adjacent channel
power as well as finding spectral peaks and signal spectrum averaging. There
are also some very handy example VIs, which will capture and plot the spectrum
of your signal and allow you to set the carrier frequency, span, and averaging type.

56 Chapter Three

Figure 3.12 Configuring the call library function node.

F
ig

u
re

 3
.1

3
C

om
pl

et
ed

 F
F

T
 D

L
L

ca
ll

 li
br

ar
y

fu
n

ct
io

n
 n

od
e.

57

58 Chapter Three

Figure 3.14 Location of spectral measurements toolset.

Figure 3.14 shows the location of the SMT subpalette within the LabVIEW con-
trols. All of these functions are very closely tied to the 5660 hardware and it is
for this reason that NI chooses to bundle the SMT and 5660. Browsing around
in the SMT subpalette, there are also many low-level VIs that will allow you to
configure the NI Tuner (PXI-5600) and the NI Scope (PXI-5620) independently
of the RFSA or SMT functions. As with many other NI supplied tools, the SMT
functions are designed for the user to easily configure the 5660 hardware for the
desired measurements, but the users are also free to build their own applica-
tions from the low-level functions.

Summary

This chapter has introduced some of the spectral analysis capabilities built into
LabVIEW. In exploring those capabilities, some inherent impairments of the
DFT were revealed. They included scalloping losses, spectral leakage, and lim-
ited frequency resolution. Since the DFT is a sampling of the continuous Fourier
transform, these impairments cannot be eliminated but they can be reduced
through the proper use of windowing and sizing of the DFT. We also built a very
useful VI called AdvFFT.vi to extend the functionality of the basic DFT routine
by forcing the FFT computation and by performing a shift on the output spec-
trum for display purposes. The final topic of the chapter was the incorporation
of DLL libraries into a LabVIEW VI. This functionality adds a new dimension
to the processing capabilities of LabVIEW since there are enormous amounts
of signal processing libraries available on the Internet. Clearly LabVIEW has
some very powerful spectral analysis tools, which we will use extensively in the
next few chapters as we cover digital filters and multirate processing on our way
to completing this communication system.

References

1. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2d ed.,
Prentice-Hall, Upper Saddle River, NJ, 1998.

2. Harris, F., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform,” Proceedings of the IEEE, vol. 66, no. 1, January 1978.

3. Harris, F., Multirate Digital Signal Processing, Prentice-Hall, Upper Saddle River, NJ, 2004.

Spectral Analysis 59

This page intentionally left blank.

Chapter

4
Digital Filters

The topic of digital filters has to be the bread and butter of the digital signal
processing (DSP) world. Most types of signal processing will eventually involve
the use of a digital filter. Rate conversions, pulse shaping of modulated waveforms,
and even examining the discrete Fourier transform (DFT) results all require the
use of filters. On top of those applications, we also employ them at will to remove
noise from our recovered signals and to eliminate out-of-band spurs before
transmission. Like the other DSP topics we have seen, LabVIEW also has a full
arsenal of digital filter design tools. This chapter takes an in-depth look at some
of the more common filter design tools included with LabVIEW.

4.1 Filter Types

In general, filters can be classified into finite impulse response (FIR) filters and
infinite impulse response (IIR) filters. With most of the situations encountered in
this book, we will require the use of FIR filters. This type of filter is probably the
most common filter in digital communications. The justification for their heavy use
comes from the fact that symmetric FIR filters are also classified as linear-phase
filters. All filters will not only affect the magnitude of their inputs, but they also
impart some phase distortion at the output signal. The term linear phase means
that (in the filter passband) the phase influence of the filter coefficients on the input
is a linear function. This linear phase distortion winds up causing a constant (and
easily removed) time delay. In some speech applications, the filter-phase effects
are usually not important because of the way the human ear responds to phase.
However, in digital communications, the phase of our signal is very important for
correct detection and demodulation. Therefore, we will focus our attention on
linear-phase FIR filters and only briefly examine LabVIEW’s IIR capabilities.

Figure 4.1 shows the location of LabVIEW’s filter palette. The top row of
functions contains the common IIR filters and the middle row contains some
common FIR filters. The functions shown in this palette are really just interfaces

61

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Figure 4.1 Location of LabVIEW filter functions.

62 Chapter Four

Digital Filters 63

to the more advanced functions shown in the IIR and FIR subpalettes in Fig. 4.2.
Those subpalettes contain the core algorithm virtual instruments (VIs), which
compute the filter coefficients for the various filters. This chapter uses the lower-level
functions in the advanced subpalettes in order to build some useful filtering VIs.

4.2 FIR Filters

Since FIR filters are simply weighted summations of the present and previous
inputs, a very simple FIR filter can be built as in Fig. 4.3. This block diagram shows
a simple moving average filter that sums the current and some given number of
previous input samples and averages them. This kind of VI can be used to smooth
the quantization steps in a waveform captured by an A/D card (this may be known
as a moving average filter). This VI has no weightings on the previous input
values. If it did have a weight assigned to each coefficient, how would you know
what coefficient gets what weight and how many previous inputs would you average?
Well, some trial and error, and a look at the filter response might get you close for
small numbers of coefficients, but for even fairly short filters this process would
be difficult. Besides trial and error, what methods are available for designing this
type of filter? FIR digital filter design is not quite as closed form as you might think.
However, there are some very good methods for approximating the filter response
we are looking for. The next few sections will explain the details of those methods
and how to use LabVIEW to design FIR filters from those methods.

4.2.1 FIR filter design by windowing

The windows that we looked at in Chap. 3 had to do with improving the DFT
results by filtering the signal at each DFT bin. Since those windows acted as
lowpass filters (LPF) centered at each analysis frequency, you might have

Figure 4.2 Advanced filtering subpalettes.

F
ig

u
re

 4
.3

S
im

pl
e

m
ov

in
g

av
er

ag
e

fi
lt

er
.

64

Digital Filters 65

guessed that the same technique is actually useful for processing signals beyond
just the DFT. In order to implement a digital filter, it must be both causal and
finite. So how do you make a filter finite? That part is easy, just truncate it. In
a causal system, nothing can happen before time 0, so to impose causality on a
filter, we can simply delay the response by enough time to make it causal. We
will easily impose causality by forming a window starting at time 0. Now all you
need is something to force these conditions on. For that part, let’s just start with
the ideal LPF. Figure 4.4 shows both the frequency response of the ideal filter
and its time-domain impulse response. You may remember from your college
coursework that the sinc function and the rectangular window form a Fourier
transform pair. Now of course, in reality the sinc function is infinite in duration
and therefore has a very clean ideal frequency response, which is a perfect
rectangular window. For display purposes, the sinc was truncated and the
frequency response is slightly distorted.

Figure 4.4 Time-domain and frequency-domain plot of sinc function.

The next step in using windowing to design a filter is to choose a window. For
the reasons discussed in Chap. 3, the rectangular window has a very narrow
main lobe, but has poor side-lobe attenuation and is probably not the best choice
for us. The side lobes are the causes of ripple in the pass- and stopbands of the
filter and therefore to maintain signal integrity, we would like to minimize the
side lobes. So filter design by windowing sounds fairly easy—just choose your ideal
frequency response and apply the desired window. Well actually that is only half

66 Chapter Four

Figure 4.5 KaiserFIR.vi block diagram frames 0 and 1.

Digital Filters 67

the story. It turns out that the resulting filter will have a main-lobe width that is
not only dependent on which window function you choose, but also on the time
length of that window. Reference [1] contains a table comparing the properties of
commonly used windows. So now we have to choose an ideal frequency response,
a windowing function, and an appropriate filter length in order to really get the
response that we are looking for. This is starting to sound like a lot of variables
to try and get everything right where we want it. We may have to go through several
iterations of filter length and different windowing functions before we get the
filter we are looking for. Here, a man named Kaiser has paved the way for us by
developing a window function based on a zeroth-order modified Bessel function
of the first kind [1]. The aptly named Kaiser window implements this function
and as luck would have it, LabVIEW has included this window as shown in Fig. 3.7.
Along with the equation for the near-optimal window, Kaiser also empirically
developed some formulas to take most of the guesswork out of the windowing filter
design method. These formulas are presented as follows [1].

Kaiser window design formulas

(4.1)

(4.2)

(4.3)

(4.4)

Equation (4.1) describes the transition band of the filter in terms of the
pass frequency w p and the stop frequency ws; Eq. (4.2) is the filter attenuation
in decibel; Eq. (4.3) computes the shaping parameter b from A; and Eq. (4.4)
tells us the recommended filter order M. These formulas are very good approx-
imations and give us an excellent starting point for designing an FIR filter. Now
we will use the given formulas to build a VI that will compute these values and
design a filter based on our choice of pass frequency, cutoff, ripple, and filter
attenuation. The VI will be called KaiserFIR.vi and is shown frame-by-frame
in Figs. 4.5 and 4.6.

In this VI, we must first use the Kaiser equations to compute the transition
bandwidth, the approximation error A, b (the shape parameter), and M (the filter
order). These steps are accomplished in frames 0 and 1. Once we have computed
the design values, we can use the LabVIEW function Kaiser-Bessel Window.vi to
form the coefficients as shown in frame 2 of Fig. 4.6. You will notice there is an extra
step in there to actually form a window, which is one sample shorter than required
(filter length should be M + 1), then append the zeroth index value to the end of

M
A= − 8

2 285. ∆w

b =
−

− + −
>
≤ ≤
<









0 1102 8 7
0 5842 21 0 07886 21

0 0

50
21 50

21

0 4

. (.),
. () . ()

.

.

A
A A

A
A

A

A = −20 10log d

∆w w w= −s p

68 Chapter Four

the computed window. This is done to make the window symmetric (more on this
later). Because the Kaiser-Bessel VI is designed to actually multiply an input
signal X by the window coefficients and only give us the windowed output, an array
of M 1s is wired to the input along with the b parameter to give the actual window
coefficients as output. Once the Kaiser window coefficients are calculated, we have
to compute the sinc function. This is done with SincFcn.vi and this VI will be exam-
ined more closely in Chap. 6 when we get to generating signals. For now, we will
just assume that this function will generate a sinc waveform that is the same

Figure 4.6 KaiserFIR.vi block diagram frames 2 and 3.

Digital Filters 69

length as our Kaiser window. The final step shown in frame 3 is to multiply the
Kaiser window by the sinc function in the time domain. The multiplication by a
window in time becomes a circular convolution in the frequency domain as we saw
back in Chap. 3 and this is what gives us the filter response shown in Fig. 4.7.

Examining the filter response of the KaiserFIR VI, it is immediately obvious
that the Kaiser windowed filter is much improved over the rectangular case. It
is somewhat difficult to see in this figure, but the rectangular window response
has more ripple, which is particularly noticeable in the passband. Remember
that ripple in the passband and stopband is caused by the side lobes of the
window function. Therefore, because the Kaiser window has lower side lobes
than a rectangular window, the ripple is significantly reduced. In addition, we
get about 30 dB more attenuation in the stopband with the Kaiser designed filter.

So the Kaiser window gives us a very good approximation to the ideal frequency
response. On top of that, the design formulas listed in Eqs. (4.1) to (4.4) take
the guesswork out of designing filters by windowing. So what could be better?
Well for one thing the ripple in the passband and the stopband are based on the
same ripple value d. Filter designers typically would like to allow different
ripple in the passband than in the stopband. That means that you could trade
passband ripple for stopband ripple and meet the same filter requirements with
a lower-order filter [1]. In the next section, we will look at an algorithm that com-
putes filter coefficients based on the principle of relaxing the ripple requirement
in some bands to get improved performance in other bands.

4.2.2 Equiripple FIR filters

As mentioned in the previous section, it is possible to trade ripple in the filter
passband for improved ripple in the stopband. By performing this trade, a shorter
length filter can be designed based on the same parameters [1]. An efficient
algorithm for performing this trade was developed by Parks and McClellan
and is therefore known as the Parks-McClellan algorithm. The details of this
algorithm can be found in [1] as well as almost any other good DSP book. For
this discussion, it is not important for us to know the exact details of the
Parks-McClellan algorithm. The algorithm has become a de facto standard for
FIR filters and is commonly bundled with most filter design software tools,
including LabVIEW. This algorithm is based on the minimization of the mean
square error and therefore results in the best filter that can be designed to just
meet the given input criteria. One consequence of this type of filter design is
equiripple response in the passband and the stopband. As with the Kaiser
window method, the filter order is empirically derived to be [1].

(4.5)

where d1 and d2 are the ripple constraints in the two bands and ∆w is the tran-
sition bandwidth.

M = − −10 13
2 324

10 1 2log ()
.

d d
w∆

F
ig

u
re

 4
.7

K
ai

se
rF

IR
.v

i
fr

on
t

pa
ne

l;
K

ai
se

r
w

in
do

w
ed

 r
es

po
ns

e
sh

ow
 a

s
da

rk
 s

ol
id

 l
in

e,
 r

ec
ta

ng
le

w
in

do
w

 r
es

po
ns

e
sh

ow
n

as
 li

gh
t

da
sh

ed
 li

ne
.

70

Digital Filters 71

Using the formula for filter order in Eq. (4.5) and the LabVIEW VI Parks-
McClellan.vi, the block diagram in Fig. 4.8 can be built. The first frame simply com-
putes the value of M from the equation shown in Eq. (4.5). There is also a case
selector to allow the user to specify the filter length rather than be forced to use the
computed value. Since the Parks-McClellan algorithm typically designs the
shortest filter that will just meet the given criteria, allowing the user to control
the filter length lends a little more flexibility to the program. This is also particu-
larly useful because some authors suggest that the empirically derived Eq. (4.5) fre-
quently underestimates the required filter order. The second frame is where the
Parks-McClellan algorithm is called. The inputs to the algorithm are designed in
such a way as to enable any type of filter to be designed (lowpass, bandpass, or high-
pass) by entering parameters for each band. In this case, we are designing a low-
pass filter that has only two bands. Notice also that the weighted ripple in the

Figure 4.8 MPR.vi block diagram. This VI designs a LPF based on Parks-McClellan algorithm.

F
ig

u
re

 4
.9

M
P

R
.v

i f
ro

n
t

pa
n

el
. S

pe
ct

ru
m

 o
f

L
P

F
 s

h
ow

n
.

72

passband is a constant 1 while the weighted ripple in the stopband is the ratio of
passband ripple to stopband ripple.

Figure 4.9 shows the spectrum of a lowpass filter designed using our MPR.vi.
As we expected, since the algorithm produces the best filter that just meets the
given filter parameters, the Parks-McClellan function produces a shorter filter
(34 taps versus 38) with the same parameters as the Kaiser-designed filter shown
previously in Fig. 4.7. Note also that in this example, the passband and stopband
ripple were chosen to be the same. For an even greater reduction in filter length,
we could specify a lower passband ripple while leaving the stopband ripple the
same. Also you can clearly see the equiripple characteristic in the stopband.

4.3 IIR Filters

I mentioned before that in digital communications we use a lot of linear-phase
FIR filters. While that is true, we certainly cannot ignore IIR filters altogether.
IIR filters are recursive and do not exhibit linear phase. While this character-
istic is not desirable for most filtering in digital communications, there may be
cases where you want to get more attenuation with a lower-order filter. In
many instances, a lower-order IIR filter can match or beat the filter perform-
ance of an FIR filter, and that can translate into speed improvements for the
filtering operation. And of course LabVIEW has several tools for designing IIR
filters as shown in the top row of the filters subpalette in Fig. 4.1. These func-
tions include the Butterworth, Chebychev, and Elliptic filters. Similar to the
FIR filters, we will use the built-in Butterworth Coefficients.vi function to gen-
erate a set of IIR filter coefficients. Again we will first want to know the order
of the filter that is required. For a Butterworth approximation, the filter order
is given by [2] as

(4.6)

The VI, ButterworthLPF.vi is shown in Fig. 4.10. If we were looking for the
shortest filter for the job, we probably should have chosen the Elliptic
Coefficients.vi instead of the Butterworth. However, the elliptic filter order is
given by a complex computation that is generally looked up in a table, whereas
the Butterworth design has the nice closed form expression shown in Eq. (4.6).
The Butterworth coefficient function actually gives us two sets of filter coeffi-
cients, the forward and reverse coefficients. These coefficients relate to the over-
all filter response as follows [2]:

(4.7)

h n
b n

a n
k
M

k

k
M

k

[]
[]

[]
=

∑
+ ∑

=

=

0

11

N
s

c

=
() −





()
log

log

1
2

1

2

d

Ω
Ω

Digital Filters 73

74 Chapter Four

where the bk’s are the forward coefficients and the ak’s are the reverse coeffi-
cients. The block diagram in Fig. 4.10 uses the IIR Cascade.vi to extract the
impulse response from the two sets of filter coefficients (ak’s and bk’s). You can
see in the block diagram that an impulse function was passed as the input to
IIR Cascade.vi in order to get the impulse response as output. Finally we see
the plot of the impulse response of the Butterworth designed IIR filter in Fig. 4.11.
You can see that even for fairly low filter orders the transition band of the IIR
filter is steep and the attenuation in the stopband is large.

4.4 Comparing IIR and FIR Filters

From the discussion in Sec. 4.3, it seems like the IIR filter would be a much
better choice for a filter than the FIR we saw earlier. However, there are some

Figure 4.10 ButterworthLPF.vi block diagram.

F
ig

u
re

 4
.1

1
B

u
tt

er
w

or
th

L
P

F.
vi

 f
ro

n
t

pa
n

el
.

75

subtleties that should be examined before we decide which filter to use for a
particular application. The next sections compare both the magnitude and phase
of these two common filter types.

4.4.1 IIR versus FIR magnitude

Figure 4.12 shows the magnitude comparison of a Butterworth filter (darker plot)
designed with the same cutoff and stop frequency as the Parks-McClellan (lighter
plot) designed filter in Sec. 4.2.2. The ButterworthLPF.vi function produced a
twelfth-order filter which has 13 denominator coefficients and 18 numerator coef-
ficients for a total of 31 multiplications per filter output. The Parks-McClellan filter
has 33 taps and thus requires 34 multiplications per filter output. While in this
case there is only a difference of 3 multiplications per filter output, we can see from
the figure that the Butterworth filter parameters could be relaxed slightly, allow-
ing a lower filter order and fewer multiplications—giving us an even faster filter-
ing operation. If the IIR filter is faster, then why did we like the FIR filters so much
again? Remember in digital communications, there is often information in the
phase of our signal so we certainly do not want to mess up that information by dis-
torting the phase in a way that we cannot even recover the signal anymore. Let
us take a look at how the phase of our signal is affected by these two filters.

4.4.2 Effects of filter-phase response

Figure 4.13 compares the wrapped phase of the Butterworth and the Parks-McClellan
designed lowpass filters. The top plot shows that the FIR filter does indeed have

Figure 4.12 Magnitude of Butterworth versus Parks-McClellan.

76 Chapter Four

Digital Filters 77

Figure 4.13 Phase of FIR linear phase (top) versus IIR filter.

78 Chapter Four

linear phase in the passband (evidenced by the piecewise straight lines from 0 out
to the cutoff at 0.3fs). Conversely the bottom plot shows that the Butterworth
filter’s phase is nonlinear in both the passband and stopband. The real figure of
merit related to the filter’s phase is group delay. This is simply the derivative
(or slope) of the phase. In the case of a linear-phase filter, the group delay is a
constant over the passband. This means that all frequencies in the passband are
delayed by the same constant amount of samples as they pass through the filter.
An IIR filter on the other hand will have a nonconstant group delay and some
frequencies will pass with different delays than other frequencies. This leads to
a temporal scrambling of the signal that may now be impossible to demodulate
correctly.

Linear-phase FIR filters have a well-defined group delay that is simply M/2,
where M is the order of the filter. Depending on whether M is odd or even, the
delay will either be an integer value or it will be an integer plus 1/2 [1]. Thus it
is possible to create half-sample delay filters, which are used in some lattice
filter implementations. When designing a linear-phase filter, it is important to
choose the filter order M such that the symmetry of the impulse response and
the oddness or evenness of M agree with the type of filter you are designing.
The filter types are lowpass, highpass, and bandpass. Reference [1] gives the
characteristics of four types of FIR linear-phase filters, which can be summarized
as follows:

Type I: symmetric impulse response, M even

Type II: symmetric impulse response, M odd

Type III: antisymmetric impulse response, M even

Type IV: antisymmetric impulse response, M odd

The reason that these characteristics are important to the type of filter you
are designing is that each of the types has a magnitude response that may suit
only one of the previously mentioned filter types. A type II filter for instance has
a zero at p, making it an appropriate choice for a lowpass filter, but not for a
highpass. Oppenheim and Schafer [1] have plotted example responses for each
of the FIR filter types.

4.5 Pulse-Shaping Filter

One special type of filter that we will need for a good digital communication
system is a pulse-shaping filter. The term pulse refers to the symbol waveform
transmitted every symbol time, Tsym. You have probably read somewhere that
the radio frequency (RF) channel can be modeled as a linear time invariant
filter. Thus, the channel has the effect of spreading out (think convolution) the trans-
mitted symbol waveform. The time spreading smears the transmitted waveform
into adjacent symbol time slots. This phenomenon is known as intersymbol inter-
ference or ISI. The way to combat ISI is to run the baseband waveform (pulse)
through a shaping filter before transmission. Of course now we have to figure out

Digital Filters 79

what filter to use for this shaping. Nyquist has developed a criterion for choosing
a filter that is guaranteed to have zero ISI [3]. The criterion can be stated as [3]:

(4.8)

In words, Eq. (4.8) says that the impulse response for a filter having zero ISI
will have an amplitude of 1 at the zeroth multiple of the symbol time and 0 at
all other multiples of the symbol time. One such filter is the raised cosine filter,
which has the frequency response shown in [4].

(4.9)

From Eq. (4.9), the block diagram shown in Fig. 4.14 can be built. This VI is
called NyquistPulse.vi and generates a time-domain pulse shaping window
from the frequency response H(f) shown previously. There are a few things to
notice about this VI. One is there is a case selector to choose between a raised
cosine response and a root-raised cosine response. This selection is necessary
because in many cases, a root-raised cosine window will be applied at the trans-
mitter, and the corresponding root-raised cosine window is applied at the
receiver. The split window application (root-raised at both ends) gives the system
an overall raised cosine response. The signal bandwidth W and the Nyquist mini-
mum bandwidth W0 are calculated using [2]:

where RS is the symbol rate and alpha is the roll-off or excess bandwidth factor.
The left part of Fig. 4.14 is simply building the frequency variable f and com-

puting the required bandwidth W. The frequency array is formed in two sepa-
rate pieces from 0 to fs/2 and from −fs/2 to 0––then concatenated together into
a single frequency array. The loop contains some case structures to compute H(f)
based on the conditions given in Eq. (4.9). On the right, we now have the fre-
quency response of this pulse-shaping filter (with choice of root-raised or simply
raised cosine) and we use the inverse Fourier transform to calculate the time-
domain impulse response. The LabVIEW inverse Fourier transform expects
the input to be ordered in frequency from 0 to 2p, where 0 to p are the positive
frequencies and p to 2p are the negative frequencies. Now it should be clear why

W RS= +()1
2

1 a

W
RS

0 2
=

H f
f W W

W W

f W W
W W f W
f W

() cos
| |

| |
| |

| |
= + −

−


















< −
− < <
>

1

4
2

0

2
22 0

0

0

0
p

forJJJJJJ
forJJJJ
forJJJJJ

h nT n
n

()sym
JJJJforJJJJ JJ
JJJJforJJJJ JJ

= ≠
=





0 0
1 0

F
ig

u
re

 4
.1

4
N

yq
u

is
tP

u
ls

e.
vi

 b
lo

ck
 d

ia
gr

am
.

80

the frequency variable was formed in those two separate pieces. Finally, for the
reason just mentioned, we use ArraySwap.vi to split the frequency domain and
time domain data in half and swap the order to arrive at the display order we
are more used to seeing in Fig. 4.15.

The time-domain impulse response at the top of Fig. 4.15 shows that at multi-
ples of the symbol time Tsym the amplitude is indeed zero, which satisfies Eq. (4.8).
Looking at the frequency domain, we can see the effect of the excess bandwidth

Figure 4.15 NyquistPulse.vi front panel.

Digital Filters 81

82 Chapter Four

of the pulse shaping window, the signal has expanded by 20 percent beyond the
Nyquist minimum bandwidth. The spectral expansion is the price for requiring
a finite and causal window. However, by centering one of these pulses at every
symbol time, there will still be zero ISI because of the zero crossings in the
impulse response. Notice too that if you play around with the roll-off parame-
ter, you will see that as α → 0, the impulse response approaches the sinc func-
tion (except for the finiteness and causality of course) and the frequency response
is almost the ideal LPF. The final note on pulse shaping is that there are also
other shaping functions that meet the Nyquist criterion, but the root-raised
cosine is very common in digital communications and is the one we use through-
out this book.

Summary

We have now covered the core LabVIEW capabilities for designing digital fil-
ters. This chapter drew on those tools to build some VI applications to design
both FIR and IIR filters. We used both the Kaiser window method and the
Parks-McClellan algorithm to design linear-phase FIR filters. Both of these
techniques produce near optimal filters, while the Parks-McClellan method
produces the best possible approximation to just meet the given filter param-
eters. We also designed a Butterworth IIR filter and compared it with the
Parks-McClellan designed filter in both magnitude and phase. Finally, this
chapter introduced the concept of Nyquist pulse shaping and we saw how to for-
mulate a raised cosine window for reducing ISI in a digital communications
system.

References

1. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2d ed.,
Prentice-Hall, Upper Saddle River, NJ, 1998.

2. Proakis, J. G., and D. G. Manolakis, Digital Signal Processing, Principles, Algorithms, and
Applications, 3d ed., Prentice-Hall, Upper Saddle River, NJ, 1996.

3. Harris, F., Multirate Digital Signal Processing, Prentice-Hall, Upper Saddle River, NJ, 2004.
4. Sklar, B., Digital Communications, 2d ed., Prentice-Hall, Upper Saddle River, NJ, 2001.

Chapter

5
Multirate Signal Processing

in LabVIEW

Now we are getting into some really interesting and complex material. Often in
the world of digital communications, we run into the problem of having digital data
sampled at one rate that we would like to change to another rate. Perhaps it was
a hardware limitation or some processing requirement that forced the data to be
sampled at a certain rate, but now you need to operate at a different rate. This is
where multirate signal processing comes in. Using these techniques you can
upsample to a higher rate, downsample to a lower rate or a combination of the two.
Typically, the upsampling and downsampling occur at integer multiples of the
starting sample rate and by combining the two operations, we can arrive at any
noninteger multiple of the original rate. We will look at some fairly simple opera-
tions to change the sample rate of some signals and we will also see that there are
some very elegant methods for performing efficient rate changing operations.

5.1 Upsampling

The most straightforward way to upsample data to a higher rate is to zero-stuff
the signal, meaning put a zero between each sample to increase the number of
samples captured in a given amount of time. The process of zero-stuffing adds
no spectral content to the original signal, so this seems like a very nice clean
way to increase the sample rate of a given digital signal. Now let us build a vir-
tual instrument (VI) to upsample a signal. Figure 5.1 shows the block diagram
of Upsample.vi. This VI initializes an array of I – 1 zeros and inserts that array
between each original input sample.

Figure 5.2 pretty much sums up what happens when you zero-stuff. If we use
the filter we designed in Chap. 4 with the KaiserFIR.vi function, we should
already know what the spectrum will look like. I said before that no spectral
information was added and that is still true. What did change, however, was the

83

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

84 Chapter Five

digital frequency location of the spectral replications. When dealing with digital
signals it is important to remember that digital frequency depends on the sample
rate. Now that we have zero-stuffed our input signal, we have three times as many
samples in the same time period. Effectively, we are viewing a larger snapshot of
the original signal’s periodic spectrum. Before upsampling, we could only see

Figure 5.1 Upsample.vi block diagram.

Figure 5.2 Upsample.vi front panel. Three spectral replications are shown when upsampling by 3.

from −fs/2 to fs/2. Now that fs got bigger while the spectral content stayed the same,
we can see three times as much of the original periodic spectrum.

There may be some interesting applications where you want to keep the spec-
tral images from the upsampling but in most applications we are going to have
to filter this signal to remove those unwanted spectral replications. Before we
look at any filtering of resampled signals, let us take a look at the reverse oper-
ation, downsampling.

5.2 Downsampling

If you can think of upsampling as compressing more of the periodic spectrum
into the space from −fs/2 to fs/2, then you can imagine what happens when you
downsample. The spectrum spreads out like you are zooming in on some por-
tion of the original spectrum and causing it to fill the space from −fs/2 to fs/2.
The danger with this operation is that the “zoomed” spectrum can overrun the
fs/2 boundaries. The overrun causes aliasing and you may not be able to recover
the portion of the signal you are interested in. Also keep in mind that you are
throwing away pieces of your original signal that contribute to the total power
in your original spectrum. That means that you will lose signal power propor-
tional to the downsampling factor in the operation.

Figure 5.3 shows the spectrum of a downsampled signal along with the spec-
trum of the original signal. Notice that the signal was downsampled by a factor
of 2 and consequently the signal bandwidth has doubled while the amplitude
was cut in half (1/2 ~ −6 dB). If we were to increase the downsample factor in Fig. 5.3
any more, to say, 3—then we would start to see aliasing. That is because the
original signal has spectral information all the way out to 2000 Hz. If we expand
the signal by 3, then components from 2000 Hz move out to 6000 Hz, and we
have caused aliasing by going beyond the half sample rate of 5000 Hz (remem-
ber from Chap. 4 that the sample rate for these filter coefficients was 10,000 Hz).

From this example it looks as if we can avoid aliasing in the downsampling-
by-2 operation as long as our original signal bandwidth is always less than 1/2
of the half sample rate or more directly 1/4 of the original sample rate. But some-
times our original signal may include noise that gives us significant spectral con-
tent at frequencies greater than the 1/4 sample rate. When we downsample that
noisy signal, the noise may alias and distort the resultant signal. Of course this
phenomenon is not limited to sample rate reductions by a factor of 2. For an arbi-
trary sample rate reduction by M, the signal must be first band-limited to fs/2M
[1]. That is why it is necessary to run the signal through an antialias filter
before the downsample operation. Now that we have seen an overview of the
upsampling and downsampling operations, let us complete the resampling oper-
ation by looking at the filtering process.

5.3 Resampling Filters

As we saw with both upsampling and downsampling, we really need some
kind of filtering in order to retain just the spectrum of our original signal after
the resampling operation. From the previous discussion, it is clear that for the

Multirate Signal Processing in LabVIEW 85

86 Chapter Five

Figure 5.3 Block diagram and front panel for downsample.vi.

Figure 5.4 Flowchart of downsampling operation.

Multirate Signal Processing in LabVIEW 87

downsampling operation, we had better filter the signal first to make sure we do not
get any aliasing. For the upsampling case, there is no aliasing, but if we apply
the filter before the upsample operation, the additional spectral replications will
still show up unaffected. So for upsampling, the filter should be applied afterward.

Figures 5.4 and 5.5 show the flowcharts of the downsampling and upsampling
operations. In this traditional type of configuration, the filter in the downsam-
pling step takes place at the input rate, while the filter in the upsampling must
take place at the higher output rate. As we saw in Sec. 5.2, the downsampling
filter cutoff must limit the input signal bandwidth to fs/2M. The upsampling
filter, on the other hand, must have a cutoff equal to half the original sample
rate, or half the interpolated sample rate fI divided by 2I.

So far the resampling operations we have seen were either up by an integer or
down by an integer. For noninteger rates the upsampling and downsampling can
be combined to achieve nearly any arbitrary rate. For instance, up by 12, then
down by 5 to approximate a rate of 2.35. Of course, a more accurate ratio would
be up by 235, down by 100—at the expense of a lot more computations. When com-
bining the two operations, an appropriate filter can be chosen such that a single
filter both removes the extra spectral replications from the upsampling and
prevents aliasing in the downsampling. Since the upsampling requires the filtering
afterward and the downsampling requires filtering beforehand, the upsampling
should always be performed first. This combined operation is shown in Fig. 5.6.

Combining the upsampling and downsampling as in Fig. 5.6 has obvious com-
putational savings. Performing the two operations separately would require a
filter for each operation. The combination allows us to use a single filter to both
remove the extra spectral replications from the upsampling and prevent alias-
ing from the subsequent downsampling. In order for this single filter to remove
the correct portion of the spectrum, the cutoff must be chosen as the smaller of
fI/2M or fI/2I. While using a single filter can certainly save computation time, for
even greater savings, there are some special conditions involved in the resam-
pled sequence that we can take advantage of. For an explanation of this, let us
take a closer look at the upsampling case.

Figure 5.5 Flowchart of upsampling operation.

Figure 5.6 Rational ratio resampling.

88 Chapter Five

As we saw in Sec. 5.1, upsampling stuffs I – 1 zeros between each sample of
the input sequence. It is a terrible waste of time to run zeros through the filter
when we know exactly where they are. We can eliminate the computations on
the zero-valued inputs if we very carefully rearrange the way our input sequence
flows through the filter. In fact, we do not have to zero-stuff the input sequence
at all and the sequence can still be upsampled by the very nature of the filter-
ing. This type of filter is known as a polyphase filter and is discussed in Sec. 5.3.2.
A similar situation exists for the downsampling case where we are first filtering
the signal but then throwing away every Mth value. Both cases will be discussed
along with a LabVIEW application for performing the polyphase interpolation.
There is also another interesting type of resampling filter known as the halfband
filter. This filter has the interesting property that every other time domain coef-
ficient is 0, and this can be exploited to cut the required computations in half [2].
Now we will take a look at these two efficient resampling filters.

5.3.1 Halfband filters

As previously mentioned, the halfband filter has the property that every alter-
nating impulse response value is 0 (except the zeroth index sample). The half-
band filter is computed with the same filter design techniques that we have
already seen (windowing or Parks-McClellan) by setting the filter cutoff fre-
quency to 1/4 of the sample rate.

Figures 5.7 and 5.8 show the block diagram and front panel of Halfband.vi.
From the block diagram, we can see that the cutoff frequency is set to 1/4 of the
sample rate and the stop frequency is computed from the cutoff and the pass
frequency. These values are passed to the MPR.vi and the filter impulse response
is shown in Fig. 5.8. The impulse response clearly has the property that every
other value is 0. We can take advantage of these zeros to cut the required number
of multiplications in half. Obviously the halfband filter implies that the change
in sample rate is 2x either up or down. For larger changes in the sample rate,
stages of these 2x resamplers followed by halfband filters can be combined.

Figure 5.7 Halfband.vi block diagram.

F
ig

u
re

 5
.8

H
al

fb
an

d.
vi

 f
ro

n
t

pa
n

el
.

89

5.3.2 Polyphase filters

A polyphase filter takes advantage of the fact that computing filter outputs for
some inputs in a resampling filter are unnecessary. Specifically, the added zeros in
the upsampler and every Mth input in the downsampler are not required for the
computation. Using this technique, the polyphase approach can be an extremely
efficient filter. First, a filter is designed in the typical manner, next the coefficients
are separated into individual filter banks as shown in Fig. 5.9. In a polyphase
interpolator, there will be I filter banks with coefficients given by

(5.1)

where h(n) is the original filter before rearranging and k = 0, . . . , I – 1.
You will notice that there is no zero-stuffing involved in the interpolator in Fig. 5.9.

The same input x(n) is now being passed to all filter banks and the output com-
mutator chooses the appropriate filter output [3]. In this manner, there are I out-
puts for each input and any given output requires only 1/I times the original
number of calculations per output. We will verify this in a moment once we see more
about how this polyphase partitioning works by looking at a LabVIEW VI.

Figure 5.10 shows the block diagram of our LabVIEW polyphase interpola-
tor. The VI is broken up into three frames. In the first frame at the top of the
figure, the three front-panel controls are used to calculate the necessary filter
parameters and then passed to MPR.vi. Afterward we want to check that the
length of the filter designed by MPR is a multiple of our interpolation rate so
that we can break the filter up into I equal length banks. Notice that the computed
cutoff frequency is always going to be equal to 1/2 of the original sample rate, or,
said another way, 1/2I times the output sample rate.

In the middle frame of the block diagram in Fig. 5.10, the input signal is
upsampled in the conventional manner for comparison sake. That is, I − 1 zeros
are stuffed in between each real and imaginary input and the resulting signal
is convolved with the filter coefficients computed from the Parks-McClellan
algorithm. This means that the signal that is passed through the filter is already
upsampled, so the filtering is taking place at the higher output rate. If the orig-
inal input is K samples long and the filter is N samples long, the entire

h m h n k Ik() [()]= +

Figure 5.9 Flowchart of a polyphase interpolator.

90 Chapter Five

Multirate Signal Processing in LabVIEW 91

Figure 5.10 PolyphaseInterpolator.vi block diagram.

F
ig

u
re

 5
.1

1
P

ol
yp

h
as

eI
n

te
rp

ol
at

or
.v

i f
ro

n
t

pa
n

el
.

92

convolution requires K + N − 1 multiplications (complex). Now if the input is first
upsampled by I, the convolution now requires I * K + N − 1 multiplications. On
a per output basis, this traditional upsampling followed by filtering requires N
(complex) multiplications per output. In a polyphase approach, the filter is split
into banks of length N/I and each output thus requires fewer computations.

Finally in the last frame, the polyphase interpolation is performed. The first
step is to rearrange the filter coefficients into I filter banks as in Eq. (4.9) by
using the reshape and transpose operators. Now the input sequence is con-
volved with each bank of filter coefficients and the outputs are then interleaved
to produce the appropriate filtered sequence.

Figure 5.11 shows us the front panel of our polyphase interpolator. The input
spectrum and filter response are shown at the top and the conventional upsam-
pling and polyphase outputs are shown at the bottom. The two output spectra
appear to match. This example should convince us that the polyphase parti-
tioning of the filter coefficients does indeed produce the same sequence as the
typical upsample or filter and the operation is done at a significant savings per
output, especially if the interpolation rate is large.

From the preceding discussion, it should also be a short leap to imagine that
a polyphase downsampler can be built using the same principles. Namely, the
downsampling can occur before the filtering and the filter can be broken into M
banks. By doing this, the filter will be operating on a sequence with a lower
sample rate, thus requiring fewer computations per output. At this point, we will
forego actually building a polyphase VI for the downsampler. After studying the
structure for the interpolator, it should be a small matter for the reader to
transform the interpolator into a polyphase downsampler.

Summary

This chapter has presented some methods for performing sample rate changes.
Rate changing can be a very simple operation involving either the insertion of
0 values into the input sequence or the removal of some of the input values. Two
efficient rate-changing filters, the halfband filter and polyphase filter, were
built in LabVIEW. Only the polyphase interpolator was shown and it was left
up to the reader to develop the polyphase downsampler. Of course, there are
many more efficient filtering schemes such as Hilbert and Hogenaur filters
that are not covered here. The reader is encouraged to read Ref. [3] for further
information on efficient resampling filters.

References

1. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2d ed.,
Prentice-Hall, Upper Saddle River, NJ, 1998.

2. Lyons, R. G., Understanding Digital Signal Processing, Prentice-Hall, Upper Saddle River,
NJ, 2001.

3. Harris, F., Multirate Digital Signal Processing, Prentice-Hall, Upper Saddle River, NJ, 2004.

Multirate Signal Processing in LabVIEW 93

This page intentionally left blank.

Chapter

6
Generating Signals

with LabVIEW

In this chapter we see how to generate some common signals that are encoun-
tered in various communication systems. This chapter presents some of the
more basic signals that will be useful for our work in digital signal processing
(DSP) and digital communications. Luckily LabVIEW already incorporates
some built-in functions for generating most of these simple signals. In DSP and
communications, we have many uses for sinusoids, and we will also make use
of the impulse, ramp, and white gaussian noise functions. Figure 6.1 shows the
location in the functions palette where the various signal generation virtual
instruments (VIs) are located.

6.1 Basic Functions

Some of the most useful signals in DSP also happen to be some of the simplest.
Three of the most widely used signals are the impulse, ramp, and step. Figure 6.2
shows the block diagram of BasicFcns.vi, which uses the built-in LabVIEW
functions for generating these three signals. The actual VIs are named Impulse
Pattern.vi, Ramp Pattern.vi, and Pulse Pattern.vi.

The impulse function has the equation given in Eq. (6.1) and can be used as
the input signal to extract the filter coefficients from a filtering routine. It can
also be used to generate a flat noise spectrum. This VI has three inputs: the
number of samples, the impulse amplitude, and the delay.

(6.1)

The ramp function will be extremely useful in generating any linear type of
sequence. It was used previously in this book to generate the frequency axis for
displaying the spectrum of signals we have examined. This VI also has three

d[]n n
n n
n nD

D

D

− = =
≠





1
0

95

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

96 Chapter Six

Figure 6.1 Signal generation VIs.

Generating Signals with LabVIEW 97

inputs: the number of samples, the start value, and the stop value. An interesting
property of Ramp Pattern.vi is that it is capable of generating either positive
or negative sloped ramps depending on the relationship between the start and
stop values.

The step function or Pulse Pattern.vi has four inputs: the number of samples,
amplitude, delay, and width. The equation for a step function is shown in Eq. (6.2)
and the time-domain plots of all three functions are shown in Fig. 6.3.

(6.2)

6.2 Sinusoids

Another very important class of signals for DSP and digital communications is
the sinusoids. We have already seen some examples of sinusoids such as the
raised cosine and a brief glimpse of the sinc function. Here we will also look at
generating a complex mixer and an example of frequency modulation in the form
of a chirp sequence.

u n n
n n
n nD

D

D

[]− = =
≠





1
0

Figure 6.2 BasicFcns.vi block diagram.

98 Chapter Six

6.2.1 Complex mixer

Since LabVIEW includes a routine to generate a sine pattern, we will use it as
the basis for building our complex mixer. We will also need to know the data
sample rate, desired length of the mixer, and the mixer frequency. The LabVIEW
sine pattern generates a sine wave of a given number of cycles (fractional cycles
allowed) in a specified number of samples. The block diagram shown in Fig. 6.4
divides the mixer length by the data sample rate to give the time length in sec-
onds. The time is then multiplied by the mixer frequency to give the number of
cycles. We can simultaneously generate a cosine wave by setting the phase offset
of the sine pattern generator to 90°. Finally for compactness, we can combine

Figure 6.3 BasicFcns.vi front panel.

F
ig

u
re

 6
.4

C
om

pl
ex

 m
ix

er
 g

en
er

at
io

n
.

99

F
ig

u
re

 6
.5

S
in

cF
cn

.v
i b

lo
ck

 d
ia

gr
am

.

100

Generating Signals with LabVIEW 101

the sine and cosine into real and imaginary parts of a complex number, thereby
creating our complex mixer.

6.2.2 Sinc function

Another useful function that was briefly introduced in Chap. 4 is the sinc function
VI called SincFcn.vi. This VI computes the sinc waveform from the formula [1]:

(6.3)

The block diagram that computes Eq. (6.3) is shown in Fig. 6.5. You might
notice that there is a singular point where the sinc function would not be well
behaved if we did not control it somehow. That point is where n = M/2, which
results in 0/0 division. The VI handles this special case with two case selectors
and sets the sinc amplitude to a specific value at the discontinuity.

The front panel of SincFcn.vi is shown in Fig. 6.6. We used this truncated sinc
(remember that the real sinc function has infinite duration) back in Chap. 4

h n
n M

n M
C[]

sin[(/)]
(/)

= −
−

w
p

2
2

Figure 6.6 SincFcn.vi front panel.

102

F
ig

u
re

 6
.7

C
h

ir
p.

vi
 b

lo
ck

 d
ia

gr
am

.

Generating Signals with LabVIEW 103

when we needed a prototype for filter design by windowing. As you increase the
length of the sinc waveform you will see that the spectrum gets closer and closer
to the ideal low-pass filter.

6.2.3 Chirp sequence

The chirp sequence is an interesting signal that has applications in sonar, radar,
and spread spectrum communications. There are two different forms of chirp
sequence, linear and exponential, which refer to the rate at which the chirp
signal frequency changes. The simpler of the two is the linear chirp, which we
will examine here. Equation (6.4) gives the formula for a linear chirp sequence
and the block diagram in Fig. 6.7 shows how this can be implemented.

(6.4)

Chirp.vi linearly increases the frequency of the waveform beginning at the
start frequency and continuing for the number of samples. The instantaneous
frequency of the waveform is given by the derivative of the phase with respect
to time. The generated chirp pattern is shown in Fig. 6.8.

6.3 Generating Channel Models

An important part of digital communications is simulating signal recovery in the
face of noise and other channel impairments. In order to really put our communi-
cation system through its paces we need to be able to generate a model of the chan-
nel. The amplitude and phase variations imposed by the channel on the received
signal can generally be termed fading. There are several different types of fading
as well as several different models to simulate those fading conditions. For sim-
plicity, we will consider only small-scale flat fading. Reference [2] tells us that
for 2-D isotropic scattering environments, the magnitude of the received complex
envelope g(t) can be modeled as a Rayleigh random variable at any given time
and the phase is uniformly distributed from –p to p. Section 6.3.1 explains how
to build a Rayleigh model of our channel. In addition to fading, there are other
sources of noise to consider. For example, the receiver will have some thermal
noise and there may be interference from other radio frequency (RF) signals. We
will model these extraneous noise sources in Sec. 6.3.2 as gaussian noise.

6.3.1 Rayleigh fading

So how do we generate a Rayleigh envelope in LabVIEW? Figure 6.1 showed that
LabVIEW contains a function for generating white gaussian noise (as well as
uniform white noise, Gamma, Poisson, and binomial noise). Well, again Refs. [2, 3]
tell us that if we have a random variable R defined as

(6.5)R g t g tI Q= +[()] [()]2 2

w n
f

f
n

S

k[] sin=






2p

F
ig

u
re

 6
.8

C
h

ir
p.

vi
 f

ro
n

t
pa

n
el

.

104

then R will be Rayleigh distributed as long as gI(t) and gQ(t) have zero mean
gaussian distributions (and the number of scatter paths is large). Relating
Eq. (6.5) to our recovered signal, g(t) = gI(t) + gQ(t) is the received complex
envelope and R = |g(t)| is the magnitude of that envelope. We can now use
this information and the white gaussian noise VI to build the block diagram
shown in Fig. 6.9.

Rayleigh.vi takes two inputs: the number of samples and the standard devi-
ation of the scattering envelope. Since the standard deviation is the square root
of the signal power, we divide by √2. That way the real and imaginary parts of
the Rayleigh envelope each contain half of the total signal power. The term
“scattering” comes from the fact that the small-scale faded envelope is a result
of multiple receive paths arising from the transmitted signal being reflected
off obstacles. The scattering can be caused by any objects in the environment
such as buildings, trees, automobiles, and so on. In Fig. 6.9, two gaussian dis-
tributed sequences gI(t) and gQ(t) are formed and they are squared, summed,
and then the square root yields the Rayleigh envelope. Finally, the arctangent
of gQ(t)/gI(t) gives us a uniformly distributed phase over the interval –p to p.
In Fig. 6.10, you can see that the histogram of the complex envelope is indeed
Rayleigh distributed.

Now that we have a model for the channel gain magnitude and phase from
Rayleigh.vi, we can start to build a fader that will simulate the channel condi-
tions for our modulated signal. To do this, we need to simply generate the
desired number of Rayleigh faded paths, sum up their contributions, and mul-
tiply the sum by our modulated signal. Since this chapter is focusing on gener-
ating the underlying signals, we will wait until Chap. 7 to apply the Rayleigh
fading to our digitally modulated signal.

Generating Signals with LabVIEW 105

Figure 6.9 Rayleigh.vi block diagram.

F
ig

u
re

 6
.1

0
R

ay
le

ig
h

.v
i f

ro
n

t
pa

n
el

.

106

Keep in mind that the Rayleigh faded envelope does not include the presence
of a direct line-of-sight component. This type of distribution has a ricean pdf, of
which the Rayleigh distribution is a special case. This section attempts to only
show the potential for channel modeling in LabVIEW, the inclusion of a line-of-
sight component is left up to the reader.

6.3.2 White gaussian noise

Besides the fading from the channel, there will also be noise from nearby RF
signals as well as thermal noise in the receiver itself. We can model these noise
sources as white gaussian noise processes, which LabVIEW can easily gen-
erate using the same white gaussian noise VI that we saw in Sec. 6.3.1. The
block diagram of AWGN.vi is shown in Fig. 6.11 and the front panel is shown
in Fig. 6.12.

This VI simply forms either a real or complex white gaussian noise sequence
with a given variance. An examination of the noise spectrum shows that the fre-
quency content of the noise is flat, as we would expect for white noise. We will
use this VI in later chapters to degrade our transmitted waveform and simu-
late a noisy environment.

6.4 Generating Symbols

Our last step before simulating the whole digital communication structure will
be to generate a digitally modulated signal. That means that we have to choose
a digital modulation scheme like QAM, QPSK, PAM, or any number of other
modulations. We will also need some bits to actually map to the symbols in our
chosen modulation. Producing the bits is as simple as using the LabVIEW
random number generator as shown in Fig. 6.13. The random number gener-
ator produces a uniform distribution of numbers between 0 and 1. The double
precision random numbers are then rounded to the nearest integer and cast
to 16-bit integers.

Once we have the bits, we are ready to map them to our modulation symbols.
For this discussion, 16-QAM was the chosen modulation scheme. To map the
bits to a symbol, a symbol table is formed with the symbols in Gray encoded
order and the appropriate symbol is chosen by simply indexing this array of
symbols with the bits to transmit [4]. The Gray encoding gives us a reduced
risk of a bit error by mapping neighboring symbols to bit values that differ by
only a single bit. This means that if a neighboring symbol is chosen by mistake,
the error will only be 1 bit. Since the Gray encoding is done in the design stage,
this is a very nice trick for reducing error rates with absolutely no cost in terms
of computation. Figure 6.14 shows a 16-QAM symbol mapper with a Gray
encoded symbol table.

The 16-QAM modulation maps 4 bits to each symbol, and you can see in the
figure that the input bit array is split at index 4 with the top 4 bits being converted

Generating Signals with LabVIEW 107

108 Chapter Six

Figure 6.11 AWGN.vi block diagram.

F
ig

u
re

 6
.1

2
A

W
G

N
.v

i f
ro

n
t

pa
n

el
.

109

110 Chapter Six

Figure 6.13 GenerateBits.vi block diagram.

Figure 6.14 SymbolMapper.vi block diagram.

to a numeric index for the symbol table and the remaining bits are passed to
a shift register for the next loop iteration. The 4-bit array is first reversed
because of the way the boolean array to number function works. We can then
view the constellation by bundling the real and imaginary parts of the symbols
and creating an X–Y graph as shown in the block diagram in Fig. 6.15. The front
panel of the X–Y graph is shown in Fig. 6.16.

Figure 6.15 Plotting the constellation.

Figure 6.16 16-QAM constellation X–Y graph.

Generating Signals with LabVIEW 111

112 Chapter Six

Summary

This chapter has introduced some of the signal generation capabilities of
LabVIEW. We started with some relatively basic signal types, then moved
from sinusoids to random noise, and finally we saw how to map a bitstream
to a 16-QAM constellation. Of course, all of these sections only touched the sur-
face of the LabVIEW or digital communication world, but hopefully there is
enough information here to get you started down the path of understanding. In
the next few chapters, we will see all of these topics take the shape of a real com-
munication system from bits to bits on both ends.

References

1. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2d ed.,
Prentice-Hall, Upper Saddle River, NJ, 1998.

2. Stuber, G. L., Principles of Mobile Communication, 2d ed., Kluwer Academic Publishers,
Boston, MA, 2001.

3. Prabhu, G. S., and P. M. Shankar, “Simulation of Flat Fading Using MATLAB for Classroom
Instruction,” IEEE Trans. on Education, vol. 45, no. 2, February 2002, pp. 19–25.

4. Proakis, J. G., Digital Communications, 4th ed., McGraw-Hill, Boston, MA, 2001.

Part

Building a
Communication

System

113

3

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank.

Chapter

7
Assembling the Pieces

Chapters 1 through 6 have explained most of the basic LabVIEW DSP tools that
we will need for dealing with digital communication signals. In this chapter we
finally start seeing all those ideas come together into the complete digital com-
munication package. First we will start by building up the transmit waveform
as shown in the flowchart in Fig. 7.1. We have already looked at all the virtual
instruments (VIs) that we need to form a digitally modulated signal and from
the discussions in Chaps. 1 to 6, we should have at least a cursory understanding
of the important pieces of the modulator block diagram shown in Fig. 7.1. Now
we are ready to assemble those pieces into a working modulator.

The reverse process of the digital modulator is shown in Fig. 7.2. For the
most part, the pieces of the demodulator are the same as the modulator; however,
some of the demodulation tools have not yet been discussed and will be covered
later in this chapter.

Once we have a working modulation/demodulation system, we will simulate
a noisy radio frequency (RF) fading channel by building Channel.vi using the
channel model from Chap. 6. We will begin with the modulator in Sec. 7.1.

7.1 Modulator

Starting on the left of Fig. 7.1, we already saw (in Chap. 6) a simple VI called
GenerateBits.vi to give us a random sequence of bits. Then in Sec. 6.4, we exam-
ined a method for mapping those bits to Gray coded points on the 16-QAM con-
stellation. Next we upsample the baseband signal to our desired sample rate and
then run the data through the pulse shape filter. Remember that our signal will
be prone to intersymbol interference (ISI) if we do not do any kind of pulse shaping.
For the shaping filter we have to return to Sec. 4.5 and use NyquistPulse.vi to
design either a raised cosine or root-raised cosine window.

115

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

116 Chapter Seven

Now that we have refreshed ourselves on the components of the modulator,
let us examine the block diagram of Modulator.vi in Fig. 7.3. On the left are the
familiar functions from Chap. 6 for generating bits and mapping them to the
16-QAM constellation. NyquistPulse.vi is then called to design a pulse-shaping
filter for a given length, sample rate, symbol rate and roll-off factor (alpha). Here
the Nyquist shaping pulse is produced at the desired output sample rate and
not at the input symbol rate. From Sec. 4.4.2, we know that the delay of this
pulse shape filter is M/2, where M is the filter order. And we also know that M =
N – 1, where N is the filter length, thus giving us the filter delay in terms of
the length [1]. Now we zero-stuff the real and imaginary parts of the input
symbol waveform and convolve the upsampled waveform with the pulse-shaping
filter coefficients. The final step is to generate the frequency spectrum with
AdvFFT.vi and to shift the y-axis maximum value to 0 dB. Note also that the
upsample or filter operation could just as easily be done with the polyphase
approach from Chap. 5.

Figure 7.4 shows the front panel of Modulator.vi. Let us look at a couple of
interesting points in this figure. First of all, notice that there are five samples
from the peak value of the pulse-shape filter out to the first zero crossing on
either side. This is a quick and easy way to recognize that the sample rate is
five times the symbol rate. Secondly, the single-sided bandwidth of the trans-
mit signal looks to be approximately 3000 Hz. Remembering what we have
learned about pulse shaping, the required single-sided bandwidth of a digitally
modulated signal at the symbol rate of 4800 symbol per second should be 2400 Hz
plus the excess bandwidth from the shaping filter. In this example, the
excess bandwidth is 20 percent, for a total single-sided bandwidth of 2880 Hz.
So far our modulator at least passes a sanity check for the proper signal band-
width. We will have to demodulate this signal to know for sure if everything is
working properly.

Figure 7.1 Flowchart showing the generation of a digitally modulated waveform.

Figure 7.2 Flowchart showing the demodulation process for a digitally modulated waveform.

117

F
ig

u
re

 7
.3

M
od

u
la

to
r.

vi
 b

lo
ck

 d
ia

gr
am

.

7.2 Demodulator

Before we start examining the structure of the demodulator, let us quickly look
at the time-domain transmitted waveforms in Fig. 7.5 to make sure we under-
stand what was sent.

What Fig. 7.5 tells us is that the transmitted waveform is approximately zero
for some duration at the beginning and end of our transmission. Remember that
the convolution output has length L + N – 1 where L is input waveform length
(625 in this case) and N is the filter length (321 in this case). As the two wave-
forms slide past each other in the convolution, we get (N – 1)/2 zeros from the

118 Chapter Seven

Figure 7.4 Modulator.vi front panel.

119

F
ig

u
re

 7
.5

T
ra

n
sm

it
te

d
I

an
d

Q
 w

av
ef

or
m

s.

F
ig

u
re

 7
.6

D
em

od
u

la
to

r.
vi

 b
lo

ck
 d

ia
gr

am
.

120

root-raised cosine tails before the first input symbol is actually in the main lobe
of the shaping filter and a reverse situation at the tail end of the waveform. That
means that we have transmitted N – 1 samples that really do not contain any
information. We will get rid of them shortly once we finish the receiver half of
the pulse shaping.

Following the flowchart in Fig. 7.2, the first thing the receiver needs to do is
to complete the other half of the pulse-shape filtering. Remember that there is
a root-raised cosine at both ends of the path to yield an overall raised cosine
response. After that convolution, we have added (N – 1)/2 more unwanted sam-
ples to the front of our waveform, bringing the total to N – 1. For that reason,
we delay the signal by N – 1 and trim off the N – 1 excess points at the end as
well. Now we can downsample the signal to arrive at what should be the trans-
mitted symbols. We may need to perform some scaling on the recovered sym-
bols to account for the pulse-shaping filter gain, channel noise, and so on.
Figure 7.6 shows the block diagram of Demodulator.vi, which reflects the steps
discussed previously.

The VI ScaleSymbols.vi shown on the right in Fig. 7.6 takes care of the scal-
ing mentioned previously. The block diagram for ScaleSymbols.vi is shown below
in Fig. 7.7. Since we know that the magnitude of the largest transmitted
symbol is , this VI simply scales the largest input magnitude up
(or down) to that value.

The front panel of the demodulator is shown in Fig. 7.8. You will notice right
away that the recovered symbols are not quite perfect replicas of the possible
constellation points, but we will fix that shortly. So far this demodulator has not
made any decisions about which symbols were likely to be transmitted. In this
simple example, there is no noise to corrupt our waveform so the only deviation
comes from the pulse-shaping filter convolution. We could round our values to
the nearest integer to clean up the recovered constellation, but instead we will
utilize a decision method to choose the recovered symbol from the constellation.
Before we do that though, let us look at corrupting our transmitted signal with
noise.

3 3 182 2+ =

Assembling the Pieces 121

Figure 7.7 ScaleSymbols.vi block diagram.

7.3 Channel Impairments

Now we are going to start adding some degradation to the received waveform.
Chapter 6 built a VI called AWGN.vi, which simply generates a white gaussian
noise signal with a specified power. We use the VI as shown in the block dia-
gram of SimpleNoisySystem.vi in Fig. 7.9. This first step is to determine our
desired SNR. Once we have the SNR, we can work backward to compute the
required noise power to achieve that SNR. Then we call AWGN.vi with the
appropriate signal length and power and add the generated noise to our trans-
mitted waveform.

122 Chapter Seven

Figure 7.8 Demodulator.vi front panel.

F
ig

u
re

 7
.9

S
im

pl
eN

oi
sy

S
ys

te
m

.v
i b

lo
ck

 d
ia

gr
am

.

123

Figure 7.10 shows the noisy demodulated symbols. Here the SNR was set to
10 dB and it is obvious that the AWGN has spread the symbols in such a way
as to increase the probability of a symbol error. By running the VI several
times, you may actually see cases where a point falls on or near the decision
boundary, which may cause a symbol error. Remember also that we Gray
encoded the symbols such that an incorrect decision between two adjacent
symbols would only yield a single-bit error.

In a conducted environment, the AWGN-induced noise may be sufficient to put
our digital communication system to the test. However, for more accurate mod-
eling of the wireless RF channel, we have to include fading. We saw in Chap. 6
that the channel could be modeled with a Rayleigh random variable and that
we could sum up a sufficient number of these Rayleigh faded envelopes to model
the multipath components arriving at the receiver. In fact, let us take a look at
the block diagram of Channel.vi in Fig. 7.11, which applies a sum of Rayleigh
faded envelopes to our digitally modulated signal.

The first step in the channel fader is to choose the number of scatterers or mul-
tipath components. Reference [2] tells us that we should be able to work with
as few as six scatterers or multipath components. Then we call Rayleigh.vi
(from Chap. 6) in a loop and sum up each generated complex envelope into a shift
register. We choose our desired signal-to-noise ratio and calculate the noise

124 Chapter Seven

Figure 7.10 SimpleNoisySystem.vi front panel.

F
ig

u
re

 7
.1

1
C

h
an

n
el

.v
i b

lo
ck

 d
ia

gr
am

.

125

F
ig

u
re

 7
.1

2
F

ad
eS

im
u

la
ti

on
.v

i
bl

oc
k

di
ag

ra
m

.

126

power as before. Then each Rayleigh envelope will be formed with a fraction of
that noise power so that the summation yields the correct total noise power. The
Rayleigh fading is a model of signal fluctuation about a mean, therefore we shift
the fading envelope by the mean of the input signal and finally we can apply
that faded envelope to our signal as shown in the figure.

So what is the effect of the Rayleigh fading on the received waveform? Let
us take a look at a quick example of fading using Channel.vi in Fig. 7.12. We
have already seen all of the VIs in this block diagram, except for the symbol
detector shown just after the demodulator. This VI will be discussed in detail
in Sec. 7.4.2. Its job is to make symbol decisions based on predetermined symbol
boundaries.

The front panel of this simple fading simulation is shown in Fig. 7.13. The
magnitude of the symbol errors are shown at the bottom of the figure. For this
case of 40 dB SNR, there is a single symbol error of magnitude 2 at symbol 11. In
the next chapter we will see how these symbol errors translate to bit errors.

At this point, we have only considered a static case with no motion between
the transmitter and receiver. Of course, with today’s ubiquitous use of wireless
devices, relative motion is impossible to ignore. However, we can easily incor-
porate the effects of any relative motion between the base station and the mobile
unit through the use of a Doppler shift of the received signal, given by Ref. [2]

(7.1)

where n = velocity of the mobile unit
wc = RF carrier frequency
c = speed of light

yi = uniformly distributed angles of arrival of the i reflected waves

The effect of the Doppler shift can then be applied to the complex envelope g(t), giving

(7.2)

From here it is left up to the reader to apply the effect of a Doppler shift to the
digitally modulated signal. The uniformly distributed angles can be easily gen-
erated and the carrier frequency and velocity are specific to your application.
Again this channel model is by no means complete. By building only the small-
scale Rayleigh faded envelope, we have neglected the effects of path loss and
there are no provisions for a line-of-sight component, both of which are important
pieces of a full-blown channel model. However, what we have shown is that we
can generate a channel model with some fairly simple building blocks in LabVIEW.

7.4 Signal Detection and Recovery

Finally we have come to the point where we can attempt to recover our trans-
mitted waveform. We have (hopefully) eliminated ISI, modeled the Rayleigh
fading, and even threw in some gaussian noise. At this point, you might think

g t g t e
D

dt() ()= w

w w n ydi
c

ic
= cos

Assembling the Pieces 127

our signal is unrecoverable, but do not worry, our signal is still in there some-
where. Our first step on this end of the chain will be to filter off some of the noise
from the channel and any interferers that may be out there. We have to be
careful not to have too narrow a filter bandwidth because the frequency error
(if there is any) may just push our signal outside the filter bandwidth.

Of course, in general, there will be some receiver front-end operations that
must happen in order to get to the baseband waveform that we are dealing
with here. Those operations include analog-to-digital (A/D) conversion, mixing
the RF signal possibly to an intermediate frequency (IF) before the final down-
conversion to baseband, and possibly several stages of resampling. The details
of the A/D conversion were discussed in Chap. 2 and will depend on your spe-
cific hardware capabilities. If the downconverted waveform is sitting at some

128 Chapter Seven

Figure 7.13 FadeSimulation.vi front panel.

frequency other than dc, the function ComplexMixer.vi can be used to mix the
signal the rest of the way to dc.

7.4.1 Matched filter detection

The topic of matched filters might be just a little misleading. This is not a filter
in the traditional sense. Normally a filter is concerned with removing some
portion of the spectrum that is unwanted and the remaining part of the spec-
trum is passed as intact as possible. In general, the goal of a filter is to preserve
the desired signal with as little distortion from the filter as possible. A matched
filter on the other hand, does none of that. In fact, the output looks nothing like
the desired signal [3]. The purpose of a matched filter is simply to compute a
metric to help us decide whether or not a signal is present. In a moment we will
see how a matched filter can be implemented in LabVIEW.

Suppose you were shown the noisy waveform at the bottom of Fig. 7.14 and
asked to decide whether the chirp signal with k = 2 or with k = 3 were present.
With some very close inspection, you might be able to say which one was sent. You
would probably try to match up the peaks in the noisy signal to peaks in each of
the known signals and see which one is the closest. We can accomplish almost the
same thing with the matched filter. We know beforehand that the noisy signal can
only be one of two signals. Therefore, if we use those two known signals as a template,
we can correlate the known templates with the noisy signal and whichever
correlation is the highest is most likely the signal that was transmitted.

In the block diagram shown in Fig. 7.15, the chirp signal for k = 2 is corrupted
with AWGN noise. If the signal set is assumed to contain only a chirp for k = 2
and for k = 3, then we can simply use those two signals as a template for the
correlations. The output of the correlation is shown in Fig. 7.16.

It is immediately obvious from the matched filter outputs that the k = 2 chirp
is the signal that was sent. This simple two-signal example can be easily extended
to the 16-QAM case with some minor changes. It is also a good idea to normalize
the correlation since the amplitudes of the 16-QAM constellation points vary.
That amplitude variation could cause false results from the correlation. A
normalized correlation can be computed from the following formula:

(7.3)

7.4.2 Threshold decisions

Another very simple way to make a symbol decision is to simply set decision
boundaries. For instance, in our 16-QAM case, any I or Q value +2 or greater
maps to a +3, anything between 0 and +2 maps to +1, and so on. Let us take a
look at a very simple hard decoder in LabVIEW shown in Fig. 7.17. This is the
block diagram of Symbol_threshold_det.vi and we saw that it was used back in
Fig. 7.12 in FadeSimulation.vi. This VI consists of a loop over the raw recovered
symbols and a series of case selectors for the I and Q channels. You can see in
the bottom case selector, any Q symbol +2 or greater is set to +3.

Norm correlation = ∑
∑

xy
x y| || |

Assembling the Pieces 129

F
ig

u
re

 7
.1

4
M

at
ch

ed
F

il
te

rD
et

ec
ti

on
.v

i f
ro

n
t

pa
n

el
.

130

Assembling the Pieces 131

Figure 7.15 MatchedFilterDetection.vi block diagram.

Figure 7.16 Matched filter outputs.

F
ig

u
re

 7
.1

7
S

ym
bo

l_
th

re
sh

ol
d_

de
t.

vi
 b

lo
ck

 d
ia

gr
am

.

132

7.5 Synchronization

As we are about to find out, synchronization is an extremely important part of cor-
rectly recovering a digitally modulated signal. The next two sections will discuss
the important aspects of both time and frequency synchronization and how syn-
chronization affects our ability to recover a signal. Most digital standards already
include provisions for timing and frequency correction, now we will see why.

7.5.1 Time synchronization

With the waveforms we have seen so far, there have been no timing issues. We
inherently knew where the waveform begins and where to start the pulse-
shaping filter. But how can this be accomplished blindly, as would be the case
if the receiver started receiving somewhere in the middle of a transmission?
Would the receiver ever be able to recover, and if so how would it know which
sample is the beginning of transmission? Obviously this is a huge issue in the
world of digital communications, because if we do not know which symbol was
the beginning of a transmission, there is no way the rest of the bits will be
properly recovered. Actually we can apply what we have already learned about
matched filter detection to the problem of time synchronization.

The output of the matched filter was a measure of the likelihood of the pres-
ence of a given signal. If we are clever, we can embed a signal, any signal we
choose, at the beginning of a transmission. Well, actually the signal had better
not be the same as any of our data signals or else we will get false matches. So
we should choose a very distinct signal—one that has almost no correlation
with any of our data symbols and just append that signal to the beginning of
every transmission. Then we can use a matched filter (matched to this distinct
signal) at the receiver. The peak of the matched filter output should mark the
position of our embedded synchronization symbol and thus the beginning of our
transmission. Also this is another case where normalizing the correlation using
Eq. (7.3) will be extremely important to avoid false detections from any large
amplitude spurs in the received signal.

7.5.2 Frequency synchronization

Correct frequency alignment is just as important as the time synchronization
mentioned previously. The effect of a small frequency error of 10 Hz on the
signal constellation is shown in Fig. 7.18. What you see in the constellation is
concentric rings. Since the units of frequency are radians per second, any fre-
quency error will impart a phase rotation on the recovered symbols, which accu-
mulates with increasing time and causes the rotating effect.

Just like the time synchronization case, to estimate the frequency error we
can embed a specific symbol at known places in our transmission. These sym-
bols will have known phases (as opposed to random data symbols, which have
unknown phases) and those phases can be used as references to calculate the
phase error of the recovered symbols. Exactly where in the transmission these
symbols are located varies depending on the standard (GSM, APCO25, and

Assembling the Pieces 133

some others), but typically there are a few of these “pilot” symbols spread
throughout the transmission interval. By measuring the accumulation of phase
error over the duration of the transmission, a good estimate of frequency error
can be calculated.

7.6 NI Modulation Toolset

At this point it is worth mentioning that much like the Matlab toolboxes,
National Instruments (NI) also has some add-on digital communication tools.
We saw earlier that NI has the spectral measurement toolset, but I would char-
acterize that package as more signal acquisition oriented. On the other hand,
the modulation toolset contains several very useful functions for measuring
and analyzing communication signals, some of which are briefly mentioned
here. At present, this toolset is only available with the purchase of the PXI-5670
vector signal generator, but hopefully in the future this toolset will be available
separately. The typical location for the toolset is shown in Fig. 7.19.

134 Chapter Seven

Figure 7.18 Effect of frequency error on recovered symbols.

Assembling the Pieces 135

Figure 7.19 Location of modulation toolset palette.

The modulation toolset comes with analog and digital modulation tools as well
as some utility functions to perform the auxiliary operations that go along with
digital communications. Here we will only mention a few of these functions to
give the reader an idea of what the toolset capabilities are, for more informa-
tion check out www.ni.com.

Let us start with the analog modulation tools. The four analog functions that
are included with the toolset are shown in Fig. 7.20. These functions will gen-
erate amplitude, frequency, and phase modulation and there is also one VI to
upconvert the baseband signal.

A few of the more interesting digital modulation tools are shown in Fig. 7.21.
In the light of what we have seen previously in this book, these particular tools
are the most relevant. These functions will generate bits, QAM symbols, add
AWGN noise, apply fading, and even perform fractional resampling. Not shown
are several other functions for alternate forms of modulation such as FSK and
MSK as well as the corresponding demodulation functions. Of these digital
modulations functions, the MT Fraction Resample.vi has proven to be very
useful in some of my own work. This function performs an efficient resample
and filter operation. The user needs only to supply the waveform to be resam-
pled, the current sample rate, and the desired sample rate.

NI’s primary goal for these tools seems to be to promote the use of their PXI
RF hardware, some of which was mentioned back in Chap. 2. This section has
not gone into detail on the use of any of these functions; however, the hope is
that the information in this book should give the reader a good understanding
of what is going on behind the scenes in each of them. The NI help will also give
you a good understanding of how these functions were intended to be used. The
fact that these functions exist is a good indication that NI is seeing a demand
for their products in the digital communication arena and hopefully there will
be more of a push to include these tools with the standard LabVIEW package.

136 Chapter Seven

Figure 7.20 Modulation toolset analog tools.

Summary

Chapter 7 has finally brought everything together into a digital communication
system. We started by assembling the pieces of the modulator and the demod-
ulator. Then we added channel impairments such as additive white gaussian
noise and Rayleigh fading and we saw the effect of those impairments on the
recovered symbols. Next we examined some methods for making symbol deci-
sions. We also discussed the importance of synchronization in both time and fre-
quency. Finally we ended with a brief overview of the NI modulation toolset.

References

1. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2d ed.,
Prentice-Hall, Upper Saddle River, NJ, 1998.

2. Prabhu, G. S., and P. M. Shankar, “Simulation of Flat Fading Using MATLAB for Classroom
Instruction,” IEEE Trans. on Education, vol. 45, no. 2, February 2002, pp. 19–25.

3. Sklar, B., Digital Communications, 2d ed., Prentice-Hall, Upper Saddle River, NJ, 2001.

Assembling the Pieces 137

Figure 7.21 Modulation toolset digital tools.

This page intentionally left blank.

Chapter

8
System Performance

So far we have seen that LabVIEW really can do quite a bit of signal processing
and we have used those capabilities to simulate a whole digital communication
system. Now it is time to investigate what measures of performance we can do to
see how our communication system stacks up. But what measurements will tell us
if our system is good or not? Since the ultimate goal of a digital communication
system is to convey a bit sequence from point A to point B, the first measurement
that stands out is the number of bit errors. In Chap. 7 we decoded our recovered
symbols into their corresponding bits, so if we know what bits were sent, we can
determine how many errors we have. However, the number of bit errors (or the bit
error rate) may not tell the whole story of imperfections in the recovered waveform.
In fact, for some constellations even large recovered symbol deviations may not
result in even a single bit error. For those cases, it will be necessary to look at other
signal metrics. Finally, we will see that there are a few techniques to give our signal
a boost of immunity to channel degradation.

8.1 Performance Measurements

8.1.1 Bit-error rate

If we want to evaluate the error performance of the digital communication system,
counting bit errors certainly seems like the right place to start. In Chap. 7, we saw
some techniques for recovering the transmitted symbols, now we need to unmap
those symbols back into bits. The block diagram in Fig. 8.1 shows basically the
reverse process from the SymbolMapper.vi in Chap. 6. Here the same Gray coded
symbol table is searched for the correct recovered symbols. Next the index of the
correct match is converted to a boolean array and then cut down to four elements
(for the 16-QAM case). Then the flipped boolean array is converted to binary and
the resulting decoded bits are appended to the output bit array.

Of course to be able to determine which bits are in error, we have to know the exact
sequence of transmitted bits. Take a look at Fig. 8.2 where the SymbolDecoder VI

139

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

140

F
ig

u
re

 8
.1

S
ym

bo
lD

ec
od

er
.v

i b
lo

ck
 d

ia
gr

am
.

F
ig

u
re

 8
.2

B
E

R
Te

st
.v

i b
lo

ck
 d

ia
gr

am
.

141

is used and the number of bits in error is determined by subtracting the recovered
bit sequence from the known bit sequence and summing up the result.

If you count the symbol errors in Fig. 8.3, you will see that there are seven
places where the transmitted and received symbols do not agree. At the
same time, there are only seven bit errors in the decoded symbols, which is
a direct result of the Gray coding. Without Gray coding, a symbol incorrectly
decoded near the decision boundary could have up to 4 bits in error (assuming
16-QAM), but the Gray coding has limited us to 1-bit differences for neigh-
boring symbols.

When we looked at the AWGN corrupted 16-QAM constellation back in Fig. 7.10,
it may have occurred to you that in some cases it takes a lot of noise to actu-
ally cause a symbol error and subsequent bit error. In other words, the raw
received symbols may be pretty far from their ideal location and still not cause
an error. For those cases, the bit error rate really does not tell us much about
the quality of our signal, especially for very sparse constellations such as
QPSK where symbol decision regions are large. Next we will look at some
metrics that examine more the quality of our received signal without regard
to the bit errors.

8.1.2 Error vector magnitude

This measurement tells us how much our radio frequency (RF) hardware and
the communication channel have corrupted our recovered symbols. Error
vector magnitude or EVM is a simple measure that relates to the distance from
the actual recovered symbol to the corresponding constellation point. Reference
[1] says that EVM is normally reported as a percentage of the peak signal level
where the peak is defined as the constellation corner state. For our 16-QAM
constellation, the peak magnitude is √18 and that value is used to normalize
the magnitudes of the error vectors in the block diagram of EVM.vi shown in
Fig. 8.4. The actual percentage of EVM for each transmission is taken as the
mean overall of the recovered symbols.

Figure 8.5 shows the front panel of our EVM function. For the received con-
stellation shown, the average percentage of EVM is calculated to be 8.2 percent.
This particular received constellation will probably have no symbol errors (or
bit errors), but measuring the EVM will give us a way to analyze and compare
the symbol corruption in spite of the lack of symbol errors.

8.2 Improving System Performance

We have just seen a couple of measurements for evaluating how well our com-
munication system processes our waveforms, but what can we do if the read-
ings are not good? There are many established methods for dealing with channel
impairments such as diversity, equalization, channel coding, and channel esti-
mation. The next sections deal with a few of these topics.

142 Chapter Eight

F
ig

u
re

 8
.3

B
E

R
Te

st
.v

i f
ro

n
t

pa
n

el
.

143

144 Chapter Eight

Figure 8.5 EVM.vi front panel.

Figure 8.4 EVM.vi block diagram.

8.2.1 Channel estimation

When combating the effects of any wireless RF channel, estimation is a good
place to start. Channel estimation is an educated guess as to the amplitude and
phase corruption imparted on our signal by the channel. A very simple way to
estimate this corruption is to embed a known signal at a predetermined point
in the transmitted waveform. For instance, at the end of the transmission we
could append a certain symbol. We could then compare the recovered symbol’s
amplitude and phase to the reference and thereby deduce the channel proper-
ties. Hopefully by correcting the damage caused by the channel, we can improve
both the EVM and the bit error rate (BER).

Figure 8.6 is basically the same demodulator block diagram we have seen
before. The difference is that the complex mixer is used to introduce some fre-
quency error into the recovered symbol waveform. Also not shown is the fact that
the modulator split the output symbol stream in half and inserted a 2 + j4
symbol as a pilot in the middle of the data (at index 63). This symbol is clearly
not one of the 16-QAM symbol points and the demodulator removes it from the
data symbols with the split 1-D arrays shown in Fig. 8.6. Once the pilot symbol
is extracted, its phase is compared to the reference phase from the 2 + j4 symbol.
From that comparison, the resultant phase error is then used to calculate an
estimate of the frequency error for the data symbols.

In Fig. 8.7 we see the front panel of the modified demodulator mentioned pre-
viously. The concentric rings characteristic of frequency error are clearly visi-
ble and it is obvious that the demodulated constellation will result in large bit
errors. We have the luxury here of knowing that the mixer frequency was set
to 20 Hz so we can immediately see that the pilot symbol accurately measured
the frequency error. Knowing this error, we could apply another mixer at −20 Hz
to the recovered symbols.

Of course there is much more to channel estimation than this simple exam-
ple reveals. For instance, we could also use the pilot symbol to correct any
amplitude corruption of the data symbols. And for best results, we would embed
more than one pilot evenly spaced throughout the transmission.

8.2.2 Channel coding

Channel coding refers to a method of insulating the transmitted data from errors
by introducing redundancy in the bit sequence. Typically the redundancy increases
the length of the transmitted message (by adding code bits) so either the data rate
or constellation density must change in order to maintain the uncoded bit rate.
There are many different types of coding and a thorough treatment can be found
in Refs. [2] and [3]. One special coding scheme known as trellis-coded modulation
(TCM), combines coding and modulation into a single operation. The interesting
feature of TCM is that the data rate is not increased, nor is the bandwidth or
required signal power [3]. So do we get something for nothing here? Not quite,
the real cost of TCM is on the receiver end in the complexity of the decoding
process. We examine the decoding process in the next section, but first let us look
at how to design a trellis-coded modulator in LabVIEW.

System Performance 145

146

F
ig

u
re

 8
.6

A
po

rt
io

n
 o

f
m

od
if

ie
d

D
em

od
u

la
to

r.
vi

 b
lo

ck
 d

ia
gr

am
.

F
ig

u
re

 8
.7

F
ro

n
t

pa
n

el
 s

h
ow

in
g

de
m

od
u

la
te

d
co

n
st

el
la

ti
on

 w
it

h
 f

re
qu

en
cy

 e
rr

or
.

147

148 Chapter Eight

The initial step is to choose the constellation that we want to transmit. It is
important to then properly partition the constellation symbols into sets with the
maximum euclidean distance between set members. For a 16-QAM constella-
tion, we will use the mapping from Ref. [2] as shown in Fig. 8.8.

The mapping in Fig. 8.8 tells us that from the current state, an input of 00
moves us to a symbol from set A, while an input of 10 moves us to a symbol from
set C. Each of the signal sets comprises four symbols with the maximum euclidean
distance between the set members. While Fig. 8.8 shows us the desired constellation
partitioning, it does not give us a complete picture of all the state transitions.
For that, we need to draw a trellis diagram such as the one in Fig. 8.9. Only a single
section of the trellis is shown, the other three sections are similar. Remember
that the trellis completely defines the behavior of a TCM encoder. The current
states are shown on the left and the next states are shown on the right. All of
the possible paths from the current states to the following states are the criss-
crossing lines in the middle.

Now we are ready to build a state machine in LabVIEW to implement the trel-
lis structure shown in Fig. 8.9. There are several ways to build this state machine
with case selectors and conditionals, however, since the trellis is a relatively
simple coder, we can eliminate the case selectors and use the virtual instrument
(VI) shown in Fig. 8.10.

TrellisStateMachine.vi takes the n-bit sequence from the current state, splits
off the oldest k data bits, and appends the current input data bits to form the
next state. The signal sets (four in our case), along with the current state and
current input bits are used to calculate which symbol to output. More specifi-
cally, the current-state bit sequence chooses which of the four signal sets the

Figure 8.8 Partitioning the 16-QAM constellation.

System Performance 149

output symbol is in and the current input bit sequence chooses which of the four
symbols in the set is chosen as the output symbol. Also you will notice the use
of the sub-VI Bin2Dec.vi, which simply converts the input binary sequence to
a decimal number (see App. A for more information on this VI).

Now that we are capable of calculating the next state and the current output
symbol, we can use TrellisStateMachine.vi to build the complete TCM shown
in Fig. 8.11.

Figure 8.9 Single section of 16 state trellis diagram.

Figure 8.10 TrellisStateMachine.vi block diagram.

F
ig

u
re

 8
.1

1
T

re
ll

is
C

od
ed

M
od

u
la

to
r.

vi
 b

lo
ck

 d
ia

gr
am

.

150

System Performance 151

So what does it buy us to use TCM? Hopefully the signal sets that we chose
give us increased resistance to bit errors. This means that for the same Eb/N0

we can expect a lower probability of a bit error. Of course, all this comes at the
cost of increased complexity of the receiver.

Speaking of the receiver, we have not looked at what would be involved in
decoding these symbols back into their corresponding data bits. Actually decod-
ing a trellis can be quite a lot of work; however, there is an efficient decoding
algorithm known as the Viterbi decoder. This is a well-established method for
decoding the TCM signal and the next section will partially develop the
LabVIEW tools to implement the Viterbi algorithm.

8.2.3 Viterbi decoder

Now comes the difficult part of TCM—decoding the raw symbols. The reason that
we get gains in error performance from the trellis is that we are using a memory-
based system to make symbol decisions. The trellis gives us somewhat of a
roadmap. We can use the known state transitions, along with some kind of dis-
tance measure, to give us an overall metric to decide which trellis path is the
most likely, thus giving us the best decoded symbol sequence. Let us explore the
Viterbi decoder in a step-by-step fashion.

In our 16-QAM signal space, there are four sets {A, B, C, and D} as shown in
Fig. 8.11. We can take the first raw recovered signal and choose which symbol
is the closest from each of the four signal sets. The block diagram in Fig. 8.12
shows how the euclidean distance between the raw received symbol and each
constellation symbol is calculated. The minimum distance is passed as output
along with the closest symbol match from each signal set.

Now that we have computed the minimum euclidean distance from our raw
symbol to each signal set, we will need to remember these values. Here is where
the memory comes in. We are going to store the euclidean distance of the raw
symbol from each of the closest symbol sets (four distance measures). And we
will keep a running tally of the sum of each path’s distance measure. The com-
plicated thing about the trellis is that each of our states has four possible states
to transition to. So the number of paths grows by powers of 4 as we step through
each state in the trellis. That gets to be an unmanageable number of paths to
hang on to and calculate distance metrics for. So what do we do? When we get
so far into the trellis (let us say seven transitions) we will choose which path
had the lowest overall euclidean distance and therefore that path is the most
likely. That way we can throw away all the other paths and focus on just that
one. From this discussion you should realize that the Viterbi decoder uses the
past information (state memory) to make an informed decision about the best
possible match for a transmitted sequence. The user can make their own choice
regarding the length of a sequence to match but must keep in mind that the
required memory grows quickly with the desired decoder depth.

Figure 8.13 shows the block diagram of a partial Viterbi decoder. It is incom-
plete in the sense that it is only a starting place for the readers to begin building

Figure 8.12 Viterbi_distance.vi block diagram.

152 Chapter Eight

F
ig

u
re

 8
.1

3
P

ar
ti

al
 V

it
er

bi
 d

ec
od

er
 b

lo
ck

 d
ia

gr
am

.

153

their own decoder. The VI Viterbi_distance.vi is placed inside a loop that runs
over the decoder depth. The euclidean distance measures are stored using shift
registers. In order for this VI to be complete, the closest matched symbols from
each set will have to be stored and the next symbol can only be chosen from the
trellis. It will be up to the reader to complete the Viterbi decoder.

Summary

This chapter has developed some tools for measuring the performance of a dig-
ital communication system. Specifically, we saw VIs calculate the number of bit
errors and the bit error rate, as well as the error vector magnitude. Together
these tools should give us a very good indication of the performance of any dig-
ital communication system. On top of that, some methods for improving system
performance such as channel estimation and coding were presented. Also TCM
and the Viterbi decoder were examined and LabVIEW examples were developed
for implementing those concepts.

References

1. Proakis, J. G., Digital Communications, 4th ed., McGraw-Hill, New York, 2001.
2. Agilent Technologies PN 89400-14, “Using Error Vector Magnitude Measurements to Analyze

and Troubleshoot Vector-Modulated Signals.”
3. Sklar, B., Digital Communications, 2d ed., Prentice-Hall, Upper Saddle River, NJ, 2001.

154 Chapter Eight

Chapter

9
Optimizing LabVIEW

Signal Processing

In general, most of the processing of large signals done in LabVIEW is fairly slow.
There is overhead from the personal computer’s (PC’s) operating system, from
the LabVIEW environment, from updating the front panel display, and then all
of the filtering and data manipulation that goes along with demodulating your
signal. We have already seen that one way to make huge savings on the pro-
cessing end is to lower the sample rate of the incoming signal. Of course, that
is not always a practical solution, so in this chapter we cover some generic tips
for streamlining LabVIEW coding as well as some neat tricks for doing fast
signal processing.

9.1 General LabVIEW Coding Guidelines

As with most programming environments, there are some simple things you can
do to maximize the efficiency of your code. This list is by no means exhaustive,
but these are a few things that I have used to streamline my own programs and
will save you time with very little effort.

1. Watch what you put inside a loop: Repeated computations should always go
outside a loop: This should be a standard practice for any programming lan-
guage including LabVIEW. Do not be tempted to put a bunch of operations
(or sub-VI calls) inside a loop if they do not depend on the loop or need to be
updated on each pass. Also you have to be careful where you place controls.
Look at Fig. 9.1 that shows a simple convolution block diagram.

Both input controls are placed inside the loop in Fig. 9.1. This means that on
each loop iteration, the inputs will be scanned. Since the filter coefficients will

155

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

156 Chapter Nine

probably not change, this control really should be placed outside the loop. If
the input is expected to change on each loop iteration, then it should stay inside
the loop.

2. Precompute as much as possible: This applies to filter coefficients, or complex
mixer values, or any set of values that will probably not change during run-
time. There is certainly no point in recomputing a set of filter coefficients or
the fast Fourier transform (FFT) of a fixed data sequence.

3. Avoid the use of global and local variables: Use sequence locals instead of local
variables and in general try to avoid global variables in speed critical appli-
cations. This one gives me a lot of trouble because I really like the readabil-
ity that you get from using global and local variables. They are self-labeling,
you can instantly tell if they are read or write and they make for very clean
looking VIs without wires running all over—but, they are terribly slow. It is
much more efficient to use sequence locals instead. I have been told that
every instance of a LabVIEW global variable is stored separately in the
memory. If you use large arrays, you definitely do not want to reference them
with global or local variables.

4. Minimize the number of display updates and the amount of data displayed
to the front panel: The LabVIEW graphics are great and it sure is nice to use

Figure 9.1 Simple convolution loop block diagram.

Optimizing LabVIEW Signal Processing 157

them, but displaying data on the screen is slow. Unless the plot is critical to
the application, I would skip it. Just keep the display data to a minimum and
you will notice huge differences in execution speed.

5. Use built-in virtual instruments (VIs) whenever possible: If you closely
examine most of the built-in LabVIEW functions, you will notice that the
underlying code is not another VI, but instead it is a call to a C routine.
Those calls to a C routine are usually much faster than if you were to build
an equivalent VI in LabVIEW. Sure it makes perfect sense, but you may
be tempted to sometimes throw together your own VI to perform a certain
function. It is a good idea to check first to see if LabVIEW already has one
there.

6. Build executable applications: LabVIEW has the capability to build a VI into
an executable application. This is an add-on piece of software known as the
application builder. What this does is allow anyone to run the application
without having a copy of LabVIEW. They do have to download the LabVIEW
run-time engine. While this method is not guaranteed to speed up your appli-
cation, it should reduce the required memory consumption because the full
LabVIEW suite is not loaded and thereby give your PC some breathing room
for slightly faster execution. Now of course if your PC is very powerful with
plenty of memory you may not notice much improvement here. But it is cer-
tainly worth a try and the bonus is that no one can view or modify your block
diagrams.

9.2 Signal Processing Tips

Other than using the previously mentioned tips for coding speed, there are a few
ways to increase the speed of some common digital signal processing (DSP) cal-
culations. The two things you may find yourself doing more than anything else
are: (1) filtering large input arrays and (2) computing the FFT. Following are
some quick tips for performing these operations efficiently in LabVIEW.

9.2.1 Linear convolution with the FFT

You may recall that convolution in the time domain becomes multiplication in
the frequency domain. What this means is that we can perform filtering in the
frequency domain by multiplying the discrete Fourier transform (DFT) of our
filter coefficients by the DFT of the signal. Now assuming the input is a fairly
long sequence and we use the FFT to compute the DFTs, this can be a signifi-
cant saving. Before we look at performing this in LabVIEW, let us take a
moment to review the restrictions on using the DFT for linear convolution.
Linear convolution takes inputs of lengths L and N and produces an output of
length L + N − 1 [1]. To use the FFT to get the same output, the length must
be at least L + N − 1. Simple enough—just pad the inputs to the next power of
2 that is at least that length.

F
ig

u
re

 9
.2

C
on

v_
w

it
h

_F
F

T.
vi

 b
lo

ck
 d

ia
gr

am
.

158

Optimizing LabVIEW Signal Processing 159

The block diagram in Fig. 9.2 shows that the input signal and the filter coef-
ficients are padded up to the next power of 2 size. The chosen power of 2 is based
on the larger of either the filter array or the input array. The FFT outputs are
then multiplied and the inverse FFT is computed. For even greater savings, the
FFT of the filter coefficients needs to be performed only once, while the input
data FFT is performed on each sample interval.

9.2.2 Fast real FFT

Using the FFT is pretty fast, but it could be faster by packing the real and
imaginary parts of a complex FFT input array with the even and odd (respec-
tively) components of a real signal. When this is done, an N-point real FFT
can be replaced with an N/2-point complex FFT [2]. The first step here is to
separate the input sequence into its even and odd indexed components. Then
reassemble those two component sequences into a single complex sequence.
Now we can perform an N/2-point complex FFT. However, there is a bit of jug-
gling to do with the output—namely, you now have an N/2-point FFT that
is somehow supposed to represent the FFT of an N-point data sequence.
Using the properties of the Fourier transform, you then generate the other
half of the FFT [2]. Figure 9.3 shows the block diagram of FastRealFFT.vi.

FastRealFFT.vi uses the equations from Ref. [2] for separating this complex
FFT back into the components of our real signal’s spectrum. There is an inter-
mediate step involved where values must be stored and then operated on to sep-
arate the complex FFT back into the components of the real signal’s FFT. This
example has not been optimized, but it shows how the complex FFT can be
used to generate the FFT of a real signal.

9.3 More LabVIEW DSP Applications

The tools and functions that we have seen so far are just a small example
what LabVIEW can do. As we will see in this section, LabVIEW has palettes
full of mathematic functions. Here we have access to functions for curve
fitting, calculus (including solving differential equations), root solving,
approximating functions, and a host of special functions like the Bessel
function and complementary error function. The location of these functions
is shown in Fig. 9.4.

Some of these functions will be of more use to us than others, in particular
the zero solving functions and the linear algebra tools. The location of each of
these subpalettes is shown in Figs. 9.5 and 9.6. The next two sections make use
of some of these functions.

9.3.1 Roots of difference equations

LabVIEW has a nice built-in function to find the complex roots of a polynomial.
This function can be extremely useful when we want to examine the roots of a

160

F
ig

u
re

 9
.3

F
as

tR
ea

lF
F

T.
vi

 b
lo

ck
 d

ia
gr

am
.

Optimizing LabVIEW Signal Processing 161

Figure 9.4 Location of LabVIEW Mathematics palette.

162 Chapter Nine

difference equation that may describe the transfer function of a filter. Figure 9.7
shows the block diagram of PoleZero.vi, which uses Complex Polynomial
Roots.vi in order to solve a difference equation entered by the user. Figure 9.8
shows the front panel of our PoleZero VI. Here we can see that the difference
equation coefficients must be entered in descending powers of z. The graph
shows the pole and zero locations for the given difference equation in relation
to the unit circle.

Figure 9.5 Location of LabVIEW zeroes functions.

Optimizing LabVIEW Signal Processing 163

9.3.2 Linear predictive speech coder

All digital communication systems employ some form of speech coding to reduce
the required bit rate for a voice transmission. Here we will take a look at one
of the more common speech coding algorithms, linear predictive coding (LPC).
The LPC vocoder is based on the premise that a short time segment of speech
can be modeled as the output of a linear filter excited by periodically spaced
pulses [3]. There are many more subtleties to actually implementing this kind
of speech coding, so if you really want to understand the LPC vocoder, there is
an entire chapter in Ref. [4] devoted to the topic. This section presents a
LabVIEW implementation of only the central portion of the LPC vocoder, the
coefficient generator.

In order to model a short voice segment as the output of a linear filter, we must
find the filter coefficients that most closely match the spectrum of that voice seg-
ment. So this is just a problem in error minimization that can be expressed by
the following equation [4].

(9.1)a k n
k

p

nR i k R i i p(| |) ()− = ≤ ≤
=

∑
1

1

Figure 9.6 Location of LabVIEW linear algebra functions.

164

F
ig

u
re

 9
.7

B
lo

ck
 d

ia
gr

am
 o

f
P

ol
eZ

er
o.

vi
.

F
ig

u
re

 9
.8

F
ro

n
t

pa
n

el
 o

f
P

ol
eZ

er
o.

vi
.

165

F
ig

u
re

 9
.9

L
P

C
co

ef
fs

.v
i b

lo
ck

 d
ia

gr
am

.

166

Optimizing LabVIEW Signal Processing 167

where p is the number of poles in the filter model and Rn is given by [4]

(9.2)

and sn(m) is the windowed speech signal.
There are some very efficient methods for solving the set of linear equations,

one of which is the Levinson–Durbin recursion. However, since LabVIEW has
some built-in matrix manipulation tools, we can just invert the autocorrelation
matrix as shown in the block diagram of LPCcoeffs.vi in Fig. 9.9.

The first step in LPCcoeffs.vi is to compute the short time autocorrelation func-
tion Rn(k) from Eq. (9.2). Once we have the autocorrelation sequence, we can use
those values to form the autocorrelation matrix (which is a Toeplitz matrix).
From here, the LabVIEW matrix inversion function is called to invert the (sign
negated) autocorrelation matrix. At the same time, another autocorrelation
sequence is formed (this time from lag 1 to lag p) and this sequence is matrix
multiplied by the inverted autocorrelation matrix. The result of this multipli-
cation is the sequence of p filter coefficients.

The LPCcoeffs.vi can now be dropped into another VI that will sample the
audio from the soundcard (perhaps use sndcard.vi shown in Chap. 2), perform
the windowing, and then use the filter coefficients output from this VI to regen-
erate the voice frame (or convert them into reflection coefficients for a lattice
implementation). Of course there is more to the LPC vocoder such as voiced/
unvoiced decisions, filter gain, and some kind of pitch detection algorithm, but
LPCcoeffs.vi should get you started.

Summary

This chapter has presented some basic LabVIEW coding techniques for increas-
ing the speed of your routines. Also shown were a couple of computational tricks
for a few of the most common DSP computations. Finally, we ended up with some
discussion on the mathematical abilities of LabVIEW and saw two DSP appli-
cations of LabVIEW outside of the digital communication’s focus in the rest of
this book. There are many more functions built into LabVIEW than could be cov-
ered by this book; however, it is my hope that the topics included here will start
the reader down the path of using the full power of LabVIEW.

References

1. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2d ed.,
Prentice-Hall, Upper Saddle River, NJ, 1998.

2. Lyons, R. G., Understanding Digital Signal Processing, Prentice-Hall, Upper Saddle River,
NJ, 2001.

3. Ingle, V. K., and J. G. Proakis, Digital Signal Processing using Matlab, Brooks/Cole, Pacific
Grove, CA, 2000.

4. Rabiner, L. R., and R. W. Schafer, Digital Processing of Speech Signals, Prentice-Hall, Upper
Saddle River, NJ, 1978.

R k s m s m kn n n
m

N k

() () ()= +
=

− −

∑
0

1

This page intentionally left blank.

Appendix

A
VI Reference

169

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

1. AdvFFT.vi. An advanced FFT utility. This VI has the ability to force the use
of the FFT algorithm by padding the input length to a power of 2. The input can
either be real or complex and the FFT output is shifted over by half the sample
rate and plotted versus frequency.

170 Appendix A

2. ArraySwap.vi. A simple utility to switch the positive and negative halves of
the FFT output (or any array for that matter).

3. AWGN.vi. AWGN generates white gaussian noise with a specified noise
power. The generated noise can be either real or complex.

VI Reference 171

4. BasicFcns.vi. Forms the impulse, ramp, and step functions with a specified
number of samples and delay. The amplitude is fixed to 1.

172 Appendix A

5. BERTest.vi. This VI calculates the number of bit errors as well as the bit
error rate of our 16-QAM waveform. The known bit sequence is output from the
modulator and compared to the recovered bit sequence after the waveform is
corrupted by Channel.vi.

6. Bin2Dec.vi. Converts a binary input array to a decimal number. The highest
index is the most significant bit and index 0 is the least significant bit.

VI Reference 173

7. BoundaryDecoder.vi. This VI chooses the closest constellation symbol match
for the recovered symbols based on boundary decisions. For this 16-QAM
constellation, the regions are 0 to ±1 and ≥ ± 2.

8. Channel.vi. This VI simulates a fading channel by forming a Rayleigh faded
envelope and applying the faded profile to the modulated waveform.

174

10. ComplexMixer.vi. Generates a complex sinusoidal mixer of a given length and
frequency for the specified sample rate.

VI Reference 175

9. Chirp.vi. Computes a linear chirp sequence where the instantaneous
frequency of the waveform linearly increases with slope k.

11. Conv_with_FFT.vi. Performs linear convolution with FFT. The input signal
and filter coefficients are zero-padded up to the next highest power of 2 length.
The FFTs of the extended sequences are multiplied and the inverse FFT is
calculated. The output is then trimmed to remove excess zeros.

176

12. Demodulator.vi. Demodulates the 16-QAM waveform. The excess points from
the pulse shaping convolution are trimmed off, the waveform is downsampled and
the recovered symbols are scaled.

VI Reference 177

13. Downsample.vi. Lowers the sample rate of a discrete time waveform by
keeping only one of every M samples. Filtering may be necessary before this
operation to keep the expanded bandwidth of the downsampled sequence within
the fs/2 limits.

178 Appendix A

15. FadeSimulation.vi. Simulates a fading environment by generating a 16-QAM
waveform, applying fading using Channel.vi, and demodulating the faded signal.

14. EVM.vi. This VI calculates the error vector magnitude of a recovered symbol
sequence by comparing it to a reference sequence. The magnitude of the errors
is normalized to the magnitude of the constellation corner symbol.

16. FastRealFFT.vi. Computes the FFT of a length 2N real sequence by
reassembling it into an N-point complex sequence and using the complex FFT
routine. The N-point complex spectrum is then operated on to produce the
2N-point desired FFT.

179

17. FreqAxis.vi. Generates the frequency axis values for plotting a two-sided or
single-sided spectrum.

18. GenerateBits.vi. Forms a sequence of bits using random number generator
in a loop and rounding the result to the nearest integer.

19. Halfband.vi. Computes the filter coefficients for a lowpass filter (using the
Parks-McClellan algorithm) with a cutoff of 1/4 the sample rate. The halfband
filter has the property of every other coefficient being zero.

180 Appendix A

VI Reference 181

20. IIR.vi. Generates lowpass IIR filter coefficients using the Butterworth
LabVIEW design VI. The filter order is computed from the design formulas.

21. Init5660.vi. Initializes an instance of the PXI-5660 hardware. The taskID
and scope handle are passed on to the read and close functions.

182 Appendix A

22. KaiserFIR.vi. This VI generates digital filter coefficients based on the Kaiser
window method.

VI Reference 183

23. LPCcoeffs.vi. Computes the set of filter coefficients for linear predictive
model of speech segment. These coefficients can be used to synthesize a frame
of speech as an all-pole filter model.

184

VI Reference 185

24. MatchedFilterDetection.vi. Demonstration of running a noisy input signal
through a matched filter to determine which of the two signals was present.

25. Modulator.vi. This VI modulates a sequence of bits by mapping them to a
16-QAM constellation, upsampling the symbol waveform, and finally shaping
the pulses for zero ISI.

186 Appendix A

27. NyquistPulse.vi. Generates either a raised cosine or root-raised cosine pulse-
shaping filter. The raised cosine filter is from the Nyquist class of shaping
pulses, which exhibit zero intersymbol interference.

26. MPR.vi. Generates lowpass filter coefficients using the optimum Parks-
McClellan algorithm. This VI will choose the appropriate filter order or the
user can specify a desired filter order.

187

188

VI Reference 189

28. PoleZero.vi. Solves a linear constant coefficient difference equation and
plots the poles and zeros in relation to the unit circle.

29. PolyphaseInterpolator.vi. Upsample and filter using efficient polyphase
approach. The filter is split into separate banks and the input is upsampled and
filtered in a combined operation.

190 Appendix A

32. Rayleigh.vi. Generates Rayleigh random variable using gaussian real and
imaginary components and uniformly distributed phase.

31. PXICapture.vi. Utilizes the PXI-5660 downconverter and digitizer to
continuously capture a record of specified time length.

30. PulseFreq.vi. Calculates the frequency values for the Nyquist pulse VI.

191

192 Appendix A

35. SimpleFFT.vi. Computes FFT with built-in LabVIEW function, converts
magnitude to decibel, then shifts output to center at 0 Hz.

36. SimpleNoisySystem.vi. Demo communication system, which calls the
modulator, adds AWGN noise, and then demodulates. The recovered symbol
constellation shows some scatter as a result of the noise.

34. Set0dB.vi. Sets the peak value of a log magnitude plot to 0 dB.

33. ScaleSymbols.vi. Scales the recovered symbols so that the maximum
magnitude is √18 for 16-QAM constellation.

193

194

VI Reference 195

38. SoundCardCapture.vi. Uses a PC soundcard to digitize analog input. The
samples can be 8 or 16 bit, mono or stereo.

39. SymbolDecoder.vi. Simple VI to unmap the recovered symbols back into a
sequence of bits.

37. SincFcn.vi. Computes a discrete sinc waveform with a specified length and
cutoff frequency. The cutoff is used because the sinc function forms a Fourier
pair with the ideal lowpass filter.

196 Appendix A

40. SymbolMapper.vi. Performs mapping of a bit sequence to points on the
16-QAM constellation.

41. SymbolRateAxis.vi. Forms the frequency axis for the pulse-shape filter
display. The frequency values are normalized to the symbol rate.

42. TrellisCodedModulator.vi. Performs trellis-coded modulation on specified
number of bits. TrellisStateMachine.vi is called to compute current output
symbol index as well as the next state.

197

198 Appendix A

43. TrellisStateMachine.vi. Chooses the next state and current output symbols
based on the current state and current input. This VI is then used in a trellis-
coded modulator.

44. Upsample.vi. Upsamples the real input sequence by stuffing upsample-factor-
minus-one zeros in between each sample. There is no filtering done on the output.

VI Reference 199

45. Viterbi_distance.vi. Computes the Euclidean distance between a raw recovered
symbol and the closest matching symbol in each signal set. Not a complete Viterbi
decoder, this VI simply computes the distance metric for each symbol.

200 Appendix A

46. Window.vi. Demonstrates the FFT of a signal with and without windowing.
The window function can be chosen from a dropdown box.

Appendix

B
Hardware Resources

There is not a lot of sampling hardware available that will operate at the fre-
quencies that most digital communication devices use. The few companies listed
here all have some very good products suitable for the type of work mentioned
in this book. Hopefully there will be more additions to this list in the near
future; for now start with these companies.

National Instruments (www.ni.com). NI offers a large selection of sampling
hardware, although most of the products are not directly suitable for RF frequencies.
The largest bandwidth digitizer appears to be the PCI-5112. This 8-bit digitizer
has 100 MHz of analog bandwidth and can sample up to 100 Msps—not quite
enough for most RF signals. More interesting for digital communication work is
the PXI-5660 (includes the PXI-5620 digitizer and PXI-5600 RF downconverter).
The 5660 is billed as an RF signal analyzer and this device was explained in some
detail in Chap. 2. The 5600 RF downconverter has a bandwidth of up to 2 GHz.
It also ships with some nice LabVIEW tools for spectral analysis in the form of
the spectral measurements toolset. NI has recently added the PXI-5670 to their
RF lineup. The 5670 combines an arbitrary waveform generator with an RF
signal source to now offer the capability of generating digitally modulated RF
signals. Both the 5660 and 5670 are only available in the PXI form-factor and
therefore require a PXI chassis, power supply, and one of the controller options
mentioned in Chap. 2.

Acqiris (www.acqiris.com). Acqiris offers an entire family of 8-bit PCI digitizers
with input bandwidths from 150 MHz up to 1 GHz. These cards also ship with
complete LabVIEW support in the form of a library accessible from the functions
palette as shown in Chap. 2. The product is simple to use, comes with some
example virtual instruments (VIs), and the LabVIEW interface is explained in
the manual. This product was used in conjunction with the subsampling
technique discussed in Chaps. 1 and 2 and performed as expected. The install
and interface were smooth and the card was up and running in under 20 min.

201

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Gage Applied Technologies (www.gage-applied.com). Like Acqiris, Gage also has
a line of 8-bit PCI digitizers and they also offer up to 1 GHz of bandwidth. Gage
also lists LabVIEW support on their Web page, although this has not been
confirmed first hand. It is also worth mentioning that Gage sells oscilloscopelike
software for the PC, which will acquire and display data from their digitizers.

Delphi Engineering (www.delphieng.com). Delphi offers some extremely high
bandwidth products, specifically the ADC3200 (10-bit) and ADC3100 (8-bit). These
are both PMC modules with up to 3 GHz (ADC3200) analog bandwidth and sample
rates up to 2 GHz. The downside is that these are PMC modules, but there are PMC
to PCI converters available that allow you to plug this into a standard PCI slot.

202 Appendix B

Index

Adjacent channel power, 56
Analog-to-digital converter, 5
Analog sampling card, 31
Approximation error, 67
Autocorrelation matrix, 167

Bandpass sampling, 7
Bessel function, 67
Bit-error rate, 139
Bit rate, 27

Causal, 65
Channel coding, 145
Channel estimation, 145
Chirp sequence, 97, 103
Complementary error function,

26, 159
Complex mixer, 97, 98, 101
Constellation, 16-QAM,

112, 116

dc, 41, 43
Demodulator, 118, 121
Difference equation, 162
Digital modulation, 107
Digital oscilloscope, 30
Direct digital conversion (DDC), 17
Discrete Fourier Transform (DFT),

42–44, 46, 47, 49, 59,
65, 157

bin, 43, 44, 46, 47, 63
Doppler shift, 127
Downsampling, 83, 85, 87

Dynamic linked library (DLL), 53,
55, 56

Error vector magnitude (EVM), 142
Euclidean distance, 151, 154
Excess bandwidth, 28, 79, 81, 116

Fading, 124
small scale, 103, 105

Fast Fourier transform (FFT), 39,
41–43, 53, 55, 59, 156, 157, 159

Filter:
Butterworth, 73, 76, 78
Chebychev, 73
design, 76
elliptic, 73
equiripple, 69
FIR, 61, 63, 67, 69, 73, 74, 76, 78
IIR, 61, 63, 73, 74, 76, 78
halfband, 88
matched, 129
polyphase, 88, 90
pulse-shaping, 78, 79, 116, 133
raised cosine, 79
root-raised cosine, 79, 82

Filter coefficients:
forward, 73
reverse, 73

Fractional resampling, 136
Frequency:

digital, 5
response, 39
spacing, 44

203

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

General purpose instrument bus
(GPIB), 13, 30, 31

Gray coding, 107, 124, 139, 142
Group delay, 78
Guard band, 8

Half-sample rate, 8

Ideal lowpass filter, 28, 65, 82, 103
Impulse function, 95
Inter-symbol interference (ISI) 78,

115, 127

Linear phase, 61, 73, 78
Linear predictive coding, 163

Matched filter, 129
Modulation toolkit, 17, 134
Modulator, 115, 116
Multirate signal processing 17, 83
MXI, 15

Noise:
floor, 24, 25, 28
quantization, 28
white gaussian, 103, 105, 107, 122

Normalized correlation, 129
Nyquist:

criterion, 9
minimum bandwidth, 79, 82
rate, 7, 10, 25

Occupied bandwidth, 56

Parks-McClellan algorithm, 69, 71, 90
Pilot symbols, 134
Polymorphic, 43
Polyphase, 116

downsampler, 93
interpolation, 88, 93

Power spectral density
noise, 27

Pulse shaping, 115
filter, 78, 79, 116, 133

PXI, 14, 15, 17, 21
5600, 14, 15, 59
5620, 14, 15, 59
5660, 14, 17, 56
5670, 134

Raised cosine, 97, 115, 121
root, 115, 121

Ramp function, 95
Rayleigh:

faded envelope, 124, 127
fading, 103, 105, 127, 137
random variable, 103, 124

RFSA, 15

Scalloping loss, 44, 49
Shaping parameter, 67
Signal-to-noise ratio (SNR), 6, 10, 23,

25–29, 122, 124
Sinc function, 65, 68, 69,

97, 101
Soundcard, 35
Spectral images, 85
Spectral leakage, 44, 46, 49
Spectral Measurements Toolset

(SMT), 15, 56, 59, 134
Spectral placement, 29
Spectral replications, 8, 9, 84

inverted, 9
normal, 9

Spectrum analyzer, 31
Step function, 97
Subsampling, 7

factor, 9, 10
receiver, 6, 13, 21

Symbol error, probability of, 26,
27, 124

Synchronization:
frequency, 133
time, 133

Symbol rate, 27

Toeplitz matrix, 167
Trellis-coded modulation, 145

204 Index

Trellis diagram, 148
Transition bandwidth, 67, 69

Undersampling, 7
Upsampling, 83–85, 87, 88

Viterbi decoder, 151

Window, 46, 47
Blackman, 49

Blackman-Harris,
46, 49

Hamming, 46, 49
Hann, 46, 47, 49
Kaiser, 49, 69
rectangle, 46, 47
triangle, 49

Windowing, 46, 49, 50

Zero stuff, 83

Index 205

This page intentionally left blank.

ABOUT THE AUTHOR

Cory L. Clark is a senior software engineer with Motorola
and has developed many LabVIEW-based DSP tools. He
holds a master’s degree in electrical engineering from
Georgia Tech.

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

	Cover
	Terms of Use
	Want to learn more?
	Contents
	Preface
	Part 1. Getting Started
	Chapter 1. Digital Communications and LabVIEW
	1.1 Conventional Digital Receiver
	1.2 Subsampling Receiver
	Summary
	References

	Chapter 2. Getting a Signal into LabVIEW
	2.1 Conventional Digital Receiver
	2.2 Subsampling Digital Receiver
	2.2.1 Choosing a Sample Rate
	2.2.2 Subsampling SNR
	2.2.3 Subsampling Signal Placement

	2.3 Other Sampling Methods
	2.3.1 Digital Oscilloscope
	2.3.2 RF Spectrum Analyzer
	2.3.3 Analog Sampling Card
	2.3.4 Soundcard

	Summary
	References

	Part 2. Building Blocks
	Chapter 3. Spectral Analysis
	3.1 Low-Level Frequency Domain Functions
	3.1.1 Simple FFT
	3.1.2 Improved FFT

	3.2 Analyzing the DFT Results
	3.2.1 Spectral Leakage
	3.2.2 Sampling Window Shape

	3.3 High-Level Spectral Functions
	3.4 Adding C Routines to LabVIEW
	3.5 Spectral Measurements Toolset
	Summary
	References

	Chapter 4. Digital Filters
	4.1 Filter Types
	4.2 FIR Filters
	4.2.1 FIR Filter Design by Windowing
	4.2.2 Equiripple FIR Filters

	4.3 IIR Filters
	4.4 Comparing IIR and FIR Filters
	4.4.1 IIR versus FIR Magnitude
	4.4.2 Effects of Filter-Phase Response

	4.5 Pulse-Shaping Filter
	Summary
	References

	Chapter 5. Multirate Signal Processing in LabVIEW
	5.1 Upsampling
	5.2 Downsampling
	5.3 Resampling Filters
	5.3.1 Halfband Filters
	5.3.2 Polyphase Filters

	Summary
	References

	Chapter 6. Generating Signals with LabVIEW
	6.1 Basic Functions
	6.2 Sinusoids
	6.2.1 Complex Mixer
	6.2.2 Sinc Function
	6.2.3 Chirp Sequence

	6.3 Generating Channel Models
	6.3.1 Rayleigh Fading
	6.3.2 White Gaussian Noise

	6.4 Generating Symbols
	Summary
	References

	Part 3. Building a Communication System
	Chapter 7. Assembling the Pieces
	7.1 Modulator
	7.2 Demodulator
	7.3 Channel Impairments
	7.4 Signal Detection and Recovery
	7.4.1 Matched Filter Detection
	7.4.2 Threshold Decisions

	7.5 Synchronization
	7.5.1 Time Synchronization
	7.5.2 Frequency Synchronization

	7.6 NI Modulation Toolset
	Summary
	References

	Chapter 8. System Performance
	8.1 Performance Measurements
	8.1.1 Bit-Error Rate
	8.1.2 Error Vector Magnitude

	8.2 Improving System Performance
	8.2.1 Channel Estimation
	8.2.2 Channel Coding
	8.2.3 Viterbi Decoder

	Summary
	References

	Chapter 9. Optimizing LabVIEW Signal Processing
	9.1 General LabVIEW Coding Guidelines
	9.2 Signal Processing Tips
	9.2.1 Linear Convolution with the FFT
	9.2.2 Fast Real FFT

	9.3 More LabVIEW DSP Applications
	9.3.1 Roots of Difference Equations
	9.3.2 Linear Predictive Speech Coder

	Summary
	References

	Appendix A. VI Reference
	Appendix B. Hardware Resources
	Index
	About the Author

	Preface:
	Part 1:
	 Getting Started:

	Chapter 1:
	 Digital Communications and LabVIEW:

	1:
	1 Conventional Digital Receiver:
	2 Subsampling Receiver:

	Part 2:
	 Building Blocks:

	Chapter 2:
	 Getting a Signal into LabVIEW:

	2:
	1 Conventional Digital Receiver:
	2 Subsampling Digital Receiver:
	2:
	1 Choosing a sample rate:
	2 Subsampling SNR:
	3 Subsampling signal placement:

	3 Other Sampling Methods:
	3:
	1 Digital oscilloscope:
	2 RF spectrum analyzer:
	3 Analog sampling card:
	4 Soundcard:

	Summary:
	References:
	Chapter 3:
	 Spectral Analysis:

	3:
	1 Low-Level Frequency Domain Functions:
	1:
	1 Simple FFT:
	2 Improved FFT:

	2 Analyzing the DFT Results:
	2:
	1 Spectral leakage:
	2 Sampling window shape:

	3 High-Level Spectral Functions:
	4 Adding C Routines to LabVIEW:
	5 Spectral Measurements Toolset:

	Chapter 4:
	 Digital Filters:

	4:
	1 Filter Types:
	2 FIR Filters:
	2:
	1 FIR filter design by windowing:
	2 Equiripple FIR filters:

	3 IIR Filters:
	4 Comparing IIR and FIR Filters:
	4:
	1 IIR versus FIR magnitude:
	2 Effects of filter-phase response:

	5 Pulse-Shaping Filter:

	Chapter 5:
	 Multirate Signal Processing in LabVIEW:

	5:
	1 Upsampling:
	2 Downsampling:
	3 Resampling Filters:
	3:
	1 Halfband filters:
	2 Polyphase filters:

	Chapter 6:
	 Generating Signals with LabVIEW:

	6:
	1 Basic Functions:
	2 Sinusoids:
	2:
	1 Complex mixer:
	2 Sinc function:
	3 Chirp sequence:

	3 Generating Channel Models:
	3:
	1 Rayleigh fading:
	2 White gaussian noise:

	4 Generating Symbols:

	Part 3:
	 Building a Communication System:

	Chapter 7:
	 Assembling the Pieces:

	7:
	1 Modulator:
	2 Demodulator:
	3 Channel Impairments:
	4 Signal Detection and Recovery:
	4:
	1 Matched filter detection:
	2 Threshold decisions:

	5 Synchronization:
	5:
	1 Time synchronization:
	2 Frequency synchronization:

	6 NI Modulation Toolset:

	Chapter 8:
	 System Performance:

	8:
	1 Performance Measurements:
	1:
	1 Bit-error rate:
	2 Error vector magnitude:

	2 Improving System Performance:
	2:
	1 Channel estimation:
	2 Channel coding:
	3 Viterbi decoder:

	Chapter 9:
	 Optimizing LabVIEW Signal Processing:

	9:
	1 General LabVIEW Coding Guidelines:
	2 Signal Processing Tips:
	2:
	1 Linear convolution with the FFT:
	2 Fast real FFT:

	3 More LabVIEW DSP Applications:
	3:
	1 Roots of difference equations:
	2 Linear predictive speech coder:

	Appendix A:
	 VI Reference:

	Appendix B:
	 Hardware Resources:

	Index:
	Copyright © 2005 by The McGraw-Hill Companies, Inc:
	 Click here for terms of use:

